哈夫曼编码算法实现完整版

合集下载

哈夫曼编码过程

哈夫曼编码过程

哈夫曼编码过程介绍在计算机科学中,哈夫曼编码是一种使数据能够有效压缩和传输的算法。

它是一种无损压缩算法,能够将原始数据以最小的比特数表示。

哈夫曼编码由大卫·哈夫曼于1952年提出,从此成为数据压缩领域的重要算法之一。

原理哈夫曼编码的原理基于两个关键思想:频率越高的字符用更小的比特表示,频率越低的字符用更大的比特表示。

这样可以确保编码后的字符串具有唯一可识别性。

哈夫曼编码是通过构建哈夫曼树来实现的,具体步骤如下:1.统计每个字符在原始数据中出现的频率;2.根据字符频率构建哈夫曼树;3.根据哈夫曼树为每个字符生成对应的编码表;4.使用编码表将原始数据进行编码;5.将编码后的数据进行传输或存储。

构建哈夫曼树构建哈夫曼树的过程涉及到两个基本概念:结点和权值。

在哈夫曼树中,每个字符被表示为一个叶子结点,而非叶子结点的权值则代表了字符的频率。

构建哈夫曼树的步骤如下:1.将每个字符及其频率放入一个优先队列中,按照频率从小到大排列;2.从优先队列中取出两个权值最小的结点,将它们合并为一个新的结点,权值为两个结点的权值之和;3.将新结点插入优先队列中;4.重复步骤2和3,直到优先队列中只剩下一个结点,即为构建好的哈夫曼树。

生成编码表生成编码表的过程是通过遍历哈夫曼树来实现的。

步骤如下:1.从根结点开始,沿着左子树遍历到叶子结点,并在路径上添加比特’0’到编码表;2.回溯到上一个结点,遍历右子树,并在路径上添加比特’1’到编码表;3.重复步骤1和2,直到遍历完整个哈夫曼树。

编码过程有了编码表,就可以将原始数据进行编码。

步骤如下:1.从原始数据中取出一个字符;2.根据编码表找到该字符对应的比特序列,并将其添加到编码后的字符串中;3.重复步骤1和2,直到将所有字符编码为比特序列。

解码过程解码过程是将编码后的字符串重新还原为原始数据的过程。

解码过程依赖于编码表和哈夫曼树。

步骤如下:1.从编码后的字符串中取出比特序列;2.从根结点开始,按照比特序列的值向下遍历哈夫曼树;3.如果遇到叶子结点,就输出对应的字符,并返回到根结点;4.重复步骤2和3,直到将所有比特序列解码为字符。

哈夫曼编码的解码过程

哈夫曼编码的解码过程

哈夫曼编码的解码过程哈夫曼编码是一种被广泛应用于数据压缩领域的编码算法。

它通过构建一棵特殊的二叉树来实现对源数据的编码和解码。

在编码过程中,哈夫曼编码根据源数据的频率分配较短的编码给出现频率较高的字符,相反地,给出现频率较低的字符分配较长的编码,从而有效地减小编码后的数据长度。

而解码过程则是将编码后的数据转换为原始数据的过程。

一、哈夫曼编码的基本原理哈夫曼编码的基本原理是根据字符出现的频率来构建一棵哈夫曼树,以实现对字符的编码和解码。

具体步骤如下:1. 统计字符的频率:首先,需要对待编码的源数据进行扫描,并统计每个字符的出现频率。

通常可以使用哈希表等数据结构来记录字符及其对应的频率。

2. 构建哈夫曼树:根据字符的频率,构建一棵哈夫曼树。

构建哈夫曼树的算法可以采用贪心策略,即每次选择频率最小的两个节点合并,直到所有节点合并完毕,最终形成哈夫曼树。

3. 生成编码表:按照哈夫曼树的结构,为每个字符生成对应的编码。

从哈夫曼树的根节点开始,向左子树路径走一步表示编码位为0,向右子树路径走一步表示编码位为1,直到叶子节点,即可得到该字符的编码。

编码表可以使用哈希表等数据结构来存储字符和对应的编码。

4. 进行编码:将待编码的源数据字符根据编码表进行编码,生成对应的哈夫曼编码序列。

编码后的数据长度通常会显著减小,实现数据的压缩。

二、哈夫曼编码的解码过程哈夫曼编码的解码过程是将编码后的数据序列转换回原始数据的过程。

具体步骤如下:1. 读取编码序列:从编码后的数据中逐个读取编码位,直到读取到一个有效的编码。

2. 遍历哈夫曼树:从哈夫曼树的根节点开始,根据读取到的编码位,按照0表示左子树,1表示右子树的规则,不断遍历哈夫曼树,直到达到叶子节点。

3. 生成解码字符:在遍历过程中,若到达叶子节点,则表示找到了一个字符,将该字符输出。

然后重置遍历位置,继续读取编码序列,重复上述步骤,直至解码完成。

通过以上步骤,哈夫曼编码的解码过程完成,将编码后的数据序列转换回原始数据。

哈夫曼编码算法实现

哈夫曼编码算法实现

哈夫曼编码(Huffman Coding)是一种常见的数据压缩算法,它通过构建哈夫曼树(Huffman Tree)来实现。

以下是一个简单的哈夫曼编码算法的实现示例,使用Python 语言:pythonCopy codeimport heapqfrom collections import defaultdictclass HuffmanNode:def __init__(self, char, frequency):self.char = charself.frequency = frequencyself.left = Noneself.right = Nonedef __lt__(self, other):return self.frequency < other.frequencydef build_huffman_tree(data):frequency = defaultdict(int)for char in data:frequency[char] += 1priority_queue = [HuffmanNode(char, freq) for char, freq in frequency.items()]heapq.heapify(priority_queue)while len(priority_queue) > 1:node1 = heapq.heappop(priority_queue)node2 = heapq.heappop(priority_queue)merged_node = HuffmanNode(None, node1.frequency + node2.frequency)merged_node.left = node1merged_node.right = node2heapq.heappush(priority_queue, merged_node)return priority_queue[0]def build_huffman_codes(root, current_code="", codes={}):if root:if root.char is not None:codes[root.char] = current_codebuild_huffman_codes(root.left, current_code + "0", codes)build_huffman_codes(root.right, current_code + "1", codes)return codesdef huffman_encoding(data):if not data:return None, Noneroot = build_huffman_tree(data)codes = build_huffman_codes(root)encoded_data = "".join([codes[char] for char in data])return encoded_data, rootdef huffman_decoding(encoded_data, root):if not encoded_data or not root:return Nonecurrent_node = rootdecoded_data = ""for bit in encoded_data:if bit == "0":current_node = current_node.leftelse:current_node = current_node.rightif current_node.char is not None:decoded_data += current_node.charcurrent_node = rootreturn decoded_data# 示例data = "abracadabra"encoded_data, tree_root = huffman_encoding(data) decoded_data = huffman_decoding(encoded_data, tree_root)print("Original data:", data)print("Encoded data:", encoded_data)print("Decoded data:", decoded_data)。

数据结构 课程设计之哈夫曼编码

数据结构  课程设计之哈夫曼编码

(一) 哈夫曼树的设计思想对于一组具有确定权值的叶子结点可以构造出多个具有不同带权路径长度的二叉树,其中具有最小带权路径长度的二叉树称作哈夫曼树或者最优二叉树。

首先给定n 个权值创造n 个只含根结点的二叉树,得到一个二叉树林;再在这二叉树林里面找根结点的权值最小和次小的两棵树作成新的二叉树,其中新的二叉树的根结点的权值为摆布子根结点权值之和;最后在二叉树林中把组合过的二叉树删除,再重复第二步,直到最后就剩一颗二叉树的时候得到的这棵二叉树就是哈夫曼树。

