等腰三角形+角平分线
三角平分线模型定理
三角平分线模型定理1.引言1.1 概述三角平分线模型定理是三角形中一个重要的几何定理,它涉及到三角形的平分线以及与之相关的性质。
在我们的日常生活和实际应用中,三角形是非常常见的图形,所以了解和掌握三角形的性质和定理对我们的学习和应用都有重要的意义。
本文旨在介绍三角平分线的定义和性质,以及三角平分线模型定理。
首先,我们将给出三角平分线的定义。
三角形的平分线是指从三角形的一个顶点引出的直线,将对立边分成两个相等的线段。
这个定义非常直观和容易理解,同时也是我们后续讨论的基础。
接着,我们将探讨三角平分线的性质。
首先,三角形的三条平分线的交点被称为三角形的内心,该内心与三个顶点的连线的交点分别是三角形的三条边的中点。
这一性质的直观解释是,平分线将对立边分成相等的线段,所以三条平分线的交点就是三个中点的共同点。
除此之外,我们还将研究三角平分线模型定理。
该定理是一个重要的几何定理,它给出了三角形内心与三角形的三个顶点之间的距离关系。
根据三角平分线模型定理,内心到三角形每条边的距离等于该边上相邻两边的长度之差的一半。
这一定理的应用范围广泛,在许多几何问题的解决中都起到了关键的作用。
通过对三角形平分线的概念、性质和模型定理的深入了解,我们将能够更好地理解和运用三角形的相关知识。
本文将系统地介绍这些内容,帮助读者全面掌握三角平分线的概念和定理,并为读者进一步探索几何学和应用数学提供基础知识。
下面将详细讨论三角平分线的定义和性质,以及三角平分线模型定理,以便读者对这一主题有更清晰和全面的理解。
1.2文章结构文章结构部分的内容可以包括以下内容:文章结构:本文主要包含引言、正文和结论三个部分。
引言部分:引言部分将对本文的内容进行概述,并介绍文章的结构和目的。
正文部分:正文部分将包括两个小节,分别是“三角平分线的定义和性质”和“三角平分线的模型定理”。
1. 三角平分线的定义和性质:这一小节将详细介绍三角平分线的定义和相关的性质。
角平分线等腰三角形
角平分线与等腰三角形江苏 刘顿角平分线与等腰三角形有着密不可分联系.在许多几何问题中,遇到等腰三角形就会想到顶角的平分线,遇到角平分线又会想到构造等腰三角形.为了能说明这个问题,下面归类说明.一、角平分线+平行线→等腰三角形当一个三角形中出现角平分线和平行线时,我们就可以寻找到等腰三角形.如图1①中,若AD 平分∠BAC ,AD ∥EC ,则△ACE 是等腰三角形;如图1②中,AD 平分∠BAC ,DE ∥AC ,则△ADE 是等腰三角形;如图1③中,AD 平分∠BAC ,CE ∥AB ,则△ACE 是等腰三角形;如图1④中,AD 平分∠BAC ,EF ∥AD ,则△AGE 是等腰三角形.例1 如图2,△ABC 中,AB =AC ,在AC 上取点P ,过点P 作EF ⊥BC ,交BA 的延长线于点E ,垂足为点F .求证:AE =AP .简析 要证AE =AP ,可寻找一条角平分线与EF 平行,于是想到AB =AC ,则可以作AD 平分∠BAC ,所以AD ⊥BC ,而EF ⊥BC ,所以AD ∥EF ,所以可得到△AEP 是等腰三角形,故AE =AP .例2 如图3,在△ABC 中,∠BAC ,∠BCA 的平分线相交于点O ,过点O 作DE ∥AC ,分别交AB,BC 于点D ,E .试猜想线段AD ,CE ,DE 的数量关系,并说明你的猜想理由. 简析 猜想:AD +CE =DE .理由如下:由于OA ,OC 分别是∠BAC ,∠BCA 的平分线,DE ∥AC ,所以△ADO 和△CEO 均是等腰三角形,则DO =DA ,EC =EO ,故AD +CE =DE . 例3 如图4,△ABC 中,AD 平分∠BAC ,E ,F 分别在BD ,AD 上,且DE =CD ,EF =AC .求证:EF ∥AB .简析 由于这里要证明的是EF ∥AB ,而AD 平分∠BAC ,所以必须通过辅助线构造出平行线,这样就可以得到等腰三角形了,于是DE =CD 的提示下,相当于倍长中线,即延长AD 至M ,使DM =AD ,连结EM ,则可证得△MDE ≌△ADC ,所以ME =AC ,又EF =AC ,∠M =∠CAD ,所以∠M =∠EFM ,即∠CAD =∠EFM ,又因为AD 平分∠BAC ,所以∠BAD =∠EFD =∠CAD ,所以EF ∥AB .二、角平分线+垂线→等腰三角形当一个三角形中出现角平分线和垂线时,我们就可以寻找到等腰三角形.如图5中,若C A B E D O图3 图4 F C D E B A M 图2F B A C D P E 图1① D ② C D C ④F C DAD 平分∠BAC ,AD ⊥DC ,则△AEC 是等腰三角形.例4 如图6,已知等腰R t△ABC 中,AB =AC ,∠BAC =90°,BF 平分∠ABC ,CD ⊥BD 交BF 的延长线于D .求证:BF =2CD .简析 由BF 平分∠ABC ,CD ⊥BD ,并在图5的揭示之下,延长线BA ,CD 交于点E ,于是△BCE 是等腰三角形,并有ED =CD ,余下来的问题只需证明BF =CE ,而事实上,由∠BAC =90°,CD ⊥BD ,∠AFB =∠DFC ,得∠ABF =∠DCF ,而AB =AC ,所以△ABF ≌△ACE ,则BF =CE ,故BF =2CD .三、作倍角的平分线→等腰三角形当一个三角形中出现一个角是另一个角的2倍时,我们就可以作倍角的平分线寻找到等腰三角形.如图7中,若∠ABC =2∠C ,如果作BD 平分∠ABC ,则△DBC 是等腰三角形.例5 如图8,△ABC 中,∠ACB =2∠B ,BC =2AC .求证:∠A =90°.简析 由于条件中有两个倍半关系,而结论与角有关,因此首先考虑对∠ACB =2∠B 进行技术处理,即作CD 平分∠ACB 交AB 于D ,过D 作DE ⊥BC 于E ,则由∠ACB =2∠B 知∠B =∠BCD ,即△DBC 是等腰三角形,而DE ⊥BC ,所以BC =2CE ,又BC =2AC ,所以AC =EC ,所以易证得△ACD ≌△ECD ,所以∠A =∠DEC =90°.E 图5 AB C D 图6 B F DE C A 图7 B C D A E 图8 C B A D。
