【学案】菱形及其性质
菱形的定义和性质导学案
菱形的定义和性质【教学目标】知识于技能1.经历菱形的性质的探究过程。
2.掌握菱形的两条性质。
过程与方法1经历菱形的性质的探究过程,培养学生的动手实验、观察推理的意识,发展学生的形象思维和逻辑推理能力2根据菱形的性质进行简单的证明,培养学生的逻辑推理能力和演绎能力。
情感与态度1在探究菱形的性质的活动中获得成功的体验。
2过运用菱形的性质,锻炼克服困难的意志,建立自信心【教学重难点】重点:菱形性质的探求难点:菱形性质的探求和应用【导学过程】【创设情景,引入新课】一、知识链接:1.(复习)什么叫做平行四边形平行四边形有哪些性质呢2.(引入)我们已经学习了平行四边形,其实还有特殊的平行四边形,如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形二、教材预习学法指导:课前独学教材预习内容,总结本节课的重点、难点、注意点。
课堂再以小组为单位交流,找出还存在的问题,并在小黑板上扼要展示本节重点内容和存在的问题。
注意双色笔的使用,书写工整。
X B 1 c o m1、预习内容:自学课本2页—3页,完成随堂练习。
1将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,再打开,你发现这是一个什么样的图形呢2、叫做菱形3、观察右图:回答菱形是轴对称图形吗()有条对称轴对称轴之间有什么位置关系你能看出图中哪些线段或角相等吗2、预习测试:1、菱形的定义:叫做菱形。
菱形是的平行四边形。
2、从菱形的意义可以探究菱形具有的性质:(1)菱形具有平行四边形具有的一切性质:。
(2)菱形与平行四边形比较又有其特殊的性质(探究、归纳、)特殊的性质1:。
几何语言为:特殊的性质2:几何语言为:【自主探究】学法指导:课前独学,解决会的,有问题的上课对子或小组交流,形成共识,进行课堂大展示。
展示时要讲清所用知识点、易错点。
展示到小黑板的题要标清所用知识点、易错点;注意双色笔的使用,字体工整。
探究点一:菱形性质1的应用.1、已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE探究点二:菱形性质2的应用2、已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE.探究点三:性质的综合应用3、在菱形ABCD中,E、F分别是BC、CD上的点,且CE=CF,过点C做CG∥EA交FA于H ,交AD于G,若∠BAE=25°,∠BCD=130°,求∠AHC的度数。
菱形性质学案
19.3.1 菱形的性质学习目标:1.掌握菱形概念,知道菱形与平行四边形的关系.2.理解并掌握菱形的定义及性质1、2;3.会用这些性质进行有关的论证和计算,会计算菱形的面积.学习重点、难点::菱形的性质.菱形的性质及菱形知识的综合应用.学习过程:一、自主预习:自学课本,完成下列问题:1.如何从一个平行四边形中剪出一个菱形来的四边形叫做菱形,生活中的菱形有。
2.菱形为什么是轴对称图形?有对称轴。
3.你能从菱形的轴对称性中得到菱形所具有的特有的性质吗?1.菱形的定义:有一组邻边相等的平行四边形叫做菱形,菱形是特殊的平行四边形。
(菱形具有平行四边形的一切性质)2.菱形的性质:(1)对边平行,四边。
(2)对角,邻角互补。
(3)对角线互相且每一条对角线平分一组对角。
四边形ABCD是菱形⇒AB=BC=CD=DA四边形ABCD是菱形⇒AC⊥BD 21∠=∠二、合作解疑菱形性质的应用1.菱形的两条对角线的长分别是6cm和8cm,求菱形的周长和面积。
(归纳:菱形的面积可以是底×高,也可以是)2.如图,菱形花坛ABCD的边长为20cm,∠ABC=60°沿菱形的两条对角线修建了两条小路AC和BD,求两条小路的长和花坛的面积。
DCBA例:如图已知菱形ABCD的对角线交于点O,AC=16cm,BD=12cm,求菱形的高。
三、课堂练习1.如图是边长为16cm的活动菱形衣帽架,若墙上钉子间的距离AB=BC=16cm,则∠1= .1CBA陈海波编写第 1 页共 2 页陈海波编写 第 2 页 共 2 页2、如图,在菱形ABCD 中,E 是 AB 的中点,且DE ⊥AB ,AB =4.求:(1)∠ABC 的度数;(2)菱形ABCD 的面积.四、课 后 作 业 1.按图示的虚线折纸,然后连接ABCD 可得菱形,由此可以得到_____________的四边形是菱形. 2.菱形的对角线长分别为6和8,则这个菱形的周长是_______,面积是______.4.下面性质中,菱形不一定具有的是( ) A 对角线相等 B 是中心对称图形 C 是轴对称图形 D 对角线互相平分 3.菱形的周长为20 cm ,两邻角的比为1:2,则较短对角线的长是_____________;一组对边的距离是____________. 4、以菱形ABCD 的钝角顶点A 引BC 边的垂线,恰好平分BC ,则此菱形各角是____________.5.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为 .6.已知菱形ABCD 的周长为20cm ,且相邻两内角之比是1∶2,求菱形的对角线的长和面积.7.菱形ABCD 中,∠D ∶∠A=3∶1,菱形的周长为 8cm ,求菱形的高.8.已知:如图,菱形A B C D 中,E F ,分别是C B C D ,上的点,且BE D F =.(1)求证:AE AF =.(2)若60B ∠= ,点E F ,分别为B C 和C D 的中点.求证:A E F △为等边三角形.9、如图,菱形ABCD 的边长为2,BD =2,E ,F 分别是边AD ,CD 上的两个动点,且满足AE +CF =2. (1)求证:△BDE ≌△BCF ; (2)判断△BEF 的形状,并说明理由; AB CD ABD C EF。
菱形的性质 (26张PPT)学案
