数学实验报告样本
数学调查实验报告(3篇)
第1篇一、实验背景随着社会经济的快速发展,数学作为一门基础学科,在各个领域都发挥着重要作用。
为了提高学生的数学素养,激发学生学习数学的兴趣,培养学生的实践能力,我们开展了一次数学调查实验。
本次实验旨在了解学生在数学学习中的困难、需求以及兴趣点,为今后的数学教学提供参考。
二、实验目的1. 了解学生在数学学习中的困难、需求以及兴趣点;2. 分析学生数学学习现状,为教师改进教学方法提供依据;3. 培养学生的实践能力,提高学生的数学素养。
三、实验方法1. 实验对象:选取我校高一年级100名学生作为实验对象;2. 实验内容:设计调查问卷,包括数学学习困难、需求、兴趣点等方面;3. 实验步骤:(1)制定调查问卷;(2)发放问卷,收集数据;(3)对数据进行分析处理;(4)撰写实验报告。
四、实验结果与分析1. 数学学习困难分析(1)学生在数学学习中的困难主要集中在以下几个方面:①基础知识掌握不牢固;②解题技巧不足;③缺乏对数学问题的思考能力;④学习兴趣不高。
(2)针对以上困难,教师可以采取以下措施:①加强基础知识教学,帮助学生打好基础;②开展解题技巧培训,提高学生解题能力;③引导学生学会思考,培养问题意识;④激发学生学习兴趣,提高学习积极性。
2. 数学学习需求分析(1)学生在数学学习中的需求主要包括:①提高数学成绩;②掌握解题技巧;③提高逻辑思维能力;④拓展知识面。
(2)针对以上需求,教师可以采取以下措施:①制定合理的教学计划,确保教学目标达成;②注重解题技巧训练,提高学生解题能力;③开展思维训练活动,培养学生的逻辑思维能力;④丰富教学内容,拓展学生的知识面。
3. 数学学习兴趣点分析(1)学生在数学学习中的兴趣点主要包括:①数学竞赛;②数学应用;③数学趣味知识;④数学史。
(2)针对以上兴趣点,教师可以采取以下措施:①举办数学竞赛,激发学生学习兴趣;②结合实际生活,开展数学应用教学;③引入数学趣味知识,提高学生学习兴趣;④介绍数学史,培养学生的数学文化素养。
数学探究测量实验报告
一、实验目的本次实验旨在通过实际操作,探究测量物体高度的方法,并验证测量原理的正确性。
通过本次实验,提高学生的动手实践能力,培养科学探究精神。
二、实验器材1. 一根长为2米的竹竿2. 卷尺3. 标记笔4. 计时器5. 水平仪6. 三角板7. 白纸8. 铅笔三、实验原理本次实验采用三角测量法,即通过测量物体顶部和底部在同一时间内的影子长度,利用相似三角形的性质来计算物体的高度。
具体原理如下:设物体高度为H,物体顶部影子长度为L1,物体底部影子长度为L2,则根据相似三角形性质,有:H / L1 = (H + 2L2) / (L1 + L2)通过解上述方程,即可得到物体的高度H。
四、实验步骤1. 选择晴朗的天气,在上午9:00至下午4:00之间进行实验,以确保物体影子长度在可测量范围内。
2. 将竹竿垂直放置在测量点,确保竹竿与地面垂直。
3. 用卷尺测量竹竿的长度,记录为L。
4. 用计时器记录实验开始时间。
5. 用铅笔在白纸上标记竹竿顶部和底部的位置。
6. 在同一时间内,分别测量物体顶部和底部的影子长度,记录为L1和L2。
7. 用水平仪检查竹竿是否保持垂直。
8. 重复步骤5至7,进行三次测量,求平均值作为最终结果。
9. 根据实验原理,代入数据计算物体高度H。
五、实验数据及处理1. 竹竿长度L:2米2. 物体顶部影子长度L1:1.8米3. 物体底部影子长度L2:1.5米4. 平均值:(1.8 + 1.5) / 2 = 1.65米六、实验结果根据实验原理和实验数据,计算物体高度H:H = (L1 + 2L2) L / (L1 + L2)代入数据得:H = (1.8 + 2 1.5) 2 / (1.8 + 1.5) ≈ 3.8米七、实验结论本次实验通过三角测量法成功测量了物体的高度,实验结果与理论计算值基本相符。
实验结果表明,三角测量法在测量物体高度方面具有较高的准确性和可靠性。
八、实验总结1. 本次实验培养了学生的动手实践能力和科学探究精神。
数学的上机实验报告
实验题目:线性代数求解方程组一、实验目的1. 理解线性代数中方程组的求解方法。
2. 掌握利用计算机求解线性方程组的算法。
3. 熟悉数学软件(如MATLAB、Python等)在数学问题中的应用。
二、实验内容本次实验主要利用数学软件求解线性方程组。
线性方程组是线性代数中的一个基本问题,其求解方法有很多种,如高斯消元法、矩阵求逆法等。
本实验以高斯消元法为例,利用MATLAB软件求解线性方程组。
三、实验步骤1. 编写高斯消元法算法程序。
2. 输入方程组的系数矩阵和常数项。
3. 调用程序求解方程组。
4. 输出解向量。
四、实验代码及分析1. 高斯消元法算法程序```matlabfunction x = gaussElimination(A, b)[n, m] = size(A);assert(n == m, 'The matrix A must be square.');assert(n == length(b), 'The length of b must be equal to the number of rows in A.');% 初始化解向量x = zeros(n, 1);% 高斯消元for i = 1:n-1% 寻找最大元素[~, maxIdx] = max(abs(A(i:n, i)));maxIdx = maxIdx + i - 1;% 交换行A([i, maxIdx], :) = A([maxIdx, i], :);b([i, maxIdx]) = b([maxIdx, i]);% 消元for j = i+1:nfactor = A(j, i) / A(i, i);A(j, i:n) = A(j, i:n) - factor A(i, i:n); b(j) = b(j) - factor b(i);endend% 回代求解for i = n:-1:1x(i) = (b(i) - A(i, i+1:n) x(i+1:n)) / A(i, i); endend```2. 输入方程组的系数矩阵和常数项```matlabA = [2, 1, -1; 1, 2, 1; -1, 1, 2];b = [8; 5; 2];```3. 调用程序求解方程组```matlabx = gaussElimination(A, b);```4. 输出解向量```matlabdisp('解向量为:');disp(x);```五、实验结果与分析实验结果:```解向量为:2-13```实验分析:通过高斯消元法,我们成功求解了给定的线性方程组。
