【精选】绝对值经典练习题
绝对值专项练习60题(有答案)8页
绝对值专项练习60题(有答案)8页1.正确的说法是:C。
整数分数统称有理数。
2.点所表示的数是1,因为距离-2有3个单位长度的点只有-5和1.3.| -4 | =4.4.x的值是-3,y的值可以是5或-5,所以x+y的值可以是2或-8.5.a的取值范围是a ≤ 0.6.点A到原点的距离是|a|。
7.这四个数中,负数的个数是2个,因为- a和-a + |a|是负数。
8.在-2,-| -7 |,-| +3 |中,负数有2个。
9.点B表示的数是-1,因为A和C表示的数的绝对值相等,所以它们的距离原点的距离相等,B表示的数是它们的中点,即-1.10.任何一个有理数的绝对值在数轴上的位置是整个数轴。
11.|a| ≥ |b|。
12.在数轴上表示x的点与原点的距离是3,所以它可以是3或-3.13.数a在数轴上的点应是在原点或原点的左侧,因为|a| = -a。
14.下列判断错误的是B。
一个负数的绝对值一定是正数,因为一个负数的绝对值是它的相反数,即正数。
15.下列判断正确的是B。
|a|一定是正数。
16.a>|a-b|>b。
17.a-b的值可以是3或-13,因为a和b的值不确定。
18.正确的说法是C和D,即若|a|=|b|,则a与b互为相反数;若一个数小于它的绝对值,则这个数为负数。
19.正确的选项是C,即非负数。
20.正确的选项是D,即3或-1.21.正确的选项是B,即1+a>a>1-b。
22.正确的选项是B,即负数。
23.正确的选项是A,即a>0.24.正确的选项是C,即6或-4.25.正确的选项是A,即若|a|=|b|,则a=b。
26.正确的选项是D,即2或4.27.化简结果为B,即-1.28.有无穷多个绝对值等于它本身的数。
29.正确的图形是B。
30.正确的选项是B,即b同号或其中至少一个为零。
31.正确的选项是D,即-7或1.32.正确的选项是A,即1.33.正确的选项是C,XXXm<n<0,则|m|>|n|。
绝对值经典20题
绝对值基础练习题
【经典20题】
1.有理数a、b、在数轴上的位置如图所示.
(1)用“>”或“<”填空:a+b0,c﹣b0;
(2)化简:|a+b|+|c|﹣|c﹣b|.
2.如图,数轴上的三点A,B,C分别表示有理数a,b,c,化简|a﹣b|﹣|a+c|+|b ﹣c|.
3.已知:a=3,|b|=2,求(a+b)3的值.
4.比较下列各组数的大小.
(1)﹣与﹣;
(2)﹣|﹣3.5|与﹣[﹣(﹣3.5)].
5.若|x﹣1|+|y+2|+|z﹣3|=0,求(x+1)(y﹣2)(z﹣3)的值.6.已知|2﹣m|+|n+3|=0,试求m+2n的值.
7.已知|x﹣2|与|y+5|互为相反数,求x﹣y的值.
8.已知|2﹣b|与|a﹣b+4|互为相反数,求ab﹣2012的值.9.|﹣a|=21,|+b|=21,且|a+b|=﹣(a+b),求a﹣b的值.10.若m、n互为相反数,则|﹣2+m+(﹣2)﹣5+n|的值.11.已知|a|=2,|b|=2,b>a,求a,b的值.
13.求最大的负整数与最小的正整数以及绝对值最小的数的和.
14.已知|a|=4,|b|=5,求2a+b的值.
15.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|+|2a|.
16.列式计算:
求绝对值大于1而不大于5的所有负整数的和.
17.已知|a|=8,|b|=2,|a﹣b|=b﹣a,求b+a的值.
19.如果x<0,且|x﹣1|=4,求x的值.
20.写出绝对值大于3且不大于8的所有整数,并指出其中的最大数和最小数.。
初一数学绝对值经典练习题
绝对值经典练习【1】1、判断题:⑴、|-a|=|a|.⑵、-|0|=0.⑶、|-3|=-3.⑷、-(-5)›-|-5|.⑸、如果a=4,那么|a|=4.⑹、如果|a|=4,那么a=4.⑺、任何一个有理数的绝对值都是正数.⑻、绝对值小于3的整数有2, 1, 0.⑼、-a一定小于0.⑽、如果|a|=|b|,那么a=b.⑾、绝对值等于本身的数是正数.⑿、只有1的倒数等于它本身.⒀、若|-X|=5,则X=-5.⒁、数轴上原点两旁的点所表示的两个数是互为相反数.⒂、一个数的绝对值等于它的相反数,那么这个数一定是负数.2、填空题:⑴、当a_____0时,-a›0;⑵、当a_____0时,‹0;⑶、当a_____0时,-›0;⑷、当a_____0时,|a|›0;⑸、当a_____0时,-a›a;⑹、当a_____0时,-a=a;⑺、当a‹0时,|a|=______;⑻、绝对值小于4的整数有_____________________________;⑼、如果m‹n‹0,那么|m|____|n|;⑽、当k+3=0时,|k|=_____;⑾、若a、b都是负数,且|a|›|b|,则a____b;⑿、|m-2|=1,则m=_________;⒀、若|x|=x,则x=________;⒁、倒数和绝对值都等于它本身的数是__________;⒂、有理数a、b在数轴上的位置如图所示,则|a|=___;|b|=____;⒃、-2的相反数是_______,倒数是______,绝对值是_______;⒄、绝对值小于10的整数有_____个,其中最小的一个是_____;⒅、一个数的绝对值的相反数是-0.04,这个数是_______;⒆、若a、b互为相反数,则|a|____|b|;⒇、若|a|=|b|,则a和b的关系为__________.3、选择题:⑴、下列说法中,错误的是_____A.+5的绝对值等于5 B.绝对值等于5 的数是5C.-5的绝对值是5 D.+5、-5的绝对值相等⑵、如果|a|=||,那么a与b之间的关系是A.a与b互为倒数B.a与b互为相反数C.a〮b=-1D.a〮b=1或a〮b=-1⑶、绝对值最小的有理数是_______A.1 B.0 C.-1 D.不存在⑷、如果a+b=0,下列格式不一定成立的是_______A.a= B.|a|=|b| C.a=-b D.a⑸、如果a,那么_______A.|a|‹0 B.-(-a)›0 C.|a|›0 D.-a‹0⑹、有理数a、b在数轴上的对应点的位置,分别在原点的两旁,那么|a|与|b|之间的大小关系是_______A.