5.2.1 菱形的性质导学案班级姓名学习目标:1.经历菱形的概念、性质的发现过程2.掌握菱形的概念和性质定理“菱形的四条边都相等”“菱形的对角线互相垂直,并且每条对角线平分一组对角”3. 探索菱形的对称性4.通过运用菱形知识解决具体问题,提高分析能力和观察能力.学习重点:菱形的性质学习难点:菱形的轴对称需要用折叠和推理相结合的方法一.课前预学平行四边形有哪些性质?________________________________________________________________________________________________________________________________________________________________矩形有哪些性质?__________________________________________________________________________________________________________________________________________________________这些图形是什么图形?二、课中导学观察以下由火柴棒摆成的图形:议一议:(1)三个图形都是平行四边形吗?(2)与图①相比,图②与图③有什么共同特点?菱形的定义:__________________________________________________________菱形具有工整,匀称,美观等许多优点,常被人们用在图案设计上。
想一想:菱形有哪些性质?菱形是特殊的平行四边形,具有平行四边形的所有性质._______________________________________________________________________________________ ___________________________由于平行四边形的对边相等,而菱形的邻边相等,因此:_______________________________________________________________________你能证明吗?已知:如图,四边形ABCD是菱形.求证:AB=BC=CD=DA.总结归纳性质定理1:______________________________________________________________符号语言:_____________________________________________________________菱形既然是特殊的平行四边形,那它应该有特殊的地方?利用纸片,小组讨论,菱形还具有哪些特殊性质?把菱形沿对角线对折,边有什么特征,对角线有什么特征?________________________________________________________你能证明吗?已知:在菱形ABCD中,对角线AC和BD相交于点O求证:AC⊥BD ,AC平分∠BCA和∠BAD, BD平分∠ABC和∠ADC总结归纳性质定理2:______________________________________________________________符号语言:_____________________________________________________________想一想矩形、菱形是不是轴对称图形?如果是轴对称图形,对称轴分别有几条_______________________________________________________________________________________ _______________________例1 如图,在菱形ABCD中,对角线AC,BD相交于点O,∠BAC=30°,BD=6.求菱形的边长和对角线AC的长.三、课后延学1.菱形的周长为12cm,相邻两角之比为5:1,那么菱形对边间的距离是()A.6cmB.1.5cmC.3cmD.0.75cm2.如图,在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,则∠EAF 等于()A.75°B.60°C.45°D.30°3.已知菱形ABCD中,AE⊥BC于E,若S菱形ABCD=24,且AE=6,则菱形的边长为()A.12B.8C.4D.24.菱形的边长是2 cm,一条对角线的长是2 cm,则另一条对角线的长约是()A.4cmB.1cmC. 3.4cmD.2cm5.如图,在菱形ABCD中,AE⊥BC,E为垂足.且BE=CE,AB=2.求:(1)∠BAD的度数;(2)对角线AC的长及菱形ABCD的周长.6.(2019•泸州)一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为()A.8 B.12 C.16 D.327.(2019•河北)如图,菱形ABCD中,∠D=150°,则∠1=()A.30°B.25°C.20° D.15°答案:1.B2.B3.C4.C5.15.解:(1)∵AE⊥BC,且BE=CE,∴△ABC为等边三角形,∠ B=∠D=60°,∴∠BAD=∠BCD=120°.(2)AC=AB=2,菱形ABCD的周长为4×2=8.6.C7.D。
菱形的性质学案
菱形的性质学案学习目标:1、掌握菱形的概念和性质2、发展合情推理能力和主动探索习惯学习过程:一、自主学习,初步感知1、菱形的定义:2、菱形的性质:边:角:对角线:对称性:二、合作交流,探究新知(看课本)相比于一般的平行四边形,菱形所特有的性质:性质1:性质2:1、验证猜想⑴已知四边形ABCD是菱形。
求证:AB=BC=CD=DA⑵已知AC、BD是菱形ABCD的两条对角线,AC、BD相交于点O。
求证:①AC⊥BD。
②AC平分∠BAD和∠BCD。
AB CDOAB CDOAB CD2、例题.如图,菱形花坛ABCD 的边长为20m , ∠ABC =60o ,沿着菱形的对角线修建了两条小路AC 和BD ,求两条小路的长和花坛的面积(分别精确到0.01m 和0. 1m 2 )3、学以致用(1)如图,四边形ABCD 是菱形。