三角形中的特殊模型-平分平行(射影)构等腰、角平分线第二定理模型(解析版)
三角形中的特殊模型-平分平行(射影)构等腰、角平分线第二定理模型角平分线在中考数学中都占据着重要的地位,角平分线常作为压轴题中的常考知识点,需要掌握其各大模型及相应的辅助线作法,且辅助线是大部分学生学习几何内容中的弱点,,本专题就角平分线的非全等类模型作相应的总结,需学生反复掌握。
平分平行(射影)构等腰模型、角平行线第二定理模型(内角平分线定理和外角平分线定理模型)平分平行(射影)构等腰1)角平分线加平行线必出等腰三角形.模型分析:由平行线得到内错角相等,由角平分线得到相等的角,等量代换进行解题.平行线、角平分线及等腰,任意由其中两个条件都可以得出第三个。
(简称:“知二求一”,在以后还会遇到很多类似总结)。
平行四边形中的翻折问题就常出现该类模型。
图1图2图3条件:如图1,OO'平分∠MON,过OO'的一点P作PQ⎳ON. 结论:△OPQ是等腰三角形。
条件:如图2,△ABC中,BD是∠ABC的角平分线,DE∥BC。
结论:△BDE是等腰三角形。
条件:如图3,在△ABC中,BO平分∠ABC,CO平分∠ACB,过点O作BC的平行线与AB,AC分别相交于点M,N.结论:△BOM、△CON都是等腰三角形。
2)角平分线加射影模型必出等腰三角形.→图4条件:如图4,BE平分∠CBA,∠ACB=∠CDA=90°. 结论:三角形CEF是等腰三角形。
1(2023·浙江·八年级假期作业)如图,已知∠AOB,以点O为圆心,以任意长为半径画弧,与OA、OB分别于点C、D,再分别以点C、D为圆心,以大于12CD为半径画弧,两弧相交于点E,过OE上一点M作MN∥OA,与OB相交于点N,∠MOB=50°,则∠AOM=.【答案】25度/25°【分析】通过两直线平行,同位角相等,再利用角平分线定义求解即可.【详解】∵MN∥OA,∴∠AOB=∠MNB=50°,由题意可知:OM平分∠AOB,∠AOB=25°.故答案为:25°.∴∠AOM=∠MOB=12【点睛】本题考查了基本作图,作已知角的角平分线及其定义和平行线的性质,解此题的关键是熟练掌握基本作图和平行线的性质及角平分线定义的应用.2(2023·浙江·八年级期中)如图,已知△ABC的两边AB=5,AC=8,BO、CO分别平分∠ABC、∠ACB,过点O作DE∥BC,则△ADE的周长等于.【答案】13【分析】根据BO平分∠CBA,CO平分∠ACB,且ED∥BC,可得出OD=OB,OE=OC,所以三角形ADE的周长是AB+AC.【详解】解:∵BO平分∠CBA,CO平分∠ACB,∴∠DBO=∠OBC,∠OCE=∠OCB,由∵DE∥BC,∴∠DOB=∠OBC,∠EOC=∠OCB,∴∠DBO=∠DOB,∠EOC=∠ECO,∴DO=DB,EO=EC,·又∵AB=5,AC=8,∴ADE的周长=AD+DE+AE=AB+AC=13【点睛】本题主要考查了角平分线的定义、平行线的性质以及等腰三角形的判定,其中运用角平分线的定义和平行线的性质创造等腰三角形的条件是关键.3(2023·广东·八年级期末)如图,▱ABCD中,AB=3cm,BC=5cm,BE平分∠ABC交AD于E点,CF 平分∠BCD交AD于F点,则EF的长为cm.【答案】1【分析】根据角平分线的概念、平行线的性质及等腰三角形的性质,可分别推出AE=AB,DF=DC,进而推出EF=AE+DF-AD.【详解】∵四边形ABCD是平行四边形,∴∠AEB=∠EBC,AD=BC=5cm,∵BE平分∠ABC,∴∠ABE=∠EBC,则∠ABE=∠AEB,∴AB=AE=3cm,同理可证:DF=DC=AB=3cm,则EF=AE+FD-AD=3+3-5=1cm.故答案为:1.【点睛】本题考查了平行四边形的性质,关键是运用角平分线的概念和平行线的性质,由等角推出等边.4(2023.江苏八年级期中)如图,已知:在△ABC中,∠BAC=90°,AD⊥BC于D,∠BCA的角平分线交AD与F,交AB于E,FG⎳BC交AB于G.AE=4cm,AB=12cm,则BG=,GE=.【答案】4cm;4cm.【详解】过E作EH垂直BC交BC于H点,易证△AEC≌△EHC;由角度分析易知∠AEF=∠AFE,即AE=AF,则有EH=EA=AF;又可证△AGF≌△BHE,则AG=EB=12-4=8,则BG=8-4=4,GE=4.【点睛】这道题主要讲解角平分线加射影模型必出等腰三角形的模型.角平行线第二定理(内角平分线定理和外角平分线定理)模型1)内角平分线定理图1图2图3条件:如图1,在△ABC中,若AD是∠BAC的平分线。
初中数学之等腰直角三角形的角平分线知识点
初中数学之等腰直角三角形的角平分线知识点
【题文】
已知等腰△ABC,∠C=90°,AD是∠BAC的平分线,
求证:AC+CD=AB.
