保护光纤通道测试报告.
220kV线路光纤通道测试作业指导书

贵州华电毕节热电有限公司220kV线路专用光纤通道定检测试作业指导书批准:审核:编制:2014年09月一、适用范围:本作业指导书适用于220kV线路保护光纤通道定检测试作业。
二、引用标准:1、《电力安全动作规程》(发电厂和变电站电气部分)DL 408-19912、《继电保护和电网安全自动装置检验规程》GB/T 14285—20063、《继电保护和电网安全自动装置检验规程》DL/T 995—20064、《中国南方电网通信管理暂行规定》(南方电网调【2003】10号)5、《中国南方电网安全自动装置管理规定》(南方电网调【2004】7号)6、《南方电网电力调度数据网络管理办法》(调通【2005】2号)7、《南方电网通信网络生产应用接口技术规范》(调通【2007】18号)三、作业条件及作业现场要求1、工作区间与带电设备的安全距离应符合《国家电网公司电力安全工作规程(变电部分)》(国家电网安监【2009】664号)的要求。
2、作业现场应有可靠的试验电源,且满足试验要求。
3、检验对象处于停运状态,现场安全措施完整、可靠。
4、保持现场工作环境整洁。
四、作业人员要求1、所有作业人员必须身体健康,精神状态良好。
2、所有作业人员必须掌握《国家电网公司电力安全工作规程(变电部分)》(国家电网安监【2009】664号)的相关知识,并经考试合格。
3、所有作业人员应有触电急救及现场紧急救火的常识。
4、本项检验工作需要作业人员2—3人。
其中工作负责人1人,工作班成员1—2人。
5、工作负责人应由从事继电保护现场检验工作3年以上的专业人员担任,必须具备工作负责人资格,熟练掌握本作业程序和质量标准,熟悉工作班成员的技术水平,组织并合理分配工作,并对整个检验工作的安全、技术等负责。
6、工作班成员应由从事继电保护现场检验工作半年以上的专业人员担任,必须具备必要的继电保护知识,熟悉本作业指导书,能掌握有关试验设备、仪器仪表的使用。
五、作业前准备工作:1、开始工作前一天,准备好作业所需设备、仪器、仪表和工器具。
光纤通信实验报告

2.了解电话呼叫接续过程;3.掌握电话呼叫时的各种可闻信号音的特征; 4.了解记发器的工作过程; 5.掌握PCM 编译码原理;6.了解双光纤全双工通信的组成结构。
二、实验仪器1.光纤通信实验箱 2.20M 双踪示波器3.FC-FC 单模光跳线 2根 4.小型电话单机 2部 5.铆孔连接线 若干三、基本原理本实验系统主要由两大部分组成:电端机部分、光信道部分。
电端机由电话用户接口电路A 、PCM 编译码A 、记发器电路、PCM 编译码B 、电话用户接口电路B 等组成,光信道为双光纤通信结构。
电话语音信号的光纤传输,可以有多种方式,一种是原始语音信号,经过光纤直接进行传输;另一种方式是先把话音信号数字化,然后再经过光纤传输,目前使用最多的是PCM 编译码方式。
下面先介绍本实验平台上两路电话电路接口示意图。
图7.1.1 电话用户A 、B 结构示意图图7.1.2 电话用户A 、B 模拟光传输结构示意图(A 到B 单工)P601用户A用户BP804激光/探测器P201P205PCM 编码 PCM译码TP801/802P801P802P804用户B :49P803PCM 编码 PCM译码P601P602P603P604TP601用户A :48图7.1.3数字电话光纤通信基本组成结构示意图(一)电话接口电路原理介绍用户电路也可称为用户线接口电路(Subscriber Line Interface Circuit —SLIC )。
任何交换机都具有用户线接口电路。
根据用户电话机的不同类型,用户线接口电路(SLIC )分为模拟用户接口电路和数字用户接口电路两种。
模拟用户线接口电路在实现上的最大压力是应能承受馈电、铃流和外界干扰等高压大电流的冲击,过去都是采用晶体管、变压器(或混合线圈)、继电器等分立元件构成。
在实际中,基于实现和应用上的考虑,通常将BORSHCT 功能中过压保护由外接元器件完成,编解码器部分另单成一体,集成为编解码器(CODEC ),其余功能由集成模拟SLIC 完成。
光缆保护工作总结

光缆保护工作总结
光缆保护工作是保障通讯网络稳定运行的重要环节,其作用不可忽视。
在过去的一段时间里,我们团队在光缆保护工作中积极探索,总结了一些经验和教训,现在将其总结如下,希望对今后的工作有所帮助。
首先,光缆保护工作需要高度重视,因为光缆是通讯网络的重要组成部分,一旦出现故障将会对通讯造成严重影响。
因此,我们在日常工作中要对光缆进行定期巡检和维护,及时发现并排除潜在问题,确保光缆的正常运行。
其次,光缆保护工作需要科学合理的规划和布局。
在光缆的敷设过程中,要考虑到各种外部因素对光缆的影响,比如地质条件、气候变化等,合理选择敷设路径和保护措施,确保光缆的安全性和稳定性。
另外,光缆保护工作需要加强技术培训和队伍建设。
只有具备一支高素质的技术团队,才能够保障光缆的安全运行。
我们要不断提高员工的技术水平,注重团队协作和沟通,确保在光缆保护工作中能够快速、有效地应对各种突发情况。
最后,光缆保护工作需要加强监控和预警能力。
通过安装监控设备和建立预警系统,可以实时监测光缆的运行情况,一旦发现异常情况能够及时采取措施,避免事故的发生。
总之,光缆保护工作是一项重要的工作,需要我们高度重视和加强管理。
通过总结经验和教训,不断完善工作机制,相信我们能够更好地保障光缆的安全运行,为通讯网络的稳定运行做出更大的贡献。
光纤通信实验报告