点O 是两条对角线 的交点,AB=5cm ,AO=3cm ,求AC 与BD 的长。
(2)在菱形ABCD 中,对角线AC=6,BD=8,则菱形的面积是多少?周长是多少?例3如图,AC 是菱形ABCD 的对角线,点E 、F 分别在边AB 、AD 上,且AE=AF 。
求证:△AC E ≌△ACF三、精讲总结,反思提炼。
菱形的定义:菱形的性质:菱形的面积公式: 四、达标检测,收获成功。
1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为 . 2.已知菱形ABCD 的周长为20cm ,且相邻两内角之比是1∶2,求菱形的对角线的长和面积.3.已知:如图,菱形ABCD 中,E 、F 分别是CB 、CD 上的点,且BE=DF .求证:∠AEF=∠AFE .ABCDOADFE BC。
菱形的性质教案
菱形的性质教案教案标题:菱形的性质教案教案目标:1. 让学生了解菱形的定义和基本要素。
2. 探索菱形的性质,包括边长、角度和对角线。
3. 培养学生的观察能力和解决问题的能力。
教学步骤:步骤一:导入与激发兴趣1. 引导学生回顾正方形的性质,并询问学生是否了解其他类型的四边形。
2. 展示一些图形(其中包括菱形),并引导学生发现并讨论菱形的特点。
3. 提问:你能描述一下菱形的性质吗?菱形与其他四边形有何区别?步骤二:菱形的定义和要素1. 讲解菱形的定义:四条边相等, 对角线相等, 对角线互相垂直。
2. 引导学生观察和思考,理解菱形的定义,并把握住关键词汇和概念。
步骤三:菱形的性质探索1. 分组讨论:学生自由组成小组,每个小组分配一些菱形的图片或几何模型。
2. 学生观察,并提出关于菱形性质的问题,例如:每个角度的度数是多少?对角线长度有何规律?等等。
3. 学生归纳总结:每个小组汇报他们发现的共同点和规律,全班一起讨论并得出结论。
步骤四:菱形的性质验证1. 给学生一些举例菱形的问题,如:给出一条对角线的长度,能否确定菱形的面积?2. 学生通过计算和实践来验证并解答问题,展示他们对于菱形性质的理解与应用能力。
步骤五:巩固和拓展1. 学生完成一些练习题,巩固对菱形性质的理解。
2. 对于学习较快的学生,引导他们进行拓展学习,可以探究菱形的特殊情况,如正菱形。
步骤六:课堂总结1. 学生和教师共同总结本节课学到的关于菱形性质的知识,强调关键点和要点。
2. 鼓励学生提出问题或分享有趣的观察结果。
教学资源:1. 图形展示板或幻灯片,展示菱形和其他四边形的图片。
2. 菱形的几何模型或实物,供学生观察和探索。
3. 小组讨论和汇报的活动工具。
4. 练习题和课堂练习材料。
评估方式:1. 教师观察学生参与讨论和合作的程度。
2. 学生在小组和全班中的表现和汇报。
3. 学生完成的练习题和课堂练习的正确性和深度。
拓展活动:1. 学生自行寻找关于菱形的实际应用场景,并进行展示和分享。
19.2 菱形的性质和判定(复习)学案无答案
19.2 菱形的性质和判定(复习)学案一、菱形的定义和性质1. 定义菱形是指具有以下性质的四边形:•四条边相等。
•对角线相交于垂直的两条直线。
•对角线长度相等。
2. 性质菱形具有以下性质:•菱形的对角线互相垂直。
•菱形的每条边上的角都是直角。
•菱形的对角线平分内角。
•菱形的内角和为360度。
二、菱形的判定菱形可以通过以下几种方式进行判定。
1. 边长判定如果一个四边形的四条边相等,则可以判定该四边形为菱形。
例如,已知四边形ABCD,且AB=BC=CD=DA,那么可以确定四边形ABCD为菱形。
2. 对角线判定如果一个四边形的对角线互相垂直,并且对角线长度相等,则可以判定该四边形为菱形。
例如,已知四边形ABCD,且AC和BD互相垂直,并且AC=BD,那么可以确定四边形ABCD为菱形。
3. 角度判定如果一个四边形的每条边上的角都是直角,则可以判定该四边形为菱形。
例如,已知四边形ABCD,且∠A=∠B=∠C=∠D=90°,那么可以确定四边形ABCD为菱形。
4. 综合判定除了以上几种方式,还可以通过综合性质进行判定。
例如,已知四边形ABCD,如果能证明AB=BC=CD=DA,并且AC和BD互相垂直,则可以确定四边形ABCD为菱形。
三、菱形的例题例题1已知四边形ABCD,且AB=BC=CD=DA,证明四边形ABCD为菱形。
解答:由已知条件可知AB=BC=CD=DA,根据边长判定可判定四边形ABCD为菱形。
例题2已知四边形ABCD,且AC和BD互相垂直,并且AC=BD,证明四边形ABCD为菱形。
解答:由已知条件可知AC和BD互相垂直,并且AC=BD,根据对角线判定可判定四边形ABCD为菱形。
例题3已知四边形ABCD,且∠A=∠B=∠C=∠D=90°,证明四边形ABCD为菱形。
解答:由已知条件可知∠A=∠B=∠C=∠D=90°,根据角度判定可判定四边形ABCD为菱形。
例题4已知四边形ABCD,且AB=BC=CD=DA,AC和BD互相垂直,证明四边形ABCD为菱形。
菱形的性质 讲学案.docx
学习目标1、会归纳菱形的性质并进行证明;2、能运用菱形的性质定理进行简单的计算与证明;3、在进行探索、猜想、证明的过程中,进一步发展推理论证的能力。
学习重、难点重点:菱形的性质定理证明难点:性质定理的运用生活数学与理论数学的相互转化学习过程:一、知识梳理有一组邻边相等的平行四边形叫菱形.与一般平行四边形相比,菱形具有哪些性质?定理:(菱形的边)____________________________________ (菱形的角)定理:(菱形的对角线)二、定理证明:三、典型例题例3.如图3个全等的菱形构成的活动衣帽架,顶点A、E、F、C、G、H是上、下两排挂钩,根据需要可以改变挂钩之间的距离(比如AC两点可以自由上下活动),若菱形的边长为13厘米,要使两排挂钩之间的距离为24厘米,并在点B、M处固定,则B、M之间的距离是多少?,E四、合作交流1.证明:菱形的面积是它两条对角线长的积的一半.2.已知:如图,在菱形ABCD中,对角线AC、BD相交于点O, E、F、G、H 分别是菱形ABCD各边的中点,求证:OE=OF=OG=OH.五、小结菱形的边和对角线有不同于一般的平行四边形的性质,有关菱形的几何计算问题可以化为特殊三角形(直角三角形、等腰三角形),利用特殊三角形的性质来计算。
