传热学第二章-导热理论基础-2

合集下载

传热学(第二章)

传热学(第二章)

(2-32)
热阻
R=
1 1 1 ( 4πλ r r2 1
(2-33)
由球坐标系一般形式的导热微分方程
1 T 1 T 1 T T (λr2 + 2 2 (λ ) + 2 (λ sin θ ) + Φ = ρcp r2 r r) r sin θ r sin θ θ θ τ
2 1
λ1
第二章
导热基本定律及稳态导热
2-3 通过平壁,圆筒壁,球壳和其他变截面物体的导热 通过平壁,圆筒壁,
1 T 1 T T T (λr + 2 (λ ) + (λ ) + Φ = ρcp τ r r r) r z z d dt 简化变为 dr (r dr ) = 0 (2-25)
⒉ 通过圆筒壁的导热 由导热微分方程式(2—12)
⒉ 通过圆筒壁的导热 根据热阻的定义,通过整个圆筒壁的导热热阻为 (2-29) 29) 与分析多层平壁—样,运用串联热阻叠加的原则,可得通过图2-9所示的多层圆筒壁的 导热热流量 2πl(t1 t4 ) Φ= (2-30) ln( d2 / d1) / λ1 + ln( d3 / d2 ) / λ2 + ln( d4 / d3) / λ3 ⒊ 通过球壳的导热 导热系数为常数,无内热源的空心球壁.内,外半径为r1,r2,其内外表面均匀 恒定温度为t1,t2,球壁内的温度仅沿半径变化,等温面是同心球面. 由傅立叶定律得: dt 各同心球面上的热流率q不相等,而热流量Φ相等. Φ = 4πr2λ dr dr Φ 2 = 4πλdt r
的热传导微分方程:
T(r,τ ) τ ρc 当 λ = const 时, 2T(r,τ ) + Φ = p T(r,τ ) λ λ τ [λT(r,τ )] + g(r,τ ) = ρcp

传热学第二章 第二节 导热微分方程式

传热学第二章 第二节 导热微分方程式

∂t ∂z
)
+
qv
第二节 导热微分方程式
若物性参数 λ、c 和 ρ 均为常数:
∂t ∂τ
=
a(
∂2t ∂x2
+ ∂2t ∂y2
+
∂2t ∂z2
)
+
qv ; ρc
or
∂t = a∇2t + qv
∂τ
ρc
a = λ — 热扩散率(导温系数) [m2 s] ρc (Thermal diffusivity)
dxdydz ⋅ dτ
[J]
第二节 导热微分方程式
[导入与导出净热量]:
[1] = [dQ x − dQ x+ dx ] + [dQ y − dQ y + dy ] + [dQ z − dQ z + dz ]
[1] = − ( ∂ q x + ∂ q y + ∂ q z ) d x d y d z d τ
qw
=

λ
(
∂t ∂n
)n

(
∂t ∂n
)
n
=
qw λ
第二类边界条件相当于已知任何时刻物体边界面 法向的温度梯度值
稳态导热: qw = const (恒热流边界条件)
非稳态导热: q w = f (τ )
第二节 导热微分方程式 特例:绝热边界面: 绝热边界条件
qw
=
−λ
⎛ ⎜⎝
∂t ∂n
⎞ ⎟⎠w
=
对特定的导热过程:需要得到满足该过程的补充 说明条件的唯一解
单值性条件:确定唯一解的附加补充说明条件
完整数学描述:导热微分方程 + 单值性条件 单值性条件包括四项:几何、物理、时间、边界

第2章-导热理论基础以及稳态导热

第2章-导热理论基础以及稳态导热

第二章 导热基本定律及稳态导热1、重点内容:① 傅立叶定律及其应用;② 导热系数及其影响因素; ③ 导热问题的数学模型。

2、掌握内容:一维稳态导热问题的分析解法3、了解内容:多维导热问题第一章介绍传热学中热量传递的三种基本方式:导热、对流、热辐射。

根据这三个基本方式,以后各章节深入讨论其热量传递的规律,理解研究其物理过程机理,从而达到以下工程应用上目的:基本概念、基本定律:傅立叶定律,牛顿冷却定律,斯忒藩—玻耳兹曼定律。

① 能准确的计算研究传热问题中传递的热流量 ② 能准确的预测研究系统中的温度分布导热是一种比较简单的热量传递方式,对传热学的深入学习必须从导热开始,着重讨论稳态导热。

首先,引出导热的基本定律,导热问题的数学模型,导热微分方程;其次,介绍工程中常见的三种典型(所有导热物体温度变化均满足)几何形状物体的热流量及物体内温度分布的计算方法。

最后,对多维导热及有内热源的导热进行讨论。

§2—1 导热基本定律一 、温度场1、概念温度场是指在各个时刻物体内各点温度分布的总称。

由傅立叶定律知:物体导热热流量与温度变化率有关,所以研究物体导热必涉及到物体的温度分布。

一般地,物体的温度分布是坐标和时间的函数。

即:),,,(τz y x f t =其中z y x ,,为空间坐标,τ为时间坐标。

2、温度场分类1)稳态温度场(定常温度场):是指在稳态条件下物体各点的温度分布不随时间的改变而变化的温度场称稳态温度场,其表达式),,,(z y x f t =。

2)稳态温度场(非定常温度场):是指在变动工作条件下,物体中各点的温度分布随时间而变化的温度场称非稳态温度场,其表达式),,,(τz y x f t =。

若物体温度仅一个方向有变化,这种情况下的温度场称一维温度场。

3、等温面及等温线1)等温面:对于三维温度场中同一瞬间同温度各点连成的面称为等温面。

2)等温线(1)定义:在任何一个二维的截面上等温面表现为等温线。

传热学第二章导热问题数学描述

传热学第二章导热问题数学描述

由Fourier定律:
qn

t
n
w
t nw
h

twtf
当: h , twtf 转化为第一类边界条件
当: h0,nt w0qw0
(绝热)转化为第 二类边界条件
导热微分方程+定解条件 求解温度场热流场
补充:其他坐标下的导热微分方程
对于圆柱坐标系
grt aL dim n i j k
n 0 n n x y z
梯度的性质:
1.方向导数等于梯度在该方向上的投影;
2.每点梯度都垂直于该点等温面,并指向温度增大的方向
(法线方向)。
4)傅里叶定律 一般形式:

A
t
n
n
傅里叶定律的文字表述为:在导热现象中,单位时间 内通过给定截面的热流量,正比于该截面法线方向 的温度变化率和截面面积,热量传递的方向与温度 升高的方向相反.
热扩散率a 只对非稳态过程才有意义, 因为稳态过程温度不
随时间变化,热容大小对导热过程没有影响。
常见材料热扩散率: 木材:a=1.510-7;钢:a=1.2510-5;银:a=210-4。木材比钢 材的导温系数小100倍,所以木材一端着火而另一端不烫手。
2)定解条件
导热微分方程是描写物体的温度随时间和空间变 化的一般关系,没有涉及具体、特定的导热过程, 是通用表达式。
b.第二类边界条件:已知物体边界上任何时刻的热流
密度或温度变化率,
q s
qw或 n t s
qw
最简单的形式:恒热流, qw const
恒热流的特例是绝热边界条件:
t 0 n s
c.第三类边界条件:已知物体边界与周围流体间的表

《传热学》(第五版)

《传热学》(第五版)

第一章导热理论基础2已知:10.62()W m K λ=∙、20.65()W m K λ=∙、30.024()W m K λ=∙、40.016()W m K λ=∙求:'R λ、''R λ 解:2'3124124224259210 1.1460.620.650.016m K R W λσσσλλλ-⨯⨯⨯⨯⎛⎫∙=++=++⨯= ⎪⎝⎭'"232232560.265/0.650.024R m k W λσσλλ⨯⎛⎫=+=+=⋅ ⎪⎝⎭由计算可知,双Low-e 膜双真空玻璃的导热热阻高于中空玻璃,也就是说双Low-e 膜双真空玻璃的保温性能要优于中空玻璃。

5.6.已知:50mm σ=、2t a bx =+、200a =℃、2000b =-℃/m 2、45()Wm K λ=∙求:(1)0x q =、6x q = (2)v q解:(1)00020x x x dtq bx dx λλ====-=-= 3322452(2000)5010910x x x dtW q bx m dx σσσλλ-====-=-=-⨯⨯-⨯⨯=⨯(2)由220vq d t dx λ+=2332245(2000)218010v d t W q b m dxλλ=-=-=-⨯-⨯=⨯9.取如图所示球坐标,其为无内热源一维非稳态导热 故有:22t a t r r r r τ∂∂∂⎛⎫= ⎪∂∂∂⎝⎭00,t t τ==0,0tr r∂==∂ ,()f tr R h t t rλ∂=-=-∂ 10.解:建立如图坐标,在x=x 位置取dx 长度微元体,根据能量守恒有:x dx x Q Q Q ε++= (1)x dt Q dx λ=-+()x dx d dtQ t dx dx dxλ+=-++∙ 4()b b Q EA E A T Udx εεεσ===代入式(1),合并整理得:2420b fU d t T dx εσλ-= 该问题数学描写为:2420b f U d t T dx εσλ-= 00,x t T == ,0()x ldtx l dx ===假设的 4()b e x ldtfT f dx λεσ=-=真实的 第二章稳态导热3.解:(1)温度分布为 121w w w t t t t x δ-=-(设12w w t t >)其与平壁的材料无关的根本原因在 coust λ=(即常物性假设),否则t 与平壁的材料有关 (2)由 dtq dxλ=- 知,q 与平壁的材料即物性有关5.解: 2111222()0,(),w w ww d dt r dr drr r t t t t r r t t===>==设有:12124()11w w Q t t r r πλ=-- 21214F r r R r r λπλ-=7.已知:4,3,0.25l m h m δ=== 115w t =℃, 25w t =-℃, 0.7/()W m k λ=⋅ 求:Q解: ,l h δ ,可认为该墙为无限大平壁15(5)0.7(43)6720.25tQ FW λδ∆--∴==⨯⨯⨯= 8.已知:2220,0.14,15w F m m t δ===-℃,31.28/(), 5.510W m k Q W λ=⋅=⨯ 求:1w t解: 由 tQ Fλδ∆= 得一无限平壁的稳态导热312 5.510150.141520 1.28w w Q t t F δλ⨯=+=-+⨯=⨯℃ 9.已知:12240,20mm mmδδ==,120.7/(),0.58/()W m k W m k λλ=⋅=⋅3210.06/(),0.2W m k q q λ=⋅=求:3δ解: 设两种情况下的内外面墙壁温度12w w t t 和保持不变,且12w w t t >221313由题意知:1211212w w t t q δδλλ-=+122312123w w t t q δδδλλλ-=++再由: 210.2q q =,有121231212121230.2w w w w t t t t δδδδδλλλλλ--=+++得:123312240204()40.06()90.60.70.58mm δδδλλλ=+=⨯⨯+= 10.已知:1450w t =℃,20.0940.000125,50w t t λ=+=℃,2340/q W m ≤ 求:δ 解: 412,0.094 1.25102w w t t tq m m λλδ+∆==+⨯⨯41212[0.094 1.2510]2w w w w t t t t tmq qδλ+-∆==+⨯⋅ 44505045050[0.094 1.2510]0.14742340m +-=+⨯⨯⨯= 即有 2340/147.4q W m m mδ≤≥时有 11.已知:11120,0.8/()mm W m k δλ==⋅,2250,0.12/()mm W m k δλ==⋅33250,0.6/()mm W m k δλ==⋅求:'3?δ=解: '2121'3123112313,w w w w t t t t q q δδδδδλλλλλ--==+++由题意知:'q q =212tw 1tw 2q 11λ12λ23λ322即有:2121'3123112313w w w wt t t t δδδδδλλλλλ--=+++'33322λδδδλ=+ 0.6250505000.12mm =+⨯= 12.已知:1600w t =℃,2480w t =℃,3200w t =℃,460w t =℃ 求:123,,R R R R R R λλλλλλ解:由题意知其为多层平壁的稳态导热 故有: 14122334123w w w w w w w w t t t t t t t t q R R R R λλλλ----====∴112146004800.2260060w w w w R t t R t t λλ--===-- 223144802000.5260060w w w w R t t R t t λλ--===--33414200600.2660060w w w w R t t R t t λλ--===-- 14.已知:1)11012,40/(),3,250f mm W m k mm t δλδ==⋅==℃,60f t =℃ 220112,75/(),50/()h W m k h W m k λλ==⋅=⋅ 2)223,320/()mm W m k δλ==⋅ 3)2'23030,,70/()h W m k δδλλ===⋅求:123123,,,,,q q q k k k ∆∆∆ 解:未变前的122030102250605687.2/1113101754050f f t t q W m h h δλ---===⨯++++tw 1tw 4tw 2tw 3R 1R2R3R =R 1+R 2R3+t αt f221)21311121129.96/()1112101754050k W m k h h δλ-===⋅⨯++++ 21129.96(25060)5692.4/q k t W m =∆=⨯-= 21105692.45687.2 5.2/q q q W m ∆=-=-= 2)22321221129.99/()11131017532050k W m k h h δλ-===⋅⨯++++ 22229.99(25060)5698.4/q k t W m =∆=⨯-= 22205698.45687.211.2/q q q W m ∆=-=-= 3) 22330'101136.11/()131********k W m k h h δλ-===⋅⨯++++ 23336.11(25060)6860.7/q k t W m =∆=⨯-= 23306860.75687.21173.5/q q q W m ∆=-=-= 321q q q ∴∆∆>∆ ,第三种方案的强化换热效果最好 15.已知:35,130A C B mm mm δδδ===,其余尺寸如下图所示,1.53/(),0.742/()A C B W m k W m k λλλ==⋅=⋅求:R λ解:该空斗墙由对称性可取虚线部分,成为三个并联的部分R 1R 1R 1R2R3R 2R 2R3R311113222,A B C A B C R R R R RR R R R =++==++ 3321111311135101301020.1307()/1.53 1.53C A B A B C R R m k W δδδλλλ--⨯⨯∴=++=⨯+==⋅332322222335101301020.221()/1.530.742C A B A B C R m k W δδδλλλ--⨯⨯=++=⨯+=⋅2212115.0410()/1111220.13070.221R m k W R R λ-∴===⨯⋅⨯+⨯+16.已知:121160,170,58/()d mm d mm W m k λ===⋅,2230,0.093/()mm W m k δλ==⋅33140,0.17/(),300w mm W m k t δλ==⋅=℃,450w t =℃求:1)123,,R R R λλλ; 2) l q : 3) 23,w w t t . 解:1)4211111170lnln 1.66410()/2258160d R m k W d λπλπ-===⨯⋅⨯2222221117060lnln 0.517()/220.093170d R m k W d λδπλπ++===⋅⨯ 223332222111706080lnln 0.279()/2220.1717060d R m k W d λδδπλδπ++++===⋅+⨯+tw 1112323tw 4132R R R λλλ∴< 2) 2330050314.1/0.5170.279l i t t q W m R R R λλλ∆∆-====++∑ 3)由 121w w l t t q R λ-=得 4211300314.1 1.66410299.95w w l t t q R λ-=-=-⨯⨯=℃ 同理:34350314.10.279137.63w w l t t q R λ=+=+⨯=℃ 17.已知:1221211,,22m m d d δδλλ=== 求:'ll q q 解:忽略管壁热阻010121020122211ln ln 222d d R d d λδδδπλπλδ+++=++ '010122010122211ln ln 222d d R d d λδδδπλπλδ+++=++ '',l l t tq q R R λλ∆∆== (管内外壁温13,w w t t 不变)01012'20101'010*******22211lnln 22222211ln ln 222l l d d q R d d d d q R d d λλδδδπλπλδδδδπλπλδ+++++∴==+++++01010010101001241lnln 22241ln ln 22d d d d d d d d δδδδδδ++++=++++由题意知: 1001011[(2)]2m d d d d δδ=++=+ 2112011[(2)]32mm m d d d d δδ=++=+ 即:21010101232()m m d d d d d δδδ=⇒+=+⇒= (代入上式)3''15ln 3ln23 1.277ln 3ln 23l l q R q R λλ+∴===+ 即: '0.783l l q q ='21.7%l llq q q -∆==即热损失比原来减小21.7%。