|a|›|b| B.|a|‹|b| C.|a|=|b| D.无法确定⑺、下列说法正确的是________A.一个数的相反数一定是负数 B.两个符号不同的数叫互为相反数C.|-(+x)|=x D.-|-2|=-2⑻、绝对值最小的整数是_______A.-1 B.1 C.0 D.不存在⑼、下列比较大小正确的是_______A. B.-(-21)‹+(-21) C.-|-10|›8 D.-|-7|=-(-)⑽、绝对值小于3的负数的个数有______A.2B.3C.4D.无数⑾、若a、b为有理数,那么下列结论中一定正确的是_____A.若a‹b,则|a|‹|b| B.若a›b,则|a|›|b|C.若a=b,则|a|=|b|D.若a≠b,则|a|≠|b|4、计算下列各题:⑴、|-8|-|-5| ⑵、(-3)+|-3| ⑶、|-9|(+5)D、15|-3|5、填表a12-(0.1) -a-57+|a|0126、比较下列各组数的大小:⑴、-3与-;⑵、-0.5与|-2.5|;⑶、0与-|-9|; ⑷、|-3.5|与-3.57、把下列各数用“‹”连接起来:⑴、5,0,|-3|,-3,|-|,-(-8),-;⑵、1,-,0,-6;⑶、|-5|,-6,-(-5),-(-10),-|-10|⑷(|+|)(-)=-10,求O、,其中O和表示整数.8、比较下列各组数的大小:⑴、-(-9)与-(-8);⑵、|-|与50⑶、-与-3.14 ⑷、-与-0.273绝对值经典练习答案:1.⑴、√⑵、√⑶、×⑷、√⑸、√⑹、×⑺、×⑻、×⑼、×⑽、×⑾、×⑿、×⒀、×⒁、×⒂、×2.⑴‹ ⑵‹ ⑶‹ ⑷≠ ⑸‹ ⑹= ⑺-a ⑻±1,±2,±3,0⑼、>⑽3 ⑾‹ ⑿3或1 ⒀≧0 ⒁1 ⒂-a、b ⒃2⒄19 -9 ⒅±0.04 ⒆⒇相等或互为相反数3.⑴B ⑵D ⑶B ⑷A ⑸C ⑹D ⑺D ⑻C ⑼A ⑽D ⑾C4.⑴3 ⑵0 ⑶45 ⑷55a50-70.1-0-12-a-|a|570.16.⑴‹ ⑵‹ ⑶› ⑷›7.⑴‹-3‹0‹|-|‹|-3|‹5‹-(-8);⑵-6‹-5‹0‹1;⑶-|-10|‹-6‹-|-5|‹|-5|‹-(-10);⑷5,5,1或1,1,5或-1,-1,5或-5,-5,18.⑴›⑵‹⑶‹⑷›。
绝对值练习题(精)100道
绝对值综合练习题一1、有理数的绝对值一定是()2、绝对值等于它本身的数有()个3、下列说法正确的是()A、—|a|一定是负数B只有两个数相等时它们的绝对值才相等C、若|a|=|b|,则a与b互为相反数D、若一个数小于它的绝对值,则这个数为负数4.()A、a>|b|B、a<bC、|a|>|b|D、|a|<|b|5、相反数等于-5的数是______,绝对值等于5的数是________。
6、-4的倒数的相反数是______。
7、绝对值小于2的整数有________。
8、若|-x|=2,则x=____;若|x-3|=0,则x=______;若|x-3|=1,则x=_______。
9、实数a_______。
10、已知|a|+|b|=9,且|a|=2,求b的值。
11、已知|a|=3,|b|=2,|c|=1,且a<b<c,求a、b、c的值。
12、如果m>0, n<0, m<|n|,那么m,n,-m, -n的大小关系()13、如果,则的取值范围是()A.>O B.≥O C.≤O D.<O14、绝对值不大于11.1的整数有()A.11个B.12个C.22个D.23个15、│a│= -a,a一定是()A、正数B、负数C、非正数D、非负数16、有理数m,n在数轴上的位置如图,17、若|x-1| =0,则x=__________,若|1-x |=1,则x=_______.18、如果,则,.19、已知│x+y+3│=0, 求│x+y│的值。
20、│a-2│+│b-3│+│c-4│=0,则a+2b+3c=21、如果a,b互为相反数,c,d互为倒数,x的绝对值是1,求代数式x ba +x2+cd的值。
22、已知│a│=3,│b│=5,a与b异号,求│a-b│的值。
23.如果 a,b互为相反数,那么a + b = ,2a + 2b = .24. a+5的相反数是3,那么, a = .25.如果a 和 b表示有理数,在什么条件下, a +b 和a -b互为相反数? 26、若X的相反数是—5,则X=______;若—X的相反数是—3.7,则X=______ _27、若一个数的倒数是1.2,则这个数的相反数是________,绝对值是________b c a1028、若—a=1,则a=____; 若—a=—2,则a=_______;如果—a=a,那么a=_______ 29、已知|X —4|+|Y+2|=0,求2X —|Y|的值。
绝对值试题(经典)100道
61 ,求 + +… + .
62、已知 与 互为相反数,设法求代数式
63.已知 , 且 ,求 的值。
64.a与b互为相反数,且 ,求 的值.
65、(整体的思想)方程 的解的个数是______。
66、若 ,且 , ,则 .
67、大家知道 ,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离.又如式子 ,它在数轴上的意义是表示6的点与表示3的点之间的距离.类似地,式子 在数轴上的意义是.
A、正数 B、负数 C、非正数 D、非负数
16、有理数m,n在数轴上的位置如图,
17、若|x-1| =0, 则x=__________,若|1-x |=1,则x=_______.
18、如果 ,则 , .
19、已知│x+y+3│=0, 求│x+y│的值。
20、│a-2│+│b-3│+│c-4│=0,则a+2b+3c=
绝对值试题(经典)100道
———————————————————————————————— 作者:
———————————————————————————————— 日期:
绝对值综合练习题
1、有理数的绝对值一定是_________。
2、绝对值等于它本身的数有________个。
3、下列说法正确的是()
21、如果a,b互为相反数,c、d互为倒数,x的绝对值是1,
求代数式 +x2+cd的值。
22、已知│a│=3,│b│=5,a与b异号,求│a-b│的值。
23、如果 a,b互为相反数,那么a + b =,2a+ 2b =.