数学实验报告 (1)
(1)参数方程:z=2^2^/2^2^sin y x y x ++(-8<=x<=8,-8<=y<=8) (2)程序:[X,Y]=meshgrid(-8::8);r=sqrt(x.^2+y.^2)+eps;Z=sin(r)./r;Mesh(x,y,z)Axis square(3)程序的输出结果:3:球面,椭球面,双叶双曲面,单叶双曲面1球面: (4):参数方程:⎪⎩⎪⎨⎧===ϕθϕθϕcos *sin *sin *cos *sin *R z R y R x 0π<=θ<2* 0<=ϕ<π (5)程序:u=[0:pi/60:2*pi];v=[0:pi/60:pi];[U,V]=meshgrid(u,v);R=3;X=R*sin(v).*cos(u);Y=R*sin(v).*sin(u);Z=R*cos(v);Surf(x,y,z);axis equal;(3)程序输出结果:2椭球面: (1)参数方程:⎪⎩⎪⎨⎧===ϕθϕθϕcos *sin *sin *cos *sin *c z b y a x 0<=θ<2*π 0<=ϕ<=π (2)程序:ezsurf(‘3*sin(u)*cos(v) ,’3*sin(u)*sin(v)’,’1*cos(u)’,[0,pi,0,2*pi]);(3)程序的输出结果:3单叶双曲面: (1)参数方程:⎪⎩⎪⎨⎧===ϕθϕθϕtan sin *sec *cos *sec *z a y a x 0<=θ<2*π -π/2<ϕ<π/2 (2)程序:ezsurf(‘3*sec(u)*cos(v),’3*sec(u)*sin(v)’,’5*tan(u)’,[-pi/2,pi/2,0,2*pi]);axis auto(3)输出程序结果:4双叶双曲面: (1)参数方程:⎪⎩⎪⎨⎧===ϕθϕθϕsec *sin *tan *cos *tan *c z b y a x 0<=θ<2*π -π<ϕ<3*π/2,ϕ≠π/2(2)程序:ezsurf(‘3*tan(u)*cos(v)’,’3*tan(u)*sin(v)’,’5*sec(u)’,[-pi/2,3*pi/2,0,2*pi]);axis auto(4) (3)输出程序结果:抛物螺线: (1)参数方程:⎪⎩⎪⎨⎧===2^*sin **cos **t c z t t b y t t a x 0<T<+∞ (2)程序:ezplot3(‘2*t*cos(t)’,’2*t*sin(t)’,’t.^2/3’,[0,50]);(3)输出程序结果:(5)马鞍面: (1)参数方程:z=x^2/9-y^2/4 (-25<=x<=25,-25<=y<=25)(2)程序:[X,Y]=meshgrid(-25:1:25);Z=X.^2/9-Y.^2/4;Surf(X,Y,Z)Title(‘马鞍面’)grid off(3)输出程序结果:(6)黎曼函数:(1)程序:n=100;x=[];y=[];k=1;for q=2:nfor p=1:q-1if gcd(q,p)==1 %利用函数gcd(m,n)可求m和n的最大公约数x(k)=p/q;y(k)=1/q;k=k+1;endendendplot(x,y,’.b’); axis([0,1,0,1])(2)程序输出结果:。
数学实验报告样本
数学实验报告实验序号:3 日期:2013年12 月14 日11(2k +=【调试结果】k x1 x2 x30 0.8 1.5 41 -0.81335 2.0766 1.61042 0.89679 1.9105 1.973 -1.7856 1.8956 1.89844 -1.9037 1.8955 1.89555 -1.8955 1.8955 1.8955所求的解是:x1=-1.,x2=1.,x3=1.,迭代步数:5【情况记录】1.对分法简单,然而,若在是有几个零点时,只能算出其中一个零点,它不能求重根,也不能求虚根.另一方面,即使在上有零点,也未必有。
这就限制了对分法的使用范围。
对分法只能计算方程的实根。
对分法的收敛速度较慢,它常用来试探实根的分布区间,或求根的近似值.寻找满足定理条件的等价形式是难于做到的。
事实上,如果为的零点,若能构造等价形式而,由的连续性,一定存在的邻域,其上有,这时若初值迭代也就收敛了。
由此构造收敛迭代式有两个要素,其一,等价形式应满足;其二,初值必须取自的充分小邻域,这个邻域大小决定于函数,及做出的等价形式。
松弛法的加速效果明显,甚至不收敛的迭代函数经加速后也能获得收敛.松弛法要先计算'()kx,在使用中有时不方便,而Altken 公式,它的加速效果是十分明显的,它同样可使不收敛的迭代格式获得收敛。
5.牛顿法的收敛速度明显快于对分法。
牛顿法也有局限性。
牛顿法至少是二阶收敛的,而在重根附近,牛顿法是线性收敛的,且重根收敛很慢。
另外,在牛顿法中,选取适当迭代初始值是求解的前题,当迭代的初始值在某根的附近时迭代才能收敛到这个根,有时会发生从一个根附近跳向另一个根附近的情况,尤其在导数数值很小时。
小学数学趣味实验报告(3篇)
第1篇实验名称:探究“奇数和偶数的奇妙之旅”实验目的:通过趣味实验,让学生了解奇数和偶数的概念,感受数学的乐趣,培养动手操作能力和观察能力。
实验时间:2023年4月15日实验地点:小学一年级教室实验器材:数字卡片、彩笔、白纸、剪刀、胶水、透明胶带实验参与人员:一年级全体学生实验过程:一、导入1. 教师展示数字卡片,引导学生说出奇数和偶数的概念。
2. 学生分享自己对奇数和偶数的理解。
二、实验操作1. 学生每人准备一张白纸,用彩笔在纸上画出若干个数字,要求每个数字之间留有足够的空间。
2. 学生用剪刀将画出的数字剪下来,形成数字卡片。
3. 学生将奇数卡片用红色标记,偶数卡片用蓝色标记。
4. 学生将奇数卡片和偶数卡片分别用透明胶带粘贴在黑板上。
5. 教师提问:奇数卡片和偶数卡片在黑板上排列后,有什么规律?6. 学生观察、讨论,得出结论:奇数卡片之间相差2,偶数卡片之间相差2,且奇数卡片和偶数卡片交替排列。
三、实验验证1. 教师提问:如果我们把黑板上奇数卡片和偶数卡片的顺序打乱,还会出现这样的规律吗?2. 学生分组进行实验,验证打乱顺序后,奇数卡片和偶数卡片是否依然交替排列。
3. 学生分享实验结果,得出结论:无论奇数卡片和偶数卡片的顺序如何,它们都会交替排列。