传热学课件第二章导热基础理论

传热学课件第二章导热基础理论

也称导温系数,
单位为m2/s。
其大小反映物体被瞬态加热或冷却时温度变化的快慢。
导热微分方程式的简化
(1) 物体无内热源:V = 0 t a2t
(2) 稳态导热: t 0 a2t V 0 c
(3)稳态导热、无内热源:
2t 2t 2t 2t = 0,即 x2 y2 z2 0
(4)热流密度
q d
dA
nt dA
热流密度的大小和方向可 以用热流密度矢量q 表示
q
d
q d n
dA
热流密度矢量的方向指向温度降低的方向。
在直角坐标系中,热流密度矢量可表示为
q qxi qy j qzk
qx、qy、qz分别表示q在三个坐标方向的分量的大小。
2. 2 导热的基本定律—傅里叶定律
第二章 导热基础理论
例内重基 题容点本 赏精难要 析粹点求
基本要求
1. 理解温度场、等温面(线)、温度梯 度、热流密度等概念。
2. 掌握傅立叶定律及其应用。 3. 掌握热导率和热扩散率的定义、意
义、影响因素和确定方法。 4. 能写出典型简单几何形状物体导热问
题的数学描述表达式。
重点与难点
重点: 1. 傅里叶定律与热导率。 2. 导热微分方程及单值性条件。 难点: 1. 傅里叶定律的矢量表达式。 2. 导热微分方程及单值性条件。
标量形式的付里叶定律表达式为
q t
n
对于各向同性材料, 各方向上的导热系数相等,
q qxi qy j qzk
gradt t i t j t k x y z
q




