二次函数知识点整理

合集下载

二次函数的知识点

二次函数的知识点

ercihanshu知识点一、二次函数概念:1.二次函数的概念:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数a≠0,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数y=ax2+bx+c的结构特征:⑴等号左边是函数,右边是关于自变量x的二次多项式。

(①含自变量的代数式是整式,②自变量的最高次数是2,③二次项系数不为0.)⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式1. y=ax2的性质:2. y=ax2+k的性质:(k上加下减)3. y=a(x-h)2的性质:(h左加右减)4. y =a (x -h)2+k 的性质:5. y =ax 2+bx+c 的性质:三、二次函数的图象与各项系数之间的关系1. 二次项系数a.(a 决定了抛物线开口的大小和方向)二次函数2y ax bx c =++中,a 作为二次项系数,显然a ≠0 ① 当0a >时,抛物线开口向上,当0a <时,抛物线开口向下;②a 的绝对值越大,开口越小,反之a 的绝对值越小,开口越大。

总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b (a 和b 共同决定抛物线对称轴的位置).抛物线c bx ax y ++=2的对称轴是直线abx 2-=,故:①0=b 时,对称轴为y 轴;② (即a 、b 同号)时,对称轴在y 轴左侧;③ (即a 、b 异号)时,对称轴在y 轴右侧.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”3. 常数项c(c 决定了抛物线与y 轴交点的位置)⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 四、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿x 轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)五、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 六、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.七、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---; 2. 关于y 轴对称2y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++; 3. 关于原点对称2y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.八、二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠),适用条件:已知抛物线上三点的坐标,一般选用一般式;2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠),适用条件:已知图像上点两坐标,且其中一点为抛物线顶点或对称轴或最大(小)值,一般选用顶式3. 交点式(两根式):12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标), 适用条件:已知图像上三点坐标,其中两点为抛物线与x 轴的两个交点(1x ,0),(2x ,0),一般选用交点式;九、二次函数的最值如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当a b x 2-=时,ab ac y 442-=最值。

二次函数知识点总结

二次函数知识点总结

二次函数知识点总结二次函数知识点总结一、函数定义与表达式1.一般式:y = ax^2 + bx + c(a、b、c为常数,a≠0);2.顶点式:y = a(x - h)^2 + k(a、h、k为常数,a≠0);3.交点式:y = a(x - x1)(x - x2)(a≠0,x1、x2是抛物线与x轴两交点的横坐标)。

注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x轴有交点,即b^2 - 4ac≥0时,抛物线的解析式才可以用交点式表示。

二次函数解析式的这三种形式可以互相转化。

二、函数图像的性质——抛物线1)开口方向——二次项系数a二次函数y = ax^2 + bx + c中,a作为二次项系数,显然a≠0.当a>0时,抛物线开口向上,a的值越大,开口越小,反之a的值越小,开口越大;当a<0时,抛物线开口向下,a的值越小,开口越小,反之a的值越大,开口越大。

顶点坐标:(h,k)一般式:(-b/2a,-Δ/4a)总结起来,a决定了抛物线开口的大小和方向,a的正负决定开口方向,a的大小决定开口的大小。

|a|越大开口就越小,|a|越小开口就越大。

y = 2x^2y = x^2y = (1/2)x^2y = -(1/2)x^2y = -x^2y = -2x^22)抛物线是轴对称图形,对称轴为直线x = -b/2a。

对称轴顶点式:x = h两根式:x = x1、x = x23)对称轴位置一次项系数b和二次项系数a共同决定对称轴的位置。

(“左同右异”)a与b同号(即ab>0)对称轴在y轴左侧a与b异号(即ab<0)对称轴在y轴右侧4)增减性,最大或最小值当a>0时,在对称轴左侧(当x。

-b/2a时),y随着x的增大而增大;当a -b/2a时),y随着x的增大而增大;当a>0时,函数有最小值,并且当x = -b/2a时,ymin = -Δ/4a;当a<0时,函数有最大值,并且当x = -b/2a时,ymax = -Δ/4a;5)常数项c常数项c决定抛物线与y轴交点。

(完整版)二次函数知识点汇总(全)

(完整版)二次函数知识点汇总(全)