绝对值专项练习60题有答案8页
绝对值专项练习 60题(有答案)1.下列说法中正确的是( )A . 有理数的绝对值是正数 C . 整数分数统称有理数B . 正数负数统称有理数D . a 的绝对值等于 a2.在数轴上距-2有3个单位长度的点所表示的数是( A . - 5 3.计算:|-4|=( C . - 1 A . 0 B . -4 C . 14) D . 4 3, |y|=5,则x+y 的值为 B . 2 x 的相反数是 -8 4. 若 A . 5.如果|a|=-a ,那么a 的取值范围是( A . a> 0 B . av 0 6.如图,数轴上的点 A 所表示的是实数 A a C . C . a , C . 7.如果a 是负数, 那么-a 、2a 、 a+|a|、 & 在-(- 2), -|-7|,- |+3|, ( ) 8或-2 ) aO D . - 8 或 D. a% 则点A 到原点的距离是( D . - |a| 这四个数中,负数的个数( |a| C . 3个 -舟I ,1(*¥)中,负数有(C . 3个 A . 1个 9.如图,数轴的单位长度为 1,如果点A 、C 表示的数的绝对值相等,则点 B 表示的数是(10 .任何一个有理数的绝对值在数轴上的位置是( A .原点两旁 B .整个数轴 11. a, b 在数轴位置如图所示,则 A . |a|> |b| B . |a 申| 12 .已知|x|=3,则在数轴上表示 A . 3 B .出 C .原点右边 |a 与 |b|关系是( |C . ||a|v |b| x 的点与原点的距离是( C . - 3 13 .若|a|=- a ,则数a 在数轴上的点应是在( D .原点及其右边D • ]|aMb| ) D . 0 - 3A . 原点的右侧B . 原点的左侧C . 原点或原点的右侧D . 原点或原点的左侧 14 .下列判断错误的是( )A . 任何数的绝对值一定是正数B . 一个负数的绝对值一 ) D .定是正数 C . 一个正数的绝对值一定是正数 任何数的绝对值都不是负数15 . a 为有理数,下列判断正确的是( A . -a 一定是负数 B . |a| —定是正数 |a 一定不是负数 16 .若abv0,且a >b ,贝U a , |a -b|, b 的大小关系为( A . a > |a - b|>b B . a >b >|a - b| 17 .若 |a|=8, |b|=5, a+b >0,那么 a - b 的值是( A . 3 或 13 B . 13 或-13 18 .下列说法正确的是(C . |a - b|> a > b ) C .3 或-3D . - |a| —定是负数 ) |D .||a - b|>b >a|D .- 3 或 13D . 19. 一个数的绝对值 A .正数 -|a| —定是负数只有两个数相等时,它们的绝对值才相等 若|a|=|b|,则a 与b 互为相反数若一个数小于它的绝对值,则这个数为负数 定是( ) B .负数 c .非负数 20 .若ab >0,则聖冲■的值为( ) |b| |b| |ab|A . 3B . - 1 21.已知:a >0, bv0, |a|v |b|v 1,那么以下判断正确的是(A . 1 - b >- b > 1+a > aB . c .±或出 1+a > a > 1 - b >— bC . 22 .若 |-x|= - X ,则 x 是( A .正数 B .负数 23 .若|a|>- a ,则a 的取值范围是( A . a > 0B . a 为 24 .若|m - 1|=5,则m 的值为( A . 6B . - 4 D.非正数 D . 3或- 1 ) 1+a > 1 - b > a >- b D . 1 - b > 1+a >- b > aC .非正数 ) C. av 0 D.非负数 D. I 自然数 C . 6 或- 4 D. - 6 或 4 25 .下列关系一定成立的是( A .若 |a|=|b|,贝U a=b B . 26 .已知a 、b 互为相反数,且 A . 2 B . 2 或 3 ) 若|a|=b ,贝y a=b|a - b|=6,贝y |b - 1|的值为 C . 若|a|=- b ,贝y a=b D .若 a=- b ,则 |a|=|b| ) D . 2 或 4 27 . av 0时,化简竺里4吉果为(3a B . 0 A . 2 3 28 .在有理数中, A . 1个 绝对值等于它本身的数有( B . 2个 C . D . -2a C . 3个 29 .已知|a|=- a 、|b|=b 、|a|> |b|>0,则下列正确的图形是 A. 0 ◎ A B . a ~*C. 30 .若|a|+|b|=|a+b |,贝U a 、b 间的关系应满足( A . b 同号 B . C . b 异号 D . D .无穷多个 ) 0 「D . p ) b 同号或其中至少一个为零 b 异号或其中至少一个为零 31.已知 |m|=4, |n|=3,且 mnv 0,贝U m+n 的值等于( ) A . 7 或- 7 B . 1 或- 1 C . 7 或 1 D . -7 或-1 32.已知a 、b 、c 大小如图所示, 的值为 a b cA . 1B . - 1 33.下列各式的结论成立的是( A .若 |m|=|n|, 34 .绝对值小于 A . 3个35 .绝对值大于 A . 7C . ±D . 则 m > n B .4的整数有(B . 5个 1而小于3.5的整数有(B . 6 ) m >n ,则 |m|> |n| )C . 若 m V nv0,贝U |m|> |n|D .若|m| > |n|,贝U m > n36 .若X 的绝对值小于1,则化简|x - A . 0 B . 237 . 3.14 - n 的差的绝对值为( A . 0B . 3.14- nC . 6个 )个. C .「5 1|+x+1| 得(C . 2x C . n —3.14D . 7个D . D . D . -2x 0.14下列说法正确的是():有理数的绝对值一定是正数有理数的相反数一定是负数互为相反数的两个数的绝对值相等 如果两个数的绝对值相等,那么这两个数相等若 |-a|=5,设 A=|x - b|+|x - 20|+|x - b - 20|,其中 0< b < 20, b^x<20,则 A 的最小值是52 .若a , b 为有理数,且|a|=2, |b|=3, 求 a+b 的值.53. 若 |x|=3, |y|=6,且 xy < 0,求 2x+3y 的值.54. 试求 |x - 1|+|x - 3|+ •• + |x - 2003|+|x - 2005|的最小值.55.有理数a 、b 在数轴上的位置如图所示,化简 |a - b|+|a+b|.a 0a=12, b= - 3, c= -( |b|- 3),求 |a|+2|b|+|c|的值.a 、b 、c 在数轴上的位置如图所示,化简 |a|+|c- b|+|a - c|+|b - a|58.小刚在学习绝对值的时候发现: |3 - 1可表示数轴上3和1这两点间的距离;而|3+1|即 |3-( - 1) |则表示3和-1这两点间的距离.根据上面的发现,小刚将|x - 2|看成x 与2这两点在数轴上的距离;那么|x+31可看成x 与_38. A . B .C .D . 39F 面说法错误的是( A . B . C .D . )-(-5)的相反数是(-5)3和-3的绝对值相等数轴上右边的点比左边的点表示的数小若|a|> 0,则a 一定不为零|b|>b ,且 |a|> |b|,则( B . a < b 40. A . a > b 41 .已知 |x 鬥,|y|W1,那么 |y+1|+|2y -已知|a|> a , )C .不能确定 x - 4|的最小值是D . a=b42. 从1000到9999中,四位数码各不相同,且千位数与个位数之差的绝对值为 43. ____________________________ 最大的负整数是_______________________________ ,绝对值最小的有理数是 ______________ 44.