六、课堂练习1.己知:如图,菱形ABCD中,ZB=60°, AB=4,则以AC为边长的正方形ACEF 的周长为.2.已知四边形ABCD是菱形,。
是两条对角线的交点,AC=8cm, DB=6cm,这个菱形的边长是cm.3.已知菱形的边长是5cm, 一条对角线长为8cm,则另一条对角线长为cm.4.四边形ABCD是菱形,ZABC=120°, AB=12cm,则ZABD的度数为,ZDAB的度数为;对角线BD=, AC=;菱形ABCD的面积为.1.3.3菱形的性质作业5. (09宁波)如图,菱形ABCD 中,对角线AC 、3。
数学菱形教案【优秀6篇】
数学菱形教案【优秀6篇】作为一位优秀的人民教师,时常会需要准备好教案,教案是教材及大纲与课堂教学的纽带和桥梁。
我们应该怎么写教案呢?下面是为大伙儿带来的6篇《数学菱形教案》,可以帮助到您,就是最大的乐趣哦。
数学菱形教案篇一一、教学目的:1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力。
二、重点、难点1.教学重点:菱形的两个判定方法。
2.教学难点:判定方法的证明方法及运用。
三、例题的意图分析本节课安排了两个例题,其中例1是教材P109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算。
这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成。
程度好一些的班级,可以选讲例3.四、课堂引入1.复习(1)菱形的定义:一组邻边相等的平行四边形;(2)菱形的性质1菱形的四条边都相等;性质2菱形的对角线互相平分,并且每条对角线平分一组对角;(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)2.【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?3.【探究】(教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形。
转动木条,这个四边形什么时候变成菱形?通过演示,容易得到:菱形判定方法1 对角线互相垂直的平行四边形是菱形。
注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直。
通过教材P109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:菱形判定方法2 四边都相等的四边形是菱形。
数学菱形教案篇二重难点分析本节的重点是菱形的性质和判定定理。
菱形是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。
菱形学案
菱形的性质学案学习目标:1、掌握菱形的概念和性质2、发展合情推理能力和主动探索习惯 学习过程: 一、自主学习 1、温故知新2、初步感知二、小组合作:1、如图:已知四边形ABCD 是菱形。
求证:AB=BC=CD=DA3、如图,四边形ABCD 是菱形。
点O 是两条对角线 的交点,AB=5cm ,AO=3cm , (1)求AC 与BD 的长。
1、菱形的定义:2、菱形的性质: 对称性: 边: 角:对角线:相比于一般的平行四边形,菱形所特有的性质: AB CDOA BCD AB CDO3.(09南宁)如图2,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( )A .210cmB .220cmC .240cmD .280cm4.求证:菱形的对角线的交点到各边的距离相等。
教学目标: 掌握菱形的判定定理 灵活利用菱形的判定定理解决实际问题(2)在(1)的情况下,则菱形的面积是多少?三、展示反馈:1、如图,已知菱形ABCD 的周长为20cm ,∠A :∠ABC =1:2,求∠ABD 的度数与BD 长。
2、已知菱形的两条对角线长分别为6和8,则它的边长为多少?四、拓展延伸:1、已知菱形周长为80,一对角线长20,则相邻两角的度数为 , 。
2、如图,四边形ABCD 是菱形。
对角线AC=6cm ,DB=8cm ,AH ⊥BC 于点H,求AH 的长一分钟课堂反思:菱形的判定学案 OAB CDH A B C D会根据已知条件画出菱形一:小组合作:用5分钟的时间看课本99页的内容,能够说出菱形的判定方法,小组活动探究一:如图,四边形是菱形吗?为什么?归纳:有一组邻边相等的平行四边形是菱形探究二:用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?通过探究,容易得到:对角线的平行四边形是菱形证明上述结论:探究三:一个同学先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,猜一猜,这是什么四边形?请你画一画。
菱形的性质和判定教案
菱形的性质和判定教案一、教学目标1. 知识与技能:(1)理解菱形的定义和性质;(2)学会菱形的判定方法;(3)能够运用菱形的性质和判定方法解决实际问题。
2. 过程与方法:(1)通过观察、操作、推理等过程,发现菱形的性质;(2)利用菱形的性质和判定方法,解决几何问题。
3. 情感态度与价值观:(1)培养学生的观察能力、推理能力;(2)激发学生对几何图形的兴趣,培养学生的审美观念。
二、教学重点与难点1. 教学重点:(1)菱形的性质;(2)菱形的判定方法。
2. 教学难点:(1)菱形性质的推导;(2)菱形判定方法的灵活运用。
三、教学准备1. 教具:菱形模型、直尺、量角器、多媒体设备。
2. 学具:菱形纸片、彩笔、剪刀、胶水。
1. 导入新课(1)利用多媒体展示各种菱形图案,引导学生观察菱形的特征;(2)提问:什么是菱形?请大家尝试画出一个菱形。