二次函数知识点(第一讲)一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质:(上加下减)3. ()2y a x h =-的性质:(左加右减)4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k=-+与2y axbx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )y y y y1 10 x o-1 x 0 x 0 -1 x A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

二次函数的知识点总结

二次函数的知识点总结

二次函数的知识点总结一、二次函数的定义二次函数是指一个形如 $y = ax^2 + bx + c$ 的函数,其中 $a$、$b$ 和 $c$ 是常数,且 $a \neq 0$。

在这个表达式中,$x$ 是自变量,$y$ 是因变量,$a$、$b$ 和 $c$ 是系数,其中 $a$ 称为二次项系数,$b$ 称为一次项系数,$c$ 称为常数项。

二、二次函数的性质1. 抛物线形状:二次函数的图像是一个向上或向下开口的抛物线。

2. 开口方向:当 $a > 0$ 时,抛物线开口向上;当 $a < 0$ 时,抛物线开口向下。

3. 对称轴:二次函数图像关于直线 $x = -\frac{b}{2a}$ 对称,这条直线称为抛物线的对称轴。

4. 顶点:抛物线的顶点坐标为 $\left(-\frac{b}{2a}, \frac{4ac - b^2}{4a}\right)$。

5. 与 X 轴的交点:二次函数与 X 轴的交点称为根,可以通过解方程$ax^2 + bx + c = 0$ 来找到。

三、二次函数的图像1. 顶点式:$y = a(x - h)^2 + k$,其中 $(h, k)$ 是顶点坐标。

2. 交点式:$y = a(x - x_1)(x - x_2)$,其中 $x_1$ 和 $x_2$ 是与 X 轴的交点坐标。

3. 标准式:$y = ax^2 + bx + c$。

四、求解二次方程1. 因式分解法:当能够找到两个数,它们的和等于 $b$,积等于$c$ 时,可以使用因式分解法。

2. 完全平方法:通过配方将二次方程转化为完全平方的形式。

3. 公式法:使用二次公式 $x = \frac{-b \pm \sqrt{b^2 -4ac}}{2a}$ 来求解。

五、二次函数的应用1. 物理运动:描述物体在重力作用下的自由落体运动和抛体运动。

2. 优化问题:在商业和工程中,用于寻找最大利润或最小成本。

3. 数据拟合:在统计学中,用于拟合数据点,找到最佳曲线。

二次函数知识点汇总(全)

二次函数知识点汇总(全)

二次函数知识点一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结: 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:图像参考:y=-2x222-32y=3(x+4)22y=3x2y=-2(x-3)2十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1.考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x为自变量的二次函数2)2(22--+-=mmxmy的图像经过原点,则m的值是2.综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数bkxy+=的图像在第一、二、三象限内,那么函数12-+=bxkxy的图像大致是()0 x o-1 x 0 x 0 -1 x A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x,求这条抛物线的解析式。

《二次函数》知识点知识点总结

《二次函数》知识点知识点总结

《二次函数》知识点知识点总结《二次函数》知识点总结一、二次函数的定义一般地,如果形如 y = ax²+ bx + c(a、b、c 是常数,a ≠ 0)的函数,那么就叫做二次函数。

其中,x 是自变量,a 叫做二次项系数,b 叫做一次项系数,c 叫做常数项。

需要注意的是,二次函数的二次项系数 a 不能为 0,如果 a = 0,那么就变成了一次函数。

二、二次函数的图像二次函数的图像是一条抛物线。

当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。

抛物线的对称轴是直线 x = b / 2a 。

抛物线的顶点坐标为(b / 2a,(4ac b²) / 4a)。

三、二次函数的表达式1、一般式:y = ax²+ bx + c(a ≠ 0)2、顶点式:y = a(x h)²+ k(a ≠ 0),其中顶点坐标为(h,k)3、交点式:y = a(x x₁)(x x₂)(a ≠ 0),其中 x₁、x₂是抛物线与 x 轴交点的横坐标四、二次函数的性质1、当 a > 0 时,在对称轴左侧,y 随 x 的增大而减小;在对称轴右侧,y 随 x 的增大而增大。

