高中数学-化归与转化思想

合集下载

高中数学 转化与化归思想

高中数学 转化与化归思想

第四讲转化与化归思想知识整合一、转化与化归思想的含义转化与化归思想方法,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而使问题得到解决的一种数学方法,一般是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.二、转化与化归的常见方法1.直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题.2.换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.3.数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径.4.等价转化法:把原问题转化为一个易于解决的等价问题,以达到化归的目的.5.特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题的结论适合原问题.6.构造法:构造一个合适的数学模型,把问题变为易于解决的问题.7.坐标法:以坐标系为工具,用计算方法解决几何问题是转化方法的一个重要途径.8.类比法:运用类比推理,猜测问题的结论,易于探求.9.参数法:引进参数,使原问题转化为熟悉的问题进行解决.10.补集法:如果正面解决原问题有困难,可把原问题的结果看作集合A,而把包含该问题的整体问题的结果类比为全集U,通过解决全集U及补集∁U A使原问题获得解决,体现了正难则反的原则.1.特殊与一般的转化典题例析例1(1)在△ABC中,角A,B,C所对的边分别为a,b,c,若a,b,c成等差数列,则cos A+cos C1+cos A cos C=45.[思路探究]看到a,b,c成等差数列,可联想到等边三角形举特例求解.[解析]显然△ABC为等边三角形时符合题设条件,所以cos A+cos C1+cos A cos C=cos60°+cos60°1+cos60°cos60°=11+14=45.(2)已知f (x )=33x +3,则f (-2 019)+f (-2 018)+…+f (0)+f (1)+…+f (2 020)=__2_020__.[思路探究] 看到求f (-2 019)+f (-2 018)+…+f (0)+f (1)+…+f (2 020)的值,想到求f (x )+f (1-x )的值.[解析] f (x )+f (1-x )=33x +3+331-x +3=33x +3+3x3+3x =3x +33x +3=1,所以f (0)+f (1)=1,f (-2 019)+f (2 020)=1,所以f (-2 019)+f (-2 018)+…+f (0)+f (1)+…+f (2 020)=2 020. 规律总结化一般为特殊的应用(1)常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等. (2)对于选择题,当题设在普通条件下都成立时,用特殊值进行探求,可快捷地得到答案.(3)对于填空题,当填空题的结论唯一或题设条件提供的信息暗示答案是一个定值时,可以把题中变化的量用特殊值代替,即可得到答案.1.AB 是过抛物线x 2=4y 的焦点的动弦,直线l 1,l 2是抛物线两条分别切于A ,B 的切线,则l 1,l 2的交点的坐标为__(0,-1)__.[解析] 找特殊情况,当AB ⊥y 轴时,AB 的方程为y =1,则A (-2,1),B (2,1),过点A 的切线方程为y -1=-(x +2),即x +y +1=0.同理,过点B 的切线方程为x -y -1=0,则l 1,l 2的交点为(0,-1).2.在平行四边形ABCD 中,|AB →|=12,|AD →|=8.若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →=( C )A .20B .15C .36D .6[解析] 方法一:由BM →=3MC →,DN →=2NC →知,点M 是BC 的一个四等分点,且BM =34BC ,点N 是DC 的一个三等分点,且DN =23DC ,所以AM →=AB →+34AD →,AN →=AD →+DN →=AD→+23AB →,所以NM →=AM →-AN →=AB →+34AD →-(AD →+23AB →)=13AB →-14AD →,所以AM →·NM →=(AB →+34AD →)·(13AB →-14AD →)=13(AB →+34AD →)·(AB →-34AD →)=13(AB →2-916AD →2)=13(144-916×64)=36,故选C.方法二:不妨设∠DAB 为直角,以AB 所在直线为x 轴,AD 所在直线为y 轴建立如图所示的平面直角坐标系.则M (12,6),N (8,8),所以AM →=(12,6),NM →=(4,-2),所以AM →·NM →=12×4+6×(-2)=36,故选C.2.函数、方程、不等式之间的转化 典题例析例2 (1)已知e 为自然对数的底数,若对任意的x ∈[1e ,1],总存在唯一的y ∈[-1,1],使得ln x -x +1+a =y 2e y 成立,则实数a 的取值范围是( B )A .[1e ,e]B .(2e ,e]C .(2e,+∞)D .(2e ,e +1e)[解析] 设f (x )=ln x -x +1+a ,当x ∈[1e ,1]时,f ′(x )=1-x x ≥0,f (x )是增函数,所以x ∈[1e ,1]时,f (x )∈[a -1e ,a ].设g (y )=y 2e y ,则g ′(y )=e y y (y +2),则g (y )在[-1,0)单调递减,在[0,1]单调递增,且g (-1)=1e <g (1)=e.因为对任意的x ∈[1e ,1],存在唯一的y ∈[-1,1],使得f (x )=g (y )成立,所以[a -1e ,a ]⊆[1e ,e],∴2e<a ≤e ,故选B.(2)(文)(2019·沈阳模拟)已知函数f (x )=x +4x ,g (x )=2x +a ,若对∀x 1∈[12,3],∃x 2∈[2,3]使得f (x 1)≥g (x 2),则实数a 的取值范围是( C )A .(-∞,1]B .[1,+∞)C .(-∞,0]D .[0,+∞)[解析] 当x ∈[12,3]时,f (x )≥2x ·4x=4,当且仅当x =2时等号成立,此时f (x )min =4.当x ∈[2,3]时,g (x )min =22+a =4+a .依题意f (x )min ≥g (x )min ,∴a ≤0.选C.(理)(2019·济南调研)已知m ,n ∈(2,e),且1n 2-1m 2<ln mn ,则( A )A .m >nB .m <nC .m >2+1nD .m ,n 的大小关系不确定[解析] 由不等式可得1n 2-1m 2<ln m -ln n ,即1n 2+ln n <1m 2+ln m .设f (x )=1x 2+ln x (x ∈(2,e)),则f ′(x )=-2x 3+1x =x 2-2x3.因为x ∈(2,e),所以f ′(x )>0,故函数f (x )在(2,e)上单调递增.因为f (n )<f (m ),所以n <m .故选A . 规律总结函数、方程与不等式相互转化的应用1.函数与方程、不等式联系密切,解决方程、不等式的问题需要函数帮助. 2.解决函数的问题需要方程、不等式的帮助,因此借助于函数与方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等式关系转化为最值(值域)问题,从而求出参变量的范围.1.已知函数f (x )=ax 2-2x +2,若对一切x ∈[12,2],f (x )>0都成立,则实数a 的取值范围为( B )A .[12,+∞)B .(12,+∞)C .[-4,+∞)D .(-4,+∞)[解析] 由题意得,对一切x ∈[12,2],f (x )>0都成立,即a >2x -2x 2=-2x 2+2x =-2(1x -12)2+12在x ∈[12,2]上恒成立,而-2(1x -12)2+12≤12,则实数a 的取值范围为(12,+∞). 2.已知a =13ln 94,b =45ln 54,c =14ln4,则( B )A .a <b <cB .b <a <cC .c <a <bD .b <c <a[解析] a =13ln 94=13ln(32)2=23ln 32=ln 3232,b =45ln 54=ln 5454,c =14ln4=14×2ln2=ln22.故构造函数f (x )=ln x x ,则a =f (32),b =f (54),c =f (2).因为f ′(x )=1-1·ln x x 2=1-ln xx2,由f ′(x )=0,解得x =e.故当x ∈(0,e)时,f ′(x )>0,函数f (x )在(0,e]上单调递增;当x ∈(e ,+∞)时,f ′(x )<0, 函数f (x )在[e ,+∞)上单调递减.因为54<32<2<e ,所以f (54)<f (32)<f (2),即b <a <c ,故选B.3.正难则反的转化 典题例析例3 (1)若对于任意t ∈[1,2],函数g (x )=x 3+(m2+2)x 2-2x 在区间(t,3)上总不为单调函数,则实数m 的取值范围是( B )A .(-5,-103)B .(-373,-5)C .(-5,-2)D .(-5,+∞)[解析] g ′(x )=3x 2+(m +4)x -2, 若g (x )在区间(t,3)上总为单调函数,则①g ′(x )≥0在(t,3)上恒成立,或②g ′(x )≤0在(t,3)上恒成立.由①得3x 2+(m +4)x -2≥0,即m +4≥2x -3x 在x ∈(t,3)上恒成立,所以m +4≥2t -3t 恒成立,又t ∈[1,2],则m +4≥21-3×1=-1,即m ≥-5;②得m +4≤2x -3x 在x ∈(t,3)上恒成立,则m +4≤23-9,即m ≤-373.所以函数g (x )在区间(t,3)上总不为单调函数的m 的取值范围为-373<m <-5.(2)已知函数f (x )=ax 2-x +ln x 在区间(1,2)上不单调,则实数a 的取值范围为 (0,18) .[解析] f ′(x )=2ax -1+1x.(ⅰ)若函数f (x )在区间(1,2)上单调递增,则f ′(x )≥0在(1,2)上恒成立,所以2ax -1+1x ≥0,得a ≥12(1x -1x2).①令t =1x ,因为x ∈(1,2),所以t =1x ∈(12,1).设h (t )=12(t -t 2)=-12(t -12)2+18,t ∈(12,1),显然函数y =h (t )在区间(12,1)上单调递减,所以h (1)<h (t )<h (12),即0<h (t )<18.由①可知,a ≥18.(ⅱ)若函数f (x )在区间(1,2)上单调递减,则f ′(x )≤0在(1,2)上恒成立,所以2ax -1+1x ≤0,得a ≤12(1x -1x2).②结合(ⅰ)可知,a ≤0.综上,若函数f (x )在区间(1,2)上单调,则实数a 的取值范围为(-∞,0]∪[18,+∞).所以若函数f (x )在区间(1,2)上不单调,则实数a 的取值范围为(0,18).规律总结转化化归思想遵循的原则1.熟悉化原则:将陌生的问题转化为我们熟悉的问题. 2.简单化原则:将复杂的问题通过变换转化为简单的问题.3.直观化原则:将较抽象的问题转化为比较直观的问题(如数形结合思想,立体几何向平面几何问题转化).4.正难则反原则:若问题直接求解困难时,可考虑运用反证法或补集法或用逆否命题间接地解决问题.1.若抛物线y =x 2上的所有弦都不能被直线y =k (x -3)垂直平分,则k 的取值范围是( D )A .(-∞,12]B .(-∞,12)C .(-12,+∞)D .[-12,+∞)[解析] 设抛物线y =x 2上两点A (x 1,x 21),B (x 2,x 22)关于直线y =k (x -3)对称,AB 的中点为P (x 0,y 0),则x 0=x 1+x 22,y 0=x 21+x 222.由题设知x 21-x 22x 1-x 2=-1k ,所以x 1+x 22=-12k .又AB 的中点P (x 0,y 0)在直线y =k (x -3)上,所以x 21+x 222=k (x 21+x 222)=k (x 1+x 22-3)=-6k +12,所以中点P (-12k ,-6k +12).由于点P 在y >x 2的区域内,则-6k +12>(-12k )2,整理得(2k +1)(6k 2-2k +1)<0,解得k <-12.因此当k <-12时,抛物线y =x 2上存在两点关于直线y =k (x -3)对称,于是当k ≥-12时,抛物线y =x 2上存在两点关于直线y =k (x =3)对称.所以实数k 的取值范围是[-12,+∞).故选D.2.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1在区间[-1,1]内至少存在一个值c ,使得f (c )>0,则实数p 的取值范围是 (-3,32) .[解析] 若在区间[-1,1]内不存在c 满足f (c )>0, 因为Δ=36p 2≥0恒成立,则⎩⎪⎨⎪⎧f (-1)≤0,f (1)≤0解得⎩⎨⎧p ≤-12或p ≥1,p ≤-3或p ≥32.所以p ≤-3或p ≥32,取补集得-3<p <32,即满足题意的实数p 的取值范围是(-3,32).4.形体位置关系的转化 典题例析例4 (1)如图所示,已知多面体ABCDEFG 中,AB ,AC ,AD 两两互相垂直,平面ABC ∥平面DEFG ,平面BEF ∥平面ADGC ,AB =AD =DG =2,AC =EF =1,则该多面体的体积为__4__.[解析] 方法一:(分割法)因为几何体有两对相对面互相平行,如图所示,过点C 作CH ⊥DG 于H ,连接EH ,即把多面体分割成一个直三棱柱DEH -ABC 和一个斜三棱柱BEF -CHG .由题意,知V 三棱柱DEH -ABC =S △DEH ·AD =(12×2×1)×2=2,V 三棱柱EBF -CHG =S △BEF ·DE =(12×2×1)×2=2.故所求几何体的体积为V 多面体ABCDEFG =2+2=4.方法二:(补形法)因为几何体有两对相对面互相平行,如图所示,将多面体补成棱长为2的正方体,显然所求多面体的体积即该正方体体积的一半.又正方体的体积V 正方体ABHI -DEKG =23=8, 故所求几何体的体积为V 多面体ABCDEGH =12×8=4.(2)如图1所示,正△ABC 的边长为2a ,CD 是AB 边上的高,E ,F 分别是AC ,BC 的中点.现将△ABC 沿CD 翻折,使翻折后平面ACD ⊥平面BCD (如图2),求三棱锥C -DEF 的体积.[解析] 方法一:如图,取CD 的中点M ,连接EM ,则EM ∥AD ,且EM =12AD =a2,又AD ⊥平面BDC ,故EM 为三棱锥E -DFC 的高.求三棱锥C -DEF 的体积,即求三棱锥E -DFC 的体积. 由题意,知CD ⊥BD ,AD ⊥CD ,F 为BC 的中点, 所以S △CDF =12S △BCD =12×12CD ·BD =14(2a )2-a 2·a =34a 2.所以V 三棱锥E -CDF =13S △CDF ·EM =13×34a 2×12a =324a 3.即V 三棱锥C -DEF =324a 2.方法二:如图所示,知三棱锥C -DEF 与三棱锥E -DFC 的体积相等,且三棱锥E -DFC 是三棱锥A -BDC 的一部分.因为平面ACD ⊥平面BCD ,点E ,F 分别是AC ,BC 的中点,故三棱锥E -DFC 的底面积和高分别是三棱锥A -BDC 的底面积和高的一半.由题意,知CD ⊥BD ,AD ⊥CD ,AD ⊥BD ,AD =BD =a ,DC =3a ,所以S △BCD =12×3a ·a =32a 2. 故V 三棱锥A -BDC =13S △BCD ·AD =13×32a 2×a =36a 3,则V 三棱锥C -DEF =14V 三棱锥A -BCD =14×36a 3=324a 3. 规律总结形体位置关系的转化是通过切割、补形、等体积转化等方式转化为便于观察、计算的常用几何体,由于新的几何体是转化而来的,一般需要对新几何体的位置关系、数据情况进行必要分析,准确理解新几何体的特征.1.(2019·吉林模拟)已知如图,四边形ABCD 和四边形BCEG 均为直角梯形,AD ∥BC ,CE ∥BG ,∠BCD =∠BCE =π2,平面ABCD ⊥平面BCEG ,BC =CD =CE =2AD =2BG =2,则五面体EGBADC的体积为 73.[解析] 如图所示,连接DG ,BD .由平面ABCD ⊥平面BCEG , ∠BCD =∠BCE =π2,可知EC ⊥平面ABCD , 又CE ∥GB , 所以GB ⊥平面ABCD .又BC =CD =CE =2,AD =BG =1,所以V 五面体EGBADC =V 四棱锥D -BCEG +V 三棱锥G -ABD=13S 梯形BCEG ·DC +13S △ABD ·BG =13×2+12×2×2+13×12×1×2×1=73.故填73. 2.如图,在四棱锥P -ABCD 中,侧面P AD 是边长为2的正三角形,且与底面垂直,底面ABCD 是∠ABC =60°的菱形,M 为PC 的中点.(1)求证:PC ⊥AD ;(2)求点D 到平面P AM 的距离.[解析] (1)证明:如图,取AD 的中点O ,连接OP ,OC ,AC ,由题意可知△P AD ,△ACD 均为正三角形,所以OC ⊥AD ,OP ⊥AD .又OC ∩OP =O ,所以AD ⊥平面POC , 又PC ⊂平面POC ,所以PC ⊥AD .(2)点D 到平面P AM 的距离即点D 到平面P AC 的距离,由(1)可知,PO ⊥AD ,又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,PO ⊂平面P AD ,所以PO ⊥平面ABCD ,即PO 为三棱锥P -ACD 的高.在Rt △POC 中,PO =OC =3,PC =6,在△P AC 中, 因为P A =AC =2,PC =6,所以边PC 上的高 AM =P A 2-PM 2=22-(62)2=102, 所以△P AC 的面积S △P AC =12PC ·AM =12×6×102=152.设点D 到平面P AC 的距离为h ,由V D -P AC =V P -ACD ,得13S △P AC ·h =13S △ACD ·PO ,又S △ACD =12×2×3=3,所以13×152×h =13×3×3,解得h =2155.故点D 到平面P AM 的距离为2155.。

