数据结构实验报告图的深度优先遍历算法

合集下载

深度优先遍历的算法

深度优先遍历的算法

深度优先遍历的算法深度优先遍历(Depth-First Search,DFS)是一种用来遍历或树或图的算法。

它以一个起始节点开始,沿着路径尽可能深地,直到到达最深处或无法继续为止,然后回溯到上一个节点,继续其他路径。

DFS通过栈来实现,每次访问一个节点时,将其标记为已访问,并将其相邻的未访问节点压入栈中。

然后从栈中弹出节点,重复这个过程,直到栈为空为止。

1.创建一个栈,用来存储待访问的节点。

2.将起始节点标记为已访问,并将其压入栈中。

3.当栈不为空时,执行以下步骤:-弹出栈顶节点,并输出该节点的值。

-将该节点的未访问的相邻节点标记为已访问,并将其压入栈中。

4.重复步骤3,直到栈为空为止。

-深度优先遍历是一种先序遍历,即先访问节点本身,然后访问其子节点。

-深度优先遍历可以用来求解连通图、查找路径等问题。

-深度优先遍历的时间复杂度为O(V+E),其中V为节点数,E为边数。

1.求解连通图:深度优先遍历可以用来判断一个图是否连通,即从一个节点是否能够访问到所有其他节点。

2.查找路径:深度优先遍历可以找到两个节点之间的路径。

当遇到目标节点时,即可停止遍历,返回路径结果。

3.拓扑排序:深度优先遍历可以进行拓扑排序,即将有依赖关系的任务按一定的顺序排列。

深度优先遍历的实现可以通过递归或迭代方式来完成。

递归方式更加简洁,但在处理大规模图时可能导致栈溢出。

迭代方式则可以采用栈来避免栈溢出问题。

无论是递归方式还是迭代方式,其核心思想都是通过访问节点的相邻节点来进行深入,直至遍历完整个图或树的节点。

总而言之,深度优先遍历是一种常用的图遍历算法,它以一种深入优先的方式遍历路径。

在实际应用中,深度优先遍历可以用来求解连通图、查找路径和拓扑排序等问题,是图算法中的重要工具之一。

数据结构与算法分析实验报告

数据结构与算法分析实验报告

数据结构与算法分析实验报告一、实验目的本次实验旨在通过实际操作和分析,深入理解数据结构和算法的基本概念、原理和应用,提高解决实际问题的能力,培养逻辑思维和编程技巧。

二、实验环境本次实验使用的编程语言为 Python,使用的开发工具为 PyCharm。

操作系统为 Windows 10。

三、实验内容(一)线性表的实现与操作1、顺序表的实现使用数组实现顺序表,包括插入、删除、查找等基本操作。

通过实验,理解了顺序表在内存中的存储方式以及其操作的时间复杂度。

2、链表的实现实现了单向链表和双向链表,对链表的节点插入、删除和遍历进行了实践。

体会到链表在动态内存管理和灵活操作方面的优势。

(二)栈和队列的应用1、栈的实现与应用用数组和链表分别实现栈,并通过表达式求值的例子,展示了栈在计算中的作用。

2、队列的实现与应用实现了顺序队列和循环队列,通过模拟银行排队的场景,理解了队列的先进先出特性。

(三)树和二叉树1、二叉树的遍历实现了先序、中序和后序遍历算法,并对不同遍历方式的结果进行了分析和比较。

2、二叉搜索树的操作构建了二叉搜索树,实现了插入、删除和查找操作,了解了其在数据快速查找和排序中的应用。

(四)图的表示与遍历1、邻接矩阵和邻接表表示图分别用邻接矩阵和邻接表来表示图,并比较了它们在存储空间和操作效率上的差异。

2、图的深度优先遍历和广度优先遍历实现了两种遍历算法,并通过对实际图结构的遍历,理解了它们的应用场景和特点。

(五)排序算法的性能比较1、常见排序算法的实现实现了冒泡排序、插入排序、选择排序、快速排序和归并排序等常见的排序算法。

2、算法性能分析通过对不同规模的数据进行排序实验,比较了各种排序算法的时间复杂度和空间复杂度。

四、实验过程及结果(一)线性表1、顺序表在顺序表的插入操作中,如果在表头插入元素,需要将后面的元素依次向后移动一位,时间复杂度为 O(n)。

删除操作同理,在表头删除元素时,时间复杂度也为 O(n)。

数据结构实验报告图的遍历讲解

数据结构实验报告图的遍历讲解

数据结构实验报告图的遍历讲解一、引言在数据结构实验中,图的遍历是一个重要的主题。

图是由顶点集合和边集合组成的一种数据结构,常用于描述网络、社交关系等复杂关系。

图的遍历是指按照一定的规则,挨次访问图中的所有顶点,以及与之相关联的边的过程。

本文将详细讲解图的遍历算法及其应用。

二、图的遍历算法1. 深度优先搜索(DFS)深度优先搜索是一种常用的图遍历算法,其基本思想是从一个顶点出发,沿着一条路径向来向下访问,直到无法继续为止,然后回溯到前一个顶点,再选择此外一条路径继续访问。

具体步骤如下:(1)选择一个起始顶点v,将其标记为已访问。

(2)从v出发,选择一个未被访问的邻接顶点w,将w标记为已访问,并将w入栈。

(3)如果不存在未被访问的邻接顶点,则出栈一个顶点,继续访问其它未被访问的邻接顶点。

(4)重复步骤(2)和(3),直到栈为空。

2. 广度优先搜索(BFS)广度优先搜索是另一种常用的图遍历算法,其基本思想是从一个顶点出发,挨次访问其所有邻接顶点,然后再挨次访问邻接顶点的邻接顶点,以此类推,直到访问完所有顶点。

具体步骤如下:(1)选择一个起始顶点v,将其标记为已访问,并将v入队。

(2)从队首取出一个顶点w,访问w的所有未被访问的邻接顶点,并将这些顶点标记为已访问,并将它们入队。

(3)重复步骤(2),直到队列为空。

三、图的遍历应用图的遍历算法在实际应用中有广泛的应用,下面介绍两个典型的应用场景。

1. 连通分量连通分量是指图中的一个子图,其中的任意两个顶点都是连通的,即存在一条路径可以从一个顶点到达另一个顶点。

图的遍历算法可以用来求解连通分量的个数及其具体的顶点集合。

具体步骤如下:(1)对图中的每一个顶点进行遍历,如果该顶点未被访问,则从该顶点开始进行深度优先搜索或者广度优先搜索,将访问到的顶点标记为已访问。

(2)重复步骤(1),直到所有顶点都被访问。

2. 最短路径最短路径是指图中两个顶点之间的最短路径,可以用图的遍历算法来求解。

图的遍历 实验报告

图的遍历  实验报告

图的遍历实验报告一、引言图是一种非线性的数据结构,由一组节点(顶点)和节点之间的连线(边)组成。

图的遍历是指按照某种规则依次访问图中的每个节点,以便获取或处理节点中的信息。

图的遍历在计算机科学领域中有着广泛的应用,例如在社交网络中寻找关系紧密的人员,或者在地图中搜索最短路径等。

本实验旨在通过实际操作,掌握图的遍历算法。

在本实验中,我们将实现两种常见的图的遍历算法:深度优先搜索(DFS)和广度优先搜索(BFS),并比较它们的差异和适用场景。

二、实验目的1. 理解和掌握图的遍历算法的原理与实现;2. 比较深度优先搜索和广度优先搜索的差异;3. 掌握图的遍历算法在实际问题中的应用。

三、实验步骤实验材料1. 计算机;2. 编程环境(例如Python、Java等);3. 支持图操作的相关库(如NetworkX)。

实验流程1. 初始化图数据结构,创建节点和边;2. 实现深度优先搜索算法;3. 实现广度优先搜索算法;4. 比较两种算法的时间复杂度和空间复杂度;5. 比较两种算法的遍历顺序和适用场景;6. 在一个具体问题中应用图的遍历算法。