【解析】
证法一:过点D作DE⊥AB,易得CD=ED,AC=AE,
△DBE为等腰直角三角形,ED=EB,
所以,AB=AE+EB=AE+DE=AC+CE
证法二:延长AC至点E,使CE=CD,并连接DE,易得AB =AC,所以AB=AE=AC+CE=AC+CE
证法三:延长BC至点E,使CE=BC,连接AE,
则AE=AB(垂直平分线的性质),
易得∠EAD=∠EDA=22.5°+45°=67.5°,
则AB=AE=ED,
所以AB=ED=EC+CD=BC+CD=AC+CD
证法四:过点C作CG⊥AB,垂足为点F,交AD于点E,使得CF=GF,并连接AG,
易得AF=GF=BF=CF,AB=CG,AG=BC=AC,
又得∠CED=∠CDE=∠AEG=∠EAG=67.5°,
所以CE=CD,AG=EG,
所以AB=CG=EG+CE=AC+CD
证法五:延长AC至点E使得CE=CD,并连接BE,易得△ACD≌△BCE,∠E=∠ADC=∠ABE=67.5°,则AE=AB,
所以AB=AC+CE=AC+CD
证法六:易得S△ACD:S△ADB=CD:DB=AC:AB,设AC=CB=1,则AB=,CD=x,BD=1-x
代入比例式x:(1-x)=1:,
∴x=-1,
所以AC+CD=1+-1==AB。
等腰三角形角平分线定理垂直平分线定理
如图,CA=CB,DF=DB,AE=AD,求∠A的度数
设∠A为x
∵CA=CB
∴ ∠A=∠B=x
E
∵DF=DB
∴∠F=∠B=x
∴ ∠A=∠B= ∠F =x
∴∠ADE=2x
∵AE=AD
∴∠AED=∠ADE=2x
∴ ∠A=180÷5=36°
△ABC是等边三角形,过AC边上的点D作 DG//BC,交AB于点G,在GD的延长线上取 一点E,使DE=DC,连接AE,BD。 (1)求证△AGE≌△DAB。
下列命题中真命题的个数是( B); ①等边三角形也是等腰三角形,任何一 边都可以作为底或腰; ②不等边三角形是遍都不相等的三角形 ; ③不等边三角形是三边不都相等的三角 形; ④三角形按边可分为不等边三角形、等 腰三角形、等边三角形。 A.1 B.2 C.3 D.4
已知一个三角形的边长为4cm,5cm,且第 三边长x为整数,问: (1)由4cm,5cm,xcm为边可组成多少个不同
∠CAD+∠C=90°, ∴∠BFD=∠CAD
又∵∠AFE=∠BFD
∴∠CAD=∠AFE, ∴EA=EF(等角对等边), ∴E在AF的垂直平分线上
谢谢!
谢谢!
如图,在△ABC中,∠BAC=90°,AB= AC,∠ABC的平分线交AC于D,过C作BD 垂线交BD的延长线于E,交BA的延长线于F
,求证:BD=2CE.
F A
E D
B
C
如图,在△ABC中,已知AB=AC, ∠BAC=90°,D是BC上一点,EC⊥BC, EC=BD,DF=FE. 求证:(1)△ABD≌△ACE;(2)AF⊥DE.
∵BP,CP分别是△ABC的外角平 分线
∴PE=PQ, PF=PQ ∴PE=PF ∵PE⊥AB,PF⊥AC ∴点P在∠A的平分线上
等腰三角形+角平分线
第一部分:知识点回顾角平分线的性质及判定:1、角平分线:把一个角平均分为两个相同的角的射线叫该角的平分线;2、角平分线的性质定理:角平分线上的点到角的两边的距离相等:①平分线上的点;②点到边的距离;3、角平分线的判定定理:到角的两边的距离相等的点在角平分线上。
4.注意在证明中用到这两个定理,如何把文字叙述转化成数学符号:例:如图角的平分线的性质定理的几何语言:∵OC是∠AOB的平分线,PD⊥OA于D,PE⊥OB于E,∴PD=PE角的平分线的判定定理的几何语言:∵PD⊥OA于D,PE⊥OB于E,PD=PE∴点P在∠AOB的平分线上等腰三角形的性质及判定:1.等腰三角形有两条边相等的三角形,叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.2.等腰三角形的性质和判定性质1 等腰三角形的两个底角相等(简写成“等边对等角”)性质2 等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称为“三线合一”)判定(1)有两条边相等的三角形,叫做等腰三角形(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称为“等角对等边”)3.等边三角形三条边都相等的三角形叫做等边三角形.4.等边三角形的性质(1)等边三角形的三个内角都相等,并且每一个角都等于60°.(2)等边三角形是轴对称图形,共有三条对称轴.(3)等边三角形每边上的中线、高和该边所对内角的平分线互相重合.5.等边三角形有关判定(1 )三条边都相等的三角形是等边三角形(2)三个角都相等的三角形是等边三角形.(3)有一个角是60°的等腰三角形是等边三角形.6.由对等边三角形推出的一个关于直角三角形的一个性质在直角三角形中,如果有一个锐角等于30°,那么它对的直角边等于斜边的一半. 第二部分:典型例题如图,CD⊥AB,BE⊥AC,垂足分别为D,E,BE,CD相交于O,OB=OC。
等腰三角形的一些定理
等腰三角形的一些定理
首先,等腰三角形是指两边长度相等的三角形。
在等腰三角形中,有一些重要的定理和性质:
1. 定理一,等腰三角形的底角(底边两侧的两个角)相等。
这个定理意味着,如果两条边的长度相等,那么它们所对应的角也是相等的。
这是等腰三角形的一个重要特征。
2. 定理二,等腰三角形的高(从顶点到底边的垂直线段)同时也是中线和角平分线。
这个定理表明,等腰三角形的高不仅是三角形的高,同时也是底边上某一点到顶点的距离,它同时也是底边的中点和顶角的平分线。
3. 定理三,等腰三角形的两底角(底边两侧的两个角)的角平分线重合且垂直于底边。
这个定理说明了等腰三角形的两底角的角平分线重合并且垂直
于底边,这也是等腰三角形的一个重要特征。
4. 定理四,等腰三角形的两边中点连线平行于底边,并且等于底边的一半。
这个定理表明了等腰三角形的两边中点连线平行于底边,并且等于底边的一半,这也是等腰三角形的一个重要性质。
总的来说,等腰三角形具有许多独特的性质和定理,这些定理在解题和证明过程中都具有重要的作用。
通过理解这些定理,我们可以更好地理解和运用等腰三角形的性质。
希望以上的回答能够满足你的需求。
等腰三角形的顶角的平分线
A
底 边 的 高
B
┓
D
C
底
顶 角
边
的
的
平
中
分
线
线
A
A
B
DC
A
B
DC
A
B
DC
┓
B
DC
定理2:等腰三角形顶角的平分线垂直平分底边.
也就是说:等腰三角形的顶角的平
分线、底边上的中线、底边上的高互 相重合(三线合一_)_
等腰三角形“三线合一”的性质
A
用符号语言表示为:
在△ABC中
12
(1)∵AB=AC,AD⊥BC, ∴∠_1__=∠_2__,_B_D__=_C_D__; (2)∵AB=AC,AD是中线,B D C ∴∠_1 =∠_2 ,__A_D_⊥_B_C__;
等腰三角形除了两腰相等以外, 你还能发现什么?