(二)哈夫曼编码与解码的设计思想在数据通讯中,时常要将传送的文字转换为二进制字符0 和1 组成的二进制串,称这个过程为编码。

与子相对的是解码或者是译码,就是用与编码相同的方式将二进制串转换称编码前的文字的过程称作解码。

在这里是通过哈夫曼树实现编码与解码的,所以称作是哈夫曼编码与解码。

首先输入一个字符串,还有相应的在哈夫曼树里的权值,这样用哈夫曼树把字符串用二进制串代替它,这个过程要注意树和编码问题,其中树的问题在上面已经解决,主要看编码的问题,就是根据我们输入的字符串和权值建立相应的树模型,这一步完成那编码就已经完成为了,最后打印就行了;然后就是解码,完成编码相应的解码就相对简单了,就是先找到在编码的时候建的那个模型树,将编码中的二进制串再根据权值转换为相应的字符串,这样一步步解码就行了。

以上就是通过用哈夫曼树进行哈夫曼编码与解码如何实现的主要设计思想。

(一)哈夫曼树的流程图不 是图 1 哈夫曼树的流程图(二)编码与解码的流程图图 2 编码与解码的流程图图片说明: (左边)编码流程图, (右边)解码流程图。

开始输入字符串判断权值 建立路径有最小和次小 循环建立二叉树根据树对路径分左 0右 1写出对应结点的编码结束开始初始化哈夫曼链表二叉树林找最小和次小 的二叉树组合成新的二叉树 删除用过的二叉树是不是最后一 个二叉树是结束开始找到树的根结点 输入二进制串扫描根据树的路径打印对应字符继续扫描 是否结束是输出字符串结束否下面给出的是用中缀转后缀算法实现的程序的源代码:#include "stdio.h"#include "string.h"#define MAX 100struct HaffNode{int weight;int parent;char ch;int lchild;int rchild;}*myHaffTree;struct Coding{char bit[MAX];char ch;int weight;}*myHaffCode;void Haffman(int n){int i,j,x1,x2,s1,s2;for (i=n+1;i<=2*n-1;i++) {s1=s2=10000;x1=x2=0;for (j=1;j<=i-1;j++)/*定义常量*//*权值*//*双亲结点下标*//*构造哈夫曼树*//*定义数组*//*字符的权值*//*定义结构体*//*定义哈夫曼函数*//*树的初始化*//*构造哈夫曼树的非叶子结点*/{if(myHaffTree[j].parent==0&&myHaffTree[j].weight<s1){s2=s1;x2=x1;s1=myHaffTree[j].weight;x1=j;/*分配摆布结点*/}else if(myHaffTree[j].parent==0&&myHaffTree[j].weight<s2){s2=myHaffTree[j].weight;x2=j;}}myHaffTree[x1].parent=i;myHaffTree[x2].parent=i;myHaffTree[i].weight=s1+s2;myHaffTree[i].lchild=x1;myHaffTree[i].rchild=x2;/*摆布子组合为新树*/}}void HaffmanCode(int n){int start,c,f,i,j,k;char *cd;/*构造n 个结点哈夫曼编码*/cd=(char *)malloc(n*sizeof(char));myHaffCode=(struct Coding *)malloc((n+1)*sizeof(struct Coding));cd[n-1]='\0';for(i=1;i<=n;++i) /*n 个叶子结点的哈夫曼编码*/ {start=n-1;for(c=i,f=myHaffTree[i].parent;f!=0;c=f,f=myHaffTree[f].parent)if(myHaffTree[f].lchild==c) cd[--start]='0';else cd[--start]='1';for(j=start,k=0;j<n;j++){myHaffCode[i].bit[k]=cd[j];k++;}myHaffCode[i].ch=myHaffTree[i].ch; myHaffCode[i].weight=myHaffTree[i].weight; }free(cd);}Init(){int i,n,m;printf("please input the number of words:"); scanf("%d",&n); /*取编码对应的权值*//*定义有返回值的函数*/m=2*n-1;myHaffTree=(struct HaffNode *)malloc(sizeof(struct HaffNode)*(m+1)); for(i=1;i<=n;i++){printf("please input the word and the equal:");scanf("%s%d",&myHaffTree[i].ch,&myHaffTree[i].weight); myHaffTree[i].parent=0;myHaffTree[i].lchild=0;myHaffTree[i].rchild=0;}for(i=n+1;i<=m;i++){myHaffTree[i].ch ='#';myHaffTree[i].lchild=0;myHaffTree[i].parent=0;myHaffTree[i].rchild=0;myHaffTree[i].weight=0;}Haffman(n);HaffmanCode(n);for(i=1;i<=n;i++){printf("%c %d",myHaffCode[i].ch,myHaffCode[i].weight); printf("\n");}printf("init success!\n");return n;}void Caozuo_C(int m){int n,i,j;char string[50],*p;printf("please input the words :"); scanf("%s",string);n=strlen(string);for(i=1,p=string;i<=n;i++,p++){for(j=1;j<=m;j++)if(myHaffCode[j].ch==*p)printf("%s\n",myHaffCode[j].bit); }}void Caozuo_D(int n){int i,c;char code[1000],*p;printf("please input the coding:"); scanf("%s",code);for(p=code,c=2*n-1;*p!='\0';p++) {if(*p=='0'){c=myHaffTree[c].lchild;if(myHaffTree[c].lchild==0){printf("%c",myHaffTree[c].ch);c=2*n-1;continue;/* 编码函数*//*计算字符串长度*/ /*进行编码*//*解码函数*//*输入二进制编码*//*进行解码*//*结束条件*//*赋值*//* 扫描*//*结束*/}}else if(*p=='1'){c=myHaffTree[c].rchild;if(myHaffTree[c].lchild==0){printf("%c",myHaffTree[c].ch);c=2*n-1; /*赋值*/continue;}}}printf("\n");}void main(){int n;char char1;n=Init();printf("A.coding B.codeprintingwhile(1){scanf("%c",&char1);if(char1=='c')break;switch(char1){case'A':Caozuo_C(n);break;case'B':Caozuo_D(n);break;case'C':;break;}}}/*主函数*//*定义字符*//*函数的调用*/C.exit\nplease input the process:\n");/*判断字符*//*执行编码操作*//*执行解码操作*/哈夫曼编码与解码的实现(一)中缀转后缀算法的运行结果:这部份我主要遇到了如下三个问题,其内容与解决方法如下所列:问题1:刚开始不知道如何建一个好树,因为我开始试着建了几个二叉树,不知道什么原因运行的时候那编码总是不对,跟在草稿纸上自己画的那个二叉树总是不相符,就找原因。

霍夫曼编码的MATLAB实现(完整版)

霍夫曼编码的MATLAB实现(完整版)

%哈夫曼编码的MATLAB实现(基于0、1编码):clc;clear;A=[0.3,0.2,0.1,0.2,0.2];信源消息的概率序列A=fliplr(sort(A));%按降序排列T=A;[m,n]=size(A);B=zeros(n,n-1);%空的编码表(矩阵)for i=1:nB(i,1)=T(i);%生成编码表的第一列endr=B(i,1)+B(i-1,1);%最后两个元素相加T(n-1)=r;T(n)=0;T=fliplr(sort(T));t=n-1;for j=2:n-1%生成编码表的其他各列for i=1:tB(i,j)=T(i);endK=find(T==r);B(n,j)=K(end);%从第二列开始,每列的最后一个元素记录特征元素在%该列的位置r=(B(t-1,j)+B(t,j));%最后两个元素相加T(t-1)=r;T(t)=0;T=fliplr(sort(T));t=t-1;endB;%输出编码表END1=sym('[0,1]');%给最后一列的元素编码END=END1;t=3;d=1;for j=n-2:-1:1%从倒数第二列开始依次对各列元素编码for i=1:t-2if i>1 & B(i,j)==B(i-1,j)d=d+1;elsed=1;endB(B(n,j+1),j+1)=-1;temp=B(:,j+1);x=find(temp==B(i,j));END(i)=END1(x(d));endy=B(n,j+1);END(t-1)=[char(END1(y)),'0']; END(t)=[char(END1(y)),'1']; t=t+1;END1=END;endA%排序后的原概率序列END%编码结果for i=1:n[a,b]=size(char(END(i)));L(i)=b;endavlen=sum(L.*A)%平均码长H1=log2(A);H=-A*(H1')%熵P=H/avlen%编码效率。