2. 探究菱形的性质(1)学生分组讨论,总结菱形的性质;(2)教师引导学生得出菱形的性质:四条边相等,对角线互相垂直平分。
3. 推导菱形性质(1)利用菱形模型,引导学生观察、操作,推导菱形的性质;(2)学生动手操作,验证菱形性质。
4. 学习菱形的判定方法(1)引导学生思考:如何判断一个四边形是菱形?;(2)学生分组讨论,总结菱形的判定方法:四条边相等或对角线互相垂直平分。
5. 练习与应用(1)教师出示练习题,学生独立完成;(2)利用菱形的性质和判定方法,解决实际问题。
五、课堂小结1. 师生共同总结本节课所学的菱形的性质和判定方法;2. 强调菱形性质和判定方法在几何中的应用。
六、课后作业1. 完成练习册的相关题目;2. 收集生活中的菱形图案,下节课分享。
1. 对比正方形和菱形,分析它们的异同点;2. 引导学生思考:还有其他判定菱形的方法吗?七、课堂练习1. 教师出示练习题,学生独立完成;2. 学生之间互相讲解,交流解题思路。
八、教学反思1. 教师总结本节课的教学效果;2. 学生反馈学习过程中的困惑和问题;3. 针对问题,教师进行教学调整。
菱形的概念与性质,学案
18.2.2 菱形的概念和性质一、菱形的定义:1、我们已经学过了一个特殊的平行四边形,即。
回顾矩形的定义,我们发现我们是从的这个元素将平行四边形特殊化的。
2、如果我们从边这个元素将三角形特殊化,会得到一个什么样的特殊的平行四边形呢?菱形的定义:有一组的是菱形。
符号语言:∵,∴例1:将一张长方形的纸对折、再对折,然后沿图中的虚线剪下,打开后得到的图形是什么特殊的四边形?将文字语言转化为符号语言:已知如图:四边形ABCD中,AD= = =求证:四边形ABCD为菱形。
二、菱形的性质:1、菱形是特殊的平行四边形,因此有所具有的所有性质。
2、菱形除了具有平行四边形的所有性质之外,还有那些特殊的性质?根据我们之前所剪出来的菱形,思考一下几个问题:(1)、菱形的四条边相等吗?由于平行四边形的,而菱形的,因此我们得到菱形的第一个特殊性质:菱形的四条边都。
符号语言:∵菱形ABCD∴(2)、依据我们之前所剪出来的菱形,想一想菱形的对角线有什么特殊的位置关系?对角线与对角是什么样的关系?猜想:①菱形的对角线的位置关系是的。
②一组对角线一组对角。
已知如图:菱形ABCD,求证:,,结论:①菱形的两条对角线。
②菱形的一条对角线一组对角。
符号语言:∵菱形ABCD∴,(3)、菱形是轴对称图形吗?如果是有几条对称轴?对称轴之间是什么关系?结论:①、菱形是图形。
②、菱形的对称轴是。
③、菱形的两条对称轴。
例2:(1)、已知菱形的周长是12cm,那么它的边长是______.(2)、菱形ABCD中,∠BAD=60°,则∠ABD=_______.(3)、菱形的两条对角线长分别为6cm和8cm,则菱形的边长是.例3:菱形ABCD中,O是两条对角线的交点,已知AB=5cm,AO=4cm,(1)、求两对角线AC、BD的长.(2)、求菱形ABCD的面积。
总结:求菱形的面积时,如果知道了两条对角线的长度,菱形的面积就等于。
例4:如图,菱形花坛ABCD的边长为20m,∠ABC=60°,沿着菱形的对角线修建了两条小路AC和BD,求两条小路的长和花坛的面积。
菱形的定义及其性质(教案)
教案:菱形的定义及其性质第一章:菱形的定义1.1 引言向学生介绍菱形的概念,并提出问题:“你们认为菱形是什么样的图形?”引导学生通过观察实物或图片来猜测菱形的特征。
1.2 菱形的定义给出菱形的正式定义:“菱形是一个四边形,它的四条边都相等,且对角线互相垂直且平分。
”解释菱形的名称来源,菱形的特点像菱角一样。
1.3 菱形的性质引导学生观察菱形的图形,发现其性质:四条边相等对角线互相垂直对角线平分对方每个角都是直角第二章:菱形的对称性2.1 引言提出问题:“你们认为菱形有什么特殊的对称性吗?”引导学生思考菱形的对称性。
2.2 菱形的对称性给出菱形的对称性定义:“菱形具有轴对称和中心对称的性质。
”解释菱形的轴对称性:菱形有两组对边平行,可以沿两条对角线进行折叠,两边重合。
解释菱心的概念:菱形的中心点是两条对角线的交点,它是菱形的中心对称点。
2.3 菱形的对称性应用引导学生通过实际操作,画出菱形的轴对称和中心对称图形。
让学生尝试解决与菱形对称性相关的问题,如:如果给出一个菱形的一部分,能否确定整个菱形的形状?第三章:菱形的面积计算3.1 引言提出问题:“你们认为如何计算菱形的面积?”引导学生思考菱形面积的计算方法。
3.2 菱形的面积计算公式给出菱形面积的计算公式:“菱形的面积等于对角线之积的一半。
”解释公式背后的原理,通过实际操作或几何证明来说明。
3.3 菱形的面积计算应用引导学生通过实际操作,计算给定菱形的面积。
让学生尝试解决与菱形面积相关的问题,如:如果给出一个菱形的对角线长度,能否计算出其面积?第四章:菱形的构造4.1 引言提出问题:“你们认为如何构造一个菱形?”引导学生思考菱形的构造方法。
4.2 菱形的构造方法给出菱形的构造方法:“通过画两条互相垂直的线段,在对角线上分别标记四个点,连接相邻点即可得到菱形。
”解释菱形构造的原理,通过实际操作或几何证明来说明。
4.3 菱形的构造应用引导学生通过实际操作,尝试构造一个菱形。
菱形的定义及其性质(教案)
菱形的定义及其性质一、教学目标:1. 知识与技能:(1)理解菱形的定义;(2)掌握菱形的性质;(3)学会菱形的判定方法。
2. 过程与方法:(1)通过观察实物,培养学生的空间想象能力;(2)运用几何画板软件,直观展示菱形的性质,提高学生的动手操作能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣;(2)培养学生勇于探索、积极思考的科学精神。
二、教学内容:1. 菱形的定义(1)引导学生观察实物,如骰子、风筝等,发现它们都具有四条相等的边和四个角都相等的特征;(2)给出菱形的定义:四条边相等,四个角都相等的四边形叫作菱形。