高中数学常见解题思想方法——思想篇(高三适用)十、转化与化归思想 含解析

高中数学常见解题思想方法——思想篇(高三适用)十、转化与化归思想 含解析

我们时常会遇到这样一些问题,若要直接解决会较为困难,若通过问题的转化、归类,就会使问题变得简单,这类问题的解决方法就是转化与化归思想,它在高考中占有十分重要的地位,数学问题的解决,总离不开转化与化归.转化与化归思想,指的是在研究和解决有关数学问题时,通过某种转化过程,归结到一类已经解决或比较容易解决的问题,最终使问题得到解决的一种思想。

利用化归与转化的思想可以实现问题的规范化、模式化,以便应用已知的理论、方法和技巧来解决问题.数学解题过程,就是不断转化的过程,不断把问题由陌生转化成熟悉的来解决,几乎所有问题的解决都离不开转化与化归。

在其他的数学思想中明显体现了转化与化归的思想,比如,数形结合思想体现了数与形的相互转化,函数与方程思想体现了函数、方程、不等式等问题之间的相互转化,分类讨论思想体现了局部与整体的相互转化.一、常见的转化与化归的形式常见的有:陌生问题向熟悉问题的转化,复杂问题向简单问题的转化,不同数学问题之间的互相转化,实际问题向数学问题转化等。

二、常见的转化策略常见的有:正与反的转化、数与形的转化、整体与局部的转化、常量与变量的转化、相等与不等的转化、空间与平面的转化、数学语言之间的转化等。

三、常见的实现转化与化归的方法:1.直接转化法:把原问题直接转化为学过的基本定理、基本公式或基本图形问题.2.换元法:解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化。

3。

数形结合法,即数与形的转化。

将比较抽象的问题化为比较直观的问题来解决.例如在函数与图象的联系中可以体现出,把繁琐的代数问题转化为直观的几何图形来解决4。

特殊化方法:即特殊与一般的转化,把原问题的形式向特殊化形式转化,并证明特殊化后的问题、结论适合原问题。

5。

补集法,即正与反的相互转化.当问题正面讨论遇到困难时,可考虑问题的反面,正难则反,设法从问题的反面去探讨,使问题获解.6.等价转化法:把原问题转化为一个易于解决的等价命题,即原问题的充要条件,达到化归的目的.7。