t x

传热学--导热理论基础--ppt课件精选全文

传热学--导热理论基础--ppt课件精选全文
此时表观热导率最小。最佳密度一般由实验确定。
第二章 导热理论基础
第三节 热导率
3、隔热层必须采取防潮措施
(1) 湿材料 干材料或水
因多孔材料很容易吸收水分,吸水后,由于热导率较大的水
代替了热导率较小的介质,加之在温度梯度的推动下引起水分
迁移,使多孔材料的表观热导率增加很多。
0.35
0.599
第二章 导热理论基础
※导热是在温度差作用下依靠物质微粒(分子、原子和 自由电子等)的运动(移动、振动和转动)进行的能 量传递。因此,导热与物体内的温度分布密切相关。 ※本章将从温度场、温度梯度等基本概念出发 阐述导热过程的基本规律 讨论描述物体导热的导热微分方程和定解条件
第二章 导热理论基础
第一节 温度场和温度梯度 一、温度场(P13)
第二章 导热理论基础
第三节 热导率
4、几点说明
(1)保温材料的λ值界定值随时间和行业的不同有所变化。 保温材料热导率的界定值大小反映了一个国家保温材料的生
产及节能的水平。
20世纪50年代我国沿用前苏联标准为0.23W/(m·K); 20世纪80年代,GB4272-84规定为0.14W/(m·K), GB4272-92《设备及管道保温技术通则》中则降低到 (0.122)W对/(于m各·K向) 异性材料,其热导率还与方向有关。
1、等温面:同一瞬间,温度场中温度相同的点所连成的面。 2、等温线:等温面与其他任一平面的交线。
3、立体的等温面常用等温线的平面图来表示。
为了在平面内清晰地表示一组等温面,常用这些等温面与一 平面垂直相交所得的一簇等温线来表示。 图2-1是用等温线表示的内燃机活塞和水冷燃气轮机叶片的温度场
第二章 导热理论基础
三、温度梯度(P13-14)

传热学-第2章-导热的理论基础

传热学-第2章-导热的理论基础
温度是标量,因而温度场是标量场
4
2.1 基本概念和导热基本定律
2.1.1 温度场
从不同的角度对温度场进行分类: 按温度场是否随时间变化,可分为:
稳定(Steady-state)温度场:物体内各点温度不随时间 变化——稳态导热
t f (x, y, z)
稳态温度场、定常温度场
5
2.1 基本概念和导热基本定律
提出的, 傅里叶是导热理论的奠基人,他通过实验, 分析和总结了物体内的导热规律,建立了傅立叶导热 定律。
19
2.1 基本概念和导热基本定律
2.1.3 导热的基本定律
Fourier定律的表述: 在任意时刻,各向同性连续介质内任意位置处的热
流密度在数值上与该点的温度梯度成正比,但方向相反
q gradt t n
❖ 实验表明,除了甘油和0~120℃范围内的水以外,其他 液体的导热系数值随温度升高而减小
❖ 压力变化对液体导热系数的影响很小,通常可以忽略
43
2.2 物质的导热特性
液体中液态金属和电解液是一类特殊的液体 ——依靠原子的运动和自由电子的迁移来传递热量,导热
系数要比一般非金属液体大10~1000倍
44
q gradt t n
n
❖ 热流密度是一个矢量 与温度梯度位于等温线同一的法线上 方向相反,永远指向温度降低的方向
❖ 在直角坐标系下,热流密度矢量可表示为
q qxi qyj qzk 22
2.1 基本概念和导热基本定律
2.1.3 导热的基本定律
温度梯度和热流密度矢量、等温线和热流线间的关系
湿量等 ❖ 有些材料,如木材、结构体、胶合板等还与方向有关
(各向异性材料)有关
30
2.2 物质的导热特性

传热学第二章--稳态导热精选全文

传热学第二章--稳态导热精选全文

t
无内热源,λ为常数,并已知平 t1
壁的壁厚为,两个表面温度分别 维持均匀而恒定的温度t1和t2
t2
c t ( t ) Φ x x
d 2t dx2
0
o
x 0,
x ,
t t
t1 t2
x
直接积分,得:
dt dx
c1
t c1x c2
2024/11/6
35
带入边界条件:
c1
t2
t1
c t
1 r2
r 2
r
t r
1
r 2 sin
sin
t
r2
1
sin 2
t
Φ
2024/11/6
26
6 定解条件 导热微分方程式的理论基础:傅里叶定律+能 量守恒。 它描写物体的温度随时间和空间变化的关系; 没有涉及具体、特定的导热过程。通用表达式。
完整数学描述:导热微分方程 + 单值性条件
4
2 等温面与等温线
①定义
等温面:温度场中同一瞬间同温度各点连成的 面。 等温线:在二维情况下等温面为一等温曲线。
t+Δt t
t-Δt
2024/11/6
5
②特点
t+Δt t
t-Δt
a) 温度不同的等温面或等温线彼此不能相交
b)在连续的温度场中,等温面或等温线不会中
止,它们或者是物体中完全封闭的曲面(曲
它反映了物质微观粒子传递热量的特性。
不同物质的导热性能不同:
固体 液体 气体
金属 非金属
金属 12~418 W (m C) 非金属 0.025 ~ 3W/(mC)
合金 纯金属

高等传热学-2

高等传热学-2

已知圆柱坐标系与直角坐标系之间的函数关系
x = r cos j , y = r sin j , z = z
令 x1 = r , x2 = j , x3 = z 求出拉梅系数
H1 = Hr = 1 H2 = Hj = r H3 = Hz =1
圆柱坐标系的导热方程
H = H1H 2H3 = r
rc ¶T ¶t
高等传热学
张靖周
南京航空航天大学 能源与动力学院
第二章 导热的理论基础
2-1 导热基本定律
一、 经典傅里叶(Fourier)定律 qv = - l Ñ T = - l gradT = - l ¶ T nv ¶n
Fourier定律作为导热的本构方程,描述了热流量和 温度分布之间的关系。 思考: Fourier定律的适定条件?
r n
方向
温度升高,即
( ¶T ¶n
)w
>
0
,故
-
l(
¶T ¶n
)w
<
0
(2)假设 Tf < Tw ,表面温度比内部温度低,则沿 nr方向
温度降低,即
( ¶T ¶n
)w
<
0
,故
-
l(
¶T ¶n
)w
>0
第二类和第三类边界条件的具体应用
热流密度 导热
q0
=
-l
¶T (0,t ¶x
)
导热 热流密度
-
l
¶T
C 是热传播速度 a 是导温系数
t0
=
a C2
t 0 是弛豫时间:温度场的重新建立滞后于热扰动改
变的时间,反映了系统趋于新的平衡状态的快慢程度
(1) 对于稳态导热过程,热流密度矢量场不随时间变化,传播项 的影响消失