哈夫曼编码算法实现完整版

哈夫曼编码算法实现完整版

实验三树的应用一.实验题目:树的应用——哈夫曼编码二.实验内容:利用哈夫曼编码进行通信可以大大提高信道的利用率,缩短信息传输的时间,降低传输成本。

根据哈夫曼编码的原理,编写一个程序,在用户输入结点权值的基础上求哈夫曼编码。

要求:从键盘输入若干字符及每个字符出现的频率,将字符出现的频率作为结点的权值,建立哈夫曼树,然后对各个字符进行哈夫曼编码,最后打印输出字符及对应的哈夫曼编码。

三、程序源代码:#include <iostream.h>#include <fstream.h>#include <string.h>#include <stdlib.h>typedef struct{char data;int weight;int parent,lchild,rchild;}HTNode,*HuffmanTree;typedef char * * HuffmanCode;void Select(HuffmanTree &HT,int n,int m){HuffmanTree p=HT;int tmp;for(int j=n+1;j<=m;j++){int tag1,tag2,s1,s2;tag1=tag2=32767;for(int x=1;x<=j-1;x++){ if(p[x].parent==0&&p[x].weight<tag1){ tag1=p[x].weight;s1=x;}}for(int y=1;y<=j-1;y++){ if(p[y].parent==0&&y!=s1&&p[y].weight<tag2) { tag2=p[y].weight;s2=y;}}if(s1>s2) //将选出的两个节点中的序号较小的始终赋给s1{ tmp=s1; s1=s2; s2=tmp;}p[s1].parent=j;p[s2].parent=j;p[j].lchild=s1;p[j].rchild=s2;p[j].weight=p[s1].weight+p[s2].weight;}}void HuffmanCoding(HuffmanTree &HT,int n,char *w1,int*w2) {int m=2*n-1;if(n<=1) return;HT=(HuffmanTree)malloc((m+1)*sizeof(HTNode));HuffmanTree p=HT;for(int i=1;i<=n;i++){ p[i].data=w1[i-1];p[i].weight=w2[i];p[i].parent=p[i].lchild=p[i].rchild=0;}for(;i<=m;i++){ p[i].weight=p[i].parent=p[i].lchild=p[i].rchild=0; } Select(HT,n,m);ofstream outfile; //生成hfmTree文件outfile.open("hfmTree.txt",ios::out);for (i=1;i<=m;i++){outfile<<HT[i].weight<<"\t"<<HT[i].parent<<"\t"<<HT[i]. lchild<<"\t"<<HT[i].rchild<<"\t"<<endl;}outfile.close();cout<<"初始化结果已保存在hfmTree文件中\n";}void ToBeTree() //将正文写入文件ToBeTree中{ofstream outfile;outfile.open("ToBeTree.txt",ios::out);outfile<<"THIS PROGRAM IS MYFAVORITE";outfile.close();}void Encoding(HuffmanTree &HT,int n) //编码{HuffmanCode HC;HC=(HuffmanCode)malloc((n+1)*sizeof(char *));char *cd;cd=(char *)malloc(n*sizeof(char));cd[n-1]='\0';for(int k=1;k<=n;k++){ int start=n-1;for(intc=k,f=HT[k].parent;f!=0;c=f,f=HT[f].parent){ if(HT[f].lchild==c) cd[--start]='0';else cd[--start]='1';}HC[k]=(char *)malloc((n-start)*sizeof(char));strcpy(HC[k],&cd[start]);}cout<<"输出哈夫曼编码:"<<endl;for(int h=1;h<=n;h++) //输出编码{ cout<<HT[h].data<<":";cout<<HC[h];cout<<" ";if (h%8==0) cout<<endl;}cout<<endl<<"输出正文编码:"<<endl;ToBeTree();//读取TOBETREE文件里的正文,并进行编码 fstream infile;infile.open("ToBeTree.txt",ios::in);char s[80];while(!infile.eof()){infile.getline(s,sizeof(s));}infile.close();fstream outfile;outfile.open("CodeFile.txt",ios::out);int count=0;for (h=0;s[h]!='\0';h++){ for(k=1;k<=n;k++)if (s[h]==HT[k].data){ cout<<HC[k];cout<<" ";count++;outfile<<HC[k];break;}if (count%9==0) cout<<endl; //每输出7个换行}outfile.close();cout<<"\n编码结果已保存在文件CodeFile中.";cout<<endl;}void Decoding(HuffmanTree &HT,int n) //译码{int f=2*n-1;fstream infile;infile.open("CodeFile.txt",ios::in);char s[1000];while(!infile.eof()){infile.getline(s,sizeof(s));}infile.close();int i=0;int j=0;fstream outfile;outfile.open("TextFile.txt",ios::out);while(s[i]!='\0'){ f=2*n-1;while(HT[f].lchild!=0)//以f对应的节点的左孩子的值==0作为结束{if (s[j]=='0') f=HT[f].lchild;else f=HT[f].rchild;j++;}i=j;cout<<HT[f].data;outfile<<HT[f].data;}outfile.close();cout<<"\n译码结果已保存在文件TextFile中.";cout<<endl;}void Print() //印代码文件{ int count=0;fstream infile;infile.open("CodeFile.txt",ios::in);char s[1000];while(!infile.eof()){infile.getline(s,sizeof(s));for(int i=0;s[i]!='\0';i++){ cout<<s[i];count++;if (count%50==0) cout<<endl; //在终端上每行显示50个代码}}infile.close();cout<<endl;}char menu() //菜单函数{ cout<<"功能菜单如下:"<<endl;cout<<"* * * * * * * * * * * * * * * * * * * * *"<<endl;cout<<" I:初始化(Initialization) "<<endl;cout<<" E:编码(Encoding) "<<endl;cout<<" D:译码(Decoding) "<<endl;cout<<" P:印代码文件(Print) "<<endl;cout<<" Q:退出(Exit) "<<endl;cout<<"* * * * * * * * * * * * * * * * * * * * *"<<endl;cout<<"请输入功能字符:";char ch;cin>>ch;return ch;}void main(){ int n;int Array[100];char cArray[100];HuffmanTree HT;cout<<"输入n个字符:";cin.getline(cArray,100);n=strlen(cArray);cout<<"一共"<<n<<"个字符.\n";cout<<"依次输入各个字符的权值:"<<endl;for (int i=1;i<=n;i++) cin>>Array[i];int tag;char x=menu();while(1){ switch (x){case 'I':HuffmanCoding(HT,n,cArray,Array);break;case 'E':Encoding(HT,n);break;case 'D':Decoding(HT,n);break;case 'P':Print();break;case 'Q':tag=0;cout<<"结束"<<endl;break;default:cout<<"你输入错误!"<<endl;}if(tag==0) break;cout<<"y(继续) or n(退出)"<<endl;char ch;cin>>ch;if (ch=='y'){ cout<<"请输入功能字符:";char c;cin>>c;x=c;}else exit(1);}}测试数据:用下表给出的字符集和频度的实际统计数据建立哈夫曼树,并实现以下报文的译码和编码:"THIS PROGRAM IS MY FAVORITE".字符空格 A B C D E F G H I J K L M频度 186 64 13 22 32 103 21 15 47 57 1 5 32 20 字符 N O P Q R S T U V W X Y Z 频度 57 63 15 1 48 51 80 23 8 18 1 16 1四.测试结果:如图一所示五.实验体会通过本次实验,尤其在自己对程序的调试过程中,感觉对树的存储结构,终结状态,还有编码,译码的过程都有了比较清晰的认识。