函数有最小值,当 x = b / 2a 时,y 最小值=(4ac b²) / 4a 。

2、当 a < 0 时,在对称轴左侧,y 随 x 的增大而增大;在对称轴右侧,y 随 x 的增大而减小。

函数有最大值,当 x = b / 2a 时,y 最大值=(4ac b²) / 4a 。

五、抛物线的平移抛物线的平移实质上是它的顶点(h,k)的移动(点的移动规律)。

向左平移 h 个单位长度,顶点坐标变为(h m,k);向右平移 m个单位长度,顶点坐标变为(h + m,k)。

向上平移 n 个单位长度,顶点坐标变为(h,k + n);向下平移 n个单位长度,顶点坐标变为(h,k n)。

六、二次函数与一元二次方程的关系二次函数 y = ax²+ bx + c(a ≠ 0),当 y = 0 时,就变成了一元二次方程 ax²+ bx + c = 0(a ≠ 0)。

二次函数知识点梳理

二次函数知识点梳理

二次函数知识点梳理一、二次函数的定义二次函数是指一个变量的二次多项式函数,其一般形式为 f(x) =ax^2 + bx + c,其中 a、b、c 是常数,且a ≠ 0。

二、二次函数的图像二次函数的图像是一个抛物线。

根据 a 的正负,抛物线开口向上或向下。

a > 0 时,抛物线开口向上;a < 0 时,抛物线开口向下。

三、顶点二次函数的顶点是抛物线的最高点或最低点。

顶点的坐标可以通过公式 (-b/2a, f(-b/2a)) 计算得出。

四、对称轴二次函数的对称轴是一条垂直线,其方程为 x = -b/2a。

对称轴将抛物线分为两部分,这两部分关于对称轴对称。

五、判别式二次函数的判别式是 b^2 - 4ac。

根据判别式的值,可以判断二次函数与 x 轴的交点情况:- 如果判别式 > 0,则有两个实数根。

- 如果判别式 = 0,则有一个实数根(重根)。

- 如果判别式 < 0,则没有实数根。

六、根的性质1. 根的和:如果α 和β 是二次方程 ax^2 + bx + c = 0 的两个根,则α + β = -b/a。

2. 根的积:如果α 和β 是二次方程的两个根,则αβ = c/a。

七、因式分解某些二次函数可以因式分解为 (x - α)(x - β) = 0 的形式,其中α 和β 是函数的根。

八、配方法配方法是求解二次方程的一种方法,通过将二次函数转化为完全平方的形式,从而更容易找到方程的解。

九、二次函数的应用二次函数广泛应用于物理、工程、经济等领域,如描述物体的抛体运动、优化生产成本等。

十、二次不等式二次不等式是形如 ax^2 + bx + c > 0 或 ax^2 + bx + c < 0 的不等式。

解这类不等式通常需要考虑二次函数的图像和判别式。

十一、复合二次函数复合二次函数是指外层函数是二次函数,内层函数可以是任何实值函数的情况。

这类函数的性质更为复杂,需要结合内外层函数的特点进行分析。

二次函数知识点总结资料整理

二次函数知识点总结资料整理
二次函数知识点总结
一、二次函数的定义 1. 二次函数的概念:一般地,形如 函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数 a 0 ,而 b,c 可
以为零. 2. 二次函数 y ax2 bx c 的结构特征:



性质
x 0 时, y 随 x 的增大而增大; x 0 时,
a0
向上
0 ,c
y 轴 y 随 x 的增大而减小;x 0 时,y 有最小
值c .
a0
向下 0,c
3. y a x h2 的性质:
x 0 时, y 随 x 的增大而减小; x 0 时, y 轴 y 随 x 的增大而增大;x 0 时,y 有最大
2a
当 b 0 时, b 0 ,即抛物线的对称轴就是 y 轴;
2a
当 b 0 时, b 0 ,即抛物线对称轴在 y 轴的右侧.
2a
⑵ 在 a 0 的前提下,结论刚好与上述相反,即 当 b 0 时, b 0 ,即抛物线的对称轴在 y 轴右侧;
2a
当 b 0 时, b 0 ,即抛物线的对称轴就是 y 轴;
值c .
a 的符 开口方 顶点坐 对称


标轴
性质
x h 时,y 随 x 的增大而增大;x h
a0
向上 h,0 X=h 时, y 随 x 的增大而减小; x h 时,
y 有最小值 0 .
x h 时,y 随 x 的增大而减小;x h
a0
向下 h,0 X=h 时, y 随 x 的增大而增大; x h 时,
向下 h,k X=h 时, y 随 x 的增大而增大; x h 时,
y 有最大值 k .
三、二次函数图象的平移 1. 平移步骤:

二次函数知识点总结

二次函数知识点总结

二次函数知识点总结二次函数是高中数学中的一个重要概念,它在数学和实际问题中都有广泛的应用。

本文将对二次函数的定义、性质、图像及其相关内容进行总结。

一、二次函数的定义二次函数是指形如 f(x) = ax^2 + bx + c 的函数,其中 a、b、c为常数且a ≠ 0。

其中,a 表示二次项的系数,b 表示一次项的系数,c 表示常数项。

二次函数的定义域为全体实数集。

二、二次函数的性质1. 凹凸性:二次函数的凹凸性取决于a 的正负性。

当a > 0 时,函数图像开口向上,为凹函数;当 a < 0 时,函数图像开口向下,为凸函数。

2. 对称轴:二次函数的对称轴是 x = -b / (2a)。

对称轴是图像的中心线,函数图像关于对称轴对称。

3. 零点:二次函数的零点是指函数值等于零的 x 值。

二次函数的零点可以有 0、1 或 2 个。

当判别式 D = b^2 - 4ac > 0 时,有 2个不同的实零点;当 D = 0 时,有一个实零点;当 D < 0 时,没有实零点。

4. 最值:当二次函数的开口向上时,函数的最小值为 f(-b / (2a)) = c - (b^2 - 4ac) / (4a);当二次函数的开口向下时,函数的最大值为 f(-b / (2a)) = c + (b^2 - 4ac) / (4a)。

三、二次函数的图像二次函数的图像为抛物线,其开口方向、顶点、对称轴和零点等特征在前面已经介绍过。

关于图像的绘制,可以根据以下步骤进行:1. 确定顶点:顶点的横坐标为 -b / (2a),纵坐标为 f(-b / (2a))。

2. 确定对称轴:对称轴的方程为 x = -b / (2a)。

3. 确定开口方向:根据 a 的正负性可以确定开口方向。

4. 确定零点:根据判别式 D 的值可以确定零点的情况。

除了以上内容,二次函数还与一些相关概念有密切联系:1. 判别式:二次函数的判别式 D = b^2 - 4ac 可以用来判断二次函数的零点情况。

二次函数的相关知识点总结

二次函数的相关知识点总结

二次函数的相关知识点总结一、二次函数的概念。

1. 定义。

- 一般地,形如y = ax^2+bx + c(a,b,c是常数,a≠0)的函数,叫做二次函数。

其中x是自变量,a、b、c分别是二次项系数、一次项系数、常数项。

- 例如y = 2x^2+3x - 1,这里a = 2,b=3,c=-1。

二、二次函数的图象。

1. 二次函数y = ax^2+bx + c(a≠0)的图象是一条抛物线。

2. 抛物线的顶点坐标。

- 对于二次函数y = ax^2+bx + c(a≠0),其顶点坐标公式为(-(b)/(2a),frac{4ac - b^2}{4a})。

- 例如,对于二次函数y=x^2-2x - 3,其中a = 1,b=-2,c=-3。

根据顶点坐标公式,-(b)/(2a)=-(-2)/(2×1)=1,frac{4ac - b^2}{4a}=frac{4×1×(-3)-(-2)^2}{4×1}=(-12 - 4)/(4)=-4,所以顶点坐标为(1,-4)。

3. 抛物线的对称轴。

- 对称轴方程为x =-(b)/(2a)。

4. 抛物线的开口方向。

- 当a>0时,抛物线开口向上;当a < 0时,抛物线开口向下。

- 例如,y = 3x^2+2x - 1中a = 3>0,开口向上;y=-2x^2+5x+3中a=-2 < 0,开口向下。

三、二次函数的性质。

1. 增减性。

- 当a>0时,在对称轴x =-(b)/(2a)左侧,即x<-(b)/(2a)时,y随x的增大而减小;在对称轴右侧,即x>-(b)/(2a)时,y随x的增大而增大。

- 当a < 0时,在对称轴x =-(b)/(2a)左侧,即x<-(b)/(2a)时,y随x的增大而增大;在对称轴右侧,即x>-(b)/(2a)时,y随x的增大而减小。