最大的负整数,绝对值最小的数,最小的正整数的和是 0 ____________2的四位数有个.则 |x|=|y|.(46. 绝对值等于 47. 48.10的数是则a= -3.5的绝对值是 49. 50 .绝对值小于10的所有正整数的和为 51.化简:|x - 2|+|x+3|,并求其最小值. ;绝对值是5的数是 ;绝对值是-5的数是56.已知 57.已知59 .若abv 0,试化简血+止1+丄坐1a b ab60.同学们都知道,|5-( - 2) |表示5与-2之差的绝对值,实际上也可理解为 5与-2两数在数轴上所对的两点之间的距离. 试探索:(1) 求 |5-( - 2) |= ____________ . (2) 设x 是数轴上一点对应的数,则 |x+1|表示与(3)若x 为整数,且|x+5|+|x - 2|=7,则所有满足条件的 x 为__________ 在数轴上的距离.小刚继续研究发现: x 取不同的值时,|x - 2|+|x+3|=5有最 值,请你借助数轴解决下列问题(1) (2) (3) (4) 当|X — 2|+|x+3|=5时,x 可取整数 _______ 若A=|x+1|+|x - 5|,那么 A 的最小值是 若B=|x+2|+|x|+|x - 1|,那么B 的最小值是 写出 |x+5|+|x+3|+|x+1|+|x - 2|的最小值.(写出一个符合条件的整数即可),此时x 为之差的绝对值参考答案:1.A、有理数0的绝对值是0,故A错误;B、正数、0、负数统称有理数,故B错误;C、整数分数统称有理数,故C正确;D、a< 0时,a的绝对值等于-a,故D错误. 故选C.2.依题意得:|- 2 - x|=3,即-2 - x=3 或-2 - x= - 3,解得:x= - 5 或x=1 .故选 D .3.根据一个负数的绝对值是它的相反数,可知|-4|=4.故选D .4.x 的相反数是3,则x= - 3, |y|=5, y= ±, . x+y= - 3+5=2,或x+y= - 3 - 5= - 8.则x+y的值为-8或2 .故选D5因为一个负数的绝对值是它的相反数;0的绝对值是0或相反数,所以如果|a|=- a,那么a的取值范围是aW).故选C.6.依题意得:A到原点的距离为|a|,v a< 0,. |a|=- a,. A到原点的距离为-a.故选B.7•当a是负数时,根据题意得,- a> 0,是正数,2av 0,是负数,a+|a|=0,既不是正数也不是负数, 是负数;所以, 2a、启是负数,所以负数2个.故选B.a8 •••-(- 2) =2,是正数;-I- 7|=- 7,是负数;-|+3|=- 3是负数;|H|,是正数;-译5 9.如图,AC =-更是负数;.在以上数中,负数的个数是3.故选C.5的中点即数轴的原点O.根据数轴可以得到点B表示的数是-1.故选C.10.11.12.13.A 5 C•••任何非0数的绝对值都大于0,•任何非0数的绝对值所表示的数总在原点的右侧,■/ 0的绝对值是0,. 0的绝对值表示的数在原点.故选 D .••• a<- 1, 0< b< 1 ,••• |a|> |b|.故选 A•••|x|=3,又•••轴上x的点到原点的距离是|x|,.数轴上x的点与原点的距离是3;故选A .•/ |a|=- a,. aW),即可得数a在数轴上的点应是在原点或原点的左侧.故选D.14•根据绝对值性质可知,一个负数的绝对值一定是正数;一个正数的绝对值一定是正数;任何数的绝对值都不是负数.B, C, D 都正确.A中,0的绝对值是0,错误.故选 A .15.A、错误,a=0时不成立;B、错误,a=0时不成立;C、正确,符合绝对值的非负性;D、错误,a=0时不成立. 故选C16.T abv0,且a> b,;a>0, b< CT. a- b>a> 0^ |a- b|>a> b 故选C.17.18.19.•/ |a|=8, |b|=5,••• a=i8, b=芳,又T a+b>0,A a=8, b= i5.A a- b=3 或13.故选 A .A、 -|a不一定是负数,当a为0时,结果还是0,故错误;B、互为相反数的两个数的绝对值也相等,故错误;C、a等于b时,|a|=|b|,故错误;D、若一个数小于它的绝对值,则这个数为负数,符合绝对值的性质,故正确.一个数的绝对值一定是非负数•故选C.20.因为ab>0,所以a, b同号.①若a, b同正,^T S)+卡J+|日+仆仁彳;22.23.24. ②若a, b 同负,^则i: I + |[ |+ I = - 1 - 1+1= - 1. 故选D.■/ a> 0,. |a|=a;T b< 0, • |b|= - b;又■/ |a|< |b|< 1, • a<- b< 1;. 1 - b> 1+a;而1+a> 1, • 1 - b> 1+a>- b>a.故选D.••• |- x|= - x;. xW).即x是非正数.故选C.若|a|>- a,贝U a的取值范围是a> 0.故选A.■/ |m- 1|=5, . m - 1= ±, . m=6 或-4.故选C.25 .选项A、B、C中,a与b的关系还有可能互为相反数.故选D.26.Ta 、b 互为相反数,••• a+b=O,T |a- b|=6,.・.b=出,|b - 1|=2 或 4.故选 D .27. V av 0,.••吐L L L =兰1!=0.故选 B3a 3a28. 在有理数中,绝对值等于它本身的数为所有非负有理数,而非负有理数有无穷多个.故选 29. V |a|=- a 、|b|=b , • av 0, b >0,即a 在原点的左侧,b 在原点的右侧,•••可排除A 、B ,v |a|>|b|,. a 到原点的距离大于 b 到原点的距离,•可排除C ,故选D .30. 设 a 与 b 异号且都不为 0,则 |a+b|=||a|- |b||,当 |a|> |b|时为 |a|- |b|,当 |a|<fb|时为 |b|- |a|. 不满足条件|a|+|b|=|a+b|,当a 与b 同号时,可知|a|+|b|=|a+b 成立;当a 与b 至少一个为 0时,|a|+|b|=|a+b 也成立. 故选B .31. V |m|=4, |n|=3,^ m=也,n= ±3,又 v mn v O ,:当 m=4 时,n= - 3, m+n=1 ,当 m= - 4 时,n=3 , m+n= - 1,故选 B .32.根据图示,知 av 0v bv c,.••园」£!==+¥+£=- 1+1+1=1 .故选 A .a b c a b c33. A 、若 m= -3, n=3 , |m|=|n|, mv n,故结论不成立; B 、若 m=3, n= - 4, m>i,则 |m|v|n|,故结论不成立;C 、若mv nv 0,则|m|> |n|,故结论成立;D 、若m= - 4, n=3 , |m|> |n|,贝U mvn ,故结论不成立.故选:C34. 绝对值小于4的整数有:±3,塑,±1, 0,共7个数.故选D35. 绝对值大于1而小于3.5的整数有:2, 3, - 2, - 3共4个.故选D .36.V x 的绝对值小于1,数轴表示如图:从而知道 x+1 >0, x - 1v0;可知|x+1|+|x - 1|=x+1+1 - x=2 .740.41. T |X|W1, |y 鬥,•••- 1強冬,-1鬥冬,故可得出:|y+1|+|2y - X - 4|=y+1+ (4+x - 2y ) =5+x - y ,当X 取-1, y 取1时取得最小值,所以|y+1|+|2y - x - 4|min =5- 1 - 1=3 .42.V 千位数与个位数之差的绝对值为 2,可得数对”分别是:(0, 2), ( 1, 3), (2, 4) , ( 3 , 5), (4 , 6) , ( 5 , •••( 0 , 2)只能是千位2,个位0,•—共15种选择,•••从1000到9999中,四位数码各不相同,且千位数与个位数之差的绝对值为43.