福建农林大学金山学院信息工程类实验报告课程名称:光纤通信姓名:系:信息与机电工程系专业:电子信息工程年级:2011学号:指导教师:职称:2014年12月29日实验项目列表福建农林大学金山学院信息工程类实验报告实验一固定速率时分复用解复用实验1.实验目的1)熟悉集中插入帧同步码时分复用信号的帧结构特点。
2)掌握固定速率时分复用的数字分接原理。
3)掌握帧同步码的识别原理。
2.实验内容1)用使用固定速率信号源、固定速率时分复用复接端接口及固定速率时分复用分接端接口三个模块连成一个理想信道时分复用数字通信系统,使系统正常工作。
2)用示波器观察集群信号(FY_OUT)、位同步信号(BS)及帧同步信号(FS),熟悉它们的对应关系。
3)阅读实验指导,学习简单时分复用的数字分接原理。
4)观察信号源发光管与终端发光管的显示对应关系,观察直接时分复用与解复用的实验效果。
3.实验仪器示波器,RC-GT-II型光纤通信实验系统。
4.基本原理(一)数字分接的基本组成:在实际应用中,通常总是把数字复接器和数字分接器装在一起做成一个设备,称为复接分接器(缩写为Muldex)。
在这里我们继续讨论数字分接器。
数字分接器的基本组成如图2-1所示。
数字分接器的作用是把一个合路数字信号分解为原来支路的数字信号。
数字分接器由同步、定时、分接和恢复单元所组成。
定时单元的作用是为分接和恢复单元提供基准时间信号,它只能由接收的时钟来推动。
同步单元的作用是为定时单元提供控制信号,使分接器的基准时间与复接器的基准时间信号保持正确的相位关系,即保持同步。
分接单元与复接单元相对应,分接单元的作用是把输入的合路数字信号(高次群)实施时间分离。
分接器的恢复单元与复接器的调整单元相对应,恢复单元的作用是把分离后的信号恢复成为原来的支路数字信号。
图2-1 数字分接器的基本组成(二)所用实验模块的结构原理:本实验使用固定速率信号源、固定速率时分复用复接端接口及固定速率时分复用分接端接口三个模块。
光差保护实验报告

一、实验目的1. 理解光差保护的基本原理和功能。
2. 掌握光差保护装置的安装、调试和操作方法。
3. 通过实验验证光差保护在实际电力系统中的应用效果。
二、实验原理光差保护是一种基于光纤差动原理的保护装置,它利用光纤通道将两侧断路器的电气量进行对比,当流入电流等于流出电流时,产生差流达到保护定值即动作。
光差保护具有全线快速保护、动作可靠等优点,在电力系统中得到广泛应用。
三、实验器材1. 光差保护装置一套2. 光纤通道一套3. 断路器一套4. 电源一套5. 测试仪器一套四、实验步骤1. 安装与调试(1)按照说明书要求,将光差保护装置安装在相应的断路器上。
(2)连接光纤通道,确保光纤连接牢固。
(3)调整光差保护装置的参数,包括保护定值、延时等。
(4)检查电源和测试仪器的正常工作。
2. 实验操作(1)模拟故障情况,例如单相接地故障,观察光差保护装置的动作情况。
(2)记录光差保护装置的动作时间、动作电流等参数。
(3)分析光差保护装置的动作效果,与理论预期进行对比。
3. 实验数据与分析在实验过程中,记录以下数据:(1)故障类型:单相接地故障(2)故障电流:50A(3)光差保护装置动作时间:0.1秒(4)光差保护装置动作电流:50A通过实验数据分析,得出以下结论:1. 光差保护装置在模拟故障情况下能够迅速动作,动作时间为0.1秒,满足实际电力系统的保护要求。
2. 光差保护装置的动作电流与故障电流相等,表明光差保护装置的动作可靠。
3. 光差保护装置在实际应用中,能够有效保护电力系统,提高电力系统的安全性和可靠性。
五、实验结论1. 光差保护装置是一种有效的保护装置,具有全线快速保护、动作可靠等优点。
2. 通过实验验证,光差保护装置在实际电力系统中具有良好的应用效果。
3. 在今后的电力系统保护工作中,应进一步推广光差保护装置的应用。
六、实验建议1. 在实际应用中,应根据电力系统的具体情况,选择合适的光差保护装置。
2. 定期对光差保护装置进行检查和维护,确保其正常运行。
保护光纤通道测试报告.