四、实验拓展1. 教师提问:在生活中,我们还能找到奇数和偶数的例子吗?2. 学生分享生活中的奇数和偶数例子,如:桌子、椅子、书本、水果等。
3. 教师引导学生思考:为什么生活中有这么多奇数和偶数?4. 学生讨论,得出结论:奇数和偶数是自然界和人类社会中普遍存在的现象。
实验总结:本次趣味实验,让学生在轻松愉快的氛围中了解了奇数和偶数的概念,感受到了数学的乐趣。
通过动手操作,学生培养了观察能力和逻辑思维能力。
同时,实验拓展环节让学生将数学知识应用于生活,激发了学生的学习兴趣。
实验反思:1. 实验过程中,教师应注重引导学生观察、思考,培养学生的动手操作能力。
数学实验综合实验报告
一、实验目的:1、初步认识迭代,体会迭代思想的重要性。
2、通过在mathematica 环境下编写程序,利用迭代的方法求解方程的根、线性方程组的解、非线性方程组的解。
3、了解分形的的基本特性及利用mathematica 编程生成分形图形的基本方法, 在欣赏由mathematica 生成的美丽的分形图案的同时对分形几何这门学科有一个直观的了解。
从哲理的高度理解这门学科诞生的必然性,激发读者探寻科学真理的兴趣。
4、从一个简单的二次函数的迭代出发,利用mathematica 认识混沌现象及其所 蕴涵的规律。
5、.进一步熟悉Mathematic 软件的使用,复习总结Mathematic 在数学作图中的应用,为便于研究数学图像问题提供方便,使我们从一个新的视角去理解数学问题以及问题的实际意义。
6、在学习和运用迭代法求解过程中,体会各种迭代方法在解决问题的收敛速度上的异同点。
二、实验的环境:学校机房,mathematica4环境三、实验的基本理论和方法:1、迭代(一)—方程求解函数的迭代法思想:给定实数域上光滑的实值函数)(x f 以及初值0x 定义数列1()n n x f x +=, ,3,2,1,0=n , (1)n x , ,3,2,1,0=n ,称为)(x f 的一个迭代序列。
(1)方程求根给定迭代函数)(x f 以及初值0x 利用(1)迭代得到数列n x , ,3,2,1,0=n .如果数列收敛到某个*x ,则有)(**x f x =. (2)即*x 是方程)(x f x =的解。
由此启发我们用如下的方法求方程0)(=x g 的近似解。
将方程0)(=x g 改写为等价的方程)(x f x =, (3) 然后选取一初值利用(1)做迭代。
迭代数列n x 收敛的极限就是方程0)(=x g 的解。
为了使得迭代序列收敛并尽快收敛到方程0)(=x g 的某一解的条件是迭代函数)(x f 在解的附近的导数将的绝对值尽量小,因此迭代方程修订成x x f x h x )1()()(λλ-+== (4) 选取λ使得|)(|x h '在解的附近尽量小. 为此, 我们可以令,01)()(=-+'='λλx f x h得)(11x f '-=λ. 于是 1)()()(-'--=x f x x f x x h . 特别地,如果取x x g x f +=)()(, 则可得到迭代公式 .,1,0,)()(1 ='-=+n x g x g x x n n n n (5) (2)线性方程组的数值解的迭代求解理论与矩阵理论给定一个n 元线性方程组⎪⎩⎪⎨⎧=++=++,,1111111n n nn n n n b x a x a b x a x a (6)或写成矩阵的形式,b Ax = (7) 其中)(ij a A =是n 阶方阵,T n x x x x ),,(21 =及T n b b b b ),,,(21 =均为n 维列向量.熟知,当矩阵A 的行列式非零时,以上的方程组有唯一解.如何有效,快速地寻求大型的线性方程组的数值解释科学工程计算中非常重要的任务.而迭代法常常是求解这些问题的有效方法之一。
数学初中实验报告
一、实验目的本次实验旨在通过实际操作,加深对数学知识的理解,提高动手操作能力和分析问题的能力。
通过本次实验,我们希望掌握以下知识点:1. 理解数学概念的本质;2. 掌握数学公式和定理的运用;3. 提高解决问题的能力。
二、实验内容本次实验内容为探究函数图像的平移规律。
三、实验器材1. 函数图像表;2. 比例尺;3. 直尺;4. 圆规;5. 铅笔。
四、实验步骤1. 准备函数图像表,按照比例尺画出函数y=x的图像;2. 以函数y=x的图像为基础,分别向上、向下、向左、向右平移相同的距离,画出对应的函数图像;3. 比较平移前后函数图像的特点,分析平移规律;4. 总结平移规律,并验证其正确性。
五、实验结果与分析1. 函数y=x的图像是一条经过原点的直线,斜率为1;2. 向上平移后的函数图像为y=x+b,其中b为平移的距离;3. 向下平移后的函数图像为y=x-b,其中b为平移的距离;4. 向左平移后的函数图像为y=x+k,其中k为平移的距离;5. 向右平移后的函数图像为y=x-k,其中k为平移的距离。
六、实验结论1. 函数图像的平移规律为:向上平移b个单位,函数变为y=x+b;向下平移b个单位,函数变为y=x-b;向左平移k个单位,函数变为y=x+k;向右平移k个单位,函数变为y=x-k;2. 通过本次实验,我们加深了对函数图像平移规律的理解,提高了分析问题和解决问题的能力。
七、实验心得1. 在实验过程中,我们学会了如何运用数学公式和定理,将实际问题转化为数学问题;2. 实验使我们更加深刻地理解了数学概念的本质,提高了我们的动手操作能力;3. 通过实验,我们认识到,数学知识不仅存在于书本上,更存在于实际生活中,我们要善于将所学知识运用到实际中去。
八、实验建议1. 在实验过程中,要注重观察和分析,发现问题并及时解决问题;2. 在实验结束后,要总结实验过程和实验结果,加深对数学知识的理解;3. 多参加数学实验,提高自己的数学素养。
数学实验报告模板
篇一:数学实验报告样本数学实验报告实验序号: 3日期:2013年 12 月 14 日1234篇二:数学实验报告模板数学实验报告题目对成绩数据的统计与分析2013年12月15日对成绩数据的统计与分析一、实验目的1. 掌握matlab基础功能的使用方法,以加强大学生数学实验与数学建模能力。
2. 通过对程序设计的学习增强学生对数学问题处理方法探究的兴趣。
二、实验问题问题背景:每门课程考试阅卷完毕,任课老师都要对班中考试成绩进行统计,于是出现下面两个问题1. 统计全班人数,平均分,不及格人数及90分以上人数2. 计算0-60,60-90,90-100的成绩分布情况,绘制饼状图,凸显不及格的人。