C++实现哈夫曼编码完整代码

C++实现哈夫曼编码完整代码

C++实现哈夫曼编码完整代码#include <iostream>#include <queue>#include <vector>#include <map>#include <string>using namespace std;class Node {public:char c; //表示字符int frequency; //表示该字符出现的次数或频率Node *left;Node *right;Node(char _c, int f, Node *l = NULL, Node *r = NULL):c(_c), frequency(f), left(l), right(r) { }bool operator<(const Node &node) const { //重载<运算法以至于在加入优先队列的时候决定如何处理结点位置return frequency > node.frequency;}};void initNode(priority_queue<Node> &q, int nodeNum) {char c;int frequency;for (int i = 0; i < nodeNum; i++) {cout << "输入字符和结点出现的次数: ";cin >> c >> frequency;Node node(c, frequency);q.push(node);}}void showNode(priority_queue<Node> q) {while (!q.empty()) {Node node = q.top(); q.pop();cout << node.c << ", " << node.frequency << endl;}}//构造哈夫曼树void huffmanTree(priority_queue<Node> &q) {while (q.size() != 1) {Node *left = new Node(q.top()); q.pop();Node *right = new Node(q.top()); q.pop();Node node('R', left->frequency + right->frequency, left, right);q.push(node);}}// 打印哈夫曼编码void huffmanCode(Node *root, string &prefix, map<char, string> &result) { string m_prefix = prefix;if (root->left == NULL)return;//处理左子树prefix += "0";//如果是叶子结点则输出,否则递归打印左子树if (root->left->left == NULL)result[root->left->c] = prefix;//cout << root->left->c << ": " << prefix << endl;elsehuffmanCode(root->left, prefix, result);//还原原来的路径,回溯prefix = m_prefix;//处理右子树prefix += "1";//如果是叶子结点,则输出, 否则递归打印右子树if (root->right->right == NULL)result[root->right->c] = prefix;//cout << root->right->c << ": " << prefix << endl;elsehuffmanCode(root->right, prefix, result);}void testResult(map<char, string> result) {//迭代map容器map<char, string>::const_iterator it = result.begin(); while (it != result.end()) {cout << it->first << ": " << it->second << endl;++it;}}int main() {priority_queue<Node> q;int nodeNum;//初始化字符信息cout << "请输入结点个数: ";cin >> nodeNum;initNode(q, nodeNum);//showNode(q);//构造哈夫曼树huffmanTree(q);//构造哈夫曼编码Node root = q.top();string prefix = "";map<char, string> result;huffmanCode(&root, prefix, result);//检验结果是否正确testResult(result);return 0;}。

哈夫曼编码实验超详尽版

哈夫曼编码实验超详尽版

编码步骤
6



在F中选取两棵根结点权值最小的树作为新构造 的二叉树的左右子树,新二叉树的根结点的权 值为其左右子树的根结点的权值之和。 从F中删除这两棵树,并把这棵新的二叉树同样 以升序排列加入到集合F中。 重复二和三两步,直到集合F中只有一棵二叉树 为止。
示例
7

假如有A,B,C,D,E五个字符,出现的频率(即权值) 分别为5,4,3,2,1,那么我们第一步先取两个最小权值 作为左右子树构造一个新树,即取1,2构成新树, 其结点为1+2=3,如图:
原理
3

首先统计信源中各符号出现的概率,按符号出现的
概率从大到小排序; 把最小的两个概率相加合并成新的概率,与剩余的 概率组成新的概率集合; 对新的概率集合重新排序,再次把其中最小的两个 概率相加,组成新的概率集合。如此重复进行,直 到最后两个概率的和为l;原理4 Nhomakorabea
分配码字:码字分配从最后一步开始反向进行,
9


实现过程:首先通过 HuffmanTree() 函数构造哈夫 曼树,然后在主函数 main()中自底向上开始(也就 是从数组序号为零的结点开始)向上层层判断,若 在父结点左侧,则置码为 0,若在右侧,则置码为 1。 最后输出生成的编码。 typedef struct
{ int bit[MAXBIT]; int start; } HCodeType; /* 编码结构体 */
五、程序部分代码及其分析
13
/* 设置找到的两个子结点 x1、x2 的父结点信息 */ HuffNode[x1].parent = n+i; HuffNode[x2].parent = n+i; HuffNode[n+i].weight = HuffNode[x1].weight + HuffNode[x2].weight; HuffNode[n+i].lchild = x1; HuffNode[n+i].rchild = x2;

c++哈夫曼编码的实现

c++哈夫曼编码的实现

c++哈夫曼编码的实现=================哈夫曼编码是一种非常有效的数据压缩算法,它的主要思想是通过统计数据中各种符号的频率来构建一棵哈夫曼树,从而实现对原始数据的编码。

在C语言中,我们可以使用动态规划来实现哈夫曼编码。

一、哈夫曼编码的基本原理--------------哈夫曼编码是一种可变长度编码,其编码长度取决于原始数据中各个符号的频率。

频率越高的符号,其编码长度越短。

通过统计数据中各个符号的出现频率,我们可以构建出一棵哈夫曼树,这棵树中的每个节点都代表一个符号,节点的权值就是该符号的频率。

通过遍历哈夫曼树,我们可以得到每个符号的编码,从而实现数据的压缩。

二、C语言实现哈夫曼编码------------下面是一个简单的C语言程序,实现了哈夫曼编码的功能:```c#include <stdio.h>#include <stdlib.h>#include <stdbool.h>#define MAX_SYMBOL_COUNT 100 // 最大符号数量#define HUF_TREE_DEPTH 3 // 哈夫曼树深度为3typedef struct Node {char symbol; // 符号struct Node* left; // 左子节点struct Node* right; // 右子节点double frequency; // 频率} Node;// 创建新节点Node* createNode(char symbol, double frequency) {Node* node = (Node*)malloc(sizeof(Node));node->symbol = symbol;node->frequency = frequency;node->left = NULL;node->right = NULL;return node;}// 构建哈夫曼树Node* buildHuffmanTree(char* symbols, int symbolCount) { // 根据频率进行排序,从小到大排列double frequencies[MAX_SYMBOL_COUNT];for (int i = 0; i < symbolCount; i++) {frequencies[i] = symbols[i] == ' ' ? 0.0 : symbols[i] ? symbols[i] : -1; // 检查字符是否存在}qsort(frequencies, symbolCount, sizeof(double), compare); // 使用qsort进行排序Node* root = NULL; // 根节点为空,需要手动构建哈夫曼树int index = 0; // 下一个需要创建节点的索引(0到symbolCount-1之间)double currentFrequency = frequencies[index]; // 当前节点频率(如果不为空)while (index < symbolCount){ // 遍历所有符号和频率,直到遍历完为止if (root == NULL){ // 如果根节点为空,创建根节点并指向当前节点root = createNode(NULL, currentFrequency);} else{ // 如果根节点不为空,查找下一个需要创建节点的索引和当前节点频率是否小于当前节点频率的倒数index++; // 下一个需要创建节点的索引增加一个位置(包括当前节点)if (frequencies[index] / currentFrequency <1.0 / HUF_TREE_DEPTH) { // 如果满足条件,创建新的子节点并递归构建哈夫曼树(当前节点)Node* child = createNode(symbols[index], frequencies[index]); // 创建子节点并保存符号和频率信息if (root->left == NULL){ // 如果当前节点的左子节点为空,将当前节点设置为左子节点并递归构建哈夫曼树(左子树)root->left = child;} else{ // 如果当前节点的右子节点为空,将当前节点设置为右子节点并递归构建哈夫曼树(右子树)root->right = child;} // 更新根节点的左右子节点信息并递归构建哈夫曼树(父节点)} else{ // 如果当前节点不足以生成新的子节点(由于被优先排序)继续处理下一个节点 currentFrequency = frequencies[index]; // 将当前节点的频率设置为下一个需要创建节点的频率(避免重复处理同一个符号)} // 更新索引和当前频率信息(继续处理下一个符号)} // 结束while循环(处理完所有符号和频率)}。

哈夫曼编码算法实现完整版.doc

哈夫曼编码算法实现完整版.doc

哈夫曼编码算法实现完整版.doc
哈夫曼编码(Huffman Coding)是一种编码方式,它通过对最常出现频率最高的字符
串编码最短的字节,以节省带宽和存储空间。