转化与化归思想

转化与化归思想

转化与化归思想转化与化归思想就是把那些待解决或难解决的问题,通过某种手段,使之转化为一类已解决或易解决的问题,最终使原问题获解.使用化归思想的原则是:化难为易、化生为熟、化繁为简、化未知为已知.转化与化归思想高考中占有十分重要的地位,数学问题的解决,总离不开转化与化归,它几乎可以渗透到所有的数学内容和解题过程中. 类型一 直接转化【典例1】 已知在数列{a n }中,a 1=1,a n +1=2a na n +2,求数列{a n }的通项公式.【答题模板】【解析】 ∵a n +1=2a n a n +2,a 1=1,∴a n ≠0,∴1a n +1=1a n +12,即1a n +1-1a n =12.又a 1=1,则1a 1=1,∴{1a n}是以1为首项,12为公差的等差数列.∴1a n =1a 1+(n -1)×12=n 2+12,∴a n =2n +1(n ∈N *).【对点练1】 求下列函数的值域:(1)y =sin x +cos x ;(2)y =sin 2x -cos x +1; (3)y =cos x2cos x +1;(4)y =1+sin x 3+cos x.【解析】 (1)∵y =sin x +cos x =2sin(x +π4),∴函数的值域为[-2,2]. (2)∵y =sin 2x -cos x +1=2-cos 2x -cos x =-(cos x +12)2+94,∴函数的值域为[0,94]. (3)由y =cos x 2cos x +1,得cos x =y1-2y .∵|cos x |≤1,∴解不等式|y 1-2y |≤1,得y ≤13或y ≥1.∴函数的值域为(-∞,13]∪[1,+∞).(4)由y =1+sin x3+cos x ,得sin x -y cos x =3y -1,即1+y 2·sin(x -φ)=3y -1.∴sin(x -φ)=3y -11+y 2.∵|sin(x -φ)|≤1,∴|3y -11+y 2|≤1.平方化简得y ·(4y -3)≤0.∴0≤y ≤34,即函数值域为[0,34].类型二 换元法【典例2】 求函数y =(4-3sin x )(4-3cos x )的最小值. 【答题模板】【解析】 y =16-12(sin x +cos x )+9sin x cos x ,令t =sin x +cos x ,则t ∈[-2,2]且sin x cos x =t 2-12.∴y =16-12t +9×t 2-12=12(9t 2-24t +23). 故当t =43时,y min =72.【对点练2】 (2015·衡水调研)已知x +y =-1,且x ,y 都是负数,求xy +1xy 的最值. 【解析】 设x =-sin 2α(sin 2α≠0),y =-cos 2α(cos 2α≠0),则xy +1xy =sin 2αcos 2α+1sin 2αcos 2α=14sin 22α+4sin 22α=14(sin 22α+16sin 22α). ∵sin 22α+16sin 22α在sin 22α∈(0,1]上是减函数,∴sin 22α=1时,取得最小值,∴xy +1xy 的最小值为14(1+161)=174.【典例3】 若关于x 的方程9x +(4+a )·3x +4=0有解,则实数a 的取值范围是________. 【答题模板】 可采用换元法,令t =3x ,将问题转化为关于t 的方程有正解进行解决. 【解析】 设t =3x ,则原命题等价于关于t 的方程 t 2+(4+a )t +4=0有正解,分离变量a 得a +4=-(t +4t ),∵t >0,∴-(t +4t )≤-4.∴a ≤-8,即实数a 的取值范围是(-∞,-8]. 【对点练3】 设x ,y 为实数,若4x 2+y 2+xy =1,则2x +y 的最大值是________. 【解析】 令2x +y =t ,则y =t -2x .则4x 2+y 2+xy =1变形为6x 2-3tx +t 2-1=0. Δ=9t 2-4·6·(t 2-1)≥0,t 2≤85.∴-2105≤t ≤2105,即2x +y 的最大值是2105.类型三 数形结合法【典例4】 求函数f (x )=2-sin x2+cos x 的值域.【解析】 函数f (x )=2-sin x2+cos x ,可看作点(2,2),(-cos x ,sin x )两点连线的斜率.点(-cos x ,sin x )的轨迹为x 2+y 2=1.函数值域即为(2,2)与单位圆x 2+y 2=1上点连线斜率的范围,由图可知,过(2,2)且与单位圆相切的直线斜率存在,不妨设为k .∴切线方程为y -2=k (x -2),即kx -y -2k +2=0.∴满足|2-2k |1+k 2=1,解之得k =4±73.∴函数f (x )的值域为[4-73,4+73]. 【对点练4】 设f (x )=1+x 2,求证:对于任意实数a ,b ,a ≠b ,都有|f (a )-f (b )|<|a -b |.【解析】 设A (x 1,1),B (x 2,1),则|OA |=1+x 21,|OB |=1+x 22,|AB |=|x 1-x 2|.在△AOB 中,||OA |-|OB ||<|AB |,即有|1+x 21-1+x 22|<|x 1-x 2|,所以|f (x 1)-f (x 2)|<|x 1-x 2|,即|f (a )-f (b )|<|a -b |. 类型四 构造法【典例5】 在三棱锥P -ABC 中,PA =BC =234,PB =AC =10,PC =AB =241,则三棱锥P -ABC 的体积为________.【答题模板】 用常规方法利用三棱锥的体积公式求解体积时,无法求出三棱锥的高.但若换个角度来思考,注意到三棱锥的三对棱两两相等,我们可以构造一个特定的长方体,将问题转化为长方体中的某个问题.【解析】 如图所示,把三棱锥P -ABC 补成一个长方形AEBG -FPDC ,易知三棱锥P -ABC 的各棱分别是长方体的面对角线,不妨令PE =x ,EB =y ,EA =z ,则由已知有:⎩⎪⎨⎪⎧ x 2+y 2=100,x 2+z 2=136,y 2+z 2=164,解得⎩⎪⎨⎪⎧x =6,y =8,z =10.所以V P -ABC =V AEBG -FPDC -V P -AEB -V C -ABG -V B -PDC -V A -FPC =V AEBG -FPDC -4V P -AEB =6×8×10-4×16×6×8×10=160.故所求三棱锥P -ABC 的体积为160.【对点练5】 已知正三棱锥P -ABC ,点P ,A ,B ,C 都在半径为3的球面上,若PA ,PB ,PC 两两相互垂直,则球心到截面ABC 的距离为________.【解析】先在一个正方体中找一个满足条件的正三棱锥,再利用正方体的性质解题.如图,满足题意的正三棱锥P -ABC 可以是正方体的一部分,其外接球的直径是正方体的体对角线,且面ABC 与体对角线的交点是体对角线的一个三等分点,所以球心到平面ABC 的距离等于体对角线长的16,故球心到截面ABC 的距离为16×23=33. 类型七 参数法【典例8】 已知直线l 过点A (2,3)且与x 轴,y 轴的正半轴分别交于M ,N 两点,则当|AM |·|AN |最小时,直线l 的方程为________. 【解析】 设∠AMO 为θ,则θ∈(0,π2), ∴|AM |=3sin θ,|AN |=2cos θ. ∴|AM |·|AN |=6sin θ·cos θ=12sin2θ≥12. 当且仅当sin2θ=1,即θ=π4时取“=”号.此时k l =-1,∴l 的方程为x +y -5=0. 【对点练8】 (2015·北京东城联考)已知点P (3,4)与圆C :(x -2)2+y 2=4,A ,B 是圆C 上两个动点,且|AB |=23,则OP →·(OA →+OB →)(O 为坐标原点)的取值范围是( ) A .[3,9] B .[1,11] C .[6,18] D .[2,22]【解析】 设AB 的中点为D ,则OA →+OB →=2OD →,因为|AB |=23,所以|CD |=1,故点D在圆(x -2)2+y 2=1上,所以点D 的坐标为(2+cos α,sin α),故OP →·(OA →+OB →)=2OP →·OD →=2(6+3cos α+4sin α)=2[6+5sin(α+φ)],而2≤2[6+5sin(α+φ)]≤22,则OP →·(OA →+OB →)的取值范围是[2,22].。

数学思想之一转化与化归思想(概述)

数学思想之一转化与化归思想(概述)

数学思想之一:转化与化归思想(概述)
1、转化与化归的思想方法转化与化归的思想方法是数学中最基本的思想方法,数学中一切问题的解决(当然包括解题)都离不开转化与化数形结合思想体现了数与形的相互转化;函数与方归,
程思想体现了函数、方程、不等式间的相互转化;分类讨论思想体现了局部与整体的相互转化,以上三种思想方法都是转化与化归思想的具体体现。

各种变换方法、分析法、反证法、待定系数法、构造法等都是转化
的手段。

所以说,转化与化归是数学思想方法的灵魂。

2、转化包括等价转化和非等价转化等价转化要求在转化过程中的前因后果既是充分的又是必要的,这样的转化能保证转化的结果仍为原问题所需要的结果,不等价转化其过程则是充分的或必要的,这样的转化能给人带来思维的启迪,找到解决问题的突破口,不等价变形要对所得结论进行必要的修改。

3、转化与化归的原则将不熟悉和难解的问题转化为熟知的易解的或已经解决的问题,将抽象的问题转化为具体的直观的问题,将复杂的问题转化为简单的问题,将一般性的问题转化为直观的特殊的问题;将实际问题转化为数学问题,使问题便与解决。

4、转化与化归的基本类型
(1)正与反、一般与特殊的转化;
(2)常量与变量的转化;
(3)数与形的转化;
(4)数学各分支之间的转化;
(5)相等与不相等之间的转化;
(6)实际问题与数学模型的转化。

高考数学复习化归与转化思想

高考数学复习化归与转化思想

高考数学复习化归与转化思想佚名知识整合1.解决数学问题时,常遇到一些问题直截了当求解较为困难,通过观看、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题(相对来说,对自己较熟悉的问题),通过新问题的求解,达到解决原问题的目的,这一思想方法我们称之为化归与转化的思想方法。

宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。

至元明清之县学一律循之不变。

明朝入选翰林院的进士之师称“教习”。

到清末,学堂兴起,各科教师仍沿用“教习”一称。

事实上“教谕”在明清时还有学官一意,即主管县一级的教育生员。

而相应府和州掌管教育生员者则谓“教授”和“学正”。

“教授”“学正”和“教谕”的副手一律称“训导”。

于民间,专门是汉代以后,关于在“校”或“学”中传授经学者也称为“经师”。

在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。

2.化归与转化思想的实质是揭示联系,实现转化。

除极简单的数学问题外,每个数学问题的解决差不多上通过转化为已知的问题实现的。

从那个意义上讲,解决数学问题确实是从未知向已知转化的过程。

化归与转化的思想是解决数学问题的全然思想,解题的过程实际上确实是一步步转化的过程。

数学中的转化比比皆是,如未知向已知转化,复杂问题向简单问题转化,新知识向旧知识的转化,命题之间的转化,数与形的转化,空间向平面的转化,高维向低维转化,多元向一元转化,高次向低次转化,超越式向代数式的转化,函数与方程的转化等,差不多上转化思想的表达。