传热学第二章

传热学第二章

△n
Δn0 Δn n
温度梯度和热流密度
•温度梯度是向量,垂直于等温面, 正向朝着温度增加的方向;
•温度梯度的方向是温度变化率最大的方向。
t t n m
温度梯度的解析定义:
温度场 t f (x, y, z) 中点(x, y, z) 处的温度梯度:
gradt t i t j t k x y z
温度梯度垂直于等温面吗?
设等温面方程: t f (x, y, z) c 在点 (x, y, z)处,等温面的法线向量n n ( t , t , t ) x y z gradt 平行于 n
梯度方向垂直于等温面。
两个定义一致,解析定义便于计算
(4) 热流密度
热流密度是指单位时间经过单位面积所传递的热量,用 q 表示,单位为 W / m2。
根据上面的条件可得:
x
(
t ) x
y
(
t ) y
z
(
t z
)
qv
(cp t)
d 2t dx2
0
第一类边界条件:
x 0,t t1
x ,t t2
直接积分:
dt dx
c1
带入边界条件:
t c1x c2
c1
t2
t1
c2 t1
t
t2
t1
x
t1
dt t2 t1
dx
带入傅里叶定律得
t y
qz
t z
对于一维导热问题:
q dt
dx
3 导热系数
导热系数的定义式可由傅立叶定律的表达式得出
q t n
n
(1)物理意义:
表示了物质导热能力的大小,是在单位温度梯度作用下 的热流密度。工程计算采用的各种物质的导热系数值都是由 专门实验测定出来的。

《传热学》第2章-导热基本定律及稳态导热

《传热学》第2章-导热基本定律及稳态导热
影响热导率的因素:物质的种类、材料成分、温度、 湿度、压力、密度等
λ金属 > λ非金属; λ固相 > λ液相 > λ气相
不同物质的导热机理
1、气体的热导率 λ气体 ≈ 0.006 ~ 0.6 W (mo C)
0o C : λ空气 = 0.0244 W (moC) ; 20o C : λ空气 = 0.026 W (moC)
dΦv = Φ& dxdydz
v 单位时间内,微元体热力学能的增加 dU = ρc ∂t dxdydz ∂τ
导热微分方程式
dΦλ + dΦV = dU
dΦ λ
=
∂ ∂x

λ
∂t ∂x

+
∂ ∂y

λ
∂t ∂y

+
∂ ∂z

λ
∂t ∂z
dxdydz
dΦv = Φ& dxdydz
q = − dΦ n dA
直角坐标系中: q = qxi + qy j + qz k
导热基本定律
v 1822法国数学家傅里叶(Fourier)在大量实验研究的基础 上, 提出了导热基本定律—傅里叶定律。
v 对于物性参数不随方向变化的各向同性物体, 傅里叶定律度
热流密 度矢量
导热微分方程式的求解方法
积分法、分离变量法、积分变换法、数值计算法等
导热微分方程+单值性条件+求解方法 è温度场
圆柱坐标系(r, Φ, z)
dz
v 感兴趣的同学
课下自己推导
练习.
v 球坐标系方程 见教材P26.
=
−λ ∂t ∂n w
=0

传热学-第二章(二)

传热学-第二章(二)

❖ 假设各层之间接触良好,可以近似地认 为接合面上各处的温度相等
t2
t3 t4
❖ 边界条件: x 0
n
x i i1
t t1 t tn1
❖ 热阻:
r1
1 1
,
, rn
n n
t1
t2
t3
t4
三层平壁的稳态导热
由热阻分析法:
q
t1 tn1
n
ri
i 1
t1 tn1
n i i1 i
问:现在已经知道了q,如何计算其中第 i 层的右侧壁温?
对上述方程(a)积分两次:
第一次积分
第二次积分
r
dt dr
c1
t c1 ln r c2
tw1 c1 ln r1 c2 ; tw2 c1 ln r2 c2
应用边界条件 获得两个系数
c1
tw2 tw1 ln( r2 r1)
;
c2
tw1
(tw2
tw1)
ln r1 ln( r2 r1)
t
对于变截面肋片来讲,由于从导热微分方程求得的肋片 散热量计算公式相当复杂,因此,人们仿照等截面直肋。 利用肋片效率曲线来计算方便多了,书中图2-14和2-15 分别给出了三角形直肋和矩形剖面环肋的效率曲线。
图 2-14
图 2-15
4. 通过接触面的导热
实际固体表面不是理想平整的,所以两固体表面直接接触的界 面容易出现点接触,或者只是部分的而不是完全的和平整的面 接触 —— 给导热带来额外的热阻 —— 接触热阻 (Thermal contact resistance)
h2
ql
1
tf1 tf 2 1 ln r2
1

第二章导热基本原理

第二章导热基本原理

• 导热问题的完整描述
– 初始条件+边界条件+导热微分方程 – 对于稳态导热,定解条件只需要边界条件
• 边界条件分类
– 第一类边界条件,规定边界上的温度值。 稳态导热: tw=常数 非稳态导热:tw = f1(τ)
– 第二类边界条件,规定边界上热流密度值 稳态导热: qw=常数
非稳态导热:qw n t w f2()
所以温度场不相同
t2未知, λ铜≠ λ铁,h相同
λ铜> λ铁 ρ铜> ρ铁 c铜< c铁
•2
边界条件 ●R
r 0, dt 0 第二类边界条件 dr
r R, qw h(tw tf )
tw
第三类边界条件

壁面温度tw
周围流体温度tf 表面传热系数h
作业总结
• 1写出导热微分方程和边界条件,如果边界条 件和微分方程不包含任何物性常数如λ 、ρ、 c 等,则温度场相同,否则温度场不同。
后续导热问题的讨论中,将贯穿从导热微分方程 出发的处理方法
圆柱坐标系 (r, φ, z)

t a r2t21 r rtr122t2 z2t2 c
稳态、无内热源
2t r2
1t 1 2t
rr r2 2
2t z2
0
球坐标系(r,φ ,θ )
t a 1 r 2 r r 2 t r2s 1 in sin t r2si1 n 2
λ银> λ铜> λ金> λ铝
随着温度升高,金属晶格振动的加强干扰了自 由电子运动,导致导热系数降低。
10K:Cu 12000W(m) 15K:Cu 7000W(m)
(2)合金的导热:金属中掺入任何杂质将破坏晶 格的完整性,干扰自由电子的运动,导致导热 系数降低。依靠自由电子的迁移和晶格的振动, 主要依靠后者,因此温度升高,晶格振动加强, 导热增强。