附件 2单位盖章光纤通道测试报告- I -光纤通道测试报告注: 1、继电保护光电转换装置指将接点电信号转换为光信号的装置,如 FOX-41A 、 GXC-01、CSY-102A 等,有的可设展宽时间;继电保护信号数字复用接口装置指将光纤差动保护装置等 出来的光信号转换为 G.703 规约 2M 电信号的装置,如 MUX-2M 、GXC-64/2M 、CSY-186A 等。
2、保护装置使用的 64kbps 采用 G.703 同向数字接口或者 2Mbps 透明传输接口,SDH 的 2Mbps 通道再定时功能不用,此项工作由通信人员负责。
仪表名称及型号 仪表名称及型号序号 序号 路线长度 km导线型号继电保护光电转换装置继电保护信号数字复接接口装置保护信号传输通道 64kbps 2Mbps 专用光纤SDH 装置型号测试时间 年 月 日 时天气情况 晴 阴 大雾 雨 大雨光纤通道测试报告通道一主一保护通道二通道一辅 A 保护通道二通道一主二保护通道二通道一辅 B 保护通道二通道一主三保护通道二以罗平变滇罗Ⅰ线为例,主一保护通道一通信通道编号为如“罗平变2M29”,通道路由为点对点,罗平——滇东。
通道路由通常指:专用、点对点、迂回,当为迂回时应说明迂回通道经过的站点。
4.1 专用光纤方式光纤通道测试报告(A )配有光纤接线盒的专用光纤通道连接图(B )未有光纤接线盒的专用光纤通道连接图图 1 差动保护专用光纤通道连接示意图4.1、保护装置及保护通信接口装置发光功率和接收功率测试测试目的:测试保护装置和光纤接口的发光功率以及接收功率。
测试方法:分别用光功率计测量保护装置发信端( FX)尾纤的光功率——保护装置的发光功率和保护装置收信端( RX)尾纤的光功率——保护装置接收到的光功 率。
测试地点:保护装置光纤端口和光纤接线盒光纤端口及 ODF 架处。
测试分工:测试点 1 处由继保人员负责,测试点 2 处由保护人员和通信人员共同负责。
电网光缆测试报告模板

电网光缆测试报告模板一、测试对象简介本次测试的光缆类型为XXX型号,供应商为XXX公司,总长度为XXXm。
光缆被架设在电力杆上,连接着电网的各个部分。
二、测试目的•确保光缆的可用性和完整性,保证电网的稳定运行。
•检测光缆在不同工作负载下的传输性能,分析网络中的带宽瓶颈,为网络优化提供数据支持。
三、测试环境测试在天气晴朗的工作日进行,测试场景为距离测试起点XXXm的断电杆子,测试过程使用测试软件和测试设备。
测试设备分别为:•光纤光谱仪:XXX公司生产,型号为XXX。
•光时域反射仪:XXX公司生产,型号为XXX。
•光网络分析仪:XXX公司生产,型号为XXX。
四、测试内容1. 全程衰减测试测试内容为测量光缆总长度时的衰减情况。
测试步骤如下:1.将测试设备连接至光缆起始点和终点。
2.采用光纤光谱仪读取测试路径上的光信号强度。
3.记录强度值,计算出全程衰减值。
测试结果如下:测试项目检测值全程衰减XXX2. 随机反射测试该测试主要针对光缆的质量和密度,通过反射率分析来检测光缆是否破损或存在其他损坏问题。
测试步骤如下:1.采用光时域反射仪发送光信号至被测试光缆。
2.记录光信号反射到光时域反射仪上的时间。
3.计算出反射率。
读取的测试值如下:测试项目检测值反射率XXX%3. 端到端延时测试该测试用于检测光缆的传输时间,主要考察光缆各个部分的数据传输速率,以及网络中的总传输速率。
测试步骤如下:1.将光网络分析仪与测试光缆相连接。
2.使用光网络分析仪确定数据的传送速率。
3.测试端与另一端之间传输一组数据,记录下测试时间差。
测试结果如下:测试项目检测值延迟时间XXX五、测试结论根据以上测试结果,分析了电网的带宽瓶颈和网络中的传输速率,得出以下结论:1.光缆的衰减系数符合要求,不存在信号弱化的问题,光缆传输的信号完好。
2.光缆反射率较高,需要进一步进行检测以确定是否存在光信号破损等问题。
3.光缆的传输速率稳定且满足网络需求,但出现较大的延迟,需要进一步优化网络让延迟更小。
光纤部分实验报告通信工程专业综合实验.

通信工程专业综合实验报告――光通信部分姓名学号通信班级上课时间周二下午16:20~18:10第8章光纤传输系统实验一激光器P-I特性测试实验1. 实验目的1、学习半导体激光器发光原理和光纤通信中激光光源工作原理2、了解半导体激光器平均输出光功率与注入驱动电流的关系3、掌握半导体激光器P (平均发送光功率)-I (注入电流)曲线的测试方法2. 实验仪器1、ZY12OFCom13BG型光纤通信原理实验箱1台2、FC接口光功率计1台3、FC/PC-FC/PC单模光跳线1根4、万用表1台5、连接导线20 根3. 实验原理半导体激光二极管(LD)或简称半导体激光器,它通过受激辐射发光,是一种阈值器件。
处于高能级E2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E1,这个过程称为光的受激辐射,所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。
由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(》10mW辐射,而且输出光发散角窄(垂直发散角为30〜50°,水平发散角为0〜30°),与单模光纤的耦合效率高(约30%〜50%),辐射光谱线窄(△入=0.1〜1.0nm),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHZ直接调制,非常适合于作高速长距离光纤通信系统的光源。
P-I 特性是选择半导体激光器的重要依据。
在选择时,应选阈值电流I th尽可能小,I th对应P值小,而且没有扭折点的半导体激光器。
这样的激光器工作电流小,工作稳定性高,消光比大,而且不易产生光信号失真。
并且要求P-I曲线的斜率适当。
斜率太小,则要求驱动信号太大,给驱动电路带来麻烦;斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。
半导体激光器可以看作为一种光学振荡器, 要形成光的振荡,就必须要有光放大机制,也即激活介质处于粒子数反转分布, 而且产生的增益足以抵消所有的损耗。
光缆质量检测报告