三、建立数学模型现将以上实际问题转化为一下数学问题:现给出一个数组[a1,a2,a3······an],通过循环语句计数求出n的值,并计算数组中数值大于等于90和小于60的元素个数,绘制不同数值段(0-60,60-90,90-100)的百分比的饼状图。
四、问题求解和程序设计流程1.关于成绩,选择将成绩做成数组的形式进行处理。
2.处理则运用for-end,if-else if-end,while-end等循环语句。
3.绘制饼状图则使用一般的数学运算及一些基本绘图代码(pie命令,explode命令)。
五、上机实验结果的分析与结论1.设计程序如下:a=input (请输入成绩组a[n]=); [h,j]=size(a); zongrenshu=j; pingjunfen=0; gaofen=0;bujige=0; yiban=0; for i=1:1:j; fenshu=a(i); if fenshu>90;gaofen=gaofen+1;pingjunfen=pingjunfen+fenshu;else if fenshu<60; bujige=bujige+1;pingjunfen=pingjunfen+fenshu;else pingjunfen=pingjunfen+fenshu;endend end pingjunfen=pingjunfen/zongrenshu; yiban=zongrenshu-bujige-gaofen; x=[bujige,yiban,gaofen]; explode=[1,0,0]; pie(x,explode); zongrenshu pingjunfen bujige gaofen运行结果截图: 2.由于图片大小问题,请看下一页通过输入了一组成绩数据,得出了该数据的总人数、平均分、不及格人数及高分段人数,并绘制出了相应饼状图。
实验报告_函数的定义
一、实验目的1. 理解函数的概念,掌握函数的定义方法。
2. 掌握函数的性质,包括奇偶性、单调性、周期性等。
3. 熟悉函数图像的绘制方法。
二、实验原理函数是数学中最基本的概念之一,它描述了两个变量之间的关系。
在数学、物理、工程等领域中,函数的应用非常广泛。
本实验旨在通过实例分析,加深对函数概念的理解,掌握函数的定义方法,并探究函数的性质。
三、实验内容1. 函数的定义(1)实例分析例1:y = 2x 是一个线性函数,它表示 y 与 x 成正比,比例系数为 2。
例2:y = x^2 是一个二次函数,它表示 y 与 x 的平方成正比。
(2)定义方法① 定义域:函数的定义域是指自变量 x 可以取的所有实数值的集合。
② 值域:函数的值域是指函数 y 可以取到的所有实数值的集合。
③ 函数表达式:函数表达式是指用数学公式表示函数关系的式子。
2. 函数的性质(1)奇偶性如果一个函数满足 f(-x) = f(x),则称该函数为偶函数;如果满足 f(-x) = -f(x),则称该函数为奇函数。
例3:y = x^2 是一个偶函数,因为 f(-x) = (-x)^2 = x^2 = f(x)。
例4:y = x^3 是一个奇函数,因为 f(-x) = (-x)^3 = -x^3 = -f(x)。
(2)单调性如果一个函数在其定义域内,随着自变量 x 的增大,函数值 y 也随之增大,则称该函数为增函数;反之,则称该函数为减函数。
例5:y = 2x 是一个增函数,因为当 x1 < x2 时,有 f(x1) < f(x2)。
例6:y = -x 是一个减函数,因为当 x1 < x2 时,有 f(x1) > f(x2)。
(3)周期性如果一个函数满足 f(x + T) = f(x),其中 T 是一个正常数,则称该函数为周期函数,T 为周期。
例7:y = sin(x) 是一个周期函数,其周期为2π。
3. 函数图像的绘制(1)确定函数的定义域和值域。
【精编范文】数学实验报告模板-范文模板 (8页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==数学实验报告模板篇一:数学实验报告样本数学实验报告实验序号: 3日期:201X年 12 月 14 日1234篇二:数学实验报告模板数学实验报告题目对成绩数据的统计与分析201X年12月15日对成绩数据的统计与分析一、实验目的1. 掌握MATLAB基础功能的使用方法,以加强大学生数学实验与数学建模能力。
2. 通过对程序设计的学习增强学生对数学问题处理方法探究的兴趣。
二、实验问题问题背景:每门课程考试阅卷完毕,任课老师都要对班中考试成绩进行统计,于是出现下面两个问题1. 统计全班人数,平均分,不及格人数及90分以上人数2. 计算0-60,60-90,90-100的成绩分布情况,绘制饼状图,凸显不及格的人。
三、建立数学模型现将以上实际问题转化为一下数学问题:现给出一个数组[a1,a2,a3······an],通过循环语句计数求出n的值,并计算数组中数值大于等于90和小于60的元素个数,绘制不同数值段(0-60,60-90,90-100)的百分比的饼状图。
四、问题求解和程序设计流程1.关于成绩,选择将成绩做成数组的形式进行处理。
2.处理则运用for-end,if-else if-end,while-end等循环语句。
3.绘制饼状图则使用一般的数学运算及一些基本绘图代码(pie命令,explode命令)。
五、上机实验结果的分析与结论1.设计程序如下:a=input ('请输入成绩组 a[n]='); [h,j]=size(a); zongrenshu=j; pingjunfen=0; gaofen=0;bujige=0; yiban=0; for i=1:1:j; fenshu=a(i); iffenshu>90;gaofen=gaofen+1;pingjunfen=pingjunfen+fenshu;else if fenshu<60; bujige=bujige+1;pingjunfen=pingjunfen+fenshu;else pingjunfen=pingjunfen+fenshu;endend endpingjunfen=pingjunfen/zongrenshu; yiban=zongrenshu-bujige-gaofen;x=[bujige,yiban,gaofen]; explode=[1,0,0]; pie(x,explode); zongrenshu pingjunfen bujige gaofen运行结果截图: 2.由于图片大小问题,请看下一页通过输入了一组成绩数据,得出了该数据的总人数、平均分、不及格人数及高分段人数,并绘制出了相应饼状图。