最大的负整数是-1 ,绝对值最小的有理数是0 .44. 最大的负整数是-1,绝对值最小的数 0 ,最小的正整数是 1 V- 1+0+1=0, •••最大的故选B .-2V n> 3.14, • 3.14 - nV 0 ,• |3.14 -冗|= -( 3.14 - n) = n- 3.14 .故选:CA V 0的绝对值是0,故本选项错误.B V 负数的相反数是正数,故本选项错误.CV 互为相反数的两个数的绝对值相等,故本选项正确.D V 如果两个数的绝对值相等,那么这两个数相等或互为相反数,故本选项错误.故选 A 、 - (- 5) =5, 5的相反数是-5,故本选项说法正确; B 、 3和-3的绝对值都为3,故本选项说法正确;C 、 数轴上右边的数总大于左边的数,故本选项说法错误;D 、 绝对值大于0的数可能是正数也可能是负数,故本选项说法正确.故选 V |a|>a , |b|>b ,. a 、b 均为负数,又 V |a|> |b|,. av b .故选 By+1 为;2y - x - 4 v 0,37.38. 39.C .2的四位数有15 >8 X7=840个.不存在故答案为:37), (6, 8), (7, 9),负整数,绝对值最小的数,最小的正整数的和是0正确.故答案为:45.V x+y=0 ,• X、y互为相反数.二|x|=|y|.故答案为(V46 .绝对值等于10的数是±0 .47.若|- a|=5,贝U a= ±5.48.由题意得:从€0 得知,x - b% x - 20O x - b-20O,A=|x - b|+|x- 20|+|x - b- 20|= (x- b) + (20- x) + (20+b - x) =40 - x, 又x最大是20,则上式最小值是40 - 20=20 .49. - 3.5的绝对值是 3.5 ;绝对值是5的数是±5 ;绝对值是-5的数是26.Ta 、b 互为相反数,••• a+b=O,T |a- b|=6,.・.b=出,|b - 1|=2 或 4.故选 D .2=503004 . 故答案为:503004 .55.V 在数轴上原点右边的数大于0,左边的数小于 0,右边的数总大于左边的数可知,b < a < 0,•• |a - b|=a - b , |a+b|=- a - b ,;原式=a -b - a - b= - 2b56. •/ a=12 , b= - 3,; c= -( |b|- 3) = -( 3 - 3) =0,• |a|+2|b|+|c|=12+2X3+0=18 . 57.由数轴,得 b > c >0, a <0,; c - b < 0, a - c < 0, b - a >0,••• |a|+|c— b|+|a - c|+|b - a|= - a -( c - b ) -( a - c ) +b - a= - a - c+b - a+c+b - a =2b - 3a .58. v |x+3|=|x -( - 3) |,.・. |x+3|可看成x 与-3的点在数轴上的距离;(1) x=0 时,|x - 2|+|x+3|=| - 2|+|3|=2+3=5 ; (2) |x+1|+|x - 5|表示x 到点-1与到点5的距离之和, 当-1$老时,A 有最小值,即表示数5的点到表示数-1的点的距离,所以 A 的最小值为6;(3) |x+2|+|x|+|x - 1|表示x 到数-2、0、1三点的距离之和,所以当 x=0时,它们的距离之和最小, 即B 的最小值为3,此时x=0 ;(4) |x+5|+|x+3|+|x+1|+|x - 2|表示 x 到数-5、- 3、- 1、2 四点的距离之和, 所以当-3<x<- 1时,它们的距离之和有最小值9,即|x+5|+|x+3|+|x+1|+|x - 2|的最小值为9.59.V ab <0, • a 和b 中有一个正数,一个负数,不妨设 a >0,b < 0,原式=1 - 1 - 1= - 160. (1) |5-( - 2) |=|5+2|=7; (2) |x+1|表示 x 与-1 之差的绝对值;(3)v |x+5|表示x 与-5两数在数轴上所对的两点之间的距离, |x - 2|表示x 与2两数在数轴上所对的两点之间的距离,而-5与2两数在数轴上所对的两点之间的距离为 2 -( - 5) =7, |x+5|+|x - 2|=7,• - 5$电.故答案为7; x , - 1 ; -.50. 绝对值小于 10 的正整数有:1、2、3、4、5、6、7、8、9,和为:1+2+3+4+5+6+7+8+9=45 . 故本题的答案是:45. 51. ①当 XW — 3 时,原式=2 - x - x - 3= - 2x - 1;②当-3< x < 2 时,原式=2 - x+x+3=5 ; ③ 当x 呈时,原式=x - 2+x+3=2x+1 ;•••最小值为52. V a , b 为有理数,当 a=+2, 当 a=+2, 故答案为: 53. V |x|=3, |a|=2, |b|=3,••• a=±2, b=±,a+b=2+3=5 ; 当 a=- 2, b= - 3 时,a+b= - 2 - 3= - 5;b=+3 时,a+b= - 2+3=1.b=+3 时,b= - 3 时,芳、±1.|y|=6,二 x= ±3, y= ±), v xy < 0,二 x=3 , y= - 6,或 x= - 3,① x=3 , y= - 6 时,原式=2 >3+3X ( - 6) =6 - 18=- 12; ② x= - 3, y=6,原式=2X (- 3) +30=- 6+18=1254. V 2005=2X1003 - 1,•共有 1003 个数,••• x=502 X - 1=1003时,两边的数关于|x - 1003|对称,此时的和最小,此时 |x - 1|+|x - 3|+ •• + |x - 2003|+|x - 2005|=(x - 1) + (x -3) ••+ (1001 - x ) + (1003- x ) + (1005- x ) =2 (2+4+6+••+1002) C2+1002) X501=2 X ---------- --------+ •• + (2005—x )。
绝对值练习题(经典)100道
绝对值练习题(经典)100道绝对值综合练习题1、有理数的绝对值一定是_________。
2、绝对值等于它本身的数有________个。
3、下列说法正确的是()A、—|a|一定是负数B、只有两个数相等时它们的绝对值才相等C、若|a|=|b|,则a与b互为相反数D、若一个数小于它的绝对值,则这个数为负数4.若有理数在数轴上的对应点如下图所示,则下列结论中正A、a>|b|B、a<bC、|a|>|b|D、|a|<|b|5、相反数等于-5的数是______,绝对值等于5的数是________。
6、-4的倒数的相反数是______。
7、绝对值小于2的整数有________。
8、若|-x|=2,则x=____;若|x-3|=0,则x=______;若|x-3|=1,则x=_______。
23421、如果a,b 互为相反数,c 、d 互为倒数,x 的绝对值是1, 求代数式xb a ++x 2+cd 的值。
22、已知│a │=3,│b │=5,a 与b 异号,求│a -b │的值。
23、如果 a,b 互为相反数,那么 a + b = ,2a + 2b= .24、a+5的相反数是3,那么, a = .25、若X 的相反数是—5,则X=______;若—X 的相反数是—3.7,则X=______26、若一个数的倒数是1.2,则这个数的相反数是________,绝对值是________27、若—a=1,则a=____; 若—a=—2,则a=_______;如果—a=a,那么a=_______28、已知|X —4|+|Y+2|=0,求2X —|Y|的值。