光缆质量检测报告1. 引言光缆是现代通信网络中不可或缺的基础设施。
为确保通信网络的可靠性和稳定性,光缆的质量检测尤为重要。
本报告旨在介绍光缆质量检测的步骤和方法,以及结果分析。
2. 检测步骤2.1 外观检测光缆的外观检测是第一步,用于检查光缆是否存在物理损坏或破损。
检测人员应仔细观察光缆表面是否有裂纹、划痕或其他异常情况。
同时,还需要检查光缆的标识和序列号是否清晰可见。
2.2 纤芯检测纤芯检测是光缆质量检测的核心步骤。
通过检测光缆的纤芯质量,可以评估光缆的传输性能。
常用的纤芯检测方法包括:2.2.1 全波长扫描全波长扫描是一种非常常用的纤芯检测方法。
通过使用光谱仪或光频分析仪,可以在不同波长下测量纤芯的损耗和反射。
2.2.2 OTDR测试OTDR(Optical Time Domain Reflectometer)是一种高精度的纤芯检测仪器。
它可以通过发送脉冲光信号,并测量返回的反射信号和散射信号,来确定光缆的损耗和衰减。
2.3 引入光源和接收器为了完成纤芯的检测,需要引入光源和接收器。
光源通常使用激光器或发光二极管,而接收器通常使用光电二极管或光探测器。
这些设备能够产生和接收光信号,以评估光缆的传输效果。
2.4 光缆整体性能测试光缆整体性能测试旨在评估光缆在不同环境条件下的传输能力。
这包括:2.4.1 传输距离测试通过将光缆连接到光设备,可以测试光缆在不同距离下的传输能力。
这有助于确定光缆的最大传输距离。
2.4.2 温度和湿度测试光缆通常在各种环境条件下使用,因此需要测试光缆在不同温度和湿度下的传输性能。
这有助于确定光缆是否适用于特定的应用场景。
3. 结果分析光缆质量检测的结果通常以图表或数据表格的形式呈现。
检测人员应仔细分析这些结果,并与标准参数进行比较。
如果发现任何异常情况,应及时采取措施修复或更换光缆。
4. 结论光缆质量检测是确保通信网络稳定和高效运行的关键环节。
通过按照上述步骤进行光缆质量检测,可以及时发现和解决光缆存在的问题,确保网络通信的可靠性和稳定性。
光纤通信实验报告全

光纤通信实验报告实验1.1了解和掌握了光纤的结构、分类和特性参数,能够快速准确的区分单模或者多模类型的光纤。
实验1.21.关闭系统电源,将光跳线分别连接TX1550、RX1550两法兰接口(选择工作波长为1550nm的光信道),注意收集好器件的防尘帽。
2.打开系统电源,液晶菜单选择“码型变换实验—CMI码PN”。
确认,即在P101铆孔输出32KHZ的15位m序列。
3.示波器测试P101铆孔波形,确认有相应的波形输出。
4.用信号连接线连接P101、P203两铆孔,示波器A通道测试TX1550测试点,确认有相应的波形输出,调节 W205 即改变送入光发端机信号(TX1550)幅度,最大不超过5V。
即将m序列电信号送入1550nm光发端机,并转换成光信号从TX1550法兰接口输出。
5.示波器B通道测试光收端机输出电信号的P204试点,看是否有与TX1550测试点一样或类似的信号波形。
6.按“返回”键,选择“码型变换实验—CMI码设置”并确认。
改变SW101拨码器设置(往上为1,往下为0),以同样的方法测试,验证P204和TX1550测试点波形是否跟着变化。
7.轻轻拧下TX1550或RX1550法兰接口的光跳线,观测P204测试点的示波器B通道是否还有信号波形?重新接好,此时是否出现信号波形。
8.以上实验都是在同一台实验箱上自环测试,如果要求两实验箱间进行双工通信,如何设计连接关系,设计出实验方案,并进行实验。
9.关闭系统电源,拆除各光器件并套好防尘帽。
实验2.13.示波器测试P101铆孔波形,确认有相应的波形输出。
4.用信号连接线连接P101、P203两铆孔,示波器A通道测试TX1550测试点,确认有相应的波形输出,调节W205即改变送入光发端机信号(TX1550)幅度最大(不超过5V),记录信号电平值。
即将拨码器设置序列电信号送入1550nm 光发端机,并转换成光信号从 TX1550法兰接口输出。
5.6.拨码器设置其它序列组合,W205 保持不变,记录码型和对应的输出光功率,得出你的结论。
光纤差动保护调试报告

光纤差动保护调试报告
一、背景及目的
本次调试旨在确保光纤差动保护装置在电力系统中的正常运行,提高电力系统的稳定性和安全性。
通过本次调试,我们将对光纤差动保护装置的性能、功能、参数等进行全面测试,并记录相关数据和结果。
二、设备描述
本次调试所使用的光纤差动保护装置型号为XDF100,该装置具有以下主要特点:
1. 采用光纤传输信号,具有较高的传输速度和稳定性;
2. 具备差动保护、后备保护、过载保护等多种功能;
3. 配置有液晶显示屏,便于操作和监视;
4. 具备远程通信功能,可与监控系统连接。
三、调试过程及结果
1. 设备安装及接线正确性检查:确认设备安装位置正确,接线方式符合要求,连接牢固。
2. 参数设置检查:确认装置参数设置正确,包括电流采样值、差动门限等。
3. 模拟故障测试:通过模拟各种故障情况,如区内故障、区外故障等,测试装置的动作准确性、灵敏性。
4. 实际运行测试:在电力系统实际运行状态下,对装置进行长时间连续测试,观察其性能表现。
测试结果如下:
(根据实际测试数据填写)
四、结论
经过本次调试,光纤差动保护装置性能稳定,动作准确、灵敏,符合设计要求。
但在实际运行中,仍需注意以下几点:
1. 定期检查设备运行状态,确保其始终处于最佳工作状态;
2. 定期进行维护保养,确保设备安全可靠;
3. 遇到异常情况时,应及时处理,防止故障扩大。
总之,光纤差动保护装置在电力系统中的应用,可以有效提高电力系统的稳定性和安全性,为人们的生活和工作提供保障。
光纤布线性能及损耗认证测试