大学数学实验报告模板(3篇)
一、实验名称[实验名称]二、实验目的1. [目的一]2. [目的二]3. [目的三]三、实验原理[简要介绍实验的理论依据,包括相关数学公式、定理等]四、实验仪器与设备1. [仪器名称]2. [设备名称]3. [其他所需材料]五、实验步骤1. [步骤一]- [具体操作描述]- [预期结果]2. [步骤二]- [具体操作描述]- [预期结果]3. [步骤三]- [具体操作描述]- [预期结果][后续步骤]六、实验数据记录与分析1. [数据记录表格]- [数据项一]- [数据项二]- [数据项三]...[数据项N]2. [数据分析]- [对数据记录进行初步分析,包括计算、比较、趋势分析等] - [结合实验原理,解释数据分析结果]七、实验结果与讨论1. [实验结果展示]- [图表、图形等形式展示实验结果]- [文字描述实验结果]2. [讨论]- [对实验结果进行分析,解释实验现象,与理论预期进行对比] - [讨论实验中可能存在的误差来源及解决方案]- [总结实验的优缺点,提出改进建议]八、实验结论1. [总结实验目的达成情况]2. [总结实验的主要发现和结论]3. [对实验结果的评价]九、参考文献[列出实验过程中参考的书籍、论文、网站等]十、附录[如有需要,可在此处附上实验过程中的图片、计算过程、源代码等]---注意:1. 实验报告应根据具体实验内容进行调整,以下模板仅供参考。
2. 实验步骤、数据记录与分析、实验结果与讨论等部分应根据实验实际情况进行详细描述。
3. 实验报告应保持简洁、清晰、条理分明,避免冗余信息。
4. 注意实验报告的格式规范,包括字体、字号、行距等。
第2篇一、实验名称[实验名称]二、实验目的1. 理解并掌握[实验内容]的基本概念和原理。
2. 培养动手操作能力和实验技能。
3. 提高分析问题和解决问题的能力。
4. 增强团队协作意识。
三、实验原理[简要介绍实验的理论依据,包括公式、定理等]四、实验仪器与材料1. 仪器:[列出实验所需仪器]2. 材料:[列出实验所需材料]五、实验步骤1. [步骤一]- 操作说明:[详细描述第一步的具体操作]- 数据记录:[记录相关数据]2. [步骤二]- 操作说明:[详细描述第二步的具体操作]- 数据记录:[记录相关数据]3. [步骤三]- 操作说明:[详细描述第三步的具体操作]- 数据记录:[记录相关数据]...(依实验内容添加更多步骤)六、实验数据与分析1. [数据整理]- 将实验过程中收集到的数据整理成表格或图表。
北理工数学实验报告
实验名称:线性代数实验——矩阵运算与线性方程组的求解实验目的:1. 理解矩阵的基本概念和运算规则。
2. 掌握线性方程组的求解方法。
3. 利用数学软件进行矩阵运算和线性方程组的求解。
实验时间:2023年X月X日实验地点:北理工计算机实验室实验器材:1. 计算机2. MATLAB软件3. 纸和笔实验内容:一、矩阵的基本运算1. 矩阵加法:给定两个矩阵A和B,它们的行数和列数必须相同。
矩阵加法是将对应位置的元素相加。
2. 矩阵减法:与矩阵加法类似,矩阵减法是将对应位置的元素相减。
3. 矩阵乘法:给定两个矩阵A和B,如果A的列数等于B的行数,则A与B可以进行乘法运算。
矩阵乘法的结果是一个新矩阵,其元素是A的行与B的列对应元素的乘积之和。
4. 转置矩阵:给定一个矩阵A,其转置矩阵A'的行数等于A的列数,列数等于A 的行数。
转置矩阵的元素是A中对应位置的元素。
二、线性方程组的求解1. 高斯消元法:通过行变换将线性方程组转化为上三角矩阵,然后逐步求解未知数。
2. 克莱姆法则:当线性方程组系数矩阵的行列式不为零时,可以求出每个未知数的唯一解。
3. MATLAB求解:利用MATLAB中的函数求解线性方程组。
实验步骤:1. 创建矩阵:在MATLAB中创建两个矩阵A和B,并观察它们的性质。
2. 矩阵运算:进行矩阵加法、减法、乘法和转置运算,并观察结果。
3. 线性方程组求解:利用高斯消元法、克莱姆法则和MATLAB函数求解线性方程组。
实验结果与分析:1. 矩阵运算:通过实验,我们掌握了矩阵的基本运算规则,并成功进行了矩阵加法、减法、乘法和转置运算。
2. 线性方程组求解:利用高斯消元法、克莱姆法则和MATLAB函数求解线性方程组,得到了正确的解。
3. MATLAB求解:通过MATLAB函数求解线性方程组,我们发现MATLAB具有强大的矩阵运算和线性方程组求解功能,能够方便地解决实际问题。
实验总结:本次实验使我们深入了解了矩阵的基本概念和运算规则,掌握了线性方程组的求解方法。
数学逻辑小实验报告(3篇)
第1篇一、实验目的通过本次实验,了解数学逻辑的基本概念和运用方法,提高逻辑思维能力,并学会运用数学逻辑解决实际问题。
二、实验内容1. 简单逻辑推理(1)实验材料:题目、答案(2)实验步骤:①阅读题目,理解题意;②分析题目中的条件,找出逻辑关系;③根据逻辑关系,得出结论;④核对答案,检验推理过程是否正确。
2. 排列组合问题(1)实验材料:题目、答案(2)实验步骤:①阅读题目,理解题意;②分析题目中的条件,确定问题类型;③根据问题类型,运用排列组合公式进行计算;④核对答案,检验计算过程是否正确。
3. 概率问题(1)实验材料:题目、答案(2)实验步骤:①阅读题目,理解题意;②分析题目中的条件,确定问题类型;③根据问题类型,运用概率公式进行计算;④核对答案,检验计算过程是否正确。
三、实验结果与分析1. 简单逻辑推理实验结果显示,通过运用逻辑推理,大部分同学能够正确解答题目。
在解答过程中,部分同学能够快速找出逻辑关系,得出结论;但也有部分同学在分析题目条件时,存在一定的困难,导致推理过程不够严谨。
2. 排列组合问题实验结果显示,通过运用排列组合公式,大部分同学能够正确解答题目。
在解答过程中,部分同学能够熟练运用公式,快速计算出答案;但也有部分同学在确定问题类型时,存在一定的困难,导致计算过程出错。
3. 概率问题实验结果显示,通过运用概率公式,大部分同学能够正确解答题目。
在解答过程中,部分同学能够熟练运用公式,快速计算出答案;但也有部分同学在确定问题类型时,存在一定的困难,导致计算过程出错。
四、实验结论1. 数学逻辑在解决实际问题中具有重要作用,通过本次实验,提高了我们的逻辑思维能力。
2. 在运用数学逻辑解决实际问题时,要注重分析题目条件,找出逻辑关系,确保推理过程严谨。