1. 等腰三角形是轴对称图形 2.∠B =∠C 3.AD为底边上的中线 4.AD为底边上的高 5.AD为顶角平分线
A
A
B
C
B DC
求证:等腰三角形的两底角相等.
已知:如图,在△ABC中,AB=AC.
求证:∠B=∠C.
A
证明: 作顶角∠BAC的平分线AD.
(3)∵AB=AC,AD是角平分线,
∴__A_D_⊥__BC__,__BD__=__CD__.
例1、已知:在△ABC中,AB = AC, ∠A = 50°, 求∠B 和 ∠C的度数。
A
B
C
变式练习1:已知:在△ABC中,AB = AC, ∠B = 50°, 求∠A和 ∠C的度数。
A
B
C
变式练习2:已知:等腰三角形的一个内角 为 50 °, 求另两个角的度数.
等腰三角形、垂直平分线、角平分线的有关计算证明问题
垂直平分线、角平分线的有关证明问题一、主要知识点(1)线段的垂直平分线。
线段垂直平分线上的点到这条线段两个端点的距离相等;到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
(2)角平分线。
角平分线上的点到这个角的两边的距离相等。
在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。
三角形三条角平分线相交于一点,并且这一点到三条边的距离相等。
(3)逆命题、互逆命题的概念,及反证法如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题。
二、重点例题分析例1:在△ABC 中,AB 的中垂线DE 交AC 于F ,垂足为D ,若AC=6,BC=4,求△BCF 的周长。
(垂直平分线的性质)例2:如图所示,AC=AD ,BC=BD ,AB 与CD 相交于点E 。
求证:直线AB 是线段CD 的垂直平分线。
(用定义去证)AC D EB例3:如图所示,在△ABC 中,AB=AC ,∠BAC=1200,D 、F 分别为AB 、AC 的中点,DE AB FG AC ⊥⊥,,E 、G 在BC 上,BC=15cm ,求EG 的长度。
(连AE ,AG )AB E G C例4:如图所示,Rt △ABC 中,,D 是AB 上一点,BD=BC ,过D 作AB 的垂线交AC 于点E ,CD 交BE 于点F 。
求证:BE 垂直平分CD 。
(证全等)CEA D BF例5:在⊿ABC 中,点O 是AC 边上一动点,过点O 作直线MN ∥BC ,与∠ACB 的角平分线交于点E ,与∠ACB 的外例6、如图所示,AB>AC,∠A 的平分线与BC 的垂直平分线相交于D ,自D 作DE AB ⊥于E ,DF AC F ⊥于,求证:BE=CF 。
(角平分线与垂直平分线的性质的综合应用)AEB MC F【相应练习】1.下列命题中正确的命题有( )①线段垂直平分线上任一点到线段两端距离相等;②线段上任一点到垂直平分线两端距离相等;③经过线段中点的直线只有一条;④点P 在线段AB 外且PA =PB ,过P 作直线MN ,则MN 是线段AB 的垂直平分线;⑤过线段上任一点可以作这条线段的中垂线.A .1个B .2个C .3个D .4个 4、已知:如图4,∠BAC=1200,AB=AC,AC 的垂直平分线交BC 于D 则∠ADC=5、如图5,△ABC 中,DE 、FG 分别是边AB 、AC 的垂直平分线,则∠B=∠BAE ,∠C=∠GAF ,若∠BAC=1260,则∠EAG= 。
初二几何证明一(线段垂直平分线、角平分线和等腰三角形的性质)
线段垂直平分线、角平分线和等腰三角形的性质知识点梳理1、 线段垂直平分线性质定理及其逆定理:定理:线段垂直平分线上的任意一点到这条线段两个端点的距离相等. 逆定理:和一条线段两个端点距离相等的点,在这条线段的直平分线上.2、 角平分线的性质定理及其逆定理:定理:在角的平分线上的点到这个角两边的距离相等.逆定理:在一个角的内部(包括顶点)且到这个角两边距离相等的点,在这个角的平分线上.D21P CABEO1、 等腰三角形的性质等边对等角:等腰三角形的两个底角相等。
三线合一:等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合 证明以下推论:等腰三角形的两底角的平分线相等; 两条腰上的中线相等; 两条腰上的高相等。
等腰三角形的一腰上的高与底边的夹角等于顶角的一半4、 等腰三角形的判定:等角对等边:有两个角相等的三角形是等腰三角形 ◆ 命题、公理、定理命题:判断性的语句 陈述句,一般由题设和结论组成,写成“如果……,那么……”的形式 几个重要的公理(不需证明): (1) 两点之间线段最短;(2) 过直线外一点有且只有一条直线与已知直线平行 (3) 过一点有且只有一条直线与已知直线垂直;(4) 同位角相等,两直线平行; (5)两直线平行,同位角相等。
1、已知:如图,∠ABC ,∠ACB 的平分线交于F ,过F 作DE ∥BC ,交AB 于D ,交AC 于E 。
求证:BD +EC =DE 。
2、已知:如图所示△ABC ,∠ACB=90°,D 为BC 延长线上一点,E 是AB 上一点,EM 垂直平分BD ,M 为垂足,DE 交AC 于F ,求证:E 在AF 的垂直平分线上.3、如图,已知:CD 、CE 分别是AB 边上的高和中线,且ACE ECD DCB ∠=∠=∠。
求证:90o ACB ∠=CA4、如图,已知:在,90,30ooABC C A ∆∠=∠=中,DE 垂直平分AB ,FM 垂直平分AD ,GN 垂直平分BD 。