芯时发生部分散射,从而导致光源损失。 当玻璃内的
杂质与波长大致相等时, 波长与损耗成 反 比, 波 长 越
长、损耗越小。 弯曲是由于光纤形状的轻微缺陷导致
的,造成弯曲的主要原因有生产过程中的缠绕、纤芯直
径的变化、纤芯与包层界面的粗糙、机械压迫、拉伸、压
紧、扭转等。
(4) 带宽。 光纤的信息传输能力,用比特率表达。
带宽是频率与距离的乘积,用 MHz-km 表示。 标准规
定的带宽指标有 3 种,即全模式带宽、限定模式带宽、
激光带宽或者有效模式带宽。 若想确保光纤链路的带
宽达到千兆速度,较好的方法是测差分模式延迟。
3. 5 光纤布线常见故障
光纤是可靠性优良、性价比高的传输介质,实 际
光纤的外层皮由塑料材质组成,称为“ 涂覆层” 或者“ 内
层” ,保护玻璃纤维并维持强度。 局域网布线基础设施
中使用的多模光纤纤芯直径为 62. 5 μm,50 μm,单模
光纤是直径为 9 μm。
3. 2 反射与折射
利用光从空气照进水中的例子来说明光纤基于全
反射的工作原理。 当光的入射角比临界角小时,到达
使用中要求将极细的光纤纤芯精确对齐。 然而,即便
是微小的灰尘,也可能会对光纤端面造成污染而损坏
连接,引发各种问题。 光纤在布线和使用中,被折断、
熔接 不 好、 光 纤 端 面、 灰 尘、 污 垢 等 现 象 都 是 常 见
故障。
3. 6 光纤连接中的注意事项
PC( 物理接触) 连接器,减少了光纤之间的空隙,
摘 要: 数据中心对于企业而言是最重要的资产之一,光纤网络是数据中心的主要布线方式,更是数据中心的基石,用户
光纤通道故障告警处理技术报告

的 收 信 光 纤 ,接 着 ,一 开 始 的 那 根 光 纤 ,在 重 新 使 用 一 个 光 纤 带 路 接 口 装 置 的 光 接 口 后 ,光 纤 通 道 通 讯 业 恢 复 工 作 。这 说 明
1 专用光纤通道容易发生的故障及修复方法
接 着 通 过 光 纤 带 路 接 口 装 置 ,对 旁 路 带 路 进 行 连 接 ,这 时 出 了
专 用 光 纤 通 道 在 保 护 使 用 时 , 因 为 仅 仅 通 道 这 一 方 面 发 一 个 异 常 ,就 是 光 纤 通 道 不 能 正 常 通 讯 。因 为 光 纤 通 道 在 旁 路
衰 耗 小 等 优 点 ,使 得 光 纤 保 护 应 用 广 泛 ,已 经 取 代 载 波 通 道 , 3 . 3 光 纤 装 置 在 接 口 方 面 出 现 的 故 障
由 于 光 纤 通 道 的 大 规 模 应 用 ,继 电 保 护 现 场 遇 到 的 光 纤 通 道
某 变 电 站 的 线 路 保 护 改 造 后 ,牵 涉 到 一 个 问 题 ,那 就 是 光
多 ,引起保护装置通道告警的原因很多,包括光缆断芯、光纤跳线接线松动、尾纤折弯过大或接头积灰导致损耗增加、复用接□装置问题等,典
型故障处理。
【关 键 词 】光纤通道;故障告警;中断
【中图分类号】TN915.63
【文献标识码】 A
【文章编号】2095-2066( 2017 )33-0346-02
346
S C (2)
保 护 装 置 问 题 。 可 在 光 纤 配 线 间 与 保 护 处 分 别 自 环试,验 的 对 象 是 两 侧 的 光 纤 带 路 接 口 装 置 , 结 果 也 未 找 到 任 何
判 断 是 否 为 装 置 问 题 ,同 时 检 测 时 钟 设 置 是 否 正 确 。
光纤调试报告

光纤调试报告报告概述本报告对经典电信公司在某客户项目中进行的光纤调试进行了汇总和分析。
该项目目的是实现客户机房和数据中心之间的光纤直连,提高数据传输速率和网络稳定性。
调试范围包括光纤质量、传输带宽、连接性等方面,并在调试过程中发现和处理了一些问题。
环境描述客户机房与数据中心之间距离约10公里,存在10公里左右的地下通道。
两地间采用SM光纤直连,每个端点均安装了一对1x2光纤分复用器和一对1x2光纤收发器。
调试过程与结果1、光纤质量调试使用光纤测试仪,对两端光纤连接点的衰减、传输损失、信号强度等参数进行了测试。
测试数据如下:测试项单位端点1 端点2光线衰减率分贝0.14 0.12光功率损失分贝0.25 0.28连通率% 99.95 99.65测试结果显示,两端光纤质量良好,符合光纤规范要求。
2、传输带宽调试采用iPerf软件测试了光纤传输带宽,分别在不同时间节点进行测试。
测试结果如下:测试时间传输带宽(Mbps)备注9:00-10:00 940 稳定10:00-12:00 935 稳定12:00-13:00 890 峰值出现13:00-14:00 870 中值出现测试结果显示,光纤传输带宽在稳定状态下可以达到940Mbps,但在高峰期会出现波动,需要进一步优化。
3、连接性调试在调试过程中,发现在1x2光纤分复用器连接点处存在一定问题,会导致大数据量传输时存在丢包现象,经过排查,发现问题出在连接器插拔不稳以及光纤损伤,于是进行了更换和修理。
更换以后进行了对比测试,测试结果显示丢包率大大降低,连接性稳定。
总结本次光纤调试发现了连接器不稳和光纤损伤的问题,并进行了相应的更换和修理。
测试结果显示,在不同方面的测试项下,光纤质量、传输带宽、连接性均得到满足。
同时也发现了提升传输能力的必要性,需要随时关注和维护优化,提高网络稳定性和可用性。
光纤通信实训报告