2. 最值。

- 当a>0时,抛物线开口向上,函数有最小值,y_min=frac{4ac - b^2}{4a},此时x =-(b)/(2a)。

二次函数的知识点总结

二次函数的知识点总结

二次函数的知识点总结一、基本概念1. 二次函数的定义二次函数是一种形式为f(x) = ax² + bx + c的函数,其中a、b、c是实数且a≠0。

其中,a 控制抛物线的开口方向和大小,b控制抛物线在x轴方向的平移,c控制抛物线在y轴方向的平移。

2. 二次函数的图像二次函数的图像是一个称为抛物线的曲线。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

3. 二次函数的顶点和对称轴二次函数的图像在抛物线上的最高(或最低)点称为顶点,顶点的横坐标x=-b/2a,即抛物线的对称轴,纵坐标等于f(-b/2a),即y的最小值或最大值。

4. 二次函数的零点二次函数在x轴上的交点称为零点,满足f(x)=0时的x值。

零点的判别式为Δ=b²-4ac,当Δ>0时,有两个不相等的实根;当Δ=0时,有两个相等的实根;当Δ<0时,无实根。

5. 二次函数的最值当a>0时,二次函数的最小值是顶点的纵坐标;当a<0时,二次函数的最大值是顶点的纵坐标。

二、解析式求解1. 一般形式二次函数的一般形式是f(x) = ax² + bx + c。

通过配方法、完全平方式或因式分解,可以将二次函数转化为标准形式或顶点形式来方便求解相关参数。

2. 标准形式将一般形式的二次函数转化为标准形式f(x) = a(x-h)²+k,其中(h,k)为顶点坐标,a为抛物线的开口方向和大小。

3. 顶点形式将一般形式的二次函数转化为顶点形式f(x) = a(x-p)(x-q),其中(p,q)为零点的坐标。

4. 判别式通过二次函数的判别式Δ=b²-4ac,可以方便地判断二次函数的零点类型和数量。

三、图像解析1. 抛物线的开口方向二次函数的参数a的正负决定了抛物线的开口方向,a>0时,开口向上;a<0时,开口向下。

2. 抛物线的顶点、对称轴和最值通过二次函数的顶点坐标和对称轴方程,可以方便地求得抛物线的顶点和对称轴,并进而求得最小值或最大值。

初二二次函数知识点总结

初二二次函数知识点总结

初二二次函数知识点总结一、基本概念二次函数是形如y=ax²+bx+c的函数,其中a、b、c是常数,且a≠0。

其中,a称为二次项系数,b称为一次项系数,c称为常数项。

1.图像特征二次函数的图像是一个开口向上或向下的抛物线。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

2.顶点对于二次函数y=ax²+bx+c(a≠0),其顶点坐标为(-b/2a, -△/4a)。

3.对称轴对于二次函数y=ax²+bx+c(a≠0),其对称轴方程为x=-b/2a。

4.零点对于二次函数y=ax²+bx+c(a≠0),其零点公式为x1= (-b+√△)/2a, x2= (-b-√△)/2a,其中△=b²-4ac。

5.单调性当a>0时,二次函数在顶点处取得最小值,在对称轴两侧单调递增;当a<0时,二次函数在顶点处取得最大值,在对称轴两侧单调递减。

二、常见类型1.标准型:y=ax²+bx+c2.一般型:y=a(x-h)²+k(顶点为(h, k))3.交点式:y=a(x-x1)(x-x2)(零点为x1和x2)三、基本性质1.二次函数的图像关于对称轴对称;2.二次函数的值域为[ymin, +∞)或(-∞, ymax],其中ymin和ymax分别是二次函数的最小值和最大值;3.当a>0时,二次函数的最小值为c-△/4a;当a<0时,二次函数的最大值为c-△/4a;4.当a>0时,当x→±∞时,y→+∞;当a<0时,当x→±∞时,y→-∞;5.若△=0,则二次函数有一个唯一零点;若△>0,则二次函数有两个不同零点;若△<0,则二次函数无实数解。