2. 菱形的性质(1)边长性质:菱形的四条边相等;(2)对角线性质:菱形的对角线互相垂直,且平分;(3)角度性质:菱形的四个角都相等,均为直角或锐角;(4)对角线与边的关系:菱形的对角线将菱形分成的三角形是全等的。
三、教学重点与难点:1. 教学重点:菱形的定义及其性质。
2. 教学难点:菱形性质的证明及应用。
四、教学方法:1. 讲授法:讲解菱形的定义、性质及其证明方法;2. 直观演示法:运用几何画板软件展示菱形的性质;3. 实践操作法:让学生动手操作,验证菱形的性质;4. 小组讨论法:分组探讨菱形的性质,培养学生的合作意识。
五、教学过程:1. 导入新课:通过展示实物,引导学生发现菱形的特征,激发学生的学习兴趣;2. 讲解菱形的定义及性质:结合实物和几何画板软件,讲解菱形的定义、性质及其证明方法;3. 实践操作:让学生利用几何画板软件,自行探究菱形的性质,并完成相关练习;4. 小组讨论:分组探讨菱形的性质,引导学生互相交流、合作,培养学生的团队精神;六、教学评估1. 课堂问答:通过提问方式检查学生对菱形定义和性质的理解程度。
2. 练习题:布置有关菱形的练习题,检查学生对菱形性质的掌握情况。
3. 小组报告:评估学生在小组讨论中的表现,包括合作、交流和分析问题能力。
七、作业布置2. 菱形应用题:设计一些应用题,让学生运用菱形的性质解决问题。
菱形的性质和判定教案
菱形的性质和判定教案一、教学目标知识与技能目标:使学生掌握菱形的定义、性质和判定方法,能够运用菱形的性质解决实际问题。
过程与方法目标:通过观察、操作、推理等过程,培养学生的空间想象能力和逻辑思维能力。
情感态度与价值观目标:激发学生对几何图形的兴趣,培养学生的审美观念,提高学生解决问题的自信心。
二、教学内容1. 菱形的定义:菱形是四条边相等的四边形。
2. 菱形的性质:(1)菱形的对角线互相垂直,且平分对方。
(2)菱形的对边平行且相等。
(3)菱形的对角相等。
(4)菱形的四条边相等。
3. 菱形的判定方法:(1)四条边相等的四边形是菱形。
(2)对角线互相垂直,且平分对方的四边形是菱形。
三、教学重点与难点重点:掌握菱形的性质和判定方法。
难点:理解菱形性质之间的内在联系,以及如何运用判定方法判断一个四边形是否为菱形。
1. 教学PPT或黑板。
2. 几何画图工具。
3. 相关几何图形示例。
五、教学过程1. 导入:通过展示一些生活中的菱形图形,如蜂巢、骰子等,引导学生观察并思考这些图形的共同特点。
2. 新课导入:介绍菱形的定义,引导学生通过观察、操作、推理等方法,发现菱形的性质。
3. 讲解与演示:利用PPT或黑板,展示菱形的性质,如对角线互相垂直、平分对方,对边平行且相等等。
通过几何画图工具,演示菱形的性质,帮助学生理解。
4. 练习与巩固:给出一些四边形,让学生判断它们是否为菱形,并说明理由。
引导学生运用菱形的性质和判定方法进行判断。
5. 拓展与应用:引导学生运用菱形的性质解决实际问题,如在设计图案、构造模型等方面应用菱形。
7. 布置作业:设计一些有关菱形的练习题,巩固学生对菱形性质和判定方法的理解。
六、教学评价1. 课堂讲解:评价学生在课堂上的参与程度、提问回答的正确性和完整性。
2. 练习与巩固:评价学生在练习中应用菱形性质和判定方法的正确性。
3. 拓展与应用:评价学生在实际问题中运用菱形性质的创造性和解决问题的能力。
菱形的性质和判定教案
个性化教学辅导教学内容菱形教学目标1、掌握菱形的定义和性质;2、学会判定菱形;3、平行四边形和菱形的区别和联系;重点难点1、菱形的性质和判定的熟练掌握;2、利用菱形的性质综合解决问题;教学过程知识讲解一、菱形的定义如图,如果一个平行四边形有一组邻边相等,那么这个平行四边形会有怎样的变化?定义:叫做菱形。
二,菱形的性质。
菱形性质:1.两条对角线互相垂直平分;2.四条边都相等;3.每条对角线平分一组对角;4.菱形是一个中心对称图形,也是一个轴对称图形。
以上菱形的性质你能给出证明吗?练习:1、已知菱形的周长是12cm,那么它的边长是______。
2、菱形ABCD中∠ABC=60度,则∠BAC=_______。
3、菱形的两条对角线长分别为6cm和8cm,则菱形的边长是_______。
4、菱形的面积为24cm2,一条对角线的长为6cm,则另一条对角线长为_____cm,边长为_____cm,高为_____cm。
三、菱形的判定根据定义我们知道有一组邻边相等的平行四边形是菱形,还有别的判定方法吗?猜想1:如果一个平行四边形的两条对角线相互垂直,那么这个平行四边形是菱形。
已知:平行四边形ABCD中,对角线AC、BD互相垂直。
求证:四边形ABCD是菱形.例1:如图,已知矩形ABCD的对角线AC的垂直平分线与边AD、BC分别交于点E、F,求证四边形AFCE 是菱形.猜想2四条边都相等的四边形是菱形.已知:如图,四边形ABCD,AB=BC=CD=DA求证:四边形ABCD是菱形猜想3:如果一个四边形的每条对角线平分一组对角,那么这个四边形是菱形。
已知:四边形ABCD,AC平分∠DAB和∠DCB,BD平分∠ABC和∠ADC求证:四边形ABCD是菱形总结:菱形的判定定理:1、有一组邻边相等的平行四边形是菱形(定义)2、对角线互相垂直的平行四边形是菱形.(根据对角线)3、四条边都相等的四边形是菱形.(根据四条边)4、每条对角线平分一组对角的四边形是菱形.(对角线和角的关系)练习:1、用两个边长为a的等边三角形纸片拼成的四边形是()A、等腰梯形B、正方形C、矩形D、菱形2、下列说法中正确的是()A、有两边相等的平行四边形是菱形。
菱形的性质及判定学案