与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。

金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟专门貌,属句有夙性,说字惊老师。

”因此看,宋元时期小学教师被称为“老师”有案可稽。

清代称主考官也为“老师”,而一样学堂里的先生则称为“教师”或“教习”。

可见,“教师”一说是比较晚的事了。

现在体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。

转化和化归_数学思想方法

转化和化归_数学思想方法
• [分析] 正面解决较难,考虑到“不能” 的反面是“能”,被直线垂直平分的弦的 两端点关于此直线对称,于是问题转化为 “抛物线y=x2上存在两点关于直线y= m·(x-3)对称,求m的取值范围”,再求 出m的取值集合的补集即为原问题的解.
• [评析] 1.在运用补集的思想解题时,一 定要搞清结论的反面是什么,“所有弦都 不能被直线y=m(x-3)垂直平分”的反面 是“至少存在一条弦能被直线y=m(x-3) 垂直平分”,而不是“所有的弦都能被直 线y=m(x-3)垂直平分”.
[评析] 本题如果从已知条件 a23=a1·a9⇒(a1+2d)2= a1(a1+8d),解得 a1 与 d 的关系后,代入所求式子: aa21++aa43++aa190=a1a+1+d+a1+a12+d3+d+a1+a18+d9d,也能求解,但 计算较繁锁,易错.因此,把抽象数列转化为具体的简单 的数列进行分析,可以很快得到答案.
(1)若 a2+b2=1,可设 a=cosα,b=sinα; (2)若 a2+b2≤1,可设 a=rcosα,b=rsinα(0≤r≤1); (3)对于 1-x2,∵|x|≤1,由|cosθ|≤1 或|sinθ|≤1 知, 可设 x=cosθ 或 x=sinθ.
• [例3] 试求常数m的范围,使曲线y=x2的 所有弦都不能被直线y=m(x-3)垂直平 分.
[解析] 设 t=sinx+cosx, 则 t= 2sinx+π4,t∈[- 2, 2], 而 sinxcosx=21[(sinx+cosx)2-1]=12(t2-1), 于是 y=f(t)=a2-a(sinx+cosx)+sinxcosx =a2-at+12(t2-1)=12t2-at+a2-12
• [解析] 由题意得A={y|y>a2+1或y<a},B ={y|2≤y≤4},我们不妨先考虑当A∩B=∅时 a的取值范围.如图:

高中数学方法转化与化归思想

高中数学方法转化与化归思想

变式训练 4 设 g(x)=px-qx-2f(x),其中 f(x)=ln x,且 g(e) =qe-pe-2(e 为自然对数的底数).
(1)求 p 与 q 的关系;
(2)若 g(x)在其定义域内为增函数,求 p 的取值范围. 解 (1)由题意 g(x)=px-qx-2ln x, ∴g(e)=pe-qe-2, ∴pe-qe-2=qe-pe-2, ∴(p-q)e+(p-q)1e=0, ∴(p-q)e+1e=0, 而 e+1e≠0,∴p=q.
由aa≤ 2+21≥4 得aa≤ ≥2 3或a≤- 3 , ∴a≤- 3或 3≤a≤2. 即 A∩B=∅时,a 的取值范围为 a≤- 3或 3≤a≤2. 而 A∩B≠∅时,a 的取值范围显然是其补集,从而所求范围 为{a|a>2 或- 3<a< 3}.
三、抽象问题与具体问题的转化
例 3 已知等差数列{an}的公差 d≠0,且 a1、a3、a9 成等比
归纳拓展 本题的求解涉及两类题型和求解的方法:(1)求参 数的范围问题,方法是通过对函数单调性的研究,转化为不等 式的恒成立问题,进而转化为求函数的最值问题求解.(2)研 究函数的零点问题,方法是通过研究函数在某区间有最大(或 最小)值 f(t),而函数又在此区间有零点,则结合图形分析,可 得 f(t)≥0(或 f(t)≤0).
变式训练 1 1e64 ,2e55 ,3e66 (其中 e 为自然常数)的大小关系是 _1e_64_<__2_e5_5 _<__3e_66_.
解析 由于1e64 =e442,2e55 =5e52,3e66 =e662,故可构造函数 f(x) =xe2x,于是 f(4)=1e64 ,f(5)=2e55 ,f(6)=3e66 . 而 f′(x)=exx2′=ex·x2-x4 ex·2x=ex(x2x-4 2x),令 f′(x)>0

转化与化归思想

转化与化归思想
如图,台风中心位于点 ,并沿东北方向 PQ移动,已知台风移动的速度为 千米 时, 移动, 千米/时 移动 已知台风移动的速度为40千米 受影响区域的半径为260千米,B市位于点 千米, 市位于点 市位于点P 受影响区域的半径为 千米 的北偏东75°方向上,距离P点 千米. 的北偏东 °方向上,距离 点480千米. 千米 (1)说明本次台风是否会影响 市; )说明本次台风是否会影响B市 2)若这次台风会影响B市 B市受台风 (2)若这次台风会影响B市,求B市受台风 影响的时间. 影响的时间.
例1 已知 x + x + 1 = 0, 求 x + 2 x + 2010 的的。
2 3 2
例2 解方解 2( x − 1) − 5( x − 1) + 2 = 0.
2
1 1 4 例3 已知 x + = 2, 则 x + 4 的的为 __________ . x x
已知正方形的边长为a, 例4 已知正方形的边长为 ,以各边为直径 在正方形内画半圆,求所围成的图形( 在正方形内画半圆,求所围成的图形(阴影 部分)的面积。 部分)的面积。
如图,在梯形 在梯形ABCD中,AD//BC,AB=CD, 例6 如图 在梯形 中 对角线AC,BD交于点 且AC⊥BD.已知 交于点O,且 ⊥ 对角线 交于点 已知 AD=3,BC=5,求AC的长 的长. 求 的长
如图, 分别是正三角形ABC、正 例7 如图,点E、D分别是正三角形 、 分别是正三角形 、 四边形ABCM、正五边形 中以C点为 四边形 、正五边形ABCMN中以 点为 中以 顶点的一边延长线和另一边反向延长线上的 延长线交AE于点 点,且BE=CD,DB延长线交 于点 . , 延长线交 于点F. 1))若将条件“正三角形、正四边形、正 求图1中∠AFB度数,并证明 , 、 中 度数, ((3)若将条件“正三角形、正四边形图3中 )求图2中∠AFB的度数为 中 度数 并证明CD2=BD•EF 2)图 中 的度数为______, 的度数为 五边形”改为“ 边形” 其它条件不变, 度数为_______,在图 、图3中, 五边形”改为 边形 在图2、 ∠AFB度数为“正n边形”,其它条件不变, 度数为 , 中 ;(填 可用含n的代数式 成立” 则∠AFB度数为 (1)中的等式 _______. 填“成立”或“不成 )中的等式_____ ;( (可用含 的代数式 度数为 表示,不必证明) 表示,不必证明) 不必证明) 立”,不必证明)