3. 对于排列组合问题和概率问题,要熟练掌握相关公式,提高计算速度和准确性。
五、实验建议1. 加强数学逻辑基础知识的学习,提高逻辑思维能力。
数学实验报告 (1)
数学实验报告四实验项目名称MATLAB基础所属课程名称数学实验实验日期2012-10-10姓名(学号)周星(2010190135)成绩数学与计算科学学院数学实验室一、 实验目的1. 掌握使用plot 绘制二维图形;2. 掌握分段函数绘制;3. 掌握绘制图形的辅助操作二、 实验环境(使用软件)MATLAB V6.5三、 实验内容1. 设23sin (0.5)cos 1x y x x =++,在0~2x π=区间取等间隔101个点,绘制函数的曲线。
2. 在02x π≤≤区间内,绘制曲线0.52sin(2)x y e x π-=。
3. 生成10000×1的正态随机数矩阵,绘制直方图,要求30×1个长条。
4. 绘制曲线2cos(3)sin x t t t y t t ππ=⎧-≤≤⎨=⎩5. 已知21y x =,2cos(2)y x =,312y y y =⨯,[10,10]x ∈-完成下列操作:(1) 在同一坐标系下用不同颜色和线型绘制三条曲线,并在右上角给加入曲线说明;6. 绘制分段函数曲线04246()568218x x f x x x x ≤<≤<⎪⎪=⎨-≤<⎪⎪≥⎪⎩ 要求:(1)设置坐标轴范围为:横坐标范围为[0,10],纵坐标范围为[0,2.5]; (2)给图形加上标题“分段函数曲线”; (3)给X,Y 轴分别添加说明“Variable X ”和”Variable Y ” (4)用鼠标在给分段曲线每段添加图形说明四、 实验解答1.解:x=linspace(0,2*pi,100);>> y=(0.5+3*sin(x)/(1+x.^2))*cos(x);>> plot(x,y,'o-')2.解:x=linspace(0,2*pi);>> y=2*exp(-0.5*x).*sin(2*pi*x); >> plot(x,y)>> hist(x,30);4.解:>> t=linspace(-pi,pi); >> x=t.*cos(3*t);>> y=t.*sin(t).^2;plot(x,y)>> y1=x.^2;>> y2=cos(2*x);>> y3=y1.*y2;>> plot(x,y1,'b-');>> hold on;>> plot(x,y2,'g:');>> plot(x,y3,'r-.');>> hold off;>> legend('x.^2','cos(2*x)','y1.*y2');x=linspace(-10,10);6.解:x=linspace(0,4);>> plot(x,sqrt(x));>> hold on;>> x=linspace(4,6);>> plot(x,2);>> x=linspace(6,8);>> plot(x,5-x/2);>> x=linspace(8,10);>> plot(x,1);>> hold off;>> xlabel('Variable X');>> ylabel('Variable Y ');>> title('分段函数曲线');>> axis([0,10,0,2.5]);>>gtext('y=sqrt(x)');gtext('y=2');gtext('y=5-x/2');gtext('y=1');。
高等数学数学实验报告(两篇)2024
引言概述:高等数学数学实验报告(二)旨在对高等数学的相关实验进行探究与研究。
本次实验报告共分为五个大点,每个大点讨论了不同的实验内容。
在每个大点下,我们进一步细分了五到九个小点,对实验过程、数据收集、数据分析等进行了详细描述。
通过本次实验,我们可以更好地理解高等数学的概念和应用。
正文内容:一、微分方程实验1.利用欧拉法求解微分方程a.介绍欧拉法的原理和步骤b.详细阐述欧拉法在实际问题中的应用c.给出具体的实例,展示欧拉法的计算步骤2.应用微分方程建立模型求解实际问题a.介绍微分方程模型的建立方法b.给出一个具体的实际问题,使用微分方程建立模型c.详细阐述模型求解步骤和结果分析3.使用MATLAB求解微分方程a.MATLAB求解微分方程的基本语法和函数b.给出一个具体的微分方程问题,在MATLAB中进行求解c.分析结果的准确性和稳定性二、级数实验1.了解级数的概念和性质a.简要介绍级数的定义和基本概念b.阐述级数收敛和发散的判别法c.讨论级数的性质和重要定理2.使用级数展开函数a.介绍级数展开函数的原理和步骤b.给出一个函数,使用级数展开进行近似计算c.分析级数近似计算的精确度和效果3.级数的收敛性与运算a.讨论级数收敛性的判别法b.介绍级数的运算性质和求和法则c.给出具体的例题,进行级数的运算和求和三、多元函数极值与最值实验1.多元函数的极值点求解a.介绍多元函数的极值点的定义和求解方法b.给出一个多元函数的实例,详细阐述求解过程c.分析极值点对应的函数值和意义2.多元函数的条件极值与最值a.讨论多元函数的条件极值的判定法b.给出一个具体的多元函数,求解其条件极值和最值c.分析条件极值和最值对应的函数值和意义3.利用MATLAB进行多元函数极值与最值的计算a.MATLAB求解多元函数极值与最值的基本语法和函数b.给出一个多元函数的具体问题,在MATLAB中进行求解c.分析结果的准确性和可行性四、曲线积分与曲面积分实验1.曲线积分的计算方法与应用a.介绍曲线积分的定义和计算方法b.给出一个具体的曲线积分问题,详细阐述计算过程c.分析曲线积分结果的几何意义2.曲线积分的应用举例a.讨论曲线积分在实际问题中的应用b.给出一个实际问题,使用曲线积分进行求解c.分析曲线积分结果的实际意义和应用价值3.曲面积分的计算方法与应用a.介绍曲面积分的定义和计算方法b.给出一个具体的曲面积分问题,详细阐述计算过程c.分析曲面积分结果的几何意义五、空间解析几何实验1.空间曲线的参数方程表示与性质a.介绍空间曲线的参数方程表示和性质b.给出一个具体的空间曲线,转化为参数方程表示c.分析参数方程对应的几何意义和性质2.平面与空间直线的位置关系a.讨论平面与空间直线的位置关系的判定方法b.给出一个具体的平面与空间直线的问题,判定其位置关系c.分析位置关系对应的几何意义和应用实例3.空间直线与平面的夹角和距离计算a.介绍空间直线与平面的夹角和距离的计算方法b.给出一个具体的空间直线和平面,计算其夹角和距离c.分析夹角和距离计算结果的几何意义总结:通过本次高等数学数学实验报告(二),我们深入了解了微分方程、级数、多元函数极值与最值、曲线积分、曲面积分以及空间解析几何的相关概念和应用。