它可以将字符信息编码为变长的序列,最短
的字符占用的位数就更少,而最长的字符占用的位数则更多。

实现哈夫曼编码步骤:
(1)统计字符串中字符出现的次数,并生成频率表
(2)将每个字符对应的频率以及编码长度(未分配)加入一个哈夫曼树(Huffman Tree)的叶节点集合中
(3)将集合中的叶节点按照哈夫曼编码的原则进行排序,并重新构造哈夫曼树
(4)从根节点开始计算叶节点的哈夫曼编码,并以二进制形式记录:找到从根节点
到叶节点的路径,从根节点出发,左子节点编码为0,右子节点编码为1
(5)最终给出每个字符对应的哈夫曼编码
哈夫曼编码有如下特点:
(1)使用有穷自动机原理:利用“最优子结构”和“贪心算法”的原理,构造符合
条件的哈夫曼树,从而获得哈夫曼编码;
(2)信源编码理论:哈夫曼编码是考虑到信源编码理论的一种应用,它能把信源各
字符的分布概率考虑在内,根据信源各字符分布给出较合理的字符编码,使得信源编码长
度最短;
(3)使用哈夫曼编码能更加有效地利用存储空间;
(4)哈夫曼编码能减少网络传输数据量,加快网络传输速度;
(5)哈夫曼编码的解码有较高的效率,可以采用类似BinarySearch的方式进行搜索,时间复杂度可以以O(log n)的速度进行解码
通过使用哈夫曼编码,能使编码的效率更高,节省大量存储空间和带宽。

此外,它的
实现原理相对较为简单,因此,现有大多数编码解码系统都会支持哈夫曼编码。

哈夫曼编码解码 原理

哈夫曼编码解码 原理

哈夫曼编码解码原理
哈夫曼编码是一种前缀编码方法,它利用数据中出现频率高的字符用较短的编码表示,而将出现频率低的字符用较长的编码表示,从而达到压缩数据的目的。

哈夫曼编码的实现原理如下:
1. 统计每个字符在数据中出现的次数,并按照出现次数从小到大排序;
2. 将出现次数最少的两个字符合并为一个新的字符,其出现次数为这两个字符出现次数之和;
3. 将新字符加入字符集合中,并对字符集合重新排序;
4. 重复步骤2和3,直到字符集合中只剩下一个字符,该字符即为根节点,建立哈夫曼树;
5. 对哈夫曼树中的每个叶节点进行编码,从根节点出发,向左走为0,向右走为1,最终得到每个叶节点的哈夫曼编码;
6. 将数据中的每个字符替换为其哈夫曼编码,得到压缩后的数据。

哈夫曼编码的解码过程是通过哈夫曼树进行的,对于每个编码,从根节点出发,遇到0向左,遇到1向右,直至到达叶节点,即可得到原始字符。

哈夫曼编码算法实现完整版

哈夫曼编码算法实现完整版

哈夫曼编码算法实现完整版下面是哈夫曼编码算法的完整实现。

1.统计字符频率首先,我们需要统计待压缩的文本中每个字符出现的频率。

遍历文本文件,统计每个字符的出现次数。

将字符和对应的频率存储在一个频率表中。

2.构建哈夫曼树接下来,我们使用统计得到的频率表构建哈夫曼树。

哈夫曼树是一种二叉树,每个内部节点都有两个子节点,分别代表0和1首先,将频率表中的每个字符作为叶子节点,并按照频率从小到大进行排序。

然后,依次选择频率最小的两个节点,将它们作为子节点创建一个新的节点,并将新节点的频率设置为这两个节点频率之和。

将新节点插入到频率表中,然后删除原来的两个节点。

重复上述步骤,直到频率表中只剩下一个节点,即哈夫曼树的根节点。

3.生成编码表根据构建好的哈夫曼树,我们可以生成字符的编码表。

遍历哈夫曼树,记录从根节点到每个叶子节点的路径,其中0代表左子节点,1代表右子节点。

4.压缩数据通过编码表,我们可以将原始数据进行压缩。

遍历原始文本,将每个字符替换为对应的编码,然后将所有编码拼接成一个二进制字符串。

5.存储压缩后的数据将压缩后的二进制字符串进行存储,可以使用二进制文件或者文本文件存储。

6.解压数据对于解压,我们需要加载压缩后的数据,并重新构建哈夫曼树。

遍历压缩后的二进制字符串,根据哈夫曼树的结构逐个读取二进制位,当遇到叶子节点时,输出对应的字符。

通过上述步骤,我们可以实现对文本数据的压缩和解压。

需要注意的是,由于哈夫曼编码是基于字符频率进行优化的,所以对于不同的文本文件,编码效果也会有所不同。

较为重复的字符出现频率高的文本文件,哈夫曼编码效果会更好。

实验六 Huffman编码算法实现

实验六   Huffman编码算法实现

实验六 Huffman编码算法实现---2011级通信一班尚青一、实验目的1、加深对压缩理论和技术的理解;2、增进对压缩编码算法的设计和编写能力;3、编写Vc++的Huffman编码;4、编写Matlab函数实现哈夫曼编码的算法。

(3或4选做一个即可)二、实验原理1、哈夫曼树的定义:假设有n个权值,试构造一颗有n个叶子节点的二叉树,每个叶子带权值为wi,其中树带权路径最小的二叉树成为哈夫曼树或者最优二叉树;2、哈夫曼树的构造:weight为输入的频率数组,把其中的值赋给依次建立的HT Node对象中的data属性,即每一个HT Node对应一个输入的频率。

然后根据data属性按从小到大顺序排序,每次从data取出两个最小和此次小的HT Node,将他们的data相加,构造出新的HTNode作为他们的父节点,指针parent,leftchild,rightchild赋相应值。

在把这个新的节点插入最小堆。

按此步骤可以构造构造出一棵哈夫曼树。

通过已经构造出的哈夫曼树,自底向上,由频率节点开始向上寻找parent,直到parent 为树的顶点为止。

这样,根据每次向上搜索后,原节点为父节点的左孩子还是右孩子,来记录1或0,这样,每个频率都会有一个01编码与之唯一对应,并且任何编码没有前部分是同其他完整编码一样的。

三、实验内容①初始化,统计文本文件中各字符的个数作为权值,生成哈夫曼树;②根据符号概率的大小按由大到小顺序对符号进行排序;③把概率最小的两个符号组成一个节点;④重复步骤(2)(3),直到概率和为1;⑤从根节点开始到相应于每个符号的“树叶”,概率大的标“0”,概率小的标“1”;⑥从根节点开始,对符号进行编码;⑦译码时流程逆向进行,从文件中读出哈夫曼树,并利用哈夫曼树将编码序列解码。

四、实验代码及结果function [h,l,hh,t]=huffman(p)%判断输入合不合法if (~isempty(find(p<0, 1)))error('Not a prob,negative component');endif (abs(sum(p)-1)>10e-10)error('Not a prob.vector,component do not add to 1')endn=length(p);q=p; %数组p附给qm=zeros(n-1,n); %创建(n-1)*n矩阵for i=1:n-1[q,l]=sort(q);%对概率数组q 进行从小至大的排序,并且用l 数组返回一个数组,该数组表示概率数组q 排序前的顺序编号m(i,:)=[l(1:n-i+1),zeros(1,i-1)];%由数组l 构建一个矩阵,该矩阵表明概率合并时的顺序,用于后面的编码q=[q(1)+q(2),q(3:n),1];%将排序后的概率数组q 的前两项,即概率最小的两个数加和,得到新的一组概率序列endfor i=1:n-1c(i,:)=blanks(n*n);%生成一个n-1 行n 列,并且每个元素的的长度为n 的空白数组,c 矩阵用于进行huffman 编码并且在编码中与 m矩阵有一定的对应关系endc(n-1,n)='0';%由于c矩阵的第n-1 行的前两个元素为进行huffman 编码加和运算时所得的最c(n-1,2*n)='1';%后两个概率,因此其值为0 或1,在编码时设第n-1 行的第一个空白字符为0,第二个空白字符1。

哈夫曼编码及其解码全过程

哈夫曼编码及其解码全过程

哈夫曼编码及其解码全过程1.引言1.1 概述在这篇长文中,我们将介绍哈夫曼编码及其解码的全过程。

哈夫曼编码是一种可变字长编码技术,它通过统计字符出现频率来构建编码表,使得出现频率高的字符使用较短的编码,出现频率低的字符使用较长的编码,从而实现高效的数据压缩。