传热学-第2章

传热学-第2章
第二章 稳态热传导 12
在导热体中取一微元体 热力学第一定律:
Q U W
W 0, Q U
d 时间内微元体中: [导入与导出净热量]+ [内热源发热量] = [热力学能的增加]
1、导入与导出微元体的净热量 d 时间内、沿 x 轴方向、经 x 表面导入的热量:
dQx qx dydz d
t t1
n i
x

i 1
t tn1
t1 t2 t3 t4
热阻:
r1
1 , , rn n 1 n
第二章 稳态热传导
三层平壁的稳态导热
30
q
t1 t n 1
由热阻分析法:
ri
i 1
n

t1 t n 1
i i 1 i
n
问:现在已经知道了q,如何计算其中第 i 层的右侧壁温?
第一章复习
(1) 导热
傅里叶定律:
(2) 对流换热 牛顿冷却公式: (3) 热辐射
斯忒藩-玻耳兹曼定律 :
dt Φ A dx
Aht
A T 4
(4) 传热过程
(t f 1 t f 2 ) (t f 1 t f 2 ) Φ 1 1 Rh1 R Rh 2 Ah1 A Ah2
多层、第三类边条
tf1
q
tf1 tf 2 1 n i 1 h1 i 1 i h2
h1 t2 t3
h2 tf2
W 单位: 2 m
传热系数? tf1

t1 t2 t3 t2
? tf2
32
三层平壁的稳态导热
第二章 稳态热传导
一台锅炉的炉墙由三层材料叠合而成.最里面的是耐火黏土砖,厚 115MM;中间是B级硅藻土砖,厚125MM;最外层为石棉板,厚 70MM.已知炉墙内外表面温度分别为485℃ 和60 ℃ , 试求每平方 米炉墙的热损失及耐火黏土砖和硅藻土砖分界面上的温度。 解:各层的导热系数可根据估计的平均温度从手册中查出。第一 次估计的平均温度不一定正确,待算得分界面温度时,如发现不 对,可重新假定每层的平均温度。经几次试算,逐步逼近,可得 合理的数值。这里列出的是几次试算后的结果: W 3 0.116 /(m K ) W 1 1.12W /(m K ) 2 0.116 /(m K )

传热学-第二章(二)

传热学-第二章(二)

假设单管长度为l,圆筒壁的外半 径小于长度的1/10。 一维、稳态、无内热源、常物性:
d dt (r ) 0 dr dr
(a)
r r1时 t t w1 第一类边界条件: r r2 时 t t w 2
对上述方程(a)积分两次:
第一次积分
第二次积分 应用边界条件
dt r c1 t c1 ln r c2 dr
直接积分,得:
t t1
x
dt c1 t c1 x c2 dx
t2 t1 c 带入边界条件: 1 c2 t1
t2 o

t2 t1 t x t1 带入Fourier 定律 dt t2 t1 dx
t w1 c1 ln r1 c2 ; t w 2 c1 ln r2 c2
t w 2 t w1 ; c1 ln(r2 r1 )
获得两个系数
ln r1 c2 t w1 (t w 2 t w1 ) ln(r2 r1 )
将系数带入第二次积分结果
t 2 t1 t t1 ln(r r1 ) ln(r2 r1 )
a 几何条件:单层平板; b 物理条件:、c、 已知;无内热源 c 时间条件: 稳态导热 : t 0 d 边界条件:第一类
o

x
根据上面的条件可得:
t t c ( ) Φ x x
控制 方程
d 2t dx
2
0
边界 条件
x 0, t t w1 第一类边条: x , t t w2
通过球壳的导热自己推导
5 其它变面积或变导热系数问题 求解导热问题的主要途径分两步: (1) 求解导热微分方程,获得温度场; (2) 根据Fourier定律和已获得的温度场计算热流量; 对于稳态、无内热源、第一类边界条件下的一维导热 问题,可以不通过温度场而直接获得热流量。此时, 一维Fourier定律:

传热学课件第二章导热基础理论精选全文

传热学课件第二章导热基础理论精选全文

对于大多数工程材料,热导率都是温度的
函数。在日常生活和工业应用的温度范围内,
可近似地认为热导率随温度线性变化,并表示
为: ( 0 1 bt)
(2-5)
λ0—按公式计算的0℃时的热导率
b—实验测定的系数,b>0或b≤0
常取t=(t1+t2)/2 一般材料生产厂家都会随材料提供其热导
率的数值,工程中的常用材料在特定温度下的热 导率值可参看附录,查取热导率数值时,应注意 材料的确切名称、密度、使用温度范围等。
内容精粹
§1 导热的基本概念 §2 导热的基本定律 §3 热导率 §4 导热微分方程和单值性条件
第一节 导热的基本概念
一、温度场
1.概念
在某一时刻τ,物体内所有各点温度分 布的总称,称为该物体在τ时刻的温度场。
一般,温度场是空间坐标和时间的函数,在 直角坐标系中可表示为:
t=f (x,y,z,τ)
作为热工技术人员应掌握一些常用材 料的热导率数据。
第四节 导热微分方程式及单值性条件
目的:求解温度场 t f x, y, z,
一、 导热微分方程式的导出
依据:能量守恒和傅里叶定律。 假设:1)物体由各向同性的连续介质组成;
2)有内热源,强度为 ,V 表示单位时间、单位
体积内的生成热,单位为W/m3 。
第二节 导热基本定律
法国数学家傅立叶(J.B.J.Fourier)在 对导热过程进行实验研究的基础上,发现了导 热热流密度与温度梯度之间的关系,于1822年 提出了著名的傅立叶定律即导热基本定律。
一、数学q表达式g:rad
t
t
n
W/m2
n
式中“-”号表示
q
与gradt二者方向相