数学实验报告
数学实验报告
数学实验报告
实验目的:
本实验旨在通过实际操作,让学生对数学知识有更深入的了解,培养学生的实际应用能力,并运用所学的数学知识解决实际问题。
实验过程:
1. 预先准备实验材料,例如:尺子、直尺、量角器等。
2. 实验一:测量三角形的边长和角度。
- 在纸上绘制一个三角形,并标明边和角。
- 使用尺子测量各边的长度,并记录。
- 使用量角器测量各角的大小,并记录。
- 分别计算和比较测得的角度和边的长度,验证三角形的性质。
3. 实验二:绘制平面图形。
- 在纸上绘制一个正方形和一个矩形,并标明边长。
- 使用尺子测量各边的长度,并记录。
- 计算并比较正方形和矩形的周长和面积,验证其性质。
4. 实验三:测量圆的直径和半径。
- 使用直尺测量一个圆的直径,并记录。
- 计算直径与圆的半径的关系,并验证。
- 测量其他圆的直径和半径,并进行比较。
实验结果与分析:
1. 实验一的结果表明,所测量的三角形的边长和角度与理论值
较为接近,证实了三角形的性质。
2. 实验二的结果表明,正方形的周长为边长的四倍,面积为边长的平方,矩形的周长为边长之和的两倍,面积为长乘以宽,验证了其性质。
3. 实验三的结果表明,通过测量圆的直径和半径,并计算它们的关系,验证了直径是半径的两倍。
实验结论:
本实验通过实际操作,验证了三角形、正方形、矩形和圆的性质,并运用所学的数学知识解决实际问题。
实验结果与理论预期较为一致,说明实际操作能够帮助学生深入理解数学知识,并培养实际应用能力。
方程的数学实验报告(3篇)
第1篇一、实验目的本次实验旨在通过对方程进行数学实验,加深对一元一次方程、一元二次方程、二元一次方程组等方程的理解,提高解决实际问题的能力。
二、实验内容1. 一元一次方程(1)实验步骤:①随机生成一组一元一次方程;②利用公式法或代入法求解方程;③验证解的正确性。
(2)实验结果:实验过程中,随机生成了10组一元一次方程,其中5组采用公式法求解,5组采用代入法求解。
经过验证,所有方程的解均正确。
2. 一元二次方程(1)实验步骤:①随机生成一组一元二次方程;②利用配方法、公式法或因式分解法求解方程;③验证解的正确性。
(2)实验结果:实验过程中,随机生成了10组一元二次方程,其中4组采用配方法求解,3组采用公式法求解,3组采用因式分解法求解。
经过验证,所有方程的解均正确。
3. 二元一次方程组(1)实验步骤:①随机生成一组二元一次方程组;②利用代入法、消元法或矩阵法求解方程组;③验证解的正确性。
(2)实验结果:实验过程中,随机生成了10组二元一次方程组,其中5组采用代入法求解,3组采用消元法求解,2组采用矩阵法求解。
经过验证,所有方程组的解均正确。
三、实验总结1. 通过本次实验,我们对一元一次方程、一元二次方程和二元一次方程组有了更深入的理解,掌握了解题方法。
2. 实验结果表明,采用不同的方法求解方程,可以得到相同的解。
在实际应用中,可以根据方程的特点选择合适的求解方法。
3. 在实验过程中,我们发现了一些规律:(1)一元一次方程的解为实数;(2)一元二次方程的解可能为实数或复数;(3)二元一次方程组的解可能为唯一解、无解或无数解。
四、实验拓展1. 对不同类型的方程,尝试使用计算机编程进行求解,提高实验效率。
2. 研究方程在实际问题中的应用,如经济、工程等领域。
3. 探讨方程在数学建模中的应用,提高解决实际问题的能力。
五、实验反思本次实验过程中,我们对方程的求解方法进行了深入研究,取得了一定的成果。
但在实验过程中,也存在一些不足之处:1. 实验数据量较小,可能无法全面反映各种方程的求解规律。
素数的数学实验报告(3篇)
第1篇一、实验背景素数,又称质数,是指在大于1的自然数中,除了1和它本身以外不再有其他因数的数。
素数在数学、计算机科学、密码学等领域都有着广泛的应用。
为了更好地理解素数的性质,我们设计了一系列实验,旨在探究素数的分布规律、筛选方法及其应用。
二、实验目的1. 探究素数的分布规律;2. 学习和应用素数筛选方法;3. 理解素数在数学及实际应用中的重要性。
三、实验内容1. 素数的分布规律(1)实验方法:利用编程语言(如Python)编写程序,生成1~n(n取一定范围内的整数)的素数列表,并统计每100个连续整数中素数的个数。
(2)实验结果:实验结果显示,随着n的增大,每100个连续整数中素数的个数逐渐增多,但增长速度逐渐减慢。
这表明素数在自然数中的分布是不均匀的,且存在某种规律。
2. 素数筛选方法(1)实验方法:学习并实现两种常见的素数筛选方法:埃拉托斯特尼筛法(Sieve of Eratosthenes)和埃拉托斯特尼筛法的优化版本。
(2)实验结果:埃拉托斯特尼筛法能够快速筛选出小于等于n的所有素数,但时间复杂度较高。
通过优化,可以降低时间复杂度,提高筛选效率。
3. 素数在实际应用中的重要性(1)实验方法:结合密码学、计算机科学等领域,探究素数在实际应用中的重要性。
(2)实验结果:素数在密码学中具有重要作用,如RSA加密算法、椭圆曲线密码体制等。
在计算机科学中,素数可以用于生成伪随机数、优化算法等。
1. 素数在自然数中的分布是不均匀的,但存在某种规律。
2. 埃拉托斯特尼筛法是一种高效的素数筛选方法,但可以通过优化降低时间复杂度。
3. 素数在数学及实际应用中具有重要作用,如密码学、计算机科学等领域。
五、实验心得1. 通过本次实验,我对素数的性质有了更深入的了解,掌握了素数筛选方法。
2. 实验过程中,我学会了如何运用编程语言解决实际问题,提高了自己的编程能力。
3. 本次实验让我认识到数学与实际应用之间的紧密联系,激发了我对数学及计算机科学领域的兴趣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
disp([num2str(k),' ',num2str(a),' ',num2str(b),' ',num2str(ffx)])
fa=subs(fx,'x',a);ffx=subs(fx,'x',x);
if fa*ffx<0
b=x;
else
a=x;
迭代方程是:
其中 ,令 ,试确定 :
当 时,有 ,即当 , 时,
可望获得较好的加速效果,于是有松弛法: ,
b) Altken方法:
, 是它的根, 是其近似根.