四、实验结果1. 深度优先搜索(DFS)深度优先搜索是一种通过探索图的深度来遍历节点的算法。

具体实现时,我们可以使用递归或栈来实现深度优先搜索。

算法的基本思想是从起始节点开始,选择一个相邻节点进行探索,直到达到最深的节点为止,然后返回上一个节点,再继续探索其他未被访问的节点。

2. 广度优先搜索(BFS)广度优先搜索是一种逐层遍历节点的算法。

具体实现时,我们可以使用队列来实现广度优先搜索。

算法的基本思想是从起始节点开始,依次遍历当前节点的所有相邻节点,并将这些相邻节点加入队列中,然后再依次遍历队列中的节点,直到队列为空。

3. 时间复杂度和空间复杂度深度优先搜索和广度优先搜索的时间复杂度和空间复杂度如下表所示:算法时间复杂度空间复杂度深度优先搜索O(V+E) O(V)广度优先搜索O(V+E) O(V)其中,V表示节点的数量,E表示边的数量。

数据结构试验报告-图的基本操作

数据结构试验报告-图的基本操作

中原工学院《数据结构》实验报告学院:计算机学院专业:计算机科学与技术班级:计科112姓名:康岩岩学号:201100814220 指导老师:高艳霞2012-11-22实验五图的基本操作一、实验目的1、使学生可以巩固所学的有关图的基本知识。

2、熟练掌握图的存储结构。

3、熟练掌握图的两种遍历算法。

二、实验内容[问题描述]对给定图,实现图的深度优先遍历和广度优先遍历。

[基本要求]以邻接表为存储结构,实现连通无向图的深度优先和广度优先遍历。

以用户指定的结点为起点,分别输出每种遍历下的结点访问序列。

【测试数据】由学生依据软件工程的测试技术自己确定。

三、实验前的准备工作1、掌握图的相关概念。

2、掌握图的逻辑结构和存储结构。

3、掌握图的两种遍历算法的实现。

四、实验报告要求1、实验报告要按照实验报告格式规范书写。

2、实验上要写出多批测试数据的运行结果。

3、结合运行结果,对程序进行分析。

【设计思路】【代码整理】#include "stdafx.h"#include <iostream>#include <malloc.h>using namespace std;typedef int Status;#define OK 1#define ERROR 0#define OVERFLOW -1#define MAX_SIZE 20typedef enum{DG,DN,UDG,UDN}Kind;typedef struct ArcNode{int adjvex; //顶点位置struct ArcNode *nextarc; //下一条弧int *info; //弧信息};typedef struct{char info[10]; //顶点信息ArcNode *fistarc; //指向第一条弧}VNode,AdjList[MAX_SIZE];typedef struct{AdjList vertices;int vexnum,arcnum; //顶点数,弧数int kind; //图的种类,此为无向图}ALGraph;//这是队列的节点,仅用于广度优先搜索typedef struct Node{int num;struct Node* next;};//队列的头和尾typedef struct{Node * front;Node *rear;}PreBit;int LocateV ex(ALGraph G,char info[]);//定位顶点的位置Status addArcNode(ALGraph &G,int adjvex); //图中加入弧Status CreatGraph(ALGraph&G);//创建图的邻接表Status DFSTraverse(ALGraph G);//深度优先搜索Status BFSTraverse(ALGraph G);//广度优先搜索Status DFS(ALGraph G,int v);//深度优先搜索中的数据读取函数,用于递归bool visited[MAX_SIZE]; // 访问标志数组//初始化队列Status init_q(PreBit&P_B){P_B.front=P_B.rear=(Node*)malloc(sizeof(Node));if(!P_B.front){exit(OVERFLOW);}P_B.front->next=NULL;}//将数据入队Status en_q(PreBit & P_B,int num){Node *p=(Node*)malloc(sizeof(Node));if(!p){exit(OVERFLOW);}p->num=num;p->next=NULL;P_B.rear->next=p;P_B.rear=p;return OK;}//出队Status de_q(PreBit & P_B){if(P_B.front==P_B.rear){return ERROR;}Node* p=P_B.front->next;P_B.front->next=p->next;if(P_B.rear==p){P_B.rear=P_B.front;}free(p);return OK;}Status CreatGraph(ALGraph&G){cout<<"请输入顶点数目和弧数目"<<endl;cin>>G.vexnum>>G.arcnum;//依次输入顶点信息for(int i=0;i<G.vexnum;i++){cout<<"请输入顶点名称"<<endl;cin>>G.vertices[i].info;G.vertices[i].fistarc=NULL;}//依次输入弧信息for(int k=1;k<=G.arcnum;k++){char v1[10],v2[10]; //用于表示顶点名称的字符数组int i,j; //表示两个顶点的位置BACK: //返回点cout<<"请输入第"<<k<<"条弧的两个顶点"<<endl;cin>>v1>>v2;i=LocateV ex(G,v1); //得到顶点v1的位置j=LocateV ex(G,v2); //得到顶点v2的位置if(i==-1||j==-1){ //头信息不存在则返回重输cout<<"不存在该节点!"<<endl;goto BACK; //跳到BACK 返回点}addArcNode(G,i); //将弧的顶点信息插入表中addArcNode(G,j);}return OK;}//倒序插入弧的顶点信息Status addArcNode(ALGraph &G,int adjvex){ArcNode *p; //弧节点指针p=(ArcNode*)malloc(sizeof(ArcNode));p->adjvex=adjvex;p->nextarc=G.vertices[adjvex].fistarc;//指向头结点的第一条弧G.vertices[adjvex].fistarc=p; //头结点的第一条弧指向p,即将p作为头结点的第一条弧return OK;}//定位顶点的位置int LocateV ex(ALGraph G,char info[]){for(int i=0;i<G.vexnum;i++){if(strcmp(G.vertices[i].info,info)==0){ //头结点名称与传入的信息相等,证明该头节点存在return i; //此时返回位置}}return -1;}//深度优先搜索Status DFSTraverse(ALGraph G){for(int v=0;v<G.vexnum;v++){visited[v]=false;}char v1[10];int i;BACK:cout<<"请输入首先访问的顶点"<<endl;cin>>v1;i=LocateV ex(G,v1);if(i==-1){cout<<"不存在该节点!"<<endl;goto BACK;}DFS(G,i);return OK;}//深度优先搜索递归访问图Status DFS(ALGraph G,int v){visited[v]=true;cout<<G.vertices[v].info<<" ";//输出信息ArcNode *p;p=G.vertices[v].fistarc; //向头节点第一条while(p) //当弧存在{if(!visited[p->adjvex]){DFS(G,p->adjvex); //递归读取}p=p->nextarc;}return OK;}//广度优先搜索Status BFSTraverse(ALGraph G){for(int v=0;v<G.vexnum;v++){visited[v]=false;}char v1[10];int v;BACK:cout<<"请输入首先访问的顶点"<<endl;cin>>v1;v=LocateV ex(G,v1);if(v==-1){cout<<"不存在该节点!"<<endl;goto BACK;}PreBit P_B;init_q(P_B);ArcNode *p;visited[v]=true;cout<<G.vertices[v].info<<" ";//输出信息en_q(P_B,v); //将头位置v入队while(P_B.front!=P_B.rear){//当队列不为空时,对其进行访问int w=P_B.front->next->num;//读出顶点位置de_q(P_B);//顶点已经访问过,将其出队列p=G.vertices[w].fistarc;//得到与顶点相关的第一条弧while(p){if(!visited[p->adjvex]){en_q(P_B,p->adjvex);//将弧入队,但不读取,只是将其放在队尾}p=p->nextarc;}}return OK;}int _tmain(int argc, _TCHAR* argv[]){ALGraph G;CreatGraph(G);cout<<"深度优先搜索图:"<<endl;DFSTraverse(G);cout<<endl;cout<<"广度优先搜索图:"<<endl;BFSTraverse(G);cout<<endl;system("pause");return 0;}。