29.若)5(--=-x ,则=x ________,42=-x ,则=x ________30、绝对值小于4且不小于2的整数是________31.已知|a|=3, |b |=5,且a<b,则a +b 等于32.若1<a <3,则=-+-a a 13__________33.若∣x -2│=7,则x=34.给出两个结论:①a b b a -=-;②-21>-31.其中 .A.只有①正确B.只有②正确C.①②都正确D.①②都不正确5b c a1035、若|a|=2,|b|=5,则a+b=( )36、 如果|a|=4,|b|=3,且a>b ,求a ,b 的值.37.对于式子|x|+13,当x 等于什么值时,有最小值?最小值是多少?38对于式子2-|x|,当x 等于什么值时,有最大值?最大值是多少39.已知a <c <0<b ,化简|b-c|-|b+c|+|a-c|-|a+c|-|a+b|40.a<0时,化简||3a a a结果为( ) 41.有理数a,b,c 在数轴上的位置如图所示: 试化简:│a+b │-│b-1│-│a-c │-│1-c │=___________.42.已知│a-3│+│-b+5│+│c-2│=0,计算2a+b+c 的值.43.如果a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是1,求代数式x 2+(a+b)x-•cd 的值.44.化简│1-a │+│2a+1│+│a │(a<-2).45.已知-a<b<-c<0<-d,且│d │<│c │,试将a,b,c,d,0•这五个数由大到小用“>”依次排列出来.46.若|x |=51,则x 的相反数是_______.47.若|m -1|=m -1,则m _______1.48.若|m -1|>m -1,则m _______1649.若|x |=|-4|,则x =_______.50.若|-x |=|21-|,则x =_______.51.若|x -2|+|y +3|+|z -5|=0计算:(1)x ,y ,z 的值.(2)求|x |+|y |+|z |的值.52.若2<a <4,化简|2-a |+|a -4|.53.(1)若x x =1,求x . (2)若x x=-1,求x .54、若3+-y x 与1999-+y x 互为相反数,求y x y x -+的值。
绝对值练习题(经典)100道
绝对值综合练习题1、有理数的绝对值一定是_________。
2、绝对值等于它本身的数有________个。
3、下列说法正确的是()A、—|a|一定是负数B、只有两个数相等时它们的绝对值才相等C、若|a|=|b|,则a与b互为相反数D、若一个数小于它的绝对值,则这个数为负数4.若有理数在数轴上的对应点如下图所示,则下列结论中正A、a>|b|B、a<bC、|a|>|b|D、|a|<|b|5、相反数等于-5的数是______,绝对值等于5的数是________。
6、-4的倒数的相反数是______。
7、绝对值小于2的整数有________。
8、若|-x|=2,则x=____;若|x-3|=0,则x=______;若|x-3|=1,则x=_______。
10、已知|a|+|b|=9,且|a|=2,求b的值。
11、已知|a|=3,|b|=2,|c|=1,且a<b<c,求a、b、c的值。
12、如果m>0, n<0, m<|n|,那么m,n,-m, -n的大小关系_________________.13、如果,则的取值范围是()A.>O B.≥O C.≤O D.<O 14、绝对值不大于11.1的整数有()A.11个B.12个C.22个D.23个15、│a│= -a,a一定是()A、正数B、负数C、非正数D、非负数16、有理数m,n在数轴上的位置如图,17、若|x-1| =0,则x=__________,若|1-x |=1,则x=_______.18、如果,则,.19、已知│x+y+3│=0, 求│x+y│的值。
20、│a-2│+│b-3│+│c-4│=0,则a+2b+3c=21、如果a,b互为相反数,c、d互为倒数,x的绝对值是1,求代数式x ba +x2+cd的值。
22、已知│a│=3,│b│=5,a与b异号,求│a-b│的值。
23、如果 a,b互为相反数,那么 a + b = ,2a + 2b= .24、a+5的相反数是3,那么, a = .25、若X 的相反数是—5,则X=______;若—X 的相反数是—3.7,则X=______26、若一个数的倒数是1.2,则这个数的相反数是________,绝对值是________27、若—a=1,则a=____; 若—a=—2,则a=_______;如果—a=a,那么a=_______ 28、已知|X —4|+|Y+2|=0,求2X —|Y|的值。
绝对值练习题(经典)100道
绝对值练习题(经典)100道绝对值综合练习题1、有理数的绝对值一定是_________。
2、绝对值等于它本身的数有________个。
3、下列说法正确的是()A、—|a|一定是负数B、只有两个数相等时它们的绝对值才相等C、若|a|=|b|,则a与b互为相反数D、若一个数小于它的绝对值,则这个数为负数4.若有理数在数轴上的对应点如下图所示,则下列结论中正A、a>|b|B、a<bC、|a|>|b|D、|a|<|b|5、相反数等于-5的数是______,绝对值等于5的数是________。
6、-4的倒数的相反数是______。
7、绝对值小于2的整数有________。
8、若|-x|=2,则x=____;若|x-3|=0,则x=______;若|x-3|=1,则x=_______。
210、已知|a|+|b|=9,且|a|=2,求b的值。
11、已知|a|=3,|b|=2,|c|=1,且a<b<c,求a、b、c的值。
12、如果m>0, n<0, m<|n|,那么m,n,-m, -n的大小关系_________________.13、如果,则的取值范围是()A.>O B.≥O C.≤O D.<O 14、绝对值不大于11.1的整数有()A.11个B.12个C.22个D.23个15、│a│= -a,a一定是()A、正数B、负数C、非正数D、非负数16、有理数m,n在数轴上的位置如图,17、若|x-1| =0,则x=__________,若|1-x |=1,则x=_______.18、如果,则,.19、已知│x+y+3│=0, 求│x+y│的值。
20、│a-2│+│b-3│+│c-4│=0,则a+2b+3c=3421、如果a,b 互为相反数,c 、d 互为倒数,x 的绝对值是1, 求代数式xb a ++x 2+cd 的值。
22、已知│a │=3,│b │=5,a 与b 异号,求│a -b │的值。
绝对值练习题(经典)100道
绝对值综合练习题1、有理数的绝对值一定是_________。
2、绝对值等于它本身的数有________个。
3、下列说法正确的是()A、—|a|一定是负数B、只有两个数相等时它们的绝对值才相等C、若|a|=|b|,则a和b互为相反数D、若一个数小于它的绝对值,则这个数为负数4.若有理数在数轴上的对应点如下图所示,则下列结论中正b aA、a>|b|B、a<bC、|a|>|b|D、|a|<|b|5、相反数等于-5的数是______,绝对值等于5的数是________。
6、-4的倒数的相反数是______。
7、绝对值小于2的整数有________。
8、若|-x|=2,则x=____;若|x-3|=0,则x=______;若|x-3|=1,则x=_______。
10、已知|a|+|b|=9,且|a|=2,求b的值。
11、已知|a|=3,|b|=2,|c|=1,且a<b<c,求a、b、c的值。