传热学第二章

传热学第二章

刘彦丰华北电力大学工程应用的两个基本目的:•能准确地预测所研究系统中的温度分布;•能准确地计算所研究问题中传递的热流。

要解决的问题:温度分布如何描述和表示?温度分布和导热的热流存在什么关系?如何得到导热体内部的温度分布?第二章导热基本定律及稳态导热刘彦丰华北电力大学本章内容简介2-1 导热基本定律2-2 导热微分方程式及定解条件2-3 通过平壁、圆筒壁、球壳和其它变截面物体的导热(一维稳态导热)2-4 通过肋片的导热分析2-5 具有内热源的导热及多维导热回答问题1和2回答问题3具体的稳态导热问题刘彦丰传热学Heat Transfer 华北电力大学一、温度分布的描述和表示像重力场、速度场等一样,物体中的温度分布称为温度场。

1、温度分布的文字描述和数学表示,如:在直角坐标系中非稳态温度场),,,(τz y x f t =稳态温度场),,(z y x f t =一维温度场二维温度场三维温度场)(x f t =),(τx f t =),(y x f t =),,(τy x f t =),,(z y x f t =),,,(τz y x f t =2-1 导热基本定律刘彦丰传热学Heat Transfer华北电力大学2、温度分布的图示法传热学Heat Transfer 2、温度分布的图示法等温线传热学Heat Transfer二、导热基本定律(傅立叶定律)1822年,法国数学家傅里叶(Fourier )在实验研究基础上,发现导热基本规律——傅里叶定律.法国数学家Fourier: 法国拿破仑时代的高级官员。

曾于1798-1801追随拿破仑去埃及。

后期致力于传热理论,1807年提交了234页的论文,但直到1822年才出版。

刘彦丰华北电力大学在导热现象中,单位时间内通过给定截面的热量,正比于垂直于该截面方向上的温度梯度和截面面积,方向与温度梯度相反。

1、导热基本定律的文字表达:nntgradt q ∂∂−=−=λλ2、导热基本定律的数学表达:t+Δt tt-Δt刘彦丰华北电力大学3、意义已知物体内部的温度分布后,则由该定律求得各点的热流密度或热流量。

第2章传热学基础

第2章传热学基础

(2)多层平壁导热
多层平壁由几层不同 材料组成的平壁,见右 图。如:双面抹灰的砖 砌墙体。 设平壁为三层,厚 度分别为δ1、δ2、δ3, 导热系数为λ1、λ2、 λ3,各层通过的热量相 同。
∵q=(t1-t2)/R1 q=(t2-t3)/R2 q=(t3-t4)/R3 所以: (t1-t2)=qR1 (t2-t3)=qR2 (t3-t4)=qR3 三式相加得: t1-t4=q(R1+R2+R3) 并且: 所以: q=(t1-t4)/(R1+R2+R3) t2=t1+qR1 t3=t2-qR2 推广到n层平板导热: t4=t3-qR3 热流密度 q=(t1-tn+1)/∑Ri (多层平壁的总热阻等于各层热组的总和).
二、传热的分类
热量传递过程分为稳态过程 和非稳态过程两大类。 (1)稳定热传递: 物体中各点温度不随时间而改 变的热传递过程。 (2)非稳定热传递: 物体中各点温度随时间而改 变的热传递过程。 各种设备在起动、停机和工况改变时的热 传递过程则属于非稳态过程,而在持续稳定运 行时的热传递过程属于稳态过程。所以大多数 设备都可认为在稳定运行条件下工作。 以后讨论的多为稳定热传递过程。
等温线 t
t+Δ t
t-Δ t
其中:i、j、k为x、y、z轴方向的单位向量。 (计算结果为负值时, 说明梯 度方向同x轴的正向相反)
x
二、热量
(1)热量与热流量定义:由于温差作用而通过接 触边界传递的能量,称为热量。单位时间内, 经面积F传递的热量叫热流量,通常用Q表示。 (2)热量与热流量的单位:热量单位为千焦耳 1千焦耳(kJ)=1000J 1J(焦耳)=1 N· m(牛顿· 米) 如100ml牛奶的热量为251千焦耳 热量的又一种单位为千卡,也叫做大卡。等于 1000卡,亦即1千克水在1个大气压下,温度升高 1摄氏度所需的热量。1千卡=4.19千焦耳,1千 焦耳=0.2394千卡。热流量单位为w=1j/s

传热学-2 导热基本定律和稳态导热

传热学-2 导热基本定律和稳态导热
(3) a 表征物体被加热或冷却时,物体内各部分温度 趋向于均匀一致的能力,所以a反应导热过程动态特 性,是研究不稳态导热重要物理量。
2-2 导热微分方程和定解条件
2 圆柱坐标系中的导热微分方程:
c t
1 r
(r
r
t ) r
1 r2
(
t ) ( z
t ) & z
3 球坐标系中的导热微分方程:
2-2 导热微分方程和定解条件
1 笛卡尔坐标系中微元平行六面体
热力学第一定律(能量守恒定律):
W 0
d V U W U z
单位时间内微元体中: [导入+导出净热量] + [内热源发热量] = [热力学能的增加]
y
zdz
x
dz
dx
y
z
ydy xdx
dy x
2-2 导热微分方程和定解条件
tw1
Φ
tw2
R 1 ln d2 2l d1
2-3 一维稳态导热
第一次积分
r
dt dr
c1
t c1㏑r c2
tw1 c1㏑r1 c2;
tw2 c1㏑r2 c2
第二次积分 应用边界条件
c1
tw2 tw1
㏑r2 / r1
;
c2
tw1
tw2
tw1
㏑r1
㏑r2 / r1
获得两 个系数
t
t1
注意:①上式对稳态和非稳n态均使用; ②导热现象依 gradt 的存在而存在, 若 gradt=0,则 q=0; ③“-”不能少,“-”表示 q与 gradt 方向相
反, 若无,则违反热二定律。
2-1 导热基本定律和热导率
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