图的遍历的实验报告

图的遍历的实验报告

图的遍历的实验报告图的遍历的实验报告一、引言图是一种常见的数据结构,它由一组节点和连接这些节点的边组成。

图的遍历是指从图中的某个节点出发,按照一定的规则依次访问图中的所有节点。

图的遍历在许多实际问题中都有广泛的应用,例如社交网络分析、路线规划等。

本实验旨在通过实际操作,深入理解图的遍历算法的原理和应用。

二、实验目的1. 掌握图的遍历算法的基本原理;2. 实现图的深度优先搜索(DFS)和广度优先搜索(BFS)算法;3. 比较并分析DFS和BFS算法的时间复杂度和空间复杂度。

三、实验过程1. 实验环境本实验使用Python编程语言进行实验,使用了networkx库来构建和操作图。

2. 实验步骤(1)首先,我们使用networkx库创建一个包含10个节点的无向图,并添加边以建立节点之间的连接关系。

(2)接下来,我们实现深度优先搜索算法。

深度优先搜索从起始节点开始,依次访问与当前节点相邻的未访问过的节点,直到遍历完所有节点或无法继续访问为止。

(3)然后,我们实现广度优先搜索算法。

广度优先搜索从起始节点开始,先访问与当前节点相邻的所有未访问过的节点,然后再访问这些节点的相邻节点,依此类推,直到遍历完所有节点或无法继续访问为止。

(4)最后,我们比较并分析DFS和BFS算法的时间复杂度和空间复杂度。

四、实验结果经过实验,我们得到了如下结果:(1)DFS算法的时间复杂度为O(V+E),空间复杂度为O(V)。

(2)BFS算法的时间复杂度为O(V+E),空间复杂度为O(V)。

其中,V表示图中的节点数,E表示图中的边数。

五、实验分析通过对DFS和BFS算法的实验结果进行分析,我们可以得出以下结论:(1)DFS算法和BFS算法的时间复杂度都是线性的,与图中的节点数和边数呈正比关系。

(2)DFS算法和BFS算法的空间复杂度也都是线性的,与图中的节点数呈正比关系。

但是,DFS算法的空间复杂度比BFS算法小,因为DFS算法只需要保存当前路径上的节点,而BFS算法需要保存所有已访问过的节点。

深度优先搜索实验报告

深度优先搜索实验报告

深度优先搜索实验报告引言深度优先搜索(Depth First Search,DFS)是图论中的一种重要算法,主要用于遍历和搜索图的节点。

在实际应用中,DFS被广泛用于解决迷宫问题、图的连通性问题等,具有较高的实用性和性能。

本实验旨在通过实际编程实现深度优先搜索算法,并通过实际案例验证其正确性和效率。

实验中我们将以迷宫问题为例,使用深度优先搜索算法寻找从入口到出口的路径。

实验过程实验准备在开始实验之前,我们需要准备一些必要的工具和数据。

1. 编程环境:我们选择使用Python语言进行编程实验,因其语法简洁而强大的数据处理能力。

2. 迷宫地图:我们需要设计一个迷宫地图,包含迷宫的入口和出口,以及迷宫的各个路径和墙壁。

实验步骤1. 首先,我们需要将迷宫地图转化为计算机可处理的数据结构。

我们选择使用二维数组表示迷宫地图,其中0表示墙壁,1表示路径。

2. 接着,我们将编写深度优先搜索算法的实现。

在DFS函数中,我们将使用递归的方式遍历迷宫地图的所有路径,直到找到出口或者遇到墙壁。

3. 在每次遍历时,我们将记录已经访问过的路径,以防止重复访问。

4. 当找到出口时,我们将输出找到的路径,并计算路径的长度。

实验结果经过实验,我们成功地实现了深度优先搜索算法,并在迷宫地图上进行了测试。

以下是我们的实验结果:迷宫地图:1 1 1 1 11 0 0 0 11 1 1 0 11 0 0 0 11 1 1 1 1最短路径及长度:(1, 1) -> (1, 2) -> (1, 3) -> (1, 4) -> (2, 4) -> (3, 4) -> (4, 4) -> (5, 4)路径长度:7从实验结果可以看出,深度优先搜索算法能够准确地找到从入口到出口的最短路径,并输出了路径的长度。

实验分析我们通过本实验验证了深度优先搜索算法的正确性和有效性。

然而,深度优先搜索算法也存在一些缺点:1. 只能找到路径的一种解,不能确定是否为最优解。

图的遍历算法实验报告

图的遍历算法实验报告

图的遍历算法实验报告图的遍历算法实验报告一、引言图是一种常用的数据结构,用于描述事物之间的关系。

在计算机科学中,图的遍历是一种重要的算法,用于查找和访问图中的所有节点。

本实验旨在探究图的遍历算法,并通过实验验证其正确性和效率。

二、实验目的1. 理解图的基本概念和遍历算法的原理;2. 实现图的遍历算法,并验证其正确性;3. 比较不同遍历算法的效率。

三、实验方法1. 实验环境:使用Python编程语言进行实验;2. 实验步骤:a. 构建图的数据结构,包括节点和边的定义;b. 实现深度优先搜索(DFS)算法;c. 实现广度优先搜索(BFS)算法;d. 验证算法的正确性,通过给定的图进行遍历;e. 比较DFS和BFS的效率,记录运行时间。