化归与转化思想在高考数学解题中的运用

化归与转化思想在高考数学解题中的运用

GUAN GDONG JIAO YU GAO ZHONG2021年第2化归与转化思想在高考数学解题中的运用■甘肃省秦安县第二中学罗文军yxo化归与转换的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图像、公式或已知条件将问题通过变换加以转化,进而达到解决问题的思想等价转化总是将抽象转化为具体,复杂转化为简单、未知转化为已知,通过变换迅速而合理的寻找和选择问题解决的途径和方法.1.化归与转化的思想方法:解决数学问题时,常遇到一些问题直接求解较为困难,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题(相对来说,对自己较熟悉的问题),通过新问题的求解,达到解决原问题的目的.2.化归与转化应遵循的基本原则:(1)熟悉化原则;(2)简单化原则;(3)和谐化原则;(4)直观化原则;(5)正难则反原则3.化归与转化的途径:(1)从问题的反面思考;(2)局部向整体的转化;(3)未知向已知转化;(4)固定向重组的转化;(5)抽象向具体转化;(6)个别向一般的转化;(7)数向形的转化;(8)定量向定性的转化;(9)主元向辅元的转化.以下结合一些经典试题,谈谈化归与转化思想在高三解题中的运用.题型一:化归与转化思想简单化原则的体现化归与转化思想简单化原则在解题中的体现主要有:(1)将比较代数式的大小的问题,运用同构法,通过构造函数,化归为利用函数的单调性根据自变量的大小比较函数值的大小或者根据函数值的大小比较自变量的大小;(2)将概率与统计问题化归为集合间的基本关系与基本运算问题.例1.若2a +log 2a =4b +2log 4b ,则()A.a >2b B.a <2b C.a >b 2 D.a <b 2【解析】由指数幂的运算性质和对数的运算性质可得,2a +log 2a =4b +2log 4b =22b +log 2b ,又因为22b +log 2b <22b +log 22b =22b +1+log 2b ,所以2a +log 2a <22b +log 22b .令f(x)=2x +log 2x,由指数函数和对数函数性质以及函数单调性的性质可得f(x)在(0,+∞)上单调递增,由f(a )<f(2a ),可得a <2b .【评析】本题考查了指数幂和对数的运算,函数的单调性的性质,构造函数后,把问题化归与转化为根据函数单调性,由函数值的大小比较自变量的大小,体现了化归与转化思想的简单化原则.例2.设命题p ∶4x-3≤1,命题q ∶x 2-(2a+1)x +a (a +1)≤0.若劭p 是劭q 的必要不充分条件,则实数a 的取值范围是__________.【解析】由4x-3≤1,得12≤x ≤1,记A ={x │12≤x ≤1};由x 2-(2a+1)x+a (a+1)≤0,可得a ≤x ≤a +1,记B ={x │a ≤x ≤a +1}.因为劭p 是劭q 的必要不充分条件,所以q 是p 的必要不充分条件,所以p 是q 的充分不必要条件,所以A 芴B ,所以a ≤12,a+1≥11,解得0≤a ≤12,所以实数a 的取值范围是[0,12].【评注】本题的解答中,先把两个命题中的不等式的解集分别用集合A 和集合B 表示,再由劭p 是劭q 是的必要不充分条件转化为p 是q 的充分不必要条件,再转化为集合A 为集合B 的真子集,解得a 的范围.题型二:化归与转化思想直观化原则的体现化归与转化思想直观化原则在解题中的体现主要有:(1)画出函数图像后,利用函数图像研究函数的性质,进而直观的解决与函数有关的问题;(2)立体几何问题中,将立体问题平面化,画出轴截面或者中截面,利用平面几何问题破解题目.例3.设a ,b ∈R ,则|“a >b ”是“a a >b b ”的()A.充要不必要条件B.必要不充分条件C.充要条件D.既不充要也不必要条件【解析】构造函数f(x)=x x =x2,x≥0-x 2,x<1函数图像如图1,由图像可知f(x)=x x 在R 上单调递增.当a >b 时,f(a )>f(b ),即a a >b b ,a >b 圯a a >b b .当f(a )>f(b ),即a a >b b 时,a >b ,a a >b b 圯a >b ,所以a >b 圳a a >b b ,“a >b ”是“a a >b b ”的充要条件,故选C.【评注】本题是一道比较复杂的充分必要条件问题,通过观察题目,通过类比和联想,运用化归与转化思想,构造函数f(x)=x x 后,画出这个函数的图像,运用图像法判断这个函数在其定义域R 上为单调递增函数,把a 和b 看成这个函数的两个自变量,a a 和b b 分别看成这个函数的函数值f(a )29数学有数和f(b),由增函数的性质可以得出,a>b圳a a>b b,所以a>b是a a>b b的充分必要条件,体现了化归与转化思想的简单化和直观化原则.例4.已知某个机械零件是由两个有公共底面的圆锥组成的,且这两个圆锥有公共点的母线互相垂直,把这个机械零件打磨成球形,该球的半径最大为1,设这两个圆锥的高分别为h1,h2,则h1+h2的最小值为________.【答案】22姨.【解析】由题意可知,打磨后所得半径最大的球是由这两个圆锥构成的组合体的内切球,内切球的半径R=1,如图为这个组合体的轴截面示意图,圆O为内切球的轴截面,E,F,G,H分别为切点,连接OA,OB,OC,OD,OE,OF,OG,OH,由题意可知AB⊥BC,AD⊥DC,AC=h1+h2,R=OE=OF=OG=OH=1,则S四边形ABCD=S△AOB+S△BOC+S△COD+S△AOD,即AB×BC=12R×AB+12R×BC+12R×CD+12R×AD=12R(2AB+2BC)=R(AB+BC),所以AB×BC=AB+BC.由基本不等式可得AB×BC=AB+BC≥2AB×BC姨,则AB×BC≥4,当且仅当AB=BC时等号成立.所以(h1+h2)2=AC2=AB2+BC2≥2AB×BC≥8,当且仅当AB=BC时等号成立,故h1+h2的最小值为22姨.【评注】本题的解答运用了化归与转化的思想,通过研究组合体和其内切球的轴截面,把空间立体几何问题化归为平面几何问题,做到了把问题直观化的原则.题型三:化归与转化思想熟悉化原则的体现化归与转化思想熟悉化原则在解题中的体现主要有:(1)不等式题目中,把含一个参数的不等式恒成立问题,通过分离变量,化归为求函数在给定区间上的最值问题;(2)立体几何题目中,利用长方体或者正方体模型,把一些三棱锥、四棱锥和三棱柱的外接球问题化归为熟悉的长方体或者正方体的外接球问题.例5.若对任意的x∈(0,+∞),ax-ln(2x)≥1恒成立,则实数a的最小值是_______【解析】由已知可得,对任意的x∈(0,+∞),a≥ln(2x)+1x恒成立,令g(x)=ln(2x)+1x,g′(x)=1x·x-ln(2x)x2=1-ln(2x)x2,令g′(x)=0,则1-ln(2x)=0,则x=e2,当0<x<e2时,g′(x)>0,g(x)单调递增;当x>e2时,g′(x)<0,g(x)单调递减,所以当x=e2时,g(x)取得最大值g(x)max=g(e2)=ln e+1e2=4e,所以a≥4e,所以a的最小值为4e.【评注】本题的解答运用了分离变量法,分离变量后,构造函数后,把a≥g(x)在(0,+∞)上恒成立等价转化为a≥[g(x)]max(x∈(0,+∞)),转化为求函数g(x)在(0,+∞)上的最大值问题,g(x)的最大值即为a的最小值,本题体现了化归与转化思想的熟悉化原则.例6.设数列{a n}的前n项为S n,a1=1,当n≥2时,a n=2a n S n-2S2n.(1)求数列{a n}的通项公式;(2)是否存在正数k,使(1+S1)(1+S2)…(1+S n)≥k2n+1姨对一切正整数n都成立?若存在,求k的取值范围,若不存在,请说明理由.解:(1)因为当n≥2时,a n=2a n S n-2S2n,所以a n=2S2n2S n-1,n≥2,所以(S n-S n-1)(2S n-1)=2S2n,所以S n-S n-1=-2S n S n-1,所以1S n-1S n-1=2,n≥2,所以数列{1S n}是以1S1=1为首项,以2为公差的等差数列,所以1S n=1+2(n-1)=2n-1,所以S n=12n-1,所以,当n≥2时,a n=S n-S n-1=12n-1-12n-3=-2(2n-1)(2n-3),因为a1=S1=1,所以a n=1,n=1-2(2n-1)(2n-3).n≥≥2(2)设f(n)=(1+S1)(1+S2)…(1+S n)2n+1姨,则f(n+1)f(n)=2n+22n+1姨2n+3姨=4n2+8n+44n2+8n+3姨>1,所以f(n)在n∈N鄢上递增,要使f(n)≥k恒成立,只需要f(n)min≥k,因为f(n)min=f(1)=23姨3,所以0<k≤23姨3.【评注】第(1)问运用了数列的前n项和S n与通项a n之间的关系a n=S n-S n-1(n≥2),把a n转化为S n-S n-1,再合并同类项后运用取倒数法,再根据等差数列的定义得出数列{1S n}的通项公式,再得出数列{a n}的通项公式;第(2)问分离变量后构造函数f(n),用作商法判断f(n)的单调性,把不等式f(n)≥k在n∈N鄢上恒成立等价转化为f(n)min≥k(n∈N鄢),两问都运用到了化归与转化思想.AEBFHDGOC302021年第2GUAN GDONG JIAO YU GAO ZHONG2021年第2题型四:化归与转化思想和谐化原则的体现化归与转化思想和谐化原则在解题中的体现主要有:(1)解三角形问题中利用正弦定理实现边角的互化;(2)在三角函数问题中,将形如y=a sin x+b cos x 的函数问题利用辅助角公式化归为形如y=A sin (棕x+渍)的函数问题;(3)解析几何中,将两直线垂直化归为斜率乘积为-1或者方向向量的数量积为0;(4)将形如滋=y -b x -a形式的最值问题,转化为动直线斜率的最值问题.例7.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b -c =a ·cos C -c ·cos A .(1)求角A ;(2)若a =3,求b +2c 的最大值.【解析】(1)因为b -c =a ·cos C -c ·cos A ,由正弦定理可得,sin B -sin C =sin A cos C -sin C cos A ,所以sin B -sin C =sin (A -C )所以sin (A +C )-sin C =sin (A -C ),所以sin A cos C +cos A sin C -sin C =sin A cos C -cos A sin C ,所以cos A =12,因为0<A <仔,所以A =仔3.(2)由(1)可得,C =2仔3-B ,由正弦定理得,a sin A =b sin B =c sin C=2R ,所以3sin 仔3=b sin B =c sin (2仔3-B ),所以b =23姨sin B ,c =23姨sin (2仔3-B ),所以b +2c =23姨sin B +43姨sin (2仔3-B )=23姨(2sin B +3姨cos B )=221姨sin (B +渍),其中tan 渍=3姨2,渍∈(0,仔2),由B ∈(0,2仔3),存在B 使得B +渍=仔2,所以sin (B +渍)的最大值为1,所以b+2c 的最大值为221姨.【评注】第(1)问运用正弦定理实现边转化为角,再逆用两角差的正弦公式,运用内角和定理以及诱导公式,再运用两角和的正弦公式和两角差的正弦公式,得出cos A 的值,得出角A 的值;第(2)问运用了正弦定理将关于边的最值问题化为角的最值问题,运用三角形内角和定理以及诱导公式,再运用辅助角公式,化为三角函数在给定范围上的最值问题;两问都运用了化归与转化思想,体现了和谐化原则.例8.已知函数f (x)=x2x-1,则f (12019)+f (22019)+f (32019)+…+f (20182019)的值为_____.【解析】由于直接计算有困难,先探求一般的规律,因为f (x)=x2x-1,所以f (1-x)=1-x2(1-x)-1=1-x1-2x=x-12x-1,所以f (x)+f (1-x)=1,倒叙相加可得f (12019)+f (22019)+f (32019)+…+f (20182019)=1009.【评注】本题的解答中体现了特殊问题转化为一般化,运用了化归与转化思想,先通过探究在宏观上把握问题的一般规律,再将特殊问题破解.题型五:化归与转化思想的正难则反原则在解题中的体现化归与转化思想的正难则反原则在高中数学解题中的体现主要有:(1)间接证明方法中的反证法在解题中的运用;(2)概率问题中对立事件和互斥事件的概率公式的运用.例9.等差数列{a n }的前n 项和为S n ,a 1=1+2姨,S 3=9+32姨.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n(n ∈N 鄢),求证:数列{b n }中任意不同的三项都不可能成为等比数列.【解析】(1)设公差为d ,由已知得a1=2姨+1,3a1+3d =9+32姨姨,所以d =2,故a n =2n -1+2姨,S n =n (n +2姨).(2)证明:由(1)得b n =S n n=n +2姨.假设数列{b n }中存在三项b p 、b q 、b r (p 、q 、r 互不相等)成等比数列,则b 2q =b p b r ,即(q +2姨)2=(p +2姨)(r +2姨),所以(q 2-pr )+(2q -p-r )2姨=0.因为p ,q ,r ∈N 鄢,所以q 2-pr =0,2q-p-r =0姨,所以(p+r 2)2=pr ,(p-r )2=0,所以p =r ,这与p ≠r 矛盾.所以数列{b n }中任意不同的三项都不可能成为等比数列.【评注】本题的解答的第(2)问中运用了反证法,先反设假定要证的结论不成立,而设出结论的反面成立,将这个反设作为条件,运用等比数列的定义和通项公式,通过推理,得出p =r 与已知条件相矛盾,所以反设错误,所以要证明的结论成立,反证法归属于间接证明方法,第(2)问运用了化归与转化的思想.例10.掷一个骰子的试验,事件A 表示“小于5的偶数点出现”,事件B 表示“小于5的点数出现”,则一次试验中,事件A +B 发生的概率为____.【答案】23.【解析】掷一个骰子的试验有6种可能结果,依题意P (A )=26=13,P (B )=46=23,所以P (B )=1-P (B )=1-23=13,显然A 与B 互斥,从而P (A+B )=P (A )+P (B )=13+13=23.【评注】先由古典概型概率公式求出事件A 和事件B 的概率,再由对立事件概率公式求出事件B 的对立事件B 的概率,再由互斥事件概率公式,把事件A+B 的概率化归为求P (A )和P (B )的和,运用了化归与转化思想.责任编辑徐国坚31。