设 , ,因为
,
用差商 近似代替 ,有
,
解出 ,得
由此得出公式
;
;
,
这就是Altken 公式。
3. 牛顿(Newton)法(牛顿切线法)
1) 牛顿法的基本思想:
设 在 上连续, ,即 , 或 , .则根据连续函数的介值定理,在 内至少存在一点 ,使 .
下面的方法可以求出该根:
令 ,计算 ;
若 ,则 是 的根,停止计算,输出结果 .
若 ,则令 , ,若 ,则令 , ; .
……,有 、 以及相应的 .
(3) 若 ( 为预先给定的精度要求),退出计算,输出结果 ;
数学实验报告
实验序号: 3 日期:2013年 12 月 14 日
班级
应数一班
姓名
陈菲
学号
1101114209
实验
名称
求代数方程的近似根
问题背景描述:
求代数方程 的根是最常见的数学问题之一,当 是一次多项式时,称 为线性方程,否则称之为非线性方程.
当 是非线性方程时,由于 的多样性,尚无一般的解析解法可使用,但如果对任意的精度要求,能求出方程的近似根,则可以认为求根的计算问题已经解决,至少能满足实际要求.
10 1.8972 0.0014028
11 1.8944 -0.00089584
end
k=k+1;x=(a+b)/2;
end
disp([num2str(k),' ',num2str(a),' ',num2str(b),' ',num2str(ffx)])
end
fprintf('所求的解是:x=%f,迭代步数是:%d/n',x,k)
【调试结果】
0 0.001 3 -0.24728
1 1.7824 -0.086485
2 1.9554 0.050739
3 1.8539 -0.033238
4 1.9204 0.020677
5 1.879 -0.013357
6 1.9057 0.0084433
7 1.8889 -0.005416
8 1.8997 0.0034431
9 1.8928 -0.0022017
所求பைடு நூலகம்解是:x=1.895327,迭代步数是:13
3.普通迭代法
syms x fx gx;
gx=sin(x)/0.5;fx=0.5*x-sin(x);
disp('k x f(x)')
x=1.1;k=0;
ffx=subs(fx,'x',x);
while abs(ffx)>0.0001;
disp([num2str(k),' ',num2str(x),' ',num2str(ffx)]);
8 1.8871 1.8988 -0.0068499
9 1.8929 1.8988 -0.002083
10 1.8929 1.8959 0.0003127
11 1.8944 1.8959 -0.00088616
12 1.8951 1.8959 -0.00028698
13 1.8951 1.8955 1.2794e-005
1 1.5005 3 -0.24728
2 1.5005 2.2502 0.34721
3 1.8754 2.2502 -0.016286
4 1.8754 2.0628 0.15002
5 1.8754 1.9691 0.062824
6 1.8754 1.9222 0.022239
7 1.8754 1.8988 0.0027165
本实验介绍一些求方程实根的近似值的有效方法,要求在使用这些方法前先确定求根区间 ,或给出某根的近似值 .
实验目的:
1.了解代数方程求根求解的四种方法:对分法、迭代法、牛顿切线法
2.掌握对分法、迭代法、牛顿切线法求方程近似根的基本过程。
实验原理与数学模型:
1.对分法
对分法思想:将区域不断对分,判断根在某个分段内,再对该段对分,依此类推,直到满足精度为止.对分法适用于求有根区间内的单实根或奇重实根.
,
只要 连续,有
即
可知, 的极限 是 的根,也就是 的根.
当然,若 发散,迭代法就失败.
迭代过程 收敛的常用判别标准:
当根区间 较小,且对某一 , 明显小于1时,则迭代收敛
2) 迭代法的加速:
a) 松弛法:
若 与 同是 的近似值,则 是两个近似值的加权平均,其中 称为权重,现通过确定 看能否得到加速.
实验过程记录(含基本步骤、主要程序清单及异常情况记录等):
1.对分法
syms x fx;
a=0.001;b=3;
fx=0.5*x-sin(x);
x=(a+b)/2;k=0;
ffx=subs(fx,'x',x);
if ffx==0;
disp(['the root is:',num2str(x)])
else disp('k ak bk f(xk)')
是非线性方程,一般较难解决,多采用线性化方法.
记:
是一次多项式,用 作为 的近似方程.
的解为
记为 ,一般地,记
即为牛顿法公式。
实验所用软件及版本:
MatlabR2012b
主要内容(要点):
分别用对分法、普通迭代法、松弛迭代法、Altken 迭代法、牛顿切法线等5种方法,求方程 的正的近似根, .(建议取 .)
反之,返回(1),重复(1),(2),(3).
以上方法可得到每次缩小一半的区间序列 ,在 中含有方程的根.
当区间长 很小时,取其中点 为根的近似值,显然有
以上公式可用于估计对分次数 .
2. 迭代法
迭代法的基本思想:
由方程 构造一个等价方程
从某个近似根 出发,令
,
可得序列 ,这种方法称为迭代法.
若 收敛,即
x=subs(gx,'x',x);ffx=subs(fx,'x',x);k=k+1;
end
disp([num2str(k),' ',num2str(x),' ',num2str(ffx)])
fprintf('所求的解是:x=%f,迭代步数是:%d/n',x,k)
【调试结果】
0 1.1 -0.34121