四、实验结果1. 图的构建:我们选择了一个简单的无向图作为实验对象,包含6个节点和7条边。

通过邻接矩阵表示图的关系。

```0 1 1 0 0 01 0 1 1 0 01 1 0 0 1 10 1 0 0 0 00 0 1 0 0 00 0 1 0 0 0```2. DFS遍历结果:从节点0开始,遍历结果为0-1-2-4-5-3。

3. BFS遍历结果:从节点0开始,遍历结果为0-1-2-3-4-5。

4. 算法效率比较:我们记录了DFS和BFS算法的运行时间。

经实验发现,在这个图的规模下,DFS算法的运行时间为0.001秒,BFS算法的运行时间为0.002秒。

可以看出,DFS算法相对于BFS算法具有更高的效率。

五、讨论与分析1. 图的遍历算法能够帮助我们了解图中的节点之间的关系,有助于分析和解决实际问题。

2. DFS算法和BFS算法都可以实现图的遍历,但其遍历顺序和效率有所不同。

DFS算法会优先访问深度较大的节点,而BFS算法会优先访问离起始节点最近的节点。

3. 在实验中,我们发现DFS算法相对于BFS算法具有更高的效率。

这是因为DFS算法采用了递归的方式,遍历过程中不需要保存所有节点的信息,而BFS 算法需要使用队列保存节点信息,导致额外的空间开销。

图的遍历实验报告

图的遍历实验报告

图的遍历实验报告图的遍历实验报告一、引言图是一种常见的数据结构,广泛应用于计算机科学和其他领域。

图的遍历是指按照一定规则访问图中的所有节点。

本实验通过实际操作,探索了图的遍历算法的原理和应用。

二、实验目的1. 理解图的遍历算法的原理;2. 掌握深度优先搜索(DFS)和广度优先搜索(BFS)两种常用的图遍历算法;3. 通过实验验证图的遍历算法的正确性和效率。

三、实验过程1. 实验环境准备:在计算机上安装好图的遍历算法的实现环境,如Python编程环境;2. 实验数据准备:选择合适的图数据进行实验,包括图的节点和边的信息;3. 实验步骤:a. 根据实验数据,构建图的数据结构;b. 实现深度优先搜索算法;c. 实现广度优先搜索算法;d. 分别运行深度优先搜索和广度优先搜索算法,并记录遍历的结果;e. 比较两种算法的结果,分析其异同点;f. 对比算法的时间复杂度和空间复杂度,评估其性能。

四、实验结果与分析1. 实验结果:根据实验数据和算法实现,得到了深度优先搜索和广度优先搜索的遍历结果;2. 分析结果:a. 深度优先搜索:从起始节点出发,一直沿着深度方向遍历,直到无法继续深入为止。

该算法在遍历过程中可能产生较长的路径,但可以更快地找到目标节点,适用于解决一些路径搜索问题。

b. 广度优先搜索:从起始节点出发,按照层次顺序逐层遍历,直到遍历完所有节点。

该算法可以保证找到最短路径,但在遍历大规模图时可能需要较大的时间和空间开销。

五、实验总结1. 通过本次实验,我们深入理解了图的遍历算法的原理和应用;2. 掌握了深度优先搜索和广度优先搜索两种常用的图遍历算法;3. 通过实验验证了算法的正确性和效率;4. 在实际应用中,我们需要根据具体问题的需求选择合适的遍历算法,权衡时间复杂度和空间复杂度;5. 进一步研究和优化图的遍历算法,可以提高算法的性能和应用范围。

六、参考文献[1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms (3rd ed.). MIT Press.[2] Sedgewick, R., & Wayne, K. (2011). Algorithms (4th ed.). Addison-Wesley Professional.。

数据结构的实验报告

数据结构的实验报告

一、实验目的本次实验旨在让学生掌握数据结构的基本概念、逻辑结构、存储结构以及各种基本操作,并通过实际编程操作,加深对数据结构理论知识的理解,提高编程能力和算法设计能力。

二、实验内容1. 线性表(1)顺序表1)初始化顺序表2)向顺序表插入元素3)从顺序表删除元素4)查找顺序表中的元素5)顺序表的逆序操作(2)链表1)创建链表2)在链表中插入元素3)在链表中删除元素4)查找链表中的元素5)链表的逆序操作2. 栈与队列(1)栈1)栈的初始化2)入栈操作3)出栈操作4)获取栈顶元素5)判断栈是否为空(2)队列1)队列的初始化2)入队操作3)出队操作4)获取队首元素5)判断队列是否为空3. 树与图(1)二叉树1)创建二叉树2)遍历二叉树(前序、中序、后序)3)求二叉树的深度4)求二叉树的宽度5)二叉树的镜像(2)图1)创建图2)图的深度优先遍历3)图的广度优先遍历4)最小生成树5)最短路径三、实验过程1. 线性表(1)顺序表1)初始化顺序表:创建一个长度为10的顺序表,初始化为空。

2)向顺序表插入元素:在顺序表的第i个位置插入元素x。

3)从顺序表删除元素:从顺序表中删除第i个位置的元素。

4)查找顺序表中的元素:在顺序表中查找元素x。

5)顺序表的逆序操作:将顺序表中的元素逆序排列。

(2)链表1)创建链表:创建一个带头结点的循环链表。

2)在链表中插入元素:在链表的第i个位置插入元素x。

3)在链表中删除元素:从链表中删除第i个位置的元素。

4)查找链表中的元素:在链表中查找元素x。

5)链表的逆序操作:将链表中的元素逆序排列。

2. 栈与队列(1)栈1)栈的初始化:创建一个栈,初始化为空。

2)入栈操作:将元素x压入栈中。

3)出栈操作:从栈中弹出元素。

4)获取栈顶元素:获取栈顶元素。

5)判断栈是否为空:判断栈是否为空。

(2)队列1)队列的初始化:创建一个队列,初始化为空。

2)入队操作:将元素x入队。

3)出队操作:从队列中出队元素。

图的遍历算法实验报告

图的遍历算法实验报告

图的遍历算法实验报告
《图的遍历算法实验报告》
在计算机科学领域,图的遍历算法是一种重要的算法,它用于在图数据结构中
访问每个顶点和边。

图的遍历算法有两种常见的方法:深度优先搜索(DFS)
和广度优先搜索(BFS)。

在本实验中,我们将对这两种算法进行实验,并比较
它们的性能和应用场景。

首先,我们使用深度优先搜索算法对一个简单的无向图进行遍历。

通过实验结
果可以看出,DFS算法会首先访问一个顶点的所有邻居,然后再递归地访问每
个邻居的邻居,直到图中所有的顶点都被访问到。

这种算法在一些应用场景中
非常有效,比如寻找图中的连通分量或者寻找图中的环路。

接下来,我们使用广度优先搜索算法对同样的无向图进行遍历。

通过实验结果
可以看出,BFS算法会首先访问一个顶点的所有邻居,然后再按照距离递增的
顺序访问每个邻居的邻居。

这种算法在一些应用场景中也非常有效,比如寻找
图中的最短路径或者寻找图中的最小生成树。

通过对比实验结果,我们可以发现DFS和BFS算法各自的优势和劣势。

DFS算
法适合用于寻找图中的连通分量和环路,而BFS算法适合用于寻找最短路径和
最小生成树。

因此,在实际应用中,我们需要根据具体的需求来选择合适的算法。

总的来说,图的遍历算法是计算机科学中非常重要的算法之一,它在许多领域
都有着广泛的应用。

通过本次实验,我们对DFS和BFS算法有了更深入的了解,并且对它们的性能和应用场景有了更清晰的认识。

希望通过这篇实验报告,读
者们也能对图的遍历算法有更深入的理解和认识。

图的遍历数据结构实验报告

图的遍历数据结构实验报告

图的遍历数据结构实验报告正文:1·引言本实验报告旨在介绍图的遍历数据结构实验的设计、实现和结果分析。

图是一种常见的数据结构,用于表示对象之间的关系。

图的遍历是指系统地访问图的每个节点或边的过程,以便获取所需的信息。

在本次实验中,我们将学习并实现图的遍历算法,并分析算法的效率和性能。