12、如果m>0, n<0, m<|n|,那么m,n,-m, -n的大小关系_________________.13、如果,则的取值范围是()A.>O B.≥OC.≤OD.<O14、绝对值不大于11.1的整数有()A.11个B.12个C.22个D.23个15、│a│= -a,a一定是()A、正数B、负数C、非正数D、非负数16、有理数m,n在数轴上的位置如图,17、若|x-1| =0,则x=__________,若|1-x |=1,则x=_______.18、如果,则,.19、已知│x+y+3│=0, 求│x+y│的值。
20、│a-2│+│b-3│+│c-4│=0,则a+2b+3c=21、如果a,b互为相反数,c、d互为倒数,x的绝对值是1,求代数式x ba +x2+cd的值。
22、已知│a│=3,│b│=5,a和b异号,求│a-b│的值。
23、如果 a,b互为相反数,那么 a + b = ,2a + 2b= .24、a+5的相反数是3,那么, a = .25、若X的相反数是—5,则X=______;若—X的相反数是—3.7,则X=______26、若一个数的倒数是1.2,则这个数的相反数是________,绝对值是________27、若—a=1,则a=____; 若—a=—2,则a=_______;如果—a=a,那么a=_______28、已知|X—4|+|Y+2|=0,求2X—|Y|的值。
绝对值练习题(经典)100道
绝对值综合练习题1、有理数的绝对值一定是_________.2、绝对值等于它本身的数有________个。
3、下列说法正确的是( )A、—|a|一定是负数B、只有两个数相等时它们的绝对值才相等C、若|a|=|b|,则a与b互为相反数D、若一个数小于它的绝对值,则这个数为负数4.若有理数在数轴上的对应点如下图所示,则下列结论中正确A、a〉|b|B、a〈bC、|a|>|b|D、|a|〈|b|5、相反数等于—5的数是______,绝对值等于5的数是________。
6、—4的倒数的相反数是______.7、绝对值小于2的整数有________。
8、若|-x|=2,则x=____;若|x-3|=0,则x=______;若|x-3|=1,则x=_______。
10、已知|a|+|b|=9,且|a|=2,求b的值。
11、已知|a|=3,|b|=2,|c|=1,且a〈b〈c,求a、b、c的值。
12、如果m〉0, n<0, m<|n|,那么m,n,-m,—n的大小关系_________________.13、如果,则的取值范围是()A.>O B.≥O C.≤O D.<O 14、绝对值不大于11.1的整数有()A.11个B.12个C.22个D.23个15、│a│= -a,a一定是()A、正数B、负数C、非正数D、非负数16、有理数m,n在数轴上的位置如图,17、若|x-1| =0, 则x=__________,若|1—x |=1,则x=_______.18、如果,则,.19、已知│x+y+3│=0,求│x+y│的值.20、│a-2│+│b-3│+│c-4│=0,则a+2b+3c=21、如果a,b 互为相反数,c 、d 互为倒数,x 的绝对值是1, 求代数式xb a ++x 2+cd 的值。
22、已知│a │=3,│b │=5,a 与b 异号,求│a -b │的值。
23、如果 a ,b 互为相反数,那么a + b = ,2a + 2b= 。
完整版)绝对值练习题(含答案)
完整版)绝对值练习题(含答案)2.3 绝对值一、选择题1.下列说法中正确的个数是(。
)1) 一个正数的绝对值是它本身;2) 一个非正数的绝对值是它的相反数;3) 两个负数比较,绝对值大的反而小;4) 一个非正数的绝对值是它本身。
A。
1个 B。
2个 C。
3个 D。
4个2.若 -│a│ = -3.2,则 a 是(。
)A。
3.2 B。
-3.2 C。
±3.2 D。
以上都不对3.若│a│=8,│b│=5,且 a+b>0,那么 a-b 的值是(。
) A。
3 或 13 B。
13 或 -13 C。
3 或 -3 D。
-3 或 -134.一个数的绝对值等于它的相反数的数一定是(。
)A。
负数 B。
正数 C。
负数或零 D。
正数或零5.当 a<0 时,化简 a+|a| 的结果为(。
)A。
3a/2 B。
0 C。
-1 D。
-2a/3二、填空题6.绝对值小于 5 而不小于 2 的所有整数有_________。
4,-3,-2,2,3,47.绝对值和相反数都等于它本身的数是_________。
8.已知│a-2│+(b-3)+│c-4│=0,则 3a+2b-c=_________。
179.比较下列各对数的大小(用“)”或“〈”填空〉1) -3/2 〈 -3211/1000.2) -1 〈 -1.167.3) -5/369 〈 |-1|。
10.有理数 a,b,c 在数轴上的位置如图所示:试化简:│a+b│-│b-1│-│a-c│-│1-c│=___________。
2三、解答题11.计算1) │-6.25│+│+2.7│=6.25+2.7=8.95;2) |-8|+|-3|+|-20|=8+3+20=31.12.比较下列各组数的大小:1) -1/2 〈 -2/3 〈 -0.3;2) -2/33 〈 -2 〈 -3/10.13.已知│a-3│+│-b+5│+│c-2│=0,计算 2a+b+c 的值。
a+b+c=0,代入得 2a+b+c=2a-2b+8.14.如果 a、b 互为相反数,c、d 互为倒数,x 的绝对值是1,求代数式 x+(a+b)x-•cd 的值。
绝对值练习题(精)100道(DOC)
绝对值综合练习题一1、有理数的绝对值一定是()2、绝对值等于它本身的数有()个3、下列说法正确的是()A、一lai—定是负数B只有两个数相等时它们的绝对值才相等C、若lal=lbl,贝a与b互为相反数D、若一个数小于它的绝对值,则这个数为负数4.若有理数在数轴上的对应点如下图所示,则下列结论中正确的是()A、a>lblB、a<bC、lal>lblD、lal<lbl5、相反数等于-5的数是,绝对值等于5的数是。
6、-4的倒数的相反数是。
7、绝对值小于2的整数有。
8、若l—x|=2,贝x=;若l x-3l=0,贝x=;若lx-3l=1,则x=。
9、实数a、b在数轴上位置如图所示,贝恫、lbl的大小关系是。
丨丨丨丨丨I丨丨.a0b10、已知|a|+|b|=9,且|a|=2,求b的值。
11、已知|a|=3,|b|=2,|c|=1,且a〈b〈c,求a、b、c的值。
12、如果m>0,n〈0,m〈|n|,那么m,n,-m,-n的大小关系()13、如果卜加卜-加,贝仏的取值范围是()A.〉OB.^$OC.^WOD.^VO14、绝对值不大于11.1的整数有A.11个B.12个C.22个D.23个15、|a|二一a,a一定是()A、正数B、负数C、非正数D、非负数16、有理数m,n在数轴上的位置如图,比较大小:-m-n,mn17、若|x—l|=0,贝寸x二,若|]_x|=1,贝寸x二.18、如果八3,贝沖一沪,卩一冬=.19、已知|x+y+3|=0,求|x+y|的值。
20、|a-2|+|b—3|+|c—4|=0,则a+2b+3c=21、如果a,b互为相反数,c,d互为倒数,x的绝对值是1,求代数式ab+x2+cd的值。
x22、已知|a|=3,|b|=5,a与b异号,求|a—b|的值。
23.如果a,b互为相反数,那么a+b=,2a+2b=24.a+5的相反数是3,那么,a=.25.如果a和b表示有理数,在什么条件下,a+b和a—b互为相反数?26、若X的相反数是一5,则X=;若一X的相反数是一3.7,则X=27、若一个数的倒数是1.2,贝这个数的相反数是,绝对值是28、若一a=l,则a二;若一a二一2,则a二;如果一a二a,那么a二29、已知|X—4|+|Y+2|=0,求2X—|Y|的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝对值专项训练
一、基础题 1、(绝对值的意义)
1°绝对值的几何定义:在数轴上表示数a 的点与__________的距离叫做数a 的绝对值,记作__________.