菱形第1课时菱形的性质01 课前预习要点感知1有一组邻边相等的平行四边形叫菱形.要点感知2 菱形的四条边都相等;菱形的两条对角线互相垂直平分,且每条对角线平分一组对角;菱形是轴对称图形,它的对角线所在的直线就是它的对称轴.预习练习2-1 若一个菱形的一条边长为4 cm,则这个菱形的周长为() A.20 cm B.18 cm C.16 cm D.12 cm2-2(黔西南中考)菱形的两条对角线长分别是6和8,则此菱形的边长是() A.10 B.8 C.6 D.5要点感知3 菱形的面积与两对角线的关系是.预习练习3-1已知四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4 cm,BD=8 cm,则这个菱形的面积是cm2.02 当堂训练知识点1 菱形的性质1.菱形具有而一般平行四边形不具有的性质是()A.对角相等B.对边相等C.对角线互相垂直D.对角线相等2.(长沙中考)如图,已知菱形ABCD的边长等于2,∠DAB=60°,则对角线BD的长为() A.1 B. 3 C.2 D.2 33.如图,在菱形ABCD中,对角线AC、BD交于点O,下列说法错误的是()A.AB∥DC B.AC=BDC.AC⊥BD D.OA=OC4.(烟台中考)如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°5.如图是根据四边形的不稳定性制作的边长为15 cm的可活动菱形衣架.若墙上钉子间的距离AB =BC=15 cm,则∠1= .6.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH⊥AB,垂足为H,则点O到边AB的距离OH=.7.如图,在菱形ABCD中,E,F分别是BC,CD的中点,连接AE,AF.AE和AF有什么样的数量关系?说明理由.知识点2 菱形的面积8.已知一个菱形的周长是20 cm,两条对角线的比是4∶3,则这个菱形的面积是() A.12 cm2B.24 cm2C.48 cm2D.96 cm29.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且∠ACD=30°,BD=4,求菱形ABCD 的面积.03 课后作业10.(黔东南中考)如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠ABC=60°,则BD的长为()A.2 B.3 C. 3 D.2 311.(徐州中考)如图,在菱形ABCD中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于()A.3.5 B.4 C.7 D.1412.(昆明中考)如图,在菱形ABCD中,对角线AC、BD相交于点O,下列结论:①AC⊥BD;②OA=OB;③∠ADB=∠CDB;④△ABC是等边三角形.其中一定成立的是( ) A.①② B.③④ C.②③ D.①③13.(白银中考)如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为.14.(锦州中考)如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.15.(安顺中考)如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.挑战自我16.在菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上.(1)如图1,若E是BC的中点,∠AEF=60°,求证:BE=DF;(2)如图2,若∠EAF=60°,求证:△AEF是等边三角形.第2课时菱形的判定01 课前预习要点感知菱形的判定方法:①有一组邻边相等的平行四边形是菱形;②对角线互相垂直的平行四边形是菱形;③四条边都相等的四边形是菱形;④对角线互相垂直平分的四边形是菱形.预习练习1-1 下列命题中,正确的是()A.有一个角是60°的平行四边形是菱形B.有一组邻边相等的四边形是菱形C.有两边相等的平行四边形是菱形D.四条边都相等的四边形是菱形1-2 如图,四边形ABCD的对角线AC,BD互相垂直,则下列条件能判定四边形ABCD为菱形的条件是()A.BA=BCB.AC,BD互相平分C.AC=BDD.AB∥CD02 当堂训练知识点1 有一组邻边相等的平行四边形是菱形1.如图,若要使▱ABCD成为菱形,则可添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD2.(海南中考)如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件中能够判定四边形ACED 为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°3.已知:如图,△ABC中,AD是∠BAC的平分线,DE∥AC,DF∥AB.求证:四边形AEDF是菱形.知识点2 对角线互相垂直的平行四边形是菱形4.(潍坊中考)如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件,使ABCD成为菱形.(只需添加一个即可)5.如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)若AB=AC,求证:四边形BFCE是菱形.知识点3 四条边都相等的四边形是菱形6.如图,△ABC为等腰三角形,如果把它沿底边BC翻折后,得到△DBC,那么四边形ABDC为(B)A.平行四边形B.菱形C.矩形D.以上都不对03 课后作业7.(遵义中考)如图,在▱ABCD 中,对角线AC 与BD 交于点O ,若增加一个条件,使▱ABCD 成为菱形,下列给出的条件不正确的是( )A .AB =AD B .AC ⊥BD C .AC =BD D .∠BAC =∠DAC8.如图,小聪在作线段AB 的垂直平分线时,他是这样操作的:分别以点A 和点B 为圆心,大于12AB的长为半径画弧,两弧相交于点C 、D ,则直线CD 即为所求.根据他的作图方法可知四边形ADBC 一定是( )A .矩形B .菱形C .正方形D .平行四边形9.如图,剪两张对边平行且宽度相等的纸条,随意交叉叠放在一起,转动其中的一张,重合的部分构成了一个四边形,这个四边形是 .10.如图,在矩形ABCD 中,E 是AD 边上一点,连接BE ,作BE 的垂直平分线分别交AD 、BC 于点F ,G ,FG 与BE 的交点为O ,连接BF 和EG.试判断四边形BFEG 的形状,并说明理由.11.如图,已知四边形ABCD 是平行四边形,DE⊥AB,DF ⊥BC ,垂足分别是E 、F ,并且DE =DF.求证:(1)△ADE≌△CDF;(2)四边形ABCD是菱形.挑战自我12.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADC F的形状,并证明你的结论.。