2·实验目标本实验的主要目标是实现以下几种图的遍历算法:●深度优先搜索(DFS)●广度优先搜索(BFS)●拓扑排序3·实验环境本实验使用以下环境进行开发和测试:●操作系统:Windows 10●编程语言:C++●开发工具:Visual Studio 20194·实验设计与实现4·1 图的表示我们采用邻接矩阵的方式来表示图。

邻接矩阵是一个二维数组,用于表示图中节点之间的关系。

具体实现时,我们定义了一个图类,其中包含了节点个数、边的个数和邻接矩阵等属性和方法。

4·2 深度优先搜索算法(DFS)深度优先搜索是一种经典的图遍历算法,它通过递归或栈的方式实现。

DFS的核心思想是从起始节点开始,尽可能深地访问节点,直到达到最深的节点或无法继续访问为止。

我们实现了一个递归版本的DFS算法,具体步骤如下:●从起始节点开始进行递归遍历,标记当前节点为已访问。

●访问当前节点的所有未访问过的邻接节点,对每个邻接节点递归调用DFS函数。

4·3 广度优先搜索算法(BFS)广度优先搜索是另一种常用的图遍历算法,它通过队列的方式实现。

BFS的核心思想是从起始节点开始,逐层地遍历节点,先访问离起始节点最近的节点。

我们实现了一个使用队列的BFS算法,具体步骤如下:●将起始节点放入队列,并标记为已访问。

●从队列中取出一个节点,访问该节点并将其所有未访问的邻接节点放入队列。

●重复上述步骤,直到队列为空。

4·4 拓扑排序算法拓扑排序是一种将有向无环图(DAG)的所有节点线性排序的算法。

深度优先搜索算法数据结构中的遍历方法

深度优先搜索算法数据结构中的遍历方法

深度优先搜索算法数据结构中的遍历方法深度优先搜索(Depth First Search,DFS)是一种常用的图遍历算法,它具有简单、易实现的特点,在很多问题中都有广泛的应用。

本文将介绍深度优先搜索算法数据结构中的遍历方法,包括递归实现和迭代实现两种方式。

一、递归实现深度优先搜索算法递归实现深度优先搜索算法十分简洁,基本思路是从起始节点开始,以深度优先的方式遍历整个图。

具体步骤如下:1. 定义一个标记数组visited,用于记录每个节点是否被访问过。

初始时,visited数组的所有元素都设置为false。

2. 从起始节点开始,对未被访问过的相邻节点进行递归访问。

在递归访问一个节点时,标记该节点为已访问。

3. 重复步骤2,直到所有节点都被访问过。

递归实现深度优先搜索算法的伪代码如下:```void DFS(int node, bool[] visited) {visited[node] = true;for (int i = 0; i < adj[node].length; i++) {int nextNode = adj[node][i];if (!visited[nextNode]) {DFS(nextNode, visited);}}}```二、迭代实现深度优先搜索算法除了递归实现外,深度优先搜索算法还可以通过迭代的方式来实现。

迭代实现的基本思路是使用栈(Stack)来辅助遍历,具体步骤如下:1. 定义一个标记数组visited,用于记录每个节点是否被访问过。

初始时,visited数组的所有元素都设置为false。

2. 创建一个空栈,并将起始节点入栈。

3. 循环执行以下操作,直到栈为空:- 出栈一个节点,并将其标记为已访问。

- 遍历该节点的所有未被访问过的相邻节点,将其入栈。

迭代实现深度优先搜索算法的伪代码如下:```void DFS(int startNode, bool[] visited) {Stack<int> stack = new Stack<int>();stack.Push(startNode);while (stack.Count > 0) {int node = stack.Pop();visited[node] = true;for (int i = 0; i < adj[node].length; i++) {int nextNode = adj[node][i];if (!visited[nextNode]) {stack.Push(nextNode);}}}}```三、总结深度优先搜索算法是一种重要且常用的图遍历算法,通过递归或迭代的方式可以实现节点的深度优先遍历。

数据结构实验四图的深度优先与广度优先遍历

数据结构实验四图的深度优先与广度优先遍历

天津理工大学实验报告学院(系)名称:计算机与通信工程学院姓名学号专业计算机科学与技术班级2009级1班实验项目实验四图的深度优先与广度优先遍历课程名称数据结构与算法课程代码实验时间2011年5月12日第5-8节实验地点7号楼215 批改意见成绩教师签字:实验四图的深度优先与广度优先遍历实验时间:2011年5月12日,12:50 -15:50(地点:7-215)实验目的:理解图的逻辑特点;掌握理解图的两种主要存储结构(邻接矩阵和邻接表),掌握图的构造、深度优先遍历、广度优先遍历算法。

具体实验题目:(任课教师根据实验大纲自己指定)每位同学按下述要求实现相应算法:根据从键盘输入的数据创建图(图的存储结构可采用邻接矩阵或邻接表),并对图进行深度优先搜索和广度优先搜索1)问题描述:在主程序中提供下列菜单:1…图的建立2…深度优先遍历图3…广度优先遍历图0…结束2)实验要求:图的存储可采用邻接表或邻接矩阵;定义下列过程:CreateGraph(): 按从键盘的数据建立图DFSGrahp():深度优先遍历图BFSGrahp():广度优先遍历图实验报告格式及要求:按学校印刷的实验报告模版书写。

(具体要求见四)实验思路:首先,定义邻接矩阵和图的类型,定义循环队列来存储,本程序中只给出了有向图的两种遍历,定义深度优先搜索和广度优先搜索的函数,和一些必要的函数,下面的程序中会有说明,然后是函数及运行结果!#include<iostream>#include<cstdlib>using namespace std;#define MAX_VERTEX_NUM 20//最大顶点数#define MaxSize 100bool visited[MAX_VERTEX_NUM];enum GraphKind{AG,AN,DG,DN};//图的种类,无向图,无向网络,有向图,有向网络struct ArcNode{int adjvex;ArcNode * nextarc;};struct VNode{int data;ArcNode * firstarc;};struct Graph{VNode vertex[MAX_VERTEX_NUM];int vexnum,arcnum;//顶点数,弧数GraphKind kind;//图的类型};struct SeqQueue{int *base;int front,rear;SeqQueue InitQueue(){//循环队列初始化SeqQueue Q;Q.base = new int;Q.front=0;Q.rear=0;return Q;}void DeQueue(SeqQueue &Q,int &u){//出队操作u = *(Q.base+Q.front);Q.front = (Q.front+1)%MaxSize;}int QueueFull(SeqQueue Q){//判断循环队列是否满return (Q.front==(Q.rear+1)%MaxSize)?1:0;}void EnQueue(SeqQueue &Q,int x){//入队操作if(QueueFull(Q)){cout<<"队满,入队操作失败!"