角平分线和平行线出等腰例题
角平分线和平行线出等腰例题角平分线和平行线出等腰例题角平分线和平行线是我们在几何学中经常遇到的概念。
它们是几何学中的基础知识,很多几何问题都离不开这两个概念。
在这篇文档中,我将讨论关于角平分线和平行线出等腰三角形的例题。
例题1:证明:如果一条角平分线与另一条边相交,那么这条角平分线将这个角分成两个相等的小角。
解析:首先,我们假设有一个角ABC,角平分线AD将其分成两个小角BAD和DAC。
我们需要证明角BAD等于角DAC。
根据角平分线的定义,角BAD和角DAC是由角ABC的两边所构成的。
我们可以将角BAD和角DAC的顶点放在一起,形成一个角BAC。
那么,角BAC的两条边AB和AC都是角ABC的边,这意味着角BAC等于角ABC。
然后,我们可以通过角相等的性质来得到结论。
角BAD等于角BAC,而角DAC等于角BAC,所以角BAD等于角DAC。
这样,我们就证明了角平分线将角ABC分成了两个相等的小角。
例题2:证明:如果一条平行线与一个角的两边相交,那么这条平行线将这个角分成两个相等的小角。
解析:给定一个角ABC和一条平行线DE,我们需要证明角ADE等于角BAC。
首先,我们可以通过转角的定义知道角ADE和角BAC 都是由角ABC的两条边所构成的。
我们将角ADE的顶点放在一起,形成一个角ABC。
由于平行线DE与角ABC的两边相交,可以知道平行线DE和线段AC构成了交角。
接下来,我们可以应用平行线的性质。
平行线与一条直线相交时,对应角相等。
所以,角ADE等于角ABC。
最后,我们可以通过角相等的性质得到结论。
角ADE 等于角ABC,而角BAC也等于角ABC,所以角ADE等于角BAC。
这样,我们就证明了平行线将角ABC分成了两个相等的小角。
例题3:证明:如果一条角平分线与一条平行线相交,那么这条平行线将角平分线所分的角分成两个相等的小角。
解析:给定一条角平分线AD和一条平行线BC,我们需要证明角BAD等于角DAC。
等腰三角形角平分线
注意在证明中用到这两个定理,如何把文字叙述转化成数学符号:如图,CD⊥AB,BE⊥AC,垂足分别为D,E,BE,CD相交于O,OB=OC。
求证∠1=∠2.四边形ABCD中,AD∥BC,AE平分∠DAB,BE平分∠ABC,点E恰在DC上,∠C=∠D=90°。
(1)求证:AE⊥BE(2)猜想AB、AD、BC之间有何数量关系?请证明你的结论。
如图,D、E、F分别是△ABC的三条边上的点,CE=BF,△DCE和△DBF的面积相等.求证:AD平分∠BAC.如图,某铁路MN与公路PQ相交于点O,且夹角为90°,其仓库G在A区,到公路和铁路距离相等,且到公路距离为5cm.交BC于E,DBE所以这个三角形腰长为10㎝,底边长为7㎝。
剖析:在处理等腰三角形的问题时,有的同学习惯上总认为腰大于底,这是造成错误的原因所在。
事实上本题有两种情况。
正解:此题有两种情况:∵BD 为等腰△ABC 的中线∴AD=DC 设AB 为x ㎝ ,BC 为ycm.(1) ⎪⎪⎩⎪⎪⎨⎧=+=+122152y x x x 解得 ⎩⎨⎧==710y x 或 (2) ⎪⎪⎩⎪⎪⎨⎧=+=+152122y x x x 解得 ⎩⎨⎧==118y x 所以这个三角形腰长为10㎝,底边长为7㎝或腰长为8㎝,底边长为11㎝。
三、概念不清造成的错误例3、已知在等腰三角形中,一个角是另一个角的2 倍,求等腰三角形三个内角的度数。
错解:设等腰三角形的顶角为x°,则底角为2 x°。
根据题意,得 x+2x+2x=180解得 x=36 ∴2x=72∴这个等腰三角形的三个内角为:36°、72°、72°.剖析:错误在于误认为等腰三角形的底角一定大于顶角,是概念不清造成的错误想法。
本题应分底角大于或小于顶角两种情况解答。
正解:当等腰三角形的底角大于顶角时,设顶角为x°,则底角为2 x°。
角平分线、垂直平分线、等腰三角形
例2、如图10,已知在直角梯形ABCD中,AB∥CD,AB⊥BC,E为BC中点,连接AE、DE,
DE平分∠ADC,求证:AE平分∠BAD.
B
练习:
2. 如图所示,直线 表示三条互相交叉的公路,现在要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )
DM⊥BC,垂足为M。求证:M是BE的中点。
例2:△ABC中,AB=AC,BD、CE为角平分线,AH⊥CE于F交BC于H,AG⊥BD于G.
求证:(1)AC=CH (2)AF=AG.
课后作业:
学生对于本次课的评价:
○ 特别满意 ○ 满意 ○ 一般 ○ 差
学生签字:________
教师评定:
1、学生上次作业评价: ○特别满意 ○满意 ○一般 ○差
2、线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.
定理的作用:证明一个点在某线段的垂直平分线上.
3、关于三角形三边垂直平分线的定理
(1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,
并且这一点到三个顶点的距离相等.(三种情况)
定理的作用:证明三角形内的线段相等.
龙文教育个性化辅导授课案
教师:学生时间:年_月__日__段第__次课
课题
垂直平分线与角平分线的性质和应用
考点分析
重点难点
垂直平分线与角平分线的性质和应用、等腰三角形
授课内容
一、线段的垂直平分线
1、垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.