化归与转化思想

化归与转化思想

高考数学 化归与转化思想一 思想诠释二 真题试做1.(2013·高考课标全国卷Ⅱ)若存在正数x 使2x (x -a )<1成立,则a 的取值范围是( )A .(-∞,+∞)B .(-2,+∞)C .(0,+∞)D .(-1,+∞)2.(2013·高考天津卷)设a +b =2,b >0,则12|a |+|a |b的最小值为________ 【解析】 1. 选D.∵2x (x -a )<1,∴a >x -12x . 令f (x )=x -12x ,∴f ′(x )=1+2-x ln 2>0. ∴f (x )在(0,+∞)上单调递增, ∴f (x )>f (0)=0-1=-1,∴a 的取值范围为(-1,+∞),故选D.2 当a >0时,12|a |+|a |b =12a +a b =a +b 4a +a b =14+()b 4a +a b ≥54;当a <0时,12|a |+|a |b =1-2a +-a b=a +b -4a +-a b=-14+⎝⎛⎭⎫b -4a +-a b ≥-14+1=34.综上所述,12|a |+|a |b 的最小值是34 三 典例示范类型三 换元及常量与变量的转化例1对于满足0≤p ≤4的所有实数p ,使不等式x 2+px >4x +p -3成立的x 的取值范围是________. 解 设f (p )=(x -1)p +x 2-4x +3,则当x =1时,f (p )=0.所以x ≠1.要使f (p )在0≤p ≤4上恒正,等价于 ⎩⎨⎧ f (0)>0,f (4)>0,即⎩⎨⎧ (x -3)(x -1)>0,x 2-1>0,解得x >3或x <-1. 题后感悟 若按常规法视x 为主元来解,需要分类讨论,这样会很繁琐.以p 为主元,即可将原问题化归为在区间[0,4]上,一次函数f (p )=(x -1)p +x 2-4x +3>0成立的x 的取值范围.这样,借助一次函数的单调性就很容易了.强化训练3 设y =(log 2x )2+(t -2)log 2x -t +1,若t 在[-2,2]上变化时,y 恒取正值,求x 的取值范围.解 设y =f (t )=(log 2x -1)t +(log 2x )2-2log 2x +1,则f (t )是一次函数,当t ∈[-2,2]时,f (t )>0恒成立,则有⎩⎨⎧ f (-2)>0f (2)>0,即⎩⎨⎧(log 2x )2-4log 2x +3>0(log 2x )2-1>0,解得log 2x <-1或log 2x >3.∴0<x <12或x >8, ∴x 的取值范围是(0,12)∪(8,+∞). 类型四 正难则反的转化例2 若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1在区间[-1,1]内至少存在一个值c 使得f (c )>0,求实数p 的取值范围.解 如果在[-1,1]内没有值满足f (c )>0,则⎩⎨⎧ f (-1)≤0f (1)≤0⇒⎩⎪⎨⎪⎧p ≤-12或p ≥1p ≤-3或p ≥32⇒p ≤-3或p ≥32, 取补集为-3<p <32,即满足条件的p 的取值范围是(-3,32)题后感悟 正难则反,利用补集求得其解,这就是补集思想,充分体现对立统一、相互转化的思想方法.一般地,题目若出现多种成立的情形,则不成立的情形相对很少,从反面考虑较简单,因此,间接法多用于含有“至多”、“至少”情形的问题中.强化训练4 已知集合A ={y |y 2-(a 2+a +1)y +a (a 2+1)>0},B ={y |y 2-6y +8≤0},若A ∩B ≠∅,则实数a 的取值范围为________.解 由题意得A ={y |y >a 2+1或y <a },B ={y |2≤y ≤4},我们不妨先考虑当A ∩B =∅时a 的取值范围.如图:由⎩⎨⎧ a ≤2a 2+1≥4,得⎩⎨⎧ a ≤2a ≥3或a ≤-3,∴a ≤-3或3≤a ≤2.即A ∩B =∅时,a 的取值范围为a ≤-3或3≤a ≤2.而A ∩B ≠∅时,a 的取值范围显然是其补集,从而所求范围为{a |a >2或-3<a <3}四 方法感悟化归转化思想的几种情况(1)化为已知:当所要解决的问题和我们已经掌握的问题有关系时,把所要解决的问题化为已知问题;(2)化难为易:化难为易是解决数学问题的基本思想,当我们遇到的问题是崭新的,解决起来困难时,就要把这个问题化为我们熟悉的问题,熟悉的问题我们有解决的方法,就是容易的问题,这是化难为易的一个方面;(3)化繁为简:在一些问题中,已知条件或求解结论比较繁,这时就可以通过化简这些较繁的已知或者结论为简单的情况,再解决问题,有时把问题中的某个部分看做一个整体,进行换元,这也是化繁为简的转化思想;(4)化大为小:在解答综合性试题时,一个问题往往是由几个问题组成的,整个问题的结论,是通过这一系列的小问题得出的,这种情况下,就可以把所要解决的问题转化为几个小问题进行解决.。

数学思想方法梳理(3)——化归与转化思想

数学思想方法梳理(3)——化归与转化思想

数学思想方法梳理(3)——化归与转化思想解决数学问题时,常遇到一些问题直接求解较为困难,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题(相对来说,对自己较熟悉的问题),通过新问题的求解,达到解决原问题的目的.化归与转化思想的实质是揭示联系,实现转化,是具有较高思维能力要求的压轴题中重点考查的数学思想方法。

1.求函数y ax =可以设t 则原函数转化为关于t 的二次函数 ;2.若lg y u =的定义域为R ,其中()u f x =,则问题等价于不等式 恒成立;若lg ()y f x =的值域为R ,则问题等价于函数()u f x =在(0,)+∞能 ;3.对于[,]x a b ∀∈,总有()()f x g x <等价于函数()h x = 在[,]a b 上的最大值小于零;对于1[,]x a b ∀∈,2[,]x a b ∀∈总有12()()f x g x <等价于max min [()],[()]f x g x 之间满足 ;4.对于12,[,]x x a b ∈,1122()()()()f x g x f x g x -<-等价于函数()()y f x g x =-在[,]a b 上 ;实数,m n 分别满足320am bm cm d +++=,320an bn cn d +++=,可构造()f x = 且()()0f m f n ==.5. 当遇到四个变量1122,,,x y x y ,满足11220,0ax by c ax by c ++=++=时,则1122(,),(,)x y x y 可以可视为直线 上的两个的不同点的坐标,该直线也就是过两定点1122(,),(,)x y x y 的直线; 当遇到两个变量,x y ,满足22,(0)x y m x y n n +=+=>,则可理解为 有公共点;6. ()()()()f x g x f x g x ''+是 的导数; ()()()()0f x g x f x g x ''->(0)(≠x g )说明函数 在定义域的某个区间上单调增;()()0xg x g x '+<说明函数 在定义域内单调减;7.已知实数[,]k m n ∈, 若210kx kx ++≥恒成立,构造关于k 的一次函数()f k = ,问题等价于不等式 在[,]k m n ∈上恒成立;已知210ax bx ++=,其中[,]x m n ∈,欲求22a b +的最小值,可以视方程为直线:l ,22a b +的最小值就等价于坐标原点到直线l 的的距离d = 的平方的最小值;8.如图(1),A 、B 在直线L 的异侧,在直线L 上任取一点M ,M A M B AB +≥,当且仅当点M与M '重合时有MA MB AB ''+=,所以MA+MB 的最小值是 .简单地说,就是“异侧和最小”;9.如图(2),A ,B 在直线L 的同侧,在直线L 上任取一点M ,AB MB MA ≤-,当且仅当点M 在AB 的延长线与L 的交点处时有MA MB AB ''-=,此时MA-MB 的最大值是 .简单地说,就是“同侧差最大”【例1】已知曲线2(),()21a f x g x ax b x+==++.(1)若1,1a b ==为常数,点(,)x y 为直线()y g x =的最小值;(2)若,,0a b a ∈≠R ,关于x 的方程()()f x g x =在[3,5]【解析】(1的最小值,等价于原点到直线30x y -+=的距离d ==2; (2)方程整理得2(21)20ax b x a ++--=,即2220x a xb a x +--+=,以aOb 建立平面坐标系,的最小值 ,设()x ϕ=,其中[3,5]x ∈.2221()51252x t x x t t t t ϕ-====+++++,2t x =-, 设5()2h t t t =++,[1,3]t ∈,225()t h t t-'=,当()0h t '>3t ≤,函数()h t 单调增; 当()0h t '<,1t ≤<()h t 单调减。

高中数学中转化与化归思想方法

高中数学中转化与化归思想方法

高中数学中转化与化归思想方法转化与化归思想是高中数学中非常重要的解题方法之一、它通过转化和化归问题的方式,将原问题转化为已知问题或相对简单的问题,从而更方便地解决问题。

接下来,我们将详细介绍转化与化归思想的基本原理、步骤和一些常见应用。

转化与化归思想的基本原理可以总结为两点:一是利用数学中的等价关系,将问题中的未知量或条件转化为已知量或更简单的条件;二是通过变量代换、形式转化等方式,改变问题的表达方式或结构,使其更适合我们已知的解题方法。

在具体解题过程中,我们可以按照以下步骤进行:1.通读题目,理解问题的要求和条件。

这一步非常重要,要确保我们对问题的内容和目标有清晰的理解。

2.找到问题中的关键信息和未知量。

这些信息和未知量通常会包含在问题的描述、条件或要求中,我们需要将其抽象出来并进行变量表示。

3.分析问题的性质和特点。

我们需要考虑问题的数学特征、结构和求解方法,以便选择合适的转化和化归方法。

4.进行变量代换或形式转化。

基于问题的性质和特点,我们可以选择合适的变量代换或形式转化方式,将问题转化为已知问题或者更简单的问题。

常用的方法包括平移到原点、找到对称性、消元法等。

5.解决转化后的问题。

一旦将问题转化为已知问题或相对简单的问题,我们可以利用已有的数学知识和解题方法来解决问题。

6.反向思考,回归原问题。

解决了转化后的问题后,我们需要反向思考,将解答归还给原问题,确保解答符合原有的要求和条件。

转化与化归思想在高中数学中的应用非常广泛。

1.几何问题。

几何问题中涉及的角、线段、面积等都可以进行变量代换和形式转化,从而简化计算和求解。

2.代数问题。

代数问题中的方程、不等式、函数等可以通过变量代换和形式转化来简化计算和解决问题。

3.概率问题。

概率问题中涉及到的事件、概率等可以通过变量代换和形式转化来简化计算和求解。

4.数列问题。

数列问题中的数列、通项公式等可以通过变量代换和形式转化来简化计算和求解。

总之,转化与化归思想在高中数学中是一种非常重要的解题方法。

转化与化归的数学思想

转化与化归的数学思想

转化与化归的数学思想一、转化与化归思想的含义化归指的是转化与归结.简单的化归思想就是把不熟悉的问题转化成熟悉问题的数学思想.即把数学中待解决或未解决的问题,通过观察、分析、联想、类比等思维过程,选择恰当的方法进行变换、转化,归结到某个或某些已经解决或比较容易解决的问题上,最终解决原问题的这种解决问题的思想,称为化归思想.化归思想是解决数学问题的基本思想,解题的过程实际上就是转化的过程.数学中的转化比比皆是,比如将未知向已知转化;复杂问题向简单问题转化;命题间的转化;数与形的转化;空间向平面的转化;高次向低次的转化;多元向少元的转化;无限向有限的转化等都是化归思想的体现.化归思维模式:问题→新问题→解决新问题→解决原问题.化归与转化应遵循的基本原则:(1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决;(2)简单化原则:将复杂的问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据;(3)和谐化原则:化归问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们的思维规律;(4)直观化原则:将比较抽象的问题转化为比较直观的问题来解决;(5)正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解。