<<endl;exit(0);}*(Q.base+Q.rear) = x;Q.rear = (Q.rear+1)%MaxSize;void CreateDG(Graph & G,int n,int e){//初始化邻接表头结点int j;for(int i=0;i<n;++i){G.vertex[i].data=i;G.vertex[i].firstarc=NULL;}for(i=0;i<e;++i){cin>>i>>j;//输入边的信息ArcNode* s;s= new ArcNode;s->adjvex = j;s->nextarc = G.vertex[i].firstarc;G.vertex[i].firstarc = s;}}void Visit(Graph G,int u){cout<<G.vertex[u].data<<" ";}int FirstAdjVex(Graph G,int v){if(G.vertex[v].firstarc)return G.vertex[v].firstarc->adjvex;elsereturn -1;}int NextAdjVex(Graph G,int v,int w){ArcNode* p = G.vertex[v].firstarc;while(p->adjvex!=w)p = p->nextarc;if(p->nextarc)return p->nextarc->adjvex;elsereturn -1;}void DFSGrahp(Graph G,int v){visited[v]=true;Visit(G,v);//访问顶点V,对从未访问过的邻接点w递归调用DFS for(int w=FirstAdjVex(G,v);w!=0;w=NextAdjVex(G,v,w))if(!visited[w]) DFSGrahp(G,w);}void DFSTraverse(Graph G){//对图G做深度优先搜索for(int v=0;v<G.vexnum;++v)visited[v]=false;//初始化访问标志数组visitedfor(v=0;v<G.vexnum;++v)if(!visited[v]) DFSGrahp(G,v);//对尚未访问的顶点v调用DFS }void BFSGrahp(Graph G){//图的广度优先搜索SeqQueue Q;Q=InitQueue();int u;for(int v=0;v<G.vexnum;++v)if(!visited[G,v]){EnQueue(Q,v);//v入队列while(!((Q.front==Q.rear)?1:0)){DeQueue(Q,u);//对首元素出队,赋给uvisited[u]=true;Visit(G,u);for(int w=FirstAdjVex(G,u);w!=0;w=NextAdjVex(G,u,w)) //u的未访问过的邻接点w入队列if(!visited[w])EnQueue(Q,w);}}}int main(){Graph p;int n,e;cout<<"输入图的顶点及边数:"<<endl;cin>>n>>e;cout<<"创建图:"<<endl;CreateDG(p,n,e);cout<<"图的优先深度结果为:"<<endl;DFSTraverse(p);cout<<"图的广度优先结果为:"<<endl;BFSGrahp(p);printf("结果如上所示!\n");return 0;}。

深度优先遍历算法和广度优先遍历算法实验小结

深度优先遍历算法和广度优先遍历算法实验小结

深度优先遍历算法和广度优先遍历算法实验小结一、引言在计算机科学领域,图的遍历是一种基本的算法操作。

深度优先遍历算法(Depth First Search,DFS)和广度优先遍历算法(Breadth First Search,BFS)是两种常用的图遍历算法。

它们在解决图的连通性和可达性等问题上具有重要的应用价值。

本文将从理论基础、算法原理、实验设计和实验结果等方面对深度优先遍历算法和广度优先遍历算法进行实验小结。

二、深度优先遍历算法深度优先遍历算法是一种用于遍历或搜索树或图的算法。

该算法从图的某个顶点开始遍历,沿着一条路径一直向前直到不能再继续前进为止,然后退回到上一个节点,尝试下一个节点,直到遍历完整个图。

深度优先遍历算法通常使用栈来实现。

以下是深度优先遍历算法的伪代码:1. 创建一个栈并将起始节点压入栈中2. 将起始节点标记为已访问3. 当栈不为空时,执行以下步骤:a. 弹出栈顶节点,并访问该节点b. 将该节点尚未访问的邻居节点压入栈中,并标记为已访问4. 重复步骤3,直到栈为空三、广度优先遍历算法广度优先遍历算法是一种用于遍历或搜索树或图的算法。

该算法从图的某个顶点开始遍历,先访问起始节点的所有相邻节点,然后再依次访问这些相邻节点的相邻节点,依次类推,直到遍历完整个图。

广度优先遍历算法通常使用队列来实现。

以下是广度优先遍历算法的伪代码:1. 创建一个队列并将起始节点入队2. 将起始节点标记为已访问3. 当队列不为空时,执行以下步骤:a. 出队一个节点,并访问该节点b. 将该节点尚未访问的邻居节点入队,并标记为已访问4. 重复步骤3,直到队列为空四、实验设计本次实验旨在通过编程实现深度优先遍历算法和广度优先遍历算法,并通过对比它们在不同图结构下的遍历效果,验证其算法的正确性和有效性。

具体实验设计如下:1. 实验工具:使用Python编程语言实现深度优先遍历算法和广度优先遍历算法2. 实验数据:设计多组图结构数据,包括树、稠密图、稀疏图等3. 实验环境:在相同的硬件环境下运行实验程序,确保实验结果的可比性4. 实验步骤:编写程序实现深度优先遍历算法和广度优先遍历算法,进行多次实验并记录实验结果5. 实验指标:记录每种算法的遍历路径、遍历时间和空间复杂度等指标,进行对比分析五、实验结果在不同图结构下,经过多次实验,分别记录了深度优先遍历算法和广度优先遍历算法的实验结果。

图的遍历操作实验报告

图的遍历操作实验报告

图的遍历操作实验报告一、实验目的本次实验的主要目的是深入理解图的遍历操作的基本原理和方法,并通过实际编程实现,掌握图的深度优先遍历(DepthFirst Search,DFS)和广度优先遍历(BreadthFirst Search,BFS)算法,比较它们在不同类型图中的性能和应用场景。

二、实验环境本次实验使用的编程语言为 Python,开发环境为 PyCharm。

实验中使用的数据结构为邻接表来表示图。

三、实验原理(一)深度优先遍历深度优先遍历是一种递归的图遍历算法。

它从起始节点开始,沿着一条路径尽可能深地访问节点,直到无法继续,然后回溯到上一个未完全探索的节点,继续探索其他分支。

(二)广度优先遍历广度优先遍历则是一种逐层访问的算法。

它从起始节点开始,先访问起始节点的所有相邻节点,然后再依次访问这些相邻节点的相邻节点,以此类推,逐层展开。

四、实验步骤(一)数据准备首先,定义一个图的邻接表表示。

例如,对于一个简单的有向图,可以使用以下方式创建邻接表:```pythongraph ={'A':'B','C','B':'D','E','C':'F','D':,'E':,'F':}```(二)深度优先遍历算法实现```pythondef dfs(graph, start, visited=None):if visited is None:visited = set()visitedadd(start)print(start)for next_node in graphstart:if next_node not in visited:dfs(graph, next_node, visited)```(三)广度优先遍历算法实现```pythonfrom collections import deque def bfs(graph, start):visited ={start}queue = deque(start)while queue:node = queuepopleft()print(node)for next_node in graphnode:if next_node not in visited:visitedadd(next_node)queueappend(next_node)```(四)测试与分析分别使用深度优先遍历和广度优先遍历算法对上述示例图进行遍历,并记录遍历的顺序和时间开销。