八年级上册数学-等腰三角形(二)三线合一
第15讲等腰三角形(二)三线合一知识导航1、等腰三角形底边上的高→底边上的中线,顶角的平分线。
2、等腰三角形底边上的中线→底边上的高,顶角的平分线。
3、等腰三角形顶角的平分线→底边上的中线,底边上的高。
【板块一】知等腰→连中线方法技巧遇等腰三角形底边的中点,常连接底边上的中线,构造三线合一的模型解题。
120,点F为CD的中点,AB=AE,BC=ED,【例1】如图,在五边形ABCDE中,∠B=∠E,∠BAE=0求∠BAF的度数。
针对练习11、如图,在等腰△ABC中,AB=AC,点O是BC的中点,OD⊥AB于点D,OE⊥AC于点E,求证:AD=AE。
90,AB=AC,点D是BC的中点。
2、已知△ABC中,∠BAC=0(1)如图1,E,F分别是AB,AC上的点,且BE=AF,试判断△DEF的形状,并说明理由;(2)如图2,若E,F分别为AB,CA的延长线上的点,且仍有BE=AF,请判断△DEF的是否仍有(1)中的形状,并说明理由。
【板块二】知等腰→作高线方法技巧遇等腰三角形,常作底边上的高,构造三线合一的模型解题。
【例2】如图,在△ABC中,AB=AC,AD=DB,DE⊥AB于点E,若BC=10,且△BDC的周长为24,求AE的长。
【例3】如图,在△ABC中,AE平分∠BAC,EB⊥AB且EA=EC,求证:AC=2AB。
针对练习21、如图,在△ABC中,AD⊥BC于点D,且∠ABC=2∠C,求证:CD=AB+BD。
2、如图,在△ABC中,CA=CB,BD⊥AC于点D,AE⊥BC于点E,BD,AE交于点O。
(1)求证:CD=CE;(2)求证:OC⊥AB。
3、如图1,在等腰△ABC中,∠ACB=090,AC=BC,点D在AB上,AD=AC,BE垂直于直线CD,垂足为点E。
(1)求∠BCD的度数;(2)求证:CD=2BE;(3)如图2,若点O是AB的中点,点G在OC上,∠OAG=∠OCD,求BEAG的值。
【板块三】构等腰→用“三线”方法技巧在同一个三角形中证明两线段相等或垂直时,往往构造等腰(直角)三角形,运用三线合一来解决问题。
全等三角行 等腰三角形 角平分线和垂直平分线
2BC,线段的垂直平分线与角平分线(1)知识要点详解1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若点C 在直线m 上,则AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称.2、线段垂直平分线性质定理的逆定理(1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.定理的数学表示:如图2,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若AC =BC ,则点C 在直线m 上.定理的作用:证明一个点在某线段的垂直平分线上.3、关于三角形三边垂直平分线的定理(1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,若直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂直平分线,则直线,,i j k 相交于一点O ,且OA =OB =OC.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形.经典例题:例1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于图1图2点E,△BCE的周长等于18cm,则AC的长等于()A.6cm B.8cm C.10cm D.12cm针对性练习::1)如图,AB=AC=14cm,AB的垂直平分线交AB于点D,交AC于点E,如果△EBC的周长是24cm,那么BC=2) 如图,AB=AC=14cm,AB的垂直平分线交AB于点D,交AC于点E,如果BC=8cm,那么△EBC的周长是3)如图,AB=AC,AB的垂直平分线交AB于点D,交AC于点E,如果∠A=28度,那么∠EBC是例2. 已知:AB=AC,DB=DC,E是AD上一点,求证:BE=CE。
等腰三角形的三线合一
等腰三角形的三线合一
三线合一,即在等腰三角形中(前提)顶角的角平分线,底边的中线,底边的高线,
三条线互相重合(前提一定是在等腰三角形中,其它三角形不适用)等边三角形是等腰三
角形的一种,也满足此条件。
如果三角形中有一角的角平分线和它所对边的高重合,那么
这个三角形是等腰三角形。
(1)等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。
(2)等边三角形每条边上的中线、高线和角平分线互相重合。
(三线合一)(3)等边三角形是轴
对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或角的平分线所在的直线。
(4)等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。
(四心
合一)(5)等边三角形内任意一点到三边的距离之和为定值。
(等于其高)(6)等边三
角形拥有等腰三角形的一切性质。
(因为等边三角形是特殊的等腰三角形)
1、在平面上三角形的内角和等同于°(内角和定理)。
2、在平面上三角形的外角和
等同于° (外角和定理)。
3、在平面上三角形的外角等同于与其不相连的两个内角之和。
4、一个三角形的三个内角中最少存有两个锐角。
5、在三角形中至少存有一个角大于等同
于60度,也至少存有一个角大于等同于60度。
6、三角形任一两边之和大于第三边,任
一两边之差大于第三边。
如何求解等腰三角形的底边
如何求解等腰三角形的底边等腰三角形是指两条边的长度相等的三角形,底边则是等腰三角形中较长的一条边。
在解题过程中,我们可以利用等腰三角形的特性和一些几何定理来求解底边的长度。
本文将介绍两种常见的方法,一种是利用勾股定理,另一种是利用角平分线及正弦定理。
方法一:利用勾股定理勾股定理是一个描述直角三角形边长关系的定理,根据勾股定理可以得出如下关系式:c²= a²+ b²(其中c为斜边的长度,a、b分别为两条直角边的长度)对于等腰三角形,两条边的长度相等,假设等腰三角形的两条等边分别为a,底边的长度为b。
我们可以将其中的一条等边作为直角边,然后利用勾股定理来求解底边的长度。
设等边长度为a,底边长度为b,则有:b² = (a/2)² + a²化简上述等式,可得:b² = a²/4 + a²b² = (5a²)/4通过开方操作,可以得到等腰三角形的底边长度:b = √((5a²)/4)方法二:利用角平分线及正弦定理角平分线是指将一个角平分为两等分角的直线,利用角平分线可以求解等腰三角形的底边长度。
同时,我们也可以利用正弦定理来辅助求解。
假设等腰三角形的两条等边分别为a,底边的长度为b。
设角平分线与底边的交点为E,将角平分线分为两段,分别为DE和EF。
利用正弦定理,可以得到如下关系式:a/sin(A/2) = b/sin(A)其中A为顶角的度数。
由于等腰三角形的两个底角相等,所以角A/2和角A也相等,可以简化上述关系式:a/sin(A/2) = b/sin(A/2)进一步化简,可以得到:b = a所以,等腰三角形的底边长度等于其两条等边的长度。