在本文中,我们将详细探讨哈夫曼编码的过程,包括哈夫曼树的构建和编码表的生成。

此外,我们还将介绍哈夫曼解码的过程,包括解码表的生成和解码过程。

最后,我们将总结哈夫曼编码及其解码,并展望其在实际应用中的前景。

通过阅读本文,读者将全面了解哈夫曼编码及其解码的原理和实现方法。

【1.2 文章结构】本文共分为三个部分,分别是引言、正文和结论。

下面将对每个部分进行详细的说明。

(1) 引言部分包括三小节。

首先是概述,将简要介绍哈夫曼编码及其解码的基本概念和作用。

其次是文章结构,将列出本文的整体结构以及各个部分的内容。

最后是目的,阐述撰写这篇长文的目标和意义。

(2) 正文部分是本文的核心部分,分为两个小节。

第一个小节是哈夫曼编码过程,将详细介绍哈夫曼树的构建和编码表的生成过程。

具体而言,将介绍如何根据字符的出现频率构建哈夫曼树,并通过遍历哈夫曼树生成对应的编码表。

第二个小节是哈夫曼解码过程,将详细介绍解码表的生成和解码的具体步骤。

具体而言,将介绍如何根据编码表构建解码表,并通过解码表将编码还原成原始字符。

(3) 结论部分也包括两个小节。

首先是总结,将对整篇文章的内容进行简要回顾,并总结哈夫曼编码及其解码的关键步骤和特点。

其次是应用前景,将探讨哈夫曼编码在实际应用中的潜在价值和发展前景,展示其在数据压缩和信息传输等领域的重要性。

通过对文章结构的明确描述,读者可以清晰地了解到本文的整体内容安排,从而更好地理解和阅读本文的各个部分。

1.3 目的本文的目的是介绍哈夫曼编码及其解码的全过程。

通过详细阐述哈夫曼编码的构建和解码过程,使读者能够深入理解哈夫曼编码的原理和应用。

哈夫曼树及哈夫曼编码的算法实现

哈夫曼树及哈夫曼编码的算法实现

哈夫曼树及哈夫曼编码的算法实现1. 哈夫曼树的概念和原理哈夫曼树是一种带权路径长度最短的树,也称最优二叉树。

它是由美国数学家大卫・哈夫曼发明的,用于数据压缩编码中。

哈夫曼树的构建原理是通过贪心算法,将权重较小的节点不断合并,直到所有节点都合并成为一个根节点,形成一棵树。

这样构建的哈夫曼树能够实现数据的高效压缩和解压缩。

2. 哈夫曼编码的概念和作用哈夫曼编码是一种可变长度编码,它根据字符在文本中出现的频率来进行编码,频率越高的字符编码越短,频率越低的字符编码越长。

这种编码方式能够实现数据的高效压缩,减小数据的存储空间,提高数据传输的效率。

3. 哈夫曼树和编码的算法实现在实现哈夫曼树和编码的算法过程中,首先需要统计文本中每个字符出现的频率,并根据频率构建哈夫曼树。

根据哈夫曼树的结构,确定每个字符的哈夫曼编码。

利用哈夫曼编码对文本进行压缩和解压缩。

4. 个人观点和理解哈夫曼树及哈夫曼编码算法是一种非常有效的数据压缩和编码方式,能够在保证数据完整性的前提下,减小数据的存储和传输成本。

在实际应用中,哈夫曼编码被广泛应用于通信领域、数据存储领域以及图像压缩等领域。

通过深入理解和掌握哈夫曼树及哈夫曼编码的算法实现,可以为我们在实际工作中处理大量数据时提供便利和效率。

5. 总结与回顾通过本篇文章的详细讲解,我深入了解了哈夫曼树及哈夫曼编码的算法原理和实现方式,对其在数据处理中的重要性有了更深刻的认识。

掌握了哈夫曼树及哈夫曼编码的算法实现,将为我未来的工作和学习提供更多的帮助和启发。

根据您提供的主题,本篇文章按照从简到繁、由浅入深的方式探讨了哈夫曼树及哈夫曼编码的算法实现。

文章共计超过3000字,深入剖析了哈夫曼树和编码的原理、实现方式以及应用场景,并结合个人观点进行了阐述。

希望本篇文章能够满足您的需求,如有任何修改意见或其他要求,欢迎随时告知。

哈夫曼树和哈夫曼编码是一种十分重要的数据压缩和编码方式,它们在实际的数据处理和传输中发挥着非常重要的作用。

哈夫曼编码的算法

哈夫曼编码的算法

下面讨论实现哈夫曼编码的算法。

实现哈夫曼编码的算法可分为两大部分:(1)构造哈夫曼树;(2)在哈夫曼树上求叶结点的编码。

求哈夫曼编码,实质上就是在已建立的哈夫曼树中,从叶结点开始,沿结点的双亲链域回退到根结点,每回退一步,就走过了哈夫曼树的一个分支,从而得到一位哈夫曼码值,由于一个字符的哈夫曼编码是从根结点到相应叶结点所经过的路径上各分支所组成的0,1序列,因此先得到的分支代码为所求编码的低位码,后得到的分支代码为所求编码的高位码。

我们可以设置一结构数组HuffCode用来存放各字符的哈夫曼编码信息,数组元素的结构如下:bit start其中,分量bit为一维数组,用来保存字符的哈夫曼编码,start表示该编码在数组bit中的开始位置。

所以,对于第i个字符,它的哈夫曼编码存放在HuffCode[i].bit中的从HuffCode[i].start 到n的分量上。

哈夫曼编码算法描述如下。

#define MAXBIT 10 /*定义哈夫曼编码的最大长度*/typedef struct {int bit[MAXBIT];int start;}HCodeType;void HaffmanCode ( ){ /*生成哈夫曼编码*/HNodeType HuffNode[MAXNODE];HCodeType HuffCode[MAXLEAF],cd;int i,j, c,p;HuffmanTree (HuffNode ); /*建立哈夫曼树*/for (i=0;i<n;i++) /*求每个叶子结点的哈夫曼编码*/{ cd.start=n-1; c=i;p=HuffNode[c].parent;while(p!=0) /*由叶结点向上直到树根*/{ if (HuffNode[p].lchild==c) cd.bit[cd.start]=0;else cd.bit[cd.start]=1;cd.start--; c=p;p=HuffNode[c].parent;}for (j=cd.start+1;j<n;j++) /*保存求出的每个叶结点的哈夫曼编码和编码的起始位*/ HuffCode[i].bit[j]=cd.bit[j];HuffCode[i].start=cd.start;}for (i=0;i<n;i++) /*输出每个叶子结点的哈夫曼编码*/{ for (j=HuffCode[i].start+1;j<n;j++)printf(“%ld”,HuffCode[i].bit[j]);printf(“\n”);} }。

c语言实现哈夫曼编码

c语言实现哈夫曼编码

c语言实现哈夫曼编码一、概述哈夫曼编码是一种常用的无损数据压缩算法,其原理是基于字符的出现概率来构建编码表,从而实现数据的压缩。

本教程将介绍如何使用C语言实现哈夫曼编码算法。

二、算法原理哈夫曼编码算法的基本思想是:将字符按照出现概率的大小进行排序,然后构建一个树状结构,每个节点代表一个字符,节点的左子节点和右子节点分别代表字符的频率较小和较大的分支。

最终,通过路径进行解码即可还原出原始数据。

三、实现步骤1.统计字符频率,构建字符频率表;2.按照频率从小到大排序,构建哈夫曼树;3.根据哈夫曼树构建编码表,将字符映射为编码;4.实现解码过程,还原出原始数据。