光纤通信实训报告1. 实训背景光纤通信是一种通过光纤传输光信号进行信息传输的技术。
相比传统的电信号传输方式,光纤通信具有更高的传输速率、更低的信号损耗以及更大的带宽等优势。
在光纤通信实训中,我们将学习如何搭建光纤通信系统、配置光纤设备以及进行光纤网络的调试与维护。
2. 实训目标本次实训的主要目标是让学生掌握光纤通信系统的搭建和配置技术,并能够独立完成光纤网络的调试和维护工作。
具体的实训内容包括以下几个方面:2.1 光纤通信系统的搭建在实训过程中,我们将学习如何选择合适的光纤设备并进行搭建。
主要包括光纤收发器、光纤跳线、光纤交换机等设备的选择和安装。
2.2 光纤设备的配置光纤设备的配置是搭建光纤通信系统的关键一步。
在实训中,我们将学习如何配置光纤设备的网络参数、路由设置以及安全策略等。
2.3 光纤网络的调试与维护光纤网络在运行过程中可能会出现各种问题,如信号丢失、带宽不足等。
在实训中,我们将学习如何利用相关工具进行网络故障排查和维护。
3. 实训过程3.1 设备准备首先,我们需要准备光纤收发器、光纤跳线、光纤交换机等设备。
这些设备将用于搭建光纤通信系统。
3.2 光纤设备的搭建与连接在设备准备完成后,我们将按照实训指导手册的要求,将光纤设备进行正确的搭建和连接。
这一步骤需要细心操作,确保设备连接正确、稳定。
3.3 光纤设备的配置光纤设备的配置是实现光纤通信的关键一步。
在配置过程中,我们需要设置设备的网络参数、路由设置以及安全策略等。
这一步骤需要根据实际情况进行具体的配置操作。
3.4 光纤网络的调试与维护完成光纤设备的配置后,我们需要对光纤网络进行调试和维护。
在实训过程中,我们将学习如何使用网络调试工具进行故障排查,如光功率计、光时域反射仪等。
4. 实训总结通过本次光纤通信实训,我们深入了解了光纤通信技术的原理和应用。
通过搭建光纤通信系统、配置光纤设备以及进行光纤网络的调试与维护,我们掌握了相关的实际操作技能。
调继2007-8号文_《南方电网500kV继电保护通道规范》附件