二、化归思想的解题途径1、一般与特殊的转化21(0)11,2.243y ax a F P Q PF FQ p q p q A a B a C a D a =>+例 过抛物线的焦点作一直线与抛物线交于、两点,若线段、的长分别为、则的值为( )2.具体与抽象的转化.把抽象问题具体化是在数学解题中常有的化归途径,它是对抽象问题的理解和再认识,在抽象.例2、设函数 的定义域为D ,若所有点 构成一个正方形区域,则a 的值为A .-2B .-4C .-8D .不能确定3. 正面与反面的转化在处理某一问题时,按习惯思维从正面思考比较困难,这时用逆向思维的方式从反面去考虑,往往使问题变得比较简单。

转化与化归思想

转化与化归思想
返回
3.直观化原则 将比较抽象的问题转化为比较直观的问题来解决. 4.正难则反原则 当问题正面讨论遇到困难时,应想到考虑问题的反面, 设法从问题的反面去探求,使问题获得解决,或证明问题的 可能性. 总之,化归与转化是高中数学的一种重要思想方法,掌 握好化归与转化的思想方法的特点、题型、方法、要素、原 则对我们学习数学是非常有帮助的.
返回
返回
等与不等是数学解题中矛盾的两个方面,但是它们 在一定的条件下可以相互转化,例如本例,表面看来似 乎只具有相等的数量关系,且根据这些相等关系很难解 决,但是通过挖掘其中的不等量关系,转化为不等式(组) 来求解,则显得非常简捷有效.
返回
正向与逆向的转化
[例3] 某射手射击1次击中目标的概率是0.9他连续射击4 次且他各次射击是否击中目标是相互独立的,则他至少击中 目标1次的概率为 ________.
返回
2.转化与化归的常见方法 (1)直接转化法:把原问题直接转化为基本定理、基本公式 或基本图形问题. (2)换元法:运用“换元”把式子转化为有理式或使整式降幂 等,把较复杂的函数、方程、不等式问题转化为易于解决的基 本问题. (3)数形结合法:研究原问题中数量关系(解析式)与空间形 式(图形)关系,通过互相变换获得转化途径. (4)等价转化法:把原问题转化为一个易于解决的等价问题, 以达到化归的目的.
同一区间,故a=1.
返回
“化归与转化”还有“数与形的转化、数学各分支之间的转 化”等,应用时还应遵循以下四条原则:
1.熟悉化原则 将陌生的问题转化为熟悉的问题,以利于运用熟知的知识 和经验来解答问题. 2.简单化原则 将复杂的问题转化为简单的问题,通过对简单问题的解决, 达到解决复杂问题的目的,或获得某种解题的启示和依据.

高中教学中的化归与转化思想 【完整版】

高中教学中的化归与转化思想 【完整版】

高中数学教学中化归与转化思想的渗透安化县实验高中吴亮高中数学的教学思想主要有函数与方程思想,分类讨论思想,数形结合思想及化归与转化思想。

所谓化归与转化思想是指在解决数学问题的过程中,把复杂化为简单,把一般化为特殊,把未知化为已知,把抽象化为具体等等。

数学思想是数学之灵魂,而化归与转化思想为数学思想的核心。

高考试题十分重视对数学思想的考查,因此在教学中教学中我们不能单靠题海战术盲目操练,这样难以获得理想成绩,面要在使学生熟练、扎实掌握基础知识的基础上,引导学生对数学思想进行梳理总结,逐个认识它们的本质特征,逐步做到自觉地灵活地运用于所要解决的问题中。

要用数学思想武装学生头脑,使其达到数学学习的更高境界。

本文就教学中的化归与转化思想有效渗透的问题谈谈几点看法。

一、使学生善于解读已知条件隐含的信息,顺藤摸瓜,顺利实现转化。

高中数学习题特别是高考试题中,解题所需要的信息,通常隐含于所给的已知条件中,它们是化归与转化思想解题所需的“食粮”。

因此,经将潜伏于已知条件中的信息找出,这种能力基于熟练的基础知识与基本技能,贯穿学生整个数学学习中。

例1若数列}{n a 的前n 项和可表示为a S n n +=2,则}{n a 是否为等比数列,若可能求出a 的值,若不可能,请说明理由。

信息解读:⎩⎨⎧≥=--+=-=+==⇒+=---)2(2222211111n a a S S a a S a a S n n n n n n n n 而要使1a 满足12-=n n a ,必有12211-=⇒=+-a a 此时)(21+-∈=N n a n n于是问题转化为考察n n a a 1+是否为常数。

事实上,22211==-++n nn n a a 故当1-=a 时,数列}{n a 成等比数列,首项为1,公比为2. 例2.已知3,0,0++=>>b a ab b a 求ab 的最小值。

信息解读:0,0>>b a 及b a +ab b a 2≥+⇒323+≥++=⇒ab b a ab032)(2≥--⇒ab ab 3≥⇒ab 或1-≤ab (舍去)9≥⇒ab 当且仅当b a =即3==b a 时等式成立故ab 的最小值为9 本题通过信息的解读,将问题转化为关于ab 的不等式求解二、使学生认识到转化与化归常在,善于识别化归与转化题型。

§4 转化与化归思想

§4 转化与化归思想

变式训练 3 已知定义在实数集 R 上的函数 y=f(x)恒不为 零,同时满足 f(x+y)=f(x)· f(y),且当 x>0 时,f(x)>1,
④ 那么当 x<0 时,一定有________(填序号).
①f(x)<-1;②-1<f(x)<0;③f(x)<1;④0<f(x)<1.
解析 设 f(x)=2x, ,则符合题意,结合图象知④正确.
§4 转化与化归思想 方法解读
1.转化与化归思想 所谓转化与化归思想,就是将待解决的问题和未解决的 问题,采取某种策略,转化归结为一个已经能解决的问 题;或者归结为一个熟知的具有确定解决方法和程序的 问题;归结为一个比较容易解决的问题,最终求得原问 题的解. 2.转化与化归思想的原则 (1)熟悉已知化原则:将陌生的问题转化为熟悉的问题, 将未知的问题转化为已知问题,以便于我们运用熟知的 知识、经验和问题来解决.
归纳拓展 本题如果从已知条件 a2=a1·9⇒(a1+2d)2=a1(a1 a 3 a1+a3+a9 +8d),解得 a1 与 d 的关系后,代入所求的式子: a2+a4+a10 a1+(a1+2d)+(a1+8d) = ,也能求解,但计算较繁锁, (a1+d)+(a1+3d)+(a1+9d) 易错. 因此, 把抽象数列转化为具体的简单的数列进行分析, 可以很快得到答案.
(6)类比法:运用类比推理,猜测问题的结论,易于确定转 化途径. (7)特殊化方法:把原问题的形式向特殊化形式转化,并证 明特殊化后的结论适合原问题. (8)等价问题法:把原问题转化为一个易于解决的等价命题, 达到转化的目的. (9)加强命题法:在证明不等式时,原命题难以得证,往往 把命题的结论加强,即命题的结论加强为原命题的充分条 件,反而能将原命题转化为一个较易证明的命题,比如在证 明不等式时,原命题往往难以得证,这时常把结论加强,使 之成为原命题充分条件,从而易证. (10)补集法:如果正面解决问题有困难,可把原问题结果看 作集合 A,而包含问题的整体问题的结果类比为全集 U,通 过解决全集 U 及补集∁ UA 使原问题得以解决.

高中数学-化归与转化思想

高中数学-化归与转化思想

一、 考点回顾化归与转化的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将问题通过变换加以转化,进而达到解决问题的思想。

转化是将数学命题由一种形式向另一种形式的变换过程,化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题。

化归转化思想是中学数学最基本的思想方法,堪称数学思想的精髓,它渗透到了数学教学内容的各个领域和解题过程的各个环节中。

转化有等价转化与不等价转化。

等价转化后的新问题与原问题实质是一样的,不等价转则部分地改变了原对象的实质,需对所得结论进行必要的修正。

应用化归转化思想解题的原则应是化难为易、化生为熟、化繁为简,尽量是等价转化。

常见的转化有: 1、等与不等的相互转化等与不等是数学中两个重要的关系,把不等问题转化成相等问题,可以减少运算量,提高正确率;把相等问题转化为不等问题,能突破难点找到解题的突破口。

2、正与反的相互转化对于那些从“正面进攻”很难奏效或运算较难的问题,可先攻其反面,从而使正面问题得以解决。

3、特殊与一般的相互转化对于那些结论不明或解题思路不易发现的问题,可先用特殊情形探求解题思路或命题结论,再在一般情况下给出证明,这不失为一种解题的明智之举。

4、整体与局部的相互转化整体由局部构成,研究某些整体问题可以从局部开始。

5、高维与低维的相互转化事物的空间形成,总是表现为不同维数且遵循由低维想高维的发展规律,通过降维转化,可把问题有一个领域转换到另一个领域而得以解决,这种转化在复数与立体几何中特别常见。