四、代码实现下面是一个简单的C语言实现哈夫曼编码的示例代码:```c#include<stdio.h>#include<stdlib.h>#include<ctype.h>#defineMAX_CHARS1000//最大字符数#defineMAX_FREQ100//最大频率值//字符频率表intfreq[MAX_CHARS+1];//构建哈夫曼树函数structnode{charch;intfreq;structnode*left,*right;};structnode*build_huffman_tree(intfreq[],intn){structnode*root=(structnode*)malloc(sizeof(structnode));root->freq=freq[0];//根节点的频率为最小的频率值root->left=root->right=NULL;for(inti=1;i<=n;i++){if(freq[i]==root->freq){//如果当前字符的频率与根节点的频率相同,则添加到左子树或右子树中if(i<n&&freq[i]==freq[i+1]){//如果当前字符的频率与下一个字符的频率相同,则添加到左子树中root->left=(structnode*)malloc(sizeof(structnode));root->left->ch=i+'a';//左子节点的字符为当前字符的下一个字符(假设所有字符都是小写字母)root->left->left=root->left->right=NULL;//左子树为空树i++;//跳过下一个字符,继续寻找下一个不同的频率值}else{//如果当前字符的频率与下一个字符的频率不相同,则添加到右子树中root->right=(structnode*)malloc(sizeof(structnode));root->right->ch=i+'a';//右子节点的字符为当前字符root->right->left=root->right->right=NULL;//右子树为空树}}elseif(freq[i]<root->freq){//如果当前字符的频率小于根节点的频率,则添加到左子树中root->left=(structnode*)malloc(sizeof(structnode));root->left->ch=i+'a';//左子节点的字符为当前字符的下一个字符(假设所有字符都是小写字母)root->left->left=build_huffman_tree(freq,i);//子树的左孩子为当前字符构成的右子树节点和子哈夫曼树的左孩子合并得到的左孩子节点,这个步骤继续调用本函数,从而继续构建右子树的下一级和再下一级,最终实现三级左右子的嵌套式结构树型哈夫曼编码)注:这种思想并非标准的哈夫曼编码)//子树的右孩子为当前节点(即当前字符)构成的右子树节点和子哈夫曼树的右孩子节点合并得到的右孩子节点)注:这种思想并非标准的哈夫曼编码)//子树的左孩子为空树)注:这种思想并非标准的哈夫曼编码)根节点的频率是根节点的最小频率值(因为构建哈夫曼树的过程中总是从最小的频率值开始)根节点的左子树是构建出的三级左右子的嵌套式结构树型哈夫曼编码根节点的右子树为空树(假设所有字符都是小写字母)在添加左子节点后需要调用本函数构建右子树的下一级和再下一级来得到三级左右子的嵌套式结构。

简述哈夫曼编码译码过程

简述哈夫曼编码译码过程

简述哈夫曼编码译码过程哈夫曼编码是一种用于数据压缩的无损编码方法,它基于字符出现频率的统计信息,将频率较高的字符用较短的二进制编码表示,而将频率较低的字符用较长的二进制编码表示。

在对数据进行解码时,需要使用相同的编码表来将编码转换回原始数据。

哈夫曼编码的过程可以分为两个主要步骤:构建哈夫曼树和生成编码表。

下面将详细介绍每个步骤的实现过程。

构建哈夫曼树:1. 统计字符的频率:遍历要编码的数据,统计每个字符出现的频率。

2. 创建叶节点列表:将每个字符及其频率作为一个叶节点,构建一个列表。

3. 构建哈夫曼树:重复执行以下操作,直到只剩下一个节点:a. 从叶节点列表中选择两个频率最低的节点作为左右子节点。

b. 创建一个新的节点,其频率为左右子节点频率之和,并将其设为左右子节点的父节点。

c. 将新的父节点添加到叶节点列表中。

d. 从叶节点列表中删除选择的两个节点。

4. 哈夫曼树的根节点即为构建完成的树。

生成编码表:1. 遍历哈夫曼树:从根节点开始,遍历哈夫曼树的每个节点。

a. 若当前节点为叶节点,记录该节点所表示字符的编码路径。

b. 若当前节点有左子节点,将路径标记为0,并继续遍历左子节点。

c. 若当前节点有右子节点,将路径标记为1,并继续遍历右子节点。

2. 将每个字符与其对应的编码路径关系保存在编码表中。

哈夫曼编码的过程中,编码表的生成是非常重要的一步。

通过遍历哈夫曼树,可以确定每个字符的唯一编码,从而在进行译码时能够将编码路径按照对应的编码表转换为原始数据。

译码过程:1. 读取编码数据:将压缩后的二进制数据按位读取。

2. 解码树的遍历:从哈夫曼树的根节点开始,按照读取的二进制位(0或1)依次向左或向右遍历。

3. 判断节点类型:若当前节点为叶节点,表示已找到对应的字符,记录该字符并重新从根节点开始遍历。

4. 判断读取结束:若读取的二进制数据已经全部解码完毕,则译码结束;否则继续读取下一位二进制数据进行遍历。

哈夫曼编码的实现及应用

哈夫曼编码的实现及应用

哈夫曼编码的实现及应用哈夫曼编码是一种可变长度编码的方法,它是由大名鼎鼎的美国数学家大卫·哈夫曼(David Huffman)于1952年提出的,用于有效地压缩数据。

在哈夫曼编码中,出现频率较高的字符被赋予较短的编码,而出现频率较低的字符则被赋予较长的编码,以达到尽可能减少编码长度的目的。

下面将在实现和应用这两个方面详细介绍哈夫曼编码。

首先是哈夫曼编码的实现。

哈夫曼编码的实现过程可以分为两个主要步骤:构建哈夫曼树和生成编码表。

构建哈夫曼树的步骤如下:1.统计待编码的字符出现的频次,并根据频次构建一个包含这些字符的节点集合。

2.从节点集合中选取频次最小的两个节点,合并成一个新节点,频次为这两个节点的频次之和,并将新节点加入节点集合中。

3.重复上述步骤,直到节点集合中只剩下一个节点,即为哈夫曼树的根节点。

生成编码表的步骤如下:1.从哈夫曼树的根节点开始,按照左子树标记0、右子树标记1的规则,遍历树的每个节点。

2.当遇到叶子节点时,将节点的字符与路径上的标记组合成该字符的哈夫曼编码,并将字符与编码添加到编码表中。

3.继续遍历树的下一个节点,直到所有节点都被遍历完。

在实现哈夫曼编码时,可以使用优先队列(例如最小堆)来选择频次最小的节点,以提高效率。

接下来是哈夫曼编码的应用。

哈夫曼编码在数据压缩领域有着广泛的应用。

以文本文件为例,由于文本中一些字符出现的频率较高,而另一些字符出现的频率较低,使用固定长度编码(如ASCII码)来存储文本会浪费存储空间。

而利用哈夫曼编码可以将频次较高的字符用较短的编码来表示,从而实现数据的压缩。

另外,哈夫曼编码也被用于网络传输数据的压缩。

在网络传输中,数据量大、传输速率有限,因此需要将数据进行压缩以减少传输时间和带宽占用。

通过使用哈夫曼编码,可以将数据进行压缩后再传输,接收端再进行解码还原为原始数据。

这样既减小了传输数据的大小,又提高了传输效率。

此外,哈夫曼编码还被广泛应用于图像和音频等多媒体数据的压缩。

哈夫曼编码的python实现

哈夫曼编码的python实现

哈夫曼编码的python实现# 哈夫曼编码的Python实现详解哈夫曼编码(Huffman Coding)是一种根据字符出现频率来构造前缀树,进而得到最优字典编码的算法。

它在数据压缩领域具有广泛应用,尤其对于文本数据,通过将频繁出现的字符赋予较短的编码,从而达到减少存储空间的效果。

本文将详细阐述如何使用Python语言实现哈夫曼编码。

# 一、理解哈夫曼树与哈夫曼编码原理哈夫曼树,又称最优二叉树或最小带权路径长度树,是一种带权重的二叉树,其特性是权值越小的叶子节点离根节点越近。

构建哈夫曼树的过程就是对原始字符及其频率进行不断合并,最终形成每个叶子节点代表一个字符,其路径长度即为该字符的编码长度。

哈夫曼编码则是基于哈夫曼树的一种前缀编码方式,即任何字符的编码都不是其他字符编码的前缀,这保证了编码的唯一可解性。

# 二、哈夫曼树的Python实现步骤1. 定义节点类:首先,我们需要定义一个用于表示哈夫曼树节点的类,包含字符、频率以及左右子节点等属性。

pythonclass TreeNode:def __init__(self, char=None, freq=0, left=None, right=None): self.char = charself.freq = freqself.left = leftself.right = right2. 构建频率列表:统计输入字符串中各字符的出现频率,将其放入一个列表,每个元素是一个包含字符和频率的元组。

pythondef build_freq_dict(text):freq_dict = {}for char in text:if char in freq_dict:freq_dict[char] += 1else:freq_dict[char] = 1return sorted(freq_dict.items(), key=lambda x: x[1],reverse=True)3. 构建哈夫曼树:创建一个空堆,并将所有字符及其频率作为单独的节点加入堆中,然后进行循环,每次取出两个频率最小的节点合并生成新的节点(新节点的频率为其两子节点频率之和),并将新节点放回堆中,直到堆中只剩下一个节点,这个节点就是哈夫曼树的根节点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三树的应用一.实验题目:树的应用——哈夫曼编码二.实验内容:利用哈夫曼编码进行通信可以大大提高信道的利用率,缩短信息传输的时间,降低传输成本。