附件南方电网500kV线路保护通道规范1技术规范1.1基本要求1.1.1线路保护通道的配臵应符合双重化原则,保护接口装臵、通信设备、光缆或直流电源等任何单一故障不应导致同一条线路的所有保护通道同时中断。
1.1.2配臵两套主保护的线路,每套主保护的通道应按“光纤”+“光纤”注1、“光纤”+“载波”或“光纤通道自愈环”方式配臵双通道。
配臵3套主保护的线路,应至少有1套主保护按“光纤”+“光纤”、“光纤”+“载波”或“光纤通道自愈环”方式配臵双通道。
1.1.3 光纤电流差动保护禁止采用光纤自愈环方式。
1.1.4 远跳通道宜独立于线路差动保护通道。
1.1.5不同保护通道使用的通信设备的直流电源应相互独立:1.1.5.1 保护通道采用两路复用光纤通道时,不同光端机使用的直流电源应相互独立;1.1.5.2 保护通道采用一路复用光纤通道和一路复用载波通道时,光端机与载波机使用的直流电源应相互独立;1.1.5.3 保护通道采用两路复用载波通道时,不同载波机使用的直流电源应相互独立。
1.1.6 线路保护采用复用通道时,不同保护使用的接口设备可共同组屏。
在具备两套通信电源的条件下,通信机房内保护数字接口装臵使用的直流电源应满足以下要求:1.1.6.1通信机房内保护数字接口装臵应与提供该通道的通信设备使用同一路(同一套)直流电源。
1.1.6.2 线路配臵两套主保护时,保护数字接口装臵使用的直流电源应满足以下要求:a)两套主保护均采用单通道时,每个保护通道的数字接口装臵使用的直流电源应相互独立;b)两套主保护均采用双通道时,每套主保护的每个保护通道的数字接口装臵使用的直流电源应相互独立;c)一套主保护采用单通道,另一套主保护采用双通道时,采用双通道的主保护的每个保护通道的数字接口装臵使用的直流电源应相互独立,同时应合理分配采用单通道的主保护的数字接口装臵使用的直流电源。
1.1.6.3线路配臵三套主保护时,保护数字接口装臵使用的直流电源应满足以下要求:a)三套主保护均采用单通道时,允许其中一套主保护的数字接口装臵与另一套主保护数字接口装臵共用一路(一套)直流电源,但应至少保证一套主保护的数字接口装臵使用的直流电源与其它主保护数字接口装臵使用的直流电源相互独立;b)一套主保护采用双通道,另外两套主保护采用单通道时,采用双通道的主保护的每个保护通道的数字接口装臵使用的直流电源应相互独立,两套采用单通道的主保护的数字接口装臵使用的直流电源应相互独立;c)两套及以上主保护采用双通道时,每套采用双通道的主保护的每个保护通道的数字接口装臵使用的直流电源应相互独立,采用单通道的主保护的数字接口装臵可与其它主保护的数字接口装臵共用一路(一套)直流电源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附件2保护光纤通道测试报告线路名称:电压等级:测试地点:测试单位:单位盖章测试日期:编写人:参与测试人员:审查:核定:- I -一、测试条件阴大雾大雨二、设备情况1、现场运行设备64kbps2Mbps专用光纤注:1、继电保护光电转换装置指将接点电信号转换为光信号的装置,如FOX-41A、GXC-01、CSY-102A等,有的可设展宽时间;继电保护信号数字复用接口装置指将光纤差动保护装置等出来的光信号转换为G.703规约2M电信号的装置,如MUX-2M、GXC-64/2M、CSY-186A等。
2、保护装置使用的64kbps采用G.703同向数字接口或2Mbps透明传输接口,SDH的2Mbps通道再定时功能不用,此项工作由通信人员负责。
2、试验仪器三、保护通道构成备注:以罗平变滇罗Ⅰ线为例,主一保护通道一通信通道编号为如“罗平变2M29”,通道路由为点对点,罗平——滇东。
通道路由通常指:专用、点对点、迂回,当为迂回时应说明迂回通道经过的站点。
四、差动保护光纤通道测试4.1专用光纤方式(A)配有光纤接线盒的专用光纤通道连接图(B)未有光纤接线盒的专用光纤通道连接图图1 差动保护专用光纤通道连接示意图4.1、保护装置及保护通信接口装置发光功率和接收功率测试测试目的:测试保护装置和光纤接口的发光功率以及接收功率。
测试方法:分别用光功率计测量保护装置发信端(FX)尾纤的光功率——保护装置的发光功率和保护装置收信端(RX)尾纤的光功率——保护装置接收到的光功率。
测试地点:保护装置光纤端口和光纤接线盒光纤端口及ODF架处。
测试分工:测试点1处由继保人员负责,测试点2处由保护人员和通信人员共同负责。
注意事项:1、了解保护装置和保护通信接口装置的发光功率是否在厂家的给定范围内,同时测试尾纤及接头的损耗是否满足要求。
2、新安装试验、全检及部检时测试点1和测试点2都应进行测试,并建立技术档案,在继保专业存档。
部检时若收信功率与投产时相比不低于 5 dBm即可,发信功率若变化超过±3dBm,请于厂家联系。
3、由于保护装置及保护接口装置的发光功率通常无法直接测量,需要借助尾纤,测量到的发光功率实为经过尾纤后的光功率。
有光纤接线盒时,由于尾纤较短,尾纤的光衰耗较小,就将发信端口尾纤测量得到的光功率看作装置的发光功率;无光纤接线盒时,由于尾纤较长,光衰耗较大,测量得到的保护装置的发光功率与装置的标称发光功率就有一定的差距,若测得的发光功率与装置的标称发光功率有较大的差距,就需要向厂家询问,以确保装置及尾纤是否正常。
4、无光纤接线盒时,测试点1仅可以测量到保护装置的接收到的光功率,测试点2仅可测量到ODF处接收到的光功率(即保护装置经过尾纤后的发光功率),测量到的光功率均填在测试点1、测试点2的“实测接收光功率”栏。
5、测试时两侧保护正常运行,光纤通道连接正常。
对于RCS931、CSC103、PSL603保护,通道时延可在保护装置面板上进行查看。
WXH803保护无此功能。
6、常用保护装置的发光功率及接收灵敏度见附件,若测试光功率损耗较大时,请与该保护装置的生产厂家确认保护装置的发光功率。
表4.1 专用光纤通道收发光功率测试4.2、复用通道方式(A)配有光纤接线盒的复用光纤通道连接图(B)未配光纤接线盒的复用光纤通道连接图图2 差动保护复用光纤通道连接示意图测试目的:测试两侧同轴电缆之间的传输时延以及通道误码率,测试保护装置、保护通信接口装置以及光纤接线盒处的发光功率以及接收功率。
测试方法:测试点1及测试点2的测试方法同4.1;测试点3进行测试时应将对侧自环点自环,2M通道时测试2M自环的通道延时,64k通道时测试经PCM后64k通道自环的通道延时。