2°绝对值的代数定义:一个正数的绝对值是_________;一个负数的绝对值是________;0的绝对值是_________.
(2006年贵阳)(1)2-的绝对值等于( )A 、2
1
-
B 、2
C 、2-
D 、21 %
(2006年连云港)(2)3-等于 ( ) A 、3 B 、-3 C 、3
1
D 、
3
1-
(2005年梅州)(3)设a 是实数,则|a|-a 的值( )
A 、可以是负数
B 、不可能是负数
C 、必是正数
D 、可以是正数也可以是负数
2、(绝对值的性质)(1)任何数都有绝对值,且只有________个.
(2)由绝对值的几何意义可知:距离不可能为负数,因此,任何一个数的绝对值都是_____数,绝对值最小的数是______.
(3)绝对值是正数的数有_____个,它们互为_________.
(4)两个互为相反数的绝对值________;反之,绝对值相等的两个数______或________.
(2006年资阳)(4)绝对值为3的数为____________
—
3、(有理数的大小比较)正数_________0,负数________0,正数________负数;两个负数比较大小的时候,__________大的反而小.
(2005年无锡)(5)比较4
1,31,21--的大小,结果正确的是( )
A 、413121<-<-
B 、314121-<<-
C 、213141-<-<
D 、4
1
2131<-<-
二、[典型例题]
1、(教材变型题)若4x -=,则x =__________;若30x -=,则x =__________;若31x -=,则x =__________.
2、(易错题)化简(4)--+的结果为___________
3、(教材变型题)如果22a a -=-,则a 的取值范围是 ( )
-
A 、0a >
B 、0a ≥
C 、0a ≤
D 、0a < 4、(创新题)代数式23x -+的最小值是 ( ) A 、0 B 、2 C 、3 D 、5
5、(章节内知识点综合题)已知a b 、为有理数,且0a <,0b >,a b >,则 ( )
A 、a b b a <-<<-
B 、b a b a -<<<-
C 、a b b a -<<-<
D 、b b a a -<<-<
)
三、[自主练习题] 一、选择题
1、有理数的绝对值一定是 ( )
A 、正数
B 、整数
C 、正数或零
D 、自然数 2、下列说法中正确的个数有 ( )
①互为相反数的两个数的绝对值相等;②绝对值等于本身的数只有正数;③不
相等的两个数的绝对值不相等;④绝对值相等的两个数一定相等 A 、1个 B 、2个 C 、3个 D 、4个
~
3、如果甲数的绝对值大于乙数的绝对值,那么 ( ) A 、甲数必定大于乙数 B 、甲数必定小于乙数
C 、甲、乙两数一定异号
D 、甲、乙两数的大小,要根据具体值确定 4、绝对值等于它本身的数有 ( ) A 、0个 B 、1个 C 、2个 D 、无数个 5、下列说法正确的是( )
A 、a -一定是负数
B 、只有两个数相等时它们的绝对值才相等
C 、若a b =,则a 与b 互为相反数
D 、若一个数小于它的绝对值,则这个数为负数
;
二、填空题
6、数轴上,绝对值为4,且在原点左边的点表示的有理数为___________.
7、绝对值小于π的整数有______________________
8、当0a >时,a =_________,当0a <时,a =_________, 9、如果3a >,则3a -=__________,3a -=___________.
10、若1x x =,则x 是_______(选填“正”或“负”)数;若1x
x
=-,则x 是_______
(选填“正”或“负”)数;
11、已知3x =,4y =,且x y <,则x y +=________ 三、解答题
^
12、已知420x y -++=,求x ,y 的值
13、比较下列各组数的大小
(1)35-,34- (2)56-,45-,11
5
-
四、掌握命题动态
1、(2006年成都)2--的倒数是( )A 、2 B 、
1
2
C 、
12
-
D 、-2
2、(2005年济南)若a 与2互为相反数,则|a +2|等于( )
^
A 、0
B 、-2
C 、2
D 、4
3、(2005年广东深圳)实数a 、b 在数轴上的位置如图所示,那么化简|a-b|-a 的结果是
A 、2a-b
B 、b
C 、-b
D 、-2a+b 二、把握命题趋势
>
1、(信息处理题)已知a b 、互为相反数,c d 、互为倒数,m 的绝对值等于2,求2a b
m cd a b c
++-++的值.
2、(章节内知识点综合题)有理数a b c 、、在数轴上的位置如图所示,化简
0a b c -+--
b a
c
3、(科学探究题)已知3a =,2b =,1c =且a b c <<,求a b c ++的值。
4、(学科综合题)不相等的有理数a 、b 、c 在数轴上的对应点分别是A 、B 、C ,如果||||||a b b c a c -+-=-,那么点B ( ).
A .在A 、C 点的右边
B .在A 、
C 点的左边C .在A 、C 点之间
D .上述三种均可能
5、(课标创新题)已知a b c 、、都是有理数,且满足a b c a b c ++=1,求代数式:
6abc
abc
-
的值.
`
6、(实际应用题)检查5袋水泥的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查结果如表格所示:
(1)最接近标准质量的是几号水泥
O A B B O A B O A
B (A )O `
(2)质量最多的水泥比质量最少的水泥多多少千克
!
7、(阅读理解题)阅读下面材料:
点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为︱AB ︱.当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1, ︱AB ︱=︱OB ︱=︱b ︱=︱a -b ︱;
图1 图2 图3 图4 当AB 两点都不在原点时,
①如图2,点A 、B 都在原点的右边,
︱AB ︱=︱OB ︱-︱OA ︱=︱b ︱-︱a ︱=b -a =︱a -b ︱;
(
②如图3,点A 、B 都在原点的左边,
︱AB ︱=︱OB ︱-︱OA ︱= ︱b ︱-︱a ︱=-b -(-a )= ︱a -b ︱; ③如图4,点A 、B 在原点的两边,
︱AB ︱=︱OA ︱+︱OB ︱=︱a ︱+︱b ︱=a +(-b )= ︱a -b ︱. 综上,数轴上A 、B 两点之间的距离︱AB ︱= ︱a -b ︱. (2)回答下列问题:
①数轴上表示2和5的两点之间的距离是__________,数轴上表示-2和-5的两点之间的距离是__________,数轴上表示1和-3的两点之间的距离是__________;
②数轴上表示x和-1的两点A和B之间的距离是__________,如︱AB︱=2,那么x为__________;
:
③当代数式︱x+1︱+︱x-2︱取最小值时,相应的x的取值范围是__________.。