根据哈夫曼编码的原理,编写一个程序,在用户输入结点权值的基础上求哈夫曼编码。

要求:从键盘输入若干字符及每个字符出现的频率,将字符出现的频率作为结点的权值,建立哈夫曼树,然后对各个字符进行哈夫曼编码,最后打印输出字符及对应的哈夫曼编码。

三、程序源代码:#include <iostream.h>#include <fstream.h>#include <string.h>#include <stdlib.h>typedef struct{char data;int weight;int parent,lchild,rchild;}HTNode,*HuffmanTree;typedef char * * HuffmanCode;void Select(HuffmanTree &HT,int n,int m){HuffmanTree p=HT;int tmp;for(int j=n+1;j<=m;j++){int tag1,tag2,s1,s2;tag1=tag2=32767;for(int x=1;x<=j-1;x++){ if(p[x].parent==0&&p[x].weight<tag1){ tag1=p[x].weight;s1=x;}}for(int y=1;y<=j-1;y++){ if(p[y].parent==0&&y!=s1&&p[y].weight<tag2){ tag2=p[y].weight;s2=y;}}if(s1>s2) //将选出的两个节点中的序号较小的始终赋给s1{ tmp=s1; s1=s2; s2=tmp;}p[s1].parent=j;p[s2].parent=j;p[j].lchild=s1;p[j].rchild=s2;p[j].weight=p[s1].weight+p[s2].weight;}}void HuffmanCoding(HuffmanTree &HT,int n,char *w1,int*w2){int m=2*n-1;if(n<=1) return;HT=(HuffmanTree)malloc((m+1)*sizeof(HTNode));HuffmanTree p=HT;for(int i=1;i<=n;i++){ p[i].data=w1[i-1];p[i].weight=w2[i];p[i].parent=p[i].lchild=p[i].rchild=0;}for(;i<=m;i++){ p[i].weight=p[i].parent=p[i].lchild=p[i].rchild=0; }Select(HT,n,m);ofstream outfile; //生成hfmTree文件outfile.open("hfmTree.txt",ios::out);for (i=1;i<=m;i++){outfile<<HT[i].weight<<"\t"<<HT[i].parent<<"\t"<<HT[i].lchild <<"\t"<<HT[i].rchild<<"\t"<<endl;}outfile.close();cout<<"初始化结果已保存在hfmTree文件中\n";}void ToBeTree() //将正文写入文件ToBeTree中{ofstream outfile;outfile.open("ToBeTree.txt",ios::out);outfile<<"THIS PROGRAM IS MYFAVORITE";outfile.close();}void Encoding(HuffmanTree &HT,int n) //编码{HuffmanCode HC;HC=(HuffmanCode)malloc((n+1)*sizeof(char *));char *cd;cd=(char *)malloc(n*sizeof(char));cd[n-1]='\0';for(int k=1;k<=n;k++){ int start=n-1;for(int c=k,f=HT[k].parent;f!=0;c=f,f=HT[f].parent){ if(HT[f].lchild==c) cd[--start]='0';else cd[--start]='1';}HC[k]=(char *)malloc((n-start)*sizeof(char));strcpy(HC[k],&cd[start]);}cout<<"输出哈夫曼编码:"<<endl;for(int h=1;h<=n;h++) //输出编码{ cout<<HT[h].data<<":";cout<<HC[h];cout<<" ";if (h%8==0) cout<<endl;}cout<<endl<<"输出正文编码:"<<endl;ToBeTree();//读取TOBETREE文件里的正文,并进行编码fstream infile;infile.open("ToBeTree.txt",ios::in);char s[80];while(!infile.eof()){infile.getline(s,sizeof(s));}infile.close();fstream outfile;outfile.open("CodeFile.txt",ios::out);int count=0;for (h=0;s[h]!='\0';h++){ for(k=1;k<=n;k++)if (s[h]==HT[k].data){ cout<<HC[k];cout<<" ";count++;outfile<<HC[k];break;}if (count%9==0) cout<<endl; //每输出7个换行}outfile.close();cout<<"\n编码结果已保存在文件CodeFile中.";cout<<endl;}void Decoding(HuffmanTree &HT,int n) //译码{int f=2*n-1;fstream infile;infile.open("CodeFile.txt",ios::in);char s[1000];while(!infile.eof()){infile.getline(s,sizeof(s));}infile.close();int i=0;int j=0;fstream outfile;outfile.open("TextFile.txt",ios::out);while(s[i]!='\0'){ f=2*n-1;while(HT[f].lchild!=0)//以f对应的节点的左孩子的值==0作为结束{if (s[j]=='0') f=HT[f].lchild;else f=HT[f].rchild;j++;}i=j;cout<<HT[f].data;outfile<<HT[f].data;}outfile.close();cout<<"\n译码结果已保存在文件TextFile中.";cout<<endl;}void Print() //印代码文件{ int count=0;fstream infile;infile.open("CodeFile.txt",ios::in);char s[1000];while(!infile.eof()){infile.getline(s,sizeof(s));for(int i=0;s[i]!='\0';i++){ cout<<s[i];count++;if (count%50==0) cout<<endl; //在终端上每行显示50个代码}}infile.close();cout<<endl;}char menu() //菜单函数{ cout<<"功能菜单如下:"<<endl;cout<<"* * * * * * * * * * * * * * * * * * * * *"<<endl;cout<<" I:初始化(Initialization) "<<endl;cout<<" E:编码(Encoding) "<<endl;cout<<" D:译码(Decoding) "<<endl;cout<<" P:印代码文件(Print) "<<endl;cout<<" Q:退出(Exit) "<<endl;cout<<"* * * * * * * * * * * * * * * * * * * * *"<<endl;cout<<"请输入功能字符:";char ch;cin>>ch;return ch;}void main(){ int n;int Array[100];char cArray[100];HuffmanTree HT;cout<<"输入n个字符:";cin.getline(cArray,100);n=strlen(cArray);cout<<"一共"<<n<<"个字符.\n";cout<<"依次输入各个字符的权值:"<<endl;for (int i=1;i<=n;i++) cin>>Array[i];int tag;char x=menu();while(1){ switch (x){case 'I':HuffmanCoding(HT,n,cArray,Array);break;case 'E':Encoding(HT,n);break;case 'D':Decoding(HT,n);break;case 'P':Print();break;case 'Q':tag=0;cout<<"结束"<<endl;break;default:cout<<"你输入错误!"<<endl;}if(tag==0) break;cout<<"y(继续) or n(退出)"<<endl;char ch;cin>>ch;if (ch=='y'){ cout<<"请输入功能字符:";char c;cin>>c;x=c;}else exit(1);}}测试数据:用下表给出的字符集和频度的实际统计数据建立哈夫曼树,并实现以下报文的译码和编码:"THIS PROGRAM IS MY FAVORITE".字符空格 A B C D E F G H I J K L M频度186 64 13 22 32 103 21 15 47 57 1 5 32 20 字符N O P Q R S T U V W X Y Z频度57 63 15 1 48 51 80 23 8 18 1 16 1四.测试结果:如图一所示五.实验体会通过本次实验,尤其在自己对程序的调试过程中,感觉对树的存储结构,终结状态,还有编码,译码的过程都有了比较清晰的认识。

相关文档
最新文档