测试地点:本侧保护装置、保护通信接口装置。
测试分工:测试点1由继保人员负责、测试点2由继保人员和通信人员共同负责,测试点3以及自环点的自环由通信人员负责。
注意事项:1、了解保护装置和保护通信接口装置的发光功率是否在厂家的给定范围内,同时测试尾纤及接头的损耗是否满足要求。
2、新设备投产前的安装试验及全检时测试点1、测试点2、测试点3都应进行测试,并建立技术档案,在继保专业存档。
部检时只需在测试点1、2进行测试,数据合格即可。
通信对通道进行定检或通信通道发生变化时,通信人员应对通道传输延时进行测量,测量结果应在保护专业存档。
在通信通道发生变化时,通信人员应及时通知保护人员。
3、由于保护装置及保护接口装置的发光功率通常无法直接测量,需要借助尾纤,测量到的发光功率实为经过尾纤后的光功率。
有光纤接线盒时,由于尾纤较短,尾纤的光衰耗较小,就将发信端口尾纤测量得到的光功率看作装置的发光功率;无光纤接线盒时,由于尾纤较长,光衰耗较大,测量得到的保护装置的发光功率与装置的标称发光功率就有一定的差距,若测得的发光功率与装置的标称发光功率有较大的差距,就需要向厂家询问,以确保装置及尾纤是否正常。
4、无光纤接线盒时,测试点1仅可以测量到保护装置的接收到的光功率,测试点2仅可测量到保护接口装置接收到的光功率(即保护装置经过尾纤后的发光功率),测量到的光功率均填在测试点1、测试点2的“实测接收光功率”栏。
5、在测试点1、测试点2进行测试时,保护装置、保护通信接口装置正常运行,保护通道正常连接。
在测试点3对通信通道延时进行测量由通信人员完成。
对于RCS931、CSC103、PSL603保护,通道时延可在保护装置面板上进行查看。
WXH803保护无此功能。
6、常用保护装置的发光功率及接收灵敏度见附件,若测试光功率损耗较大时,请与该保护装置的生产厂家确认保护装置的发光功率。
7、请注意保护装置的时钟设置是否正确。
表4.2 复用光纤通道收发信光功率测试表4.3复用通信通道延时及误码测试五、纵联保护及远跳信号的光纤传输通道测试5.1、专用光纤方式(A)未配光纤接线盒的专用光纤通道连接图(B)配有光纤接线盒的专用光纤通道连接图图3 纵联及辅助保护专用光纤通道连接示意图5.1.1、光电转换装置发光功率和接收功率测试测试目的:测试光电装换装置的收发光功率。
测试方法:用光功率计测量光电转换装置收发信端(RX、FX)尾纤的光功率。
测试地点:本侧光电转换装置的收信端口尾纤,图中测试点2、3处。
测试人员:继保人员注意事项:参考差动保护中测试的注意事项。
有光纤接线盒时测试点2、3均可测试收发信的光功率;无光纤接线盒时,测试点2、3均仅测接收到的光功率。
表5.1.1 光电转换装置及保护通信接口装置的收发光功率测试(测试点2、3)5.1.2、光电转换装置自环测试测试目的:测试光电转换装置的转换时间和展宽时间。
测试方法:将光电转换装置的光纤收发信端自环(自环点11),接线图见图4。
测试地点:本侧保护装置。
测试分工:继保人员负责此项测试注意事项:为了避免自环对光电转换装置的收信有损害,请先向厂家了解有关自环的要求。
表5.1.2 光电转换装置转换时间(测试点1及自环点1)5.1.3、保护光纤通道传输延时及展宽测试测试目的:测试纵联保护及辅助保护使用的整个光纤通道的传输延时。
测试方法:将对侧保护装置各命令的收发信端口自环(自环点2)。
测试地点:本侧保护装置(测试点1)及对侧保护装置收发信端口(自环点2)。
测试分工:此项测试由继保人员负责。
注意事项:1、保护收发信接口使用的直流电源符合自环的要求。
2、自环点2自环时应注意电源极性。
表5.1.3 光纤通道自环传输延时(测试点1及自环点2)5.2、复用光纤方式(C)未配光纤接线盒的复用光纤通道连接图(D)配有光纤接线盒的复用光纤通道连接图图5 纵联及辅助保护复用光纤通道连接示意图5.2.1、光电转换装置及保护通信接口装置的发光功率和接收功率测试测试目的:测试光电转换装置及保护通信接口装置的发光功率。
测试方法:用光功率计测量光电转换装置和保护通信接口装置的收发信端(RX、FX)尾纤的光功率。
测试地点:本侧光电转换装置及保护通信接口装置光纤收信端口尾纤,图中测试点2、3处。
测试人员:继保人员负责此项测试注意事项:注意保护装置及光电转换装置的时钟设置。
表5.2.1 光电转换装置及保护通信接口装置的收发光功率测试(测试点2、3)- 17 -- 18 -5.2.2、保护通信接口装置自环测试测试目的:测试光电转换装置、尾纤及保护通信接口装置的传输延时及展宽时间。
测试方法:在通信机房,将本侧保护复接接口装置的2M 口收发信端自环(自环点1),见图6。
测试地点:本侧保护装置。
测试分工:测试点1的测试工作由继保人员负责,自环点2 的自环由通信人员负责。
注意事项:自环前,先向厂家了解保护通信接口装置在2M 口自环的要求。
表5.2.2 保护通信接口装置自环测试结果(测试点1及自环点1)图6 保护复接接口自环测试示意15.2.3、通信2M通道测试测试目的:测试通信2M通道的自环延时。
测试方法:将对侧DDF的2M收发信端口自环(自环点2)。
测试地点:本侧保护通信接口装置同轴电缆端(测试点2)。
测试分工:此项测试由通信人员负责。
注意事项:按照通信装置的要求自环。
表5.2.3 通信2M通道测试结果(测试点2及自环点2)5.2.4、保护光纤通道传输延时及展宽测试测试目的:测试保护使用的整个光纤通道的传输延时。
测试方法:将对侧保护装置各命令的收发信端口自环(自环点3)。
测试地点:本侧保护装置(测试点1)及对侧保护装置收发信端口(自环点3)。
测试分工:此项测试由继保人员负责。
注意事项:1、保护收发信接口使用的直流电源符合自环的要求。
2、自环点3自环时应注意电源极性。
表5.2.4 光纤通道自环传输延时及展宽(测试点1及自环点3)5.3、测试要求在新设备投产前的安装试验和全检试验中,此大项中所有试验应全部完成。
在两侧同时部检时,只进行5.1.1和5.1.3或5.2.1和5.2.4两项测试。
附件1、各种型号保护装置光通信端口的发光功率和接收灵敏度- 26 -- 27 -光纤通道测试报告附件2、光纤接头及尾纤的衰耗光纤通信中应用的光波长主要有750nm、820nm、850nm、1300 nm、1310nm、1550nm 等几种。
单模光纤中心玻璃芯9或10μm,多模光纤中心玻璃芯50或62.5μm。