综上所述,我们介绍了两种求解等腰三角形底边长度的方法。
根据题目要求,我们不再赘述标题和其他内容,通过上述叙述,您可以清楚地了解如何求解等腰三角形的底边长度。
等腰三角形、角平分线
课 题 等腰三角形、角的平分线授课时间: 2013.备课时间:教学目标1. 熟练掌握等腰三角形、角的平分线的相关知识和性质。
教学内容(包括知识点、典型例题、课后作业)等腰三角形知识梳理一、等腰三角形的边角关系 1)判定定理 等角对等边 2)性质定理 等边对等角3)特殊角之间的关系 ∠B = ∠C=90°-21∠BAC∠BAC=180°-2∠B =180°-2∠C 4)底边BC 小于2倍的腰长AB 二、等腰三角形“三线”间的关系1)顶角的角平分线、底边上的中线、底边上的高(“三线合一”)2)等腰三角形两腰上的高相等、两腰上的中线相等、两底角的平分线相等; 三、等边三角形 1)概念2)性质 等边三角形具备所有等腰三角形的性质外还有: 三边都相等;三个内角都相等,且都等于60°;等边三角形是轴对称图形,有三条对称轴。
3)判定利用定义; 三个角都相等的三角形是等边三角形; 有一个角是60°的等腰三角形是等边三角形。
四、含30°的直角三角形1)定理 在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边的斜边的一半。
2)逆定理 在直角三角形中,如果一条直角边等于斜边的一半,那么它所对的角等于30°五、等腰三角形的对称性等腰三角形是轴对称图形,有一条对称轴(底边的垂直平分线) 等边三角形有三条对称轴,即三边的垂直平分线。
复习巩固1、(2009•山西)如图,在Rt△ABC 中,∠ACB=90°,BC=3,AC=4,AB 的垂直平分线DE 交BC 的延长2线于点E,则CE 的长为 。
2、(2004•湖州)已知如图,在△ABC 中,BC=8,AB 的中垂线交BC 于D,AC 的中垂线交BC 与E,则△ADE 的周长等于 .3、(2010•娄底)如图,在四边形ABCD 中,AD∥BC,E 为CD 的中点,连接AE、BE,BE⊥AE,延长AE 交BC 的延长线于点F.求证:(1)FC=AD; (2)AB=BC+AD .典型例题 一.选择题1、已知等腰三角形的一个角等于42°,则它的底角为 ( ).A、42 °B、69°C、69°或84°D、42°或69°2、如图,ABC △中,AB AC ,30A ,DE 垂直平分AC ,则BCD 的度数为( ) A.80 B.75C.65 D.453、等腰三角形的顶角是80°,则一腰上的高与底边的夹角是( )A.40° B.50° C.60° D.30°4. 如图,15A ∠,AB BC CD DE EF ,则DEF ∠等于( )A .90 B.75 C.70 D.60A B D EC5、如图,△MNP中, ∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN至G,取NG=NQ,若△MNP的周长为12,MQ=a,则△MGQ周长是( )PQMNGA.8+2a B.8+a C.6+a D.6+2a二.选择题1. 在△ABC 中,AB=AC,若∠B=56º,则∠C=__________.2.等腰三角形底边中点与一腰的距离为6,则腰上的高为______.3.如图,在△ABC 中,AB=AC,CD 平分∠ACB 交AB 于点D,AE∥DC 交BC 的延长线于点E,已知∠E=36°,则∠B= .4.如图,在ABC △中,点D 是BC 上一点,80BAD °,AB AD DC ,则C .三.解答题1. 下午2时,一轮船从A 处出发,以每小时40海里的速度向正南方向行驶,下午4时,到达B 处,在A 处测得灯塔C 在东南方向,在B 处测得灯塔C 在正东方向,在图中画出示意图 ,并求出B、C 之间的距离.2. 如图,在四边形ABCD 中,AB=AD,CB=CD,求证:∠ABC=∠ADC.AC B D804DCAB加强巩固角的平分线DCAEB一、知识准备: 1)角的平分线的画法2)角的平分线的性质: 。
等腰三角形的三种画法
等腰三角形的三种画法
等腰三角形是指两边长度相等的三角形,它是几何学中最基本的图形之一。
在绘制等腰三角形时,有三种不同的画法,分别是直角边法、底边中垂线法和内角平分线法。
直角边法是指在一条直线上画出一条直角边,然后在这条直线的两侧分别画出两条相等的边,使它们与直角边相交,形成一个等腰三角形。
这种画法适用于需要绘制直角的等腰三角形,例如在勾股定理中,我们需要绘制一个直角边为斜边一半的等腰三角形。
底边中垂线法是指在一条直线上画出一条底边,然后在底边的中点处画出一条垂线,使它与直线相交,形成一个顶角为直角的等腰三角形。
这种画法适用于需要绘制顶角为直角的等腰三角形,例如在勾股定理中,我们需要绘制一个斜边为直角边的根号二倍的等腰三角形。
内角平分线法是指在一条直线上画出一条底边,然后在底边的两侧分别画出两条相等的边,使它们与底边相交,形成一个等腰三角形。
接着,从顶角处画出一条内角平分线,使它与底边相交于一点,这个点就是等腰三角形的顶点。
这种画法适用于需要绘制任意顶角的等腰三角形,例如在计算三角函数时,我们需要绘制不同角度的等腰三角形。
等腰三角形是几何学中最基本的图形之一,它有三种不同的画法,
分别是直角边法、底边中垂线法和内角平分线法。
在不同的情况下,我们可以选择不同的画法来绘制等腰三角形,以满足不同的需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分:知识点回顾角平分线的性质及判定:1、角平分线:把一个角平均分为两个相同的角的射线叫该角的平分线;2、角平分线的性质定理:角平分线上的点到角的两边的距离相等:①平分线上的点;②点到边的距离;3、角平分线的判定定理:到角的两边的距离相等的点在角平分线上。
4.注意在证明中用到这两个定理,如何把文字叙述转化成数学符号:例:如图角的平分线的性质定理的几何语言:∵OC是∠AOB的平分线,PD⊥OA于D,PE⊥OB于E,∴PD=PE角的平分线的判定定理的几何语言:∵PD⊥OA于D,PE⊥OB于E,PD=PE∴点P在∠AOB的平分线上等腰三角形的性质及判定:1.等腰三角形有两条边相等的三角形,叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.2.等腰三角形的性质和判定性质1 等腰三角形的两个底角相等(简写成“等边对等角”)性质2 等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称为“三线合一”)判定(1)有两条边相等的三角形,叫做等腰三角形(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称为“等角对等边”)3.等边三角形三条边都相等的三角形叫做等边三角形.4.等边三角形的性质(1)等边三角形的三个内角都相等,并且每一个角都等于60°.(2)等边三角形是轴对称图形,共有三条对称轴.(3)等边三角形每边上的中线、高和该边所对内角的平分线互相重合.5.等边三角形有关判定(1 )三条边都相等的三角形是等边三角形(2)三个角都相等的三角形是等边三角形.(3)有一个角是60°的等腰三角形是等边三角形.6.由对等边三角形推出的一个关于直角三角形的一个性质在直角三角形中,如果有一个锐角等于30°,那么它对的直角边等于斜边的一半. 第二部分:典型例题如图,CD⊥AB,BE⊥AC,垂足分别为D,E,BE,CD相交于O,OB=OC。