6、数与形的相互转化通过挖掘已知条件的内涵,发现式子的几何意义,利用几何图形的直观性解决问题,使问题简化。

7、函数与方程的转化 二、经典例题剖析例1、设0a ≥,2()1ln 2ln (0)f x x x a x x =--+>.(Ⅰ)令()()F x xf x '=,讨论()F x 在(0)+,∞内的单调性并求极值; (Ⅱ)求证:当1x >时,恒有2ln 2ln 1x x a x >-+.解析:(Ⅰ)讨论()F x 在(0)+,∞内的单调性并求极值只需求出()F x 的导数'()F x 即可解决;(Ⅱ)要证当1x >时,恒有2ln 2ln 1x x a x >-+,可转化为证1x >时2ln 2ln 10x x a x -+->,亦即转化为1x >时()0f x >恒成立;因(1)0f =,于是可转化为证明()(1)f x f >,即()f x 在(1,)+∞上单调递增,这由(Ⅰ)易知。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、 考点回顾化归与转化的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将问题通过变换加以转化,进而达到解决问题的思想。

转化是将数学命题由一种形式向另一种形式的变换过程,化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题。

化归转化思想是中学数学最基本的思想方法,堪称数学思想的精髓,它渗透到了数学教学内容的各个领域和解题过程的各个环节中。

转化有等价转化与不等价转化。

等价转化后的新问题与原问题实质是一样的,不等价转则部分地改变了原对象的实质,需对所得结论进行必要的修正。

应用化归转化思想解题的原则应是化难为易、化生为熟、化繁为简,尽量是等价转化。

常见的转化有: 1、等与不等的相互转化等与不等是数学中两个重要的关系,把不等问题转化成相等问题,可以减少运算量,提高正确率;把相等问题转化为不等问题,能突破难点找到解题的突破口。

2、正与反的相互转化对于那些从“正面进攻”很难奏效或运算较难的问题,可先攻其反面,从而使正面问题得以解决。

3、特殊与一般的相互转化对于那些结论不明或解题思路不易发现的问题,可先用特殊情形探求解题思路或命题结论,再在一般情况下给出证明,这不失为一种解题的明智之举。

4、整体与局部的相互转化整体由局部构成,研究某些整体问题可以从局部开始。

5、高维与低维的相互转化事物的空间形成,总是表现为不同维数且遵循由低维想高维的发展规律,通过降维转化,可把问题有一个领域转换到另一个领域而得以解决,这种转化在复数与立体几何中特别常见。

6、数与形的相互转化通过挖掘已知条件的内涵,发现式子的几何意义,利用几何图形的直观性解决问题,使问题简化。

7、函数与方程的转化 二、经典例题剖析例1、设0a ≥,2()1ln 2ln (0)f x x x a x x =--+>.(Ⅰ)令()()F x xf x '=,讨论()F x 在(0)+,∞内的单调性并求极值; (Ⅱ)求证:当1x >时,恒有2ln 2ln 1x x a x >-+.解析:(Ⅰ)讨论()F x 在(0)+,∞内的单调性并求极值只需求出()F x 的导数'()F x 即可解决;1x >时()0f x >恒成立;因(1)0f =,于是可转化为证明()(1)f x f >,即()f x 在(1,)+∞上单调递增,这由(Ⅰ)易知。

答案:(Ⅰ)解:根据求导法则有2ln 2()10x af x x x x'=-+>,, 故()()2ln 20F x xf x x x a x '==-+>,, 于是22()10x F x x x x-'=-=>,, 列表如下:故知()F x 在(02),内是减函数,在(2)+,∞内是增函数, 所以,在2x =处取得极小值(2)22ln 22F a =-+.(Ⅱ)证明:由0a ≥知,()F x 的极小值(2)22ln 220F a =-+>. 于是由上表知,对一切(0)x ∈+,∞,恒有()()0F x xf x '=>. 从而当0x >时,恒有()0f x '>,故()f x 在(0)+,∞内单调增加. 所以当1x >时,()(1)0f x f >=,即21ln 2ln 0x x a x --+>.故当1x >时,恒有2ln 2ln 1x x a x >-+.点评:对于证明()()f x g x >在区间(,)a b 恒成立问题,常运用化归转化思想转化为证明()()0f x g x ->在区间(,)a b 上恒成立,令()()()h x f x g x =-,即可转化为在(,)a b 上min ()0h x >,这样只需求出()h x 在区间(,)a b 上的最小值即可解决之。

这种化归转化的思想方法在近几年高考中经常用到。

例、设数列{}n a 的首项113(01)2342n n a a a n --∈==,,,,,,….(1)求{}n a 的通项公式;(2)设n b a =,证明1n n b b +<,其中n 为正整数. 解:方法二:由(1)可知3012n n a a <<≠,,因为132nn a a +-=,所以 1n n b a ++==.由1n a ≠可得23(32)2n n n a a a -⎛⎫-< ⎪⎝⎭,即 223(32)2n nn n a a a a -⎛⎫-< ⎪⎝⎭两边开平方得32nn a a a -<.即 1n n b b n +<,为正整数.例、 在平面直角坐标系xOy 中,已知ABC △的顶点(40)A -,和(40)C ,,顶点B 在椭圆221259x y +=上,则sin sin sin A CB+=_____.例、若一条直线与一个正四棱柱各个面所成的角都为α,则cos α=______解:不妨认为这个正四棱柱为正方体,与正方体的所有面成角相等时,为与相交于同一顶点的三个相互垂直的平面所成角相等,即为对角线与该正方体所成角.故cos3α==. 点评:象这种“特殊与一般的相互转化”在高考的选择题和填空题中经常应用 例、已知函数3()f x x x =-.(1)求曲线()y f x =在点(())M t f t ,处的切线方程;(2)设0a >,如果过点()a b ,可作曲线()y f x =的三条切线,证明:()a b f a -<<解析:(1)通过求导得出切线的斜率,从而由点斜式较易写出切线方程;(2)由(1)易得过点()a b ,的曲线()y f x =的切线方程()0g t =,曲线()y f x =有三条切线可转化为方程()0g t =有三个相异的实数根,即函数()y g t =有三个零点,故只需()g t 的极大值大于零且()g t 的极小值小于零。

答案:解:(1)()f x 的导数2()31x x f '=-.曲线()y f x =在点(())M t f t ,处的切线方程为:()()()y f t f t x t '-=-,即23(31)2y t x t =--.(2)如果有一条切线过点()a b ,,则存在t ,使23(31)2b t a t =--.若过点()a b ,可作曲线()y f x =的三条切线,则方程32230t at a b -++=有三个相异的实数根.记32()23g t t at a b =-++,则2()66g t t at '=-6()t t a =-.当t 变化时,()()g t g t ',变化情况如下表:由()g t 的单调性,当极大值0a b +<或极小值()0b f a ->时,方程()0g t =最多有一个实数根; 当0a b +=时,解方程()0g t =得30at t ==,,即方程()0g t =只有两个相异的实数根;当()0b f a -=时,解方程()0g t =得2a t t a =-=,,即方程()0g t =只有两个相异的实数根.综上,如果过()a b ,可作曲线()y f x =三条切线,即()0g t =有三个相异的实数根,则0()0.a b b f a +>⎧⎨-<⎩,即 ()a b f a -<<.点评:将证明不等式的问题通过等价转化化归为函数的极值问题来讨论,这是近年来高考试题中常出现的一种类型。

例、已知函数()e xf x kx x =-∈R ,(Ⅰ)若e k =,试确定函数()f x 的单调区间;(Ⅱ)若0k >,且对于任意x ∈R ,()0f x >恒成立,试确定实数k 的取值范围;解析:(Ⅰ)求出()f x 的导函数,易得()f x 的单调区间;(Ⅱ)易知()f x 是偶函数,于是()0f x >对任意x ∈R 成立可等价转化为()0f x >对任意0x ≥成立,进一步转化为()f x 在[0)+∞,上的最小值大于零,从而求出实数k 的取值范围。

答案:解:(Ⅰ)由e k =得()e e x f x x =-,所以()e e xf x '=-.由()0f x '>得1x >,故()f x 的单调递增区间是(1)+∞,, 由()0f x '<得1x <,故()f x 的单调递减区间是(1)-∞,. (Ⅱ)由()()f x f x -=可知()f x 是偶函数.于是()0f x >对任意x ∈R 成立等价于()0f x >对任意0x ≥成立. 由()e 0xf x k '=-=得ln x k =.①当(01]k ∈,时,()e 10(0)xf x k k x '=->->≥. 此时()f x 在[0)+∞,上单调递增. 故()(0)10f x f =>≥,符合题意.②当(1)k ∈+∞,时,ln 0k >.当x 变化时()()f x f x ',的变化情况如下表:由此可得,在[0)+∞,上,()(ln )ln f x f k k k k =-≥. 依题意,ln 0k k k ->,又11e k k >∴<<,. 综合①,②得,实数k 的取值范围是0e k <<.(一) 选择题:1. 若函数34)(2++=ax ax x f 的定义域为R ,则实数a 的取值范围是A .]43,0( B .)43,0( C .]43,0[ D .)43,0[ 2. 函数)112lg(--=xy 的图象关于( ) A 、原点对称 B 、x 轴对称 C 、y 轴对称 D 、直线y =x 对称A .最小值21和最大值1 B .最小值43和最大值1 C .最小值43但无最大值 D .最大值1,但无最小值4. 若关于x 的不等式x k )1(2+≤4k +4的解集是M ,则对任意实常数k ,总有:( )A 、2∈M ,0∈M ;B 、2∉M ,0∉M ;C 、2∈M ,0∉M ;D 、2∉M ,0∈M . 5.若不等式x 2+ax +1≥0对于一切x ∈(0,12)成立,则a 的取值范围是 _________6. 若03)1()3(22=+---++y x y x ,则点),(y x M 的轨迹是A .圆B .椭圆C .双曲线D .抛物线(二) 填空题:7. P (x ,y )在直线x +2y -3=0上运动,则x 2+y 2的最小值是________.8. 在-6,4,-2,0,1,3,5,7这8个数中,任取两个不同的数分别作为虚数a bi +的实部和虚部,则所组成的所有不同虚数中,模大于5的虚数的个数是________.(三) 解答题:9.已知函数2π()2sin 24f x x x ⎛⎫=+⎪⎝⎭,ππ42x ⎡⎤∈⎢⎥⎣⎦,. (I )求()f x 的最大值和最小值;(II )若不等式()2f x m -<在ππ42x ⎡⎤∈⎢⎥⎣⎦,上恒成立,求实数m 的取值范围.解析答案:1. C 解析:函数34)(2++=ax ax x f 的定义域为R ,2430ax ax ∴++≥对x R ∈恒成立。

相关文档
最新文档