bt
dt dx
0
对于第一类换热边界,对上式积分求解后可得:
t
1 2
b
t
w1
1 2
b
2 b
tw1
tw2
t w1
tw2
x
此时,通过平壁的热流为:
q
dt dx
t w1
tw2
0
1
b 2
t w1
tw2
2)平壁边界为第三类边界条件,即
dt dx
x0
h1
t f1
t
x0
t f1
tf2
阻 R
B
A
C
E
D
如B、C、D的导热系数相 差不大时,把A和E相应地 划分三块,则其热阻的计 算相当于复合电路电阻的 计算。
等效热流路图:
A1
B
E1
t w1
A2
C
E2
tw2
A3
D
E3
1
1
1
1
Rt RA1 RB RE1 RA2 RC RE2 RA3 RD RE3
因实际中组成复合平壁的各向材料导热系数差别较大, 其热阻值与真实热阻值可能会有较大出入,目前一般采用 修正系数加以校正。
tf1 tf2
1
n
i
1
h1 A i1 i A h2 A
5)通过复合平壁的导热
一般而言,因各向材料的导热系数不同,复合平壁的温度场 是二维或三维的,但当各向不同材料的导热系数相差不大时, 仍可把复合平壁的导热问题近似地作一维处理,写成
Q t
R
求解复合平壁导热问题的关键仍是确定其各种形态下的总热
Rreal Rt
6)具有内热源时复合平壁的导热
条件:常物性;稳态;各向同性;一维导热
热扩散方程为:
d 2t dx2
qv
0
通解为: 对于第一类边界条件
t
qv
2
x2
c1x
c2
t x
t w.1
t x
t w.2
则最后可得其温度分布为:
tx
qv 2
1
x
2
tw1
tw2 2
x
q dt q dx dt
dx
两边积分后有
q
dx
tw2 dt q
t w1 t w2
0
tw1
这种直接积分法特别适合于求解变截面一维稳态导热问题
如果构成平壁的材料的导热系数随温度发生变化,即
0 1 bt
则可改写其导热方程为: d dt 0
dx dx
d dx
0 1
dt dx
x
h2
t f 2 t x
t w1
这里,h
1 , h2
,t
f1,t
f

2
已知
h1
tw2
h2
对于常物性,当稳态情况下可得:
q
tf1 tf2
1 1
k tf1 tf2
h1 h2
其中, 1 1 1 又根据傅里叶定律 q dt
k h1 h2
dx
则得dt dxq来自1tf1 tf2
Q
q
A
tw1 tw(n1)
n i
i1 i A
4)多层平壁导热,第三类边界条件
t f1
tf2
相当于多电阻串联电路
t f1
1
1
h1
1
Rt
1 h1
n i 1
i i
1 h2
对于面积为A的平壁, 其热流量Q为:
h1
h2
1
2 3
tf2
2
3
1
2
3
h2
q t t f 1 t f 2
Rt Rt
Q qA
通解为:
t c1x c2
, 无内热源,一维导热
1)平壁边界为第一类边界条件,即
t x0 t w1 t x t w2
代入可得:
t
t w1
t w1
tw2
x
通过平壁的热流通量(密度)q为:
q dt tw1 tw2 tw1 tw2
dx
当然,对于一维稳态导热,由于 q=const

热扩散方程为:
T h
初始条件
1 a
t
2t x 2
qv
tx,0 T0
qv
T0
x
边界条件
t
0,
T0
t x
xL
h
tL, t f
例2:一锅炉炉墙采用密度为300kg/m3的水泥珍珠岩制
作,壁厚 = 100 mm,已知内壁温度t1=500℃,外壁温度 t2=50℃,求炉墙单位面积、单位时间的热损失。
(500
50)
423
W/m2
若是多层壁,t2、t3的温度未知:
可先假定它们的温度,从而计算出平均温度并查出导热系
数值,再计算热流密度及t2、t3的值。
若计算值与假设值相差较大,需要用计算结果修正假设值,
逐步逼近,这就是迭代法。
例3:一双层玻璃窗,高2m,宽1m,玻璃厚0.3mm,玻璃
的导热系数为1.05 W/(mK),双层玻璃间的空气夹层厚度
tw1
tw2 2
例1:一矩形截面长铜排,宽度w》厚度L,铜排下表面与冰浴
接触,因此开始时整个铜排的温度大致等于冰的温度T。,突 然对铜排通以电流,同时一股温度为T∞的气流吹过上表面,此 时铜排下表面继续维持T。,试列出扩散方程以及求解该铜排 温度分布的初始条件和边值条件。
分析:因W》L,导热可以认为是x方向上的一维传热
1 1
h1 h2
dt q dx 温度分布微分方程式
t f1
t w1
tw2
tf2
1
1
h1
h2
3)多层平壁导热,第一类边界条件
t w1
tw4
相当于多电阻串联电路
1
2 3
t w1
tw2
1
2
tw3
3
tw4
1
2
3
Rt
n i 1
i i
q t tw1 tw4
Rt Rt
对于n层平壁,其热流量Q为:
为5mm,夹层中的空气完全静止,空气的导热系数为
0.025W/(mK)。如果测得冬季室内外玻璃表面温度分别为 15℃和5℃,试求玻璃窗的散热损失,并比较玻璃与空气
夹层的导热热阻。
分析: 这是一个三层平壁的稳态导热问题。散热损失
为:
Q
tw1 tw4 δ1 δ2 δ3
tw1 tw4
Rλ1 Rλ2 Rλ3
2-3 通过平壁与圆筒壁的稳态导热
本节研究内容: 1. 平壁的一维稳态导热
2. 圆管壁的一维稳态导热
回顾:
稳态导热特征: t 0
热扩散方程:
2t x 2
2t y 2
2t z 2
qv
0
无内热源时
2t x 2
2t y 2
2t z 2
0
2-3-1 通过平壁的导热
条件:平壁厚度 ,导热系数
导热方程为: d 2t 0 dx2
解:材料的平均温度为:
t = (t1 + t2)/2 = (500 + 50)/2 = 275 ℃
由p318附录4查得:
{}W/(mk) 0.0651 0.000105 {t}C
得:
0.0651 0.000105 275
0.0940 W/(m k)
则:
q
(t1
t2
)
0.0940 0.1
Aλ1 Aλ2 Aλ3
0.003
15 5 0.005
0.003 94.3W
2 0.5 2 0.025 2 0.5
可见,单层玻璃的导热热阻为0.003 K/W,而空气夹层的 导热热阻为0.1 K/W,是玻璃的33.3倍。
如果采用单层玻璃窗,则散热损失为
相关文档
最新文档