求证∠1=∠2.四边形ABCD中,AD∥BC,AE平分∠DAB,BE平分∠ABC,点E恰在DC上,∠C=∠D=90°。
(1)求证:AE⊥BE(2)猜想AB、AD、BC之间有何数量关系?请证明你的结论。
如图,D、E、F分别是△ABC的三条边上的点,CE=BF,△DCE和△DBF的面积相等.求证:AD平分∠BAC.如图,某铁路MN与公路PQ相交于点O,且夹角为90°,其仓库G在A区,到公路和铁路距离相等,且到公路距离为5cm.(1)在图上标出仓库G 的位置.(比例尺为1:10 000,用尺规作图). (2)求出仓库G 到铁路的实际距离。
如图所示,AB=AC ,BC=BD=ED=EA ,求∠A 的度数.如图,△ABC 中BA=BC ,点D 是AB 延长线上一点,DF ⊥AC 于F 交BC 于E ,• 求证:△DBE 是等腰三角形.ED CABF已知:如图,△ABC 中,∠ACB=90°,CD 是高,∠A=30°. 求证:BD=14AB .第三部分:思维误区D CAB一、忽视“垂直”条件例1.已知,如图,CE ⊥AB,BD ⊥AC,∠B=∠C ,BF=CF 。
求证:AF 为∠BAC 的平分线。
错误解法:线上)距离相等的点在角平分的平分线上(到角两边在点CAB F BFCF ∠∴=正确解法: ∵CE ⊥AB,BD ⊥AC (已知) ∴∠CDF=∠BEF=90°∵∠DFC=∠BFE(对顶角相等),BF=CF(已知) ∴△DFC ≌△EFB(S.S.A.)∴DF=EF(全等三角形对应边相等) ∵FE ⊥AB,FD ⊥AC (已知)∴点F 在∠BAC 的平分线上(到一个角的两边距离相等的点在这个角的平分线上)即AF 为∠BAC 的平分线错因:在应用角平分线定理及逆定理时遗漏了“垂直” 的条件。
在解等腰三角形的问题时,当给出的条件(如边、角)情况不明时,一般要分两种情况逐一分析。
否则,易出现错解或漏解的错误。
一、考虑不周造成的错误例1、已知等腰三角形一边长为7,另一边长为3,求它的周长。
错解:当腰长为7时,底边长为3。
所求周长为:7×2+3=17当腰长为3时,底边长为7。
所求周长为:3×2+7=13剖析:错解分腰长为7或3两种情况求周长貌似严密,但3+3=6<7违背了三角形的三边关系定理,犯了考虑不周的错误。
正解:当腰长为7时,底边长为3。
所求周长为:7×2+3=17当腰长为3时,底边长为7。
所求周长为:3×2+7=13但当三角形的三边长为3,3,7时,3+3=6<7违背了三角形的三边关系定理,不能为成一个三角形。
所以所求周长为7×2+3=17。
二、腰大于底的习惯思维造成的疏漏例2、已知等腰三角形一腰上的中线将三角形的周长分成12㎝和15㎝两部分,求这个三角形腰长和底边长。
错解:∵BD 为等腰△ABC 的中线∴AD=DC设AB 为x ㎝ ,BC 为ycm.⎪⎪⎩⎪⎪⎨⎧=+=+122152y x x x解得 ⎩⎨⎧==710y x所以这个三角形腰长为10㎝,底边长为7㎝。
剖析:在处理等腰三角形的问题时,有的同学习惯上总认为腰大于底,这是造成错误的原因所在。
事实上本题有两种情况。
正解:此题有两种情况:∵BD 为等腰△ABC 的中线 ∴AD=DC设AB 为x ㎝ ,BC 为ycm.(1) ⎪⎪⎩⎪⎪⎨⎧=+=+122152y x x x解得 ⎩⎨⎧==710y x或 (2) ⎪⎪⎩⎪⎪⎨⎧=+=+152122y x x x解得 ⎩⎨⎧==118y x 所以这个三角形腰长为10㎝,底边长为7㎝或腰长为8㎝,底边长为11㎝。
三、概念不清造成的错误例3、已知在等腰三角形中,一个角是另一个角的2 倍,求等腰三角形三个内角的度数。
错解:设等腰三角形的顶角为x °,则底角为2 x °。
根据题意,得 x+2x+2x=180 解得 x=36 ∴2x=72∴这个等腰三角形的三个内角为:36°、72°、72°.剖析:错误在于误认为等腰三角形的底角一定大于顶角,是概念不清造成的错误想法。
本题应分底角大于或小于顶角两种情况解答。
正解:当等腰三角形的底角大于顶角时,设顶角为x °,则底角为2 x °。
根据题意,得 x+2x+2x=180 解得 x=36 ∴2x=72∴这个等腰三角形的三个内角为:36°、72°、72°.当等腰三角形的底角小于顶角时,设底角为x °,则顶角为2 x °。
根据题意,得 2x+x+x=180 解得 x=45∴2x=90∴这个等腰三角形的三个内角为:90°、45°、45°.第四部分:方法规律角平分线:(1)有角平分线,通常向角两边引垂线。
(2)证明点在角的平分线上,关键是要证明这个点到角两边的距离相等,即证明线段相等。
常用方法有:使用全等三角形,角平分线的性质和利用面积相等,但特别要注意点到角两边的距离。
(3)注意:许多同学对证明两个三角形全等的问题已经很熟悉了,所以证题时,不习惯直接应用角平分线性质定理和判定定理,仍然去找全等三角形,结果相当于重新证明了一次这两个结论.所以特别提醒大家,能用简单方法的,就不要绕远路.等腰三角形:1.等腰三角形的性质定理提示了三角形边与角的转化关系,由两边相等转化为两角相等,这是证明两角相等的常用依据。
2.作等腰三角形底边上的高线、中线、顶角平分线,是三种重要的辅助线,在做题的时候要灵活选择,用最方便、简捷的方法解题。
3.等腰三角形的顶角平分线,底边上的中线、底边上的搞这“三线合一”的性质有多重功能,可以证明两线段相等,两个角相等以及两条直线的互相垂直,也可以证明线段成角的倍分问题。
但要注意使用性质2是以等腰三角形为前提的。
巩固练习:1.(2011•衢州)如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为()A.1B.2C.3D.4 2.(2011•恩施州)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG A.11 B.5.5 C.7D.3.5第1题第2题第3题3.(2010•鄂州)如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC 于点F.S△ABC=7,DE=2,AB=4,则AC长是()A.4B.3C.6D.5二.填空题4.(2011•岳阳)如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为_________.5.(2012•海南)如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是___________________.6.(2010•曲靖)在Rt△ABC中,∠C=90°,若BC=10,AD平分∠BAC交BC于点D,且BD:CD=3:2,则点D到线段AB的距离为_________.第4题第5题第6题12.如图, 已知:点D,E在△ABC的边BC上,AB=AC,AD=AE.求证:BD=CE.13.如图, AB=AE,BC=DE,∠ABC=∠AED,点F是CD的中点.•求证:AF⊥CD.14. 如图,∠BAC=90°,AD⊥BC,垂足为D,BE平分∠ABC,交AC于E,交AD于F.试判断△AEF的形状,并说明理由.。