【学案】菱形及其性质
.科目数学课题菱形及其性质学习目标1、会归纳菱形的特性并进行证明;2、能运用菱形的性质定理进行简单的计算与证明;3、在进行探索、猜想、证明过程中,进一步发展推理论证的能力,体会证明的必要性.重点:菱形的性质定理证明难点:菱形的性质定理证明、运用,生活数学与理论数学的相互转化. 学法指导及使用说明:知识链接:平行四边形的性质与判定【学习过程】一、课前预习:1.复习平行四边形的性质.边:角:对角线:对称性:2.菱形的定义是什么?菱形是不是中心对称图形? ,对称中心是3.请动手制作一个菱形,折—折,观察并填空.菱形是不是轴对称图形? ,对称轴有几条,分别是二、探索活动:探索活动(一):菱形是一种特殊的平行四边形,具有平行四边形的所有性质。
菱形特有的性质是(性质定理):菱形的四条边;菱形的对角线。
探索活动(二):试证明上述定理已知:。
求证:(1);(2)。
备注(教师复备栏及学生笔记)备注(教探索活动(三):已知菱形的两条对角线、相交于点O,图中存在特殊的三角形吗?如果菱形的两条对角线长分别为6和8,由此你能获得有关这个菱形的哪些结论?(可得到边长为;周长为面积为)你认为菱形的面积与菱形的两条对角线的长有关吗?如果有关,怎样根据菱形的对角线计算它的面积?由此可得:菱形的面积.由此得到菱形的两种面积计算方法:1.2.你会计算菱形的周长吗?三、例题精讲例1.课本例2.已知:在菱形中,对角线、相交于点O,E、F、G、H分别是菱形各边的中点,求证:.四、课堂检测:1.已知四边形是菱形,O是两条对角线的交点,8,6,•菱形的边长是.2.菱形的周长为40,两条对角线:4:3,那么对角线,.3.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为师复备栏及学生笔记)4.已知菱形的面积为30平方厘米,如果一条对角线长为12厘米,则别一条对角线长为厘米.5.菱形的两条对角线把菱形分成全等的直角三角形的个数是().(A)1个(B)2个(C)3个(D)4个6.在菱形中,⊥,E为垂足,2,1,求菱形的周长和面积五、学习体会:六、课后作业备注(教师复备栏及学生笔记备注(教师复备栏及学生笔记备注(教师复备栏及学生笔记。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【学习过程】
一 、课前预习:
1.复习平行四边形的性质.
边:
角:
对角线:
对称性:
2.菱形的定义是什么?
_______
菱形是不是中心对称图形? ,对称中心是____
3.请动手制作一个菱形,折—折,观察并填空.
菱形是不是轴对称图形? ,对称轴有几条?_______,分别是 ______
. 科目
数学
课题
菱形及其性质
学 习 目 标
1、会归纳菱形的特性并进行证明;
2、能运用菱形的性质定理进行简单的计算与证明;
3、在进行探索、猜想、证明过程中,进一步发展推理论证的能力,体会证明的必要性.
重点:菱形的性质定理证明
难点:菱形的性质定理证明、运用 ,生活数学与理论数学的相互转化.
学法指导及使用说明:
(A)1个 (B)2个 (C)3个 (D)4个
6.在菱形ABCD中,CE⊥AB,E为垂足,BC=2,BE=1,求菱形的周长和面积
五、学习体会:
六、课后作业
备注(教师复备栏及学生笔记)
备注(教师复备栏及学生笔记)
备注(教师复备栏及学生笔记
备注(教师复备栏及学生笔记
备注(教师复备栏及学生笔记
2.菱形ABCD的周长为40cm,两条对角线AC:BD=4:3,那么对角线AC=______cm,BD=______cm.
3.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为
4.已知菱形的面积为30平方厘米,如果一条对角线长为12厘米,则别一条对角线长为________厘米.
5.菱形的两条对角线把菱形分成全等的直角三角形的个数是( ).
二、探索活动:
探索活动(一):
菱形是一种特殊的平行四边形,具有平行四边形的所有性质。
菱形特有的性质是(性质定理):
菱形的四条边___________;菱形的对角线____________。
探索活动(二):
试证明上述定理
已知:_____________________________________。
你认为菱形的面积与菱形的两条对角线的长有关吗?如果有关,怎样根据菱形的对角线计算它的面积?
由此可得:菱形的面积__________________________________.
由此得到菱形的两种面积计算方法:
1. _____________________________________________
2. _____________________________________________
你会计算菱形的周长吗?
三、例题精讲
例1.课本
例2.已知:在菱形ABCD中,对角线AC、BD相交于点O,E、F、G、H分别是菱形ABCD各边的中点,求证:OE=OF=OG=OH.
四、课堂检测:
1.已知四边形ABCD是菱形,O是两条对角线的交点,AC=8cm,DB=6cm, 菱形的边长是________cm.
求证:(1)__________________________;
(2)_________Biblioteka ________________。
探索活动(三):
已知菱形ABCD的两条对角线AC、BD相交于点O,图中存在特殊的三角形吗?
如果菱形的两条对角线长分别为6和8,由此你能获得有关这个菱形的哪些结论?(可得到边长为 ;周长为 面积为 )