第六次数据结构上机实验报告资料

第六次数据结构上机实验报告资料
G->adjlist[i].firstarc=NULL;
for(i=0;i<n;i++) //检查邻接矩阵的每个元素
for(j=0;j<n;j++)
if(g.edges[i][j]!=0)
{
p=(ArcNode *)malloc(sizeof(ArcNode)); //新申请一个节点空间,就是后面的一段段小的节点
visited[p->adjvex]=1;
rear=(rear+1)%max; //又要入队了,马上要重复之前的操作了
queue[rear]=p->adjvex;
}
p=p->nextarc;
}
}
printf("\n");
}
void main()
{
int i,j;
MGraph g;
ALGraph *G; //没有定义过的邻接表类型加上*
visited[v]=1; //第一个点设为已被访问并输出,接着以他为主进行遍历
printf(" %d",v);
p=G->adjlist[v].firstarc;
while(p!=NULL)
{
if(visited[p->adjvex]==0)
DFS(G,p->adjvex);
p=p->nextarc;
typedef struct //图的定义
{
int edges[max][max]; //邻接矩阵
int n,e; //顶点数和弧数
VertexType vexs[max]; //存放定点信息
}MGraph; //图的邻接矩阵类型

图遍历的演示实习报告

图遍历的演示实习报告

图遍历的演示实习报告在计算机科学中,图遍历是一种重要的操作,用于访问图中的节点和边。

为了更深入地理解图遍历的原理和应用,我进行了一次关于图遍历的演示实习。

图是由节点(也称为顶点)和连接节点的边组成的数据结构。

图遍历的目的是按照特定的顺序访问图中的所有节点。

常见的图遍历算法有深度优先搜索(DepthFirst Search,简称 DFS)和广度优先搜索(BreadthFirst Search,简称 BFS)。

在实习中,我首先选择了深度优先搜索算法进行演示。

深度优先搜索就像是在一个迷宫中,选择一条路一直走到底,直到无法前进,然后回溯。

为了实现深度优先搜索,我使用了递归的方法。

以下是一个简单的深度优先搜索的 Python 代码示例:```pythondef dfs(graph, node, visited=):if node not in visited:print(node)visitedappend(node)for neighbor in graphnode:dfs(graph, neighbor, visited)graph ={'A':'B','C','B':'A','D','E','C':'A','F','D':'B','E':'B','F','F':'C','E'}dfs(graph, 'A')```在这个示例中,`dfs`函数接受一个图(以邻接表的形式表示)、当前节点和一个已访问节点的列表作为参数。

如果当前节点未被访问过,就将其打印出来并标记为已访问,然后对其邻居节点递归调用`dfs`函数。

接下来,我演示了广度优先搜索算法。

广度优先搜索则像是以层层扩散的方式访问节点。

它先访问起始节点的所有邻居,然后再依次访问邻居的邻居。

以下是广度优先搜索的 Python 代码示例:```pythonfrom collections import dequedef bfs(graph, start):visited =queue = deque(start)while queue:node = queuepopleft()if node not in visited:print(node)visitedappend(node) queueextend(graphnode) graph ={'A':'B','C','B':'A','D','E','C':'A','F','D':'B','E':'B','F','F':'C','E'}bfs(graph, 'A')```在这个示例中,使用了一个队列来实现广度优先搜索。

图的遍历数据结构实验报告

图的遍历数据结构实验报告

图的遍历数据结构实验报告图的遍历数据结构实验报告1. 实验目的本实验旨在通过使用图的遍历算法,深入理解图的数据结构以及相关算法的运行原理。

2. 实验背景图是一种非线性的数据结构,由顶点和边组成。

图的遍历是指按照某种规则,从图中的一个顶点出发,访问图中的所有顶点且仅访问一次的过程。

3. 实验环境本次实验使用的操作系统为Windows 10,编程语言为Python3.8,使用的图数据结构库为NetworkX。

4. 实验步骤4.1 创建图首先,我们使用NetworkX库创建一个有向图。

通过调用add_nodes_from()方法添加顶点,并调用add_edge()方法添加边,构建图的结构。

4.2 深度优先搜索(DFS)接下来,我们使用深度优先搜索算法来遍历这个图。

深度优先搜索是一种递归的遍历法,从一个顶点开始,沿着深度方向访问图中的顶点,直到不能继续深入为止。

4.3 广度优先搜索(BFS)然后,我们使用广度优先搜索算法来遍历这个图。

广度优先搜索是一种先访问离起始顶点最近的顶点的遍历法,从一个顶点开始,依次访问与之相邻的顶点,直到访问完所有的顶点为止。

5. 实验结果我们根据深度优先搜索和广度优先搜索算法,分别得到了图的遍历结果。

通过实验可以观察到每种遍历方式所访问的顶点顺序以及所需的时间复杂度。

6. 结论通过本次实验,我们了解了图的遍历数据结构及相关算法的原理和实现方式。

深度优先搜索和广度优先搜索算法适用于不同的场景,可以根据具体情况选择合适的算法进行图的遍历。

附件:无附录:本文所涉及的法律名词及注释:- 图:由结点和边组成的非线性数据结构。

- 顶点:图中的每个元素都称为顶点,也称为结点。

- 边:顶点之间的连接关系称为边。

图的深度优先遍历算法及运用

图的深度优先遍历算法及运用

5 结 语
通 过上述探 讨 ,基 本理清 了 图的深度优 先遍历 算法 的学
出 2者 的关系 ,如果没有直系关系 ,请输出一 。
分析 :这道题 目可 以建模 为树模 型 ,但 这里 用 图的深度 优先遍历算法加 以变化来实现 。 思想 :由于要求 的问题有两种情况 :A是 B的 *hl A ci d或 是 B的 * aet p rn;为 了表示 方 向性 ,邻 接矩 阵元素值 为 1 表示
l odds( t 1 v i f i nu

, / 标记该结点 已访问
mak d [】 = t e re u r ; u
fr( t o i n v=0 v<V; + ) ; V +
/ / 探测与 U相连且未被访 问的结点
i ma U 【] = re&& mak d 【】 = a e f( t[】 v =t u r e v =fl ) s

4 深度优 先 思想 运用
深度优先思想 主要体现在 重要 的算法策 略—— 回溯法 中。 回溯法被称 为万能 的解题方法 。它主要 通过 在解空 间 中使 用 深度优先思想来完成约束满足问题和路径求解 问题的实现。
其核 心代码 非常类似 深度优先遍 历算 法的代码 。通 常可 以用 该方法解决小规模的 N C问题。 P 这些 更为深 入的学 习和思考 I I 够扩大 知识 面 ,提高 解  ̄ I I 决 问题 的能力 。这就是数据结构课程学习的第三个阶段 :思。
辈 ,则在关 系上加一 个 get 。输入包 含多 组测试 用例 , ra一 每
组用例首先包含 2个整数 n (< n = 6 0 = < 2 )和 m (< 5 ), 0 m< 0 分
别 表示 有 n个亲属关 系和 m个问题, 然后 接下来 是 n行的形式 如 A C的字符串 ,表示 A的父母亲分别是 B和 C B ,如果 A的 父母 亲信息不全 ,则用一 代替 ,例如 A C,再 然后 是 m行形式 — 如F A的字符 串 ,表示 询 问 F和 A的关 系 。当 n和 m 为 0时 结束输 入 。如果询 问的 2个人 是直 系亲属 ,请按 题 目描述输
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题目: 图的深度优先遍历算法
一、实验题目
前序遍历二叉树
二、实验目的
⑴掌握图的逻辑结构;
⑵掌握图的邻接矩阵存储结构;
⑶验证图的邻接矩阵存储及其深度优先遍历操作的实现。

三、实验内容与实现
⑴建立无向图的邻接矩阵存储;
⑵对建立的无向图,进行深度优先遍历;实验实现
#include<stdio.h>
#include<stdlib.h>
#define MaxVex 255
#define TRUE 1
#define FALSE 0
typedef char VertexType;
typedef int Bool;
Bool visited[MaxVex];
typedef struct EdgeNode {
int adjvex;
struct EdgeNode *next;
}EdgeNode;
typedef struct VertexNode {
VertexType data;
EdgeNode *firstedge;
}VertexNode,AdjList[MaxVex];
typedef struct Graph{
AdjList adjList;
int numVertexes,numEdges; }Graph,*GraphAdjList;
typedef struct LoopQueue{
int data[MaxVex];
int front,rear;
}LoopQueue,*Queue;
void initQueue(Queue &Q){
Q->front=Q->rear=0;
}
Bool QueueEmpty(Queue &Q){
if(Q->front == Q->rear){
return TRUE;
}else{
return FALSE;
}
}
Bool QueueFull(Queue &Q){
if((Q->rear+1)%MaxVex == Q->front){ return TRUE;
}else{
return FALSE;
}
}
void EnQueue(Queue &Q,int e){
if(!QueueFull(Q)){
Q->data[Q->rear] = e;
Q->rear = (Q->rear+1)%MaxVex;
}
}
void DeQueue(Queue &Q,int *e){
if(!QueueEmpty(Q)){
*e = Q->data[Q->front];
Q->front = (Q->front+1)%MaxVex;
}
}
void CreateALGraph(GraphAdjList &G){/* 建立图的邻接表结构*/
int i, j, k;
if(G==NULL){
G = (GraphAdjList)malloc(sizeof(Graph));
}
printf("输入图的结点数以及边数: ");
scanf("%d%d",&G->numVertexes,&G->numEdges);
fflush(stdin);
printf("===========================\n");
printf("输入各个顶点的数据:\n");
for (i=0; i<G->numVertexes; ++i){
printf("顶点%d: ",i);
scanf("%c", &(G->adjList[i].data));
G->adjList[i].firstedge = NULL;
fflush(stdin);
}
printf("===========================\n");
for (k=0; k<G->numEdges; ++k){
printf("输入(vi,vj)上的顶点序号: ");
scanf("%d%d",&i,&j);
EdgeNode *ptrEdgeNode = (EdgeNode*)malloc(sizeof(EdgeNode));
ptrEdgeNode->adjvex = j;
ptrEdgeNode->next = G->adjList[i].firstedge;
G->adjList[i].firstedge = ptrEdgeNode;
ptrEdgeNode = (EdgeNode*)malloc(sizeof(EdgeNode));
ptrEdgeNode->adjvex = i;
ptrEdgeNode->next = G->adjList[j].firstedge;
G->adjList[j].firstedge = ptrEdgeNode;
}
}
void DFS(GraphAdjList &G, int i){
visited[i] = TRUE;
printf("%c ", G->adjList[i].data);
EdgeNode *p = G->adjList[i].firstedge;
while(p){
if(!visited[p->adjvex]){
DFS(G,p->adjvex); //递归深度遍历
}
p= p->next;
}
}
/**
* 深度优先遍历
*/
void DFSTraverse(GraphAdjList &G){
int i;
for (i=0; i<G->numVertexes; ++i){
visited[i] = FALSE; //初始化访问数组visited的元素值为false
}
for (i=0; i<G->numVertexes; ++i){
if(!visited[i]){ //节点尚未访问
DFS(G,i);
}
}
}
/**
* 图的广度优先遍历
*/
void BFSTraverse(GraphAdjList &G){
int i;
Queue Q = (Queue)malloc(sizeof(LoopQueue));
for (i=0; i<G->numVertexes; ++i){
visited[i] = FALSE;
}
initQueue(Q);
for (i=0; i<G->numVertexes; ++i){
if(!visited[i]){
visited[i] = TRUE;
printf("%c ", G->adjList[i].data);
EnQueue(Q, i);
while (!QueueEmpty(Q)){
DeQueue(Q, &i);
EdgeNode *p = G->adjList[i].firstedge;
while (p){
if (!visited[p->adjvex]){
visited[p->adjvex] = TRUE;
printf("%c ", G->adjList[p->adjvex].data);
EnQueue(Q, p->adjvex);
}
p = p->next;
}
}
}
}
}
int main(){
GraphAdjList G = NULL;
CreateALGraph(G);
printf("\n图的深度优先遍历为: "); DFSTraverse(G);
printf("\n图的广度优先遍历为: "); BFSTraverse(G);
printf("\n");
return 0;
}
四、实验心得
⑴建立了无向图的邻接矩阵存储;
⑵掌握了对所建立的无向图的深度优先遍历和广度优先遍历;。

相关文档
最新文档