四、常见问题解答1.如何求解一个二次函数的顶点坐标?对于二次函数y=ax²+bx+c(a≠0),其顶点坐标为(-b/2a, -△/4a)。

二次函数知识点总结详细

二次函数知识点总结详细
2. 一次项系数
在二次项系数 确定的前提下, 决定了抛物线的对称轴.
⑴ 在 的前提下,
当 时, ,即抛物线的对称轴在 轴左侧;
当 时, ,即抛物线的对称轴就是 轴;
当 时, ,即抛物线对称轴在 轴的右侧.
⑵ 在 的前提下,结论刚好与上述相反,即
当 时, ,即抛物线的对称轴在 轴右侧;
当 时, ,即抛物线的对称轴就是 轴;
画草图时应抓住以下几点:开口方向,对称轴,顶点,与 轴的交点,与 轴的交点.
六、二次函数 的性质
1. 当 时,抛物线开口向上,对称轴为 ,顶点坐标为 .
当 时, 随 的增大而减小;当 时, 随 的增大而增大;当 时, 有最小值 .
2. 当 时,抛物线开口向下,对称轴为 ,顶点坐标为 .当 时, 随 的增大而增大;当 时, 随 的增大而减小;当 时, 有最大值 .
的符号
开口方向
顶点坐标
对称轴
性质
向上
X=h
时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 .
向下
X=h
时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 .
4. 的性质:
的符号
开口方向
顶点坐标
对称轴
性质
向上
X=h
时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 .
一元二次方程 是二次函数 当函数值 时的特殊情况.
图象与 轴的交点个数:
① 当 时,图象与 轴交于两点 ,其中的 是一元二次方程 的两根.这两点间的距离 .
② 当 时,图象与 轴只有一个交点;
③ 当 时,图象与 轴没有交点.
当 时,图象落在 轴的上方,无论 为任何实数,都有 ;

二次函数必背知识点(精辟)

二次函数必背知识点(精辟)

二次函数必背知识点_ _冲刺中考21. 定义:一般地,如果y ax bx c(a,b,c是常数,a 0),那么y叫做x的二次函数22. 二次函数y ax的性质(1)抛物线y ax2的顶点是坐标原点,对称轴是y轴.(2)函数y ax2的图像与a的符号关系.①当a 0时抛物线开口向上顶点为其最低点;②当a 0时抛物线开口向下顶点为其最高点(3)顶点是坐标原点,对称轴是y轴的抛物线的解析式形式为y ax2(a 0).3•二次函数y ax bxc的图像是对称轴平行于(包括重合)y轴的抛物线24.二次函数y ax bx c用配方法可化成:yb , 4ac b22a,4aa相等,抛物线的开口大小、形状相同②平行于y轴(或重合)的直线记作x h.特别地,y轴记作直线x 0.方向、开口大小完全相同,只是顶点的位置不同2a x h k的形式,其中5•二次函数由特殊到一般,可分为以下几种形式:① 2 2y ax ;② y ax k :③2 2 2y a x h :④ y a x h k :⑤ y ax bx c.6•抛物线的三要素:开口方向、对称轴、顶点①a的符号决定抛物线的开口方向:当 a 0时,开口向上;当a 0时,开口向下;7.顶点决定抛物线的位置•几个不同的二次函数, 如果二次项系数a相同,那么抛物线的开口8.求抛物线的顶点、对称轴的方法(1 )公式法:y ax2bx c2b2a4ac b24a2(2)配方法:运用配方的方法,将抛物线的解析式化为y a x h k 的形式,得到顶点为(h , k ),对称轴是直线x h .(3 )运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点 用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失29•抛物线y ax bx c 中,a,b,c 的作用2(1) a 决定开口方向及开口大小,这与 y ax 中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置 •由于抛物线y ax 2 bx c 的对称轴是直线x—,故:①b 0时,对称轴为y 轴;②一0 (即a 、b 同号)时,对称轴2a ab在y 轴左侧;③一 0 (即a 、b 异号)时,对称轴在 y 轴右侧•a2(3) c 的大小决定抛物线 y ax bx c 与y 轴交点的位置•2当x 0时,y c ,二抛物线y ax bx c 与y 轴有且只有一个交点(0, c ): ①c 0 ,抛物线经过原点;②c 0,与y 轴交于正半轴;③ c 0 ,与y 轴交于负半顶点是( ―,4ac b),对称轴是直线x2a 4ab 2a以上三点中,当结论和条件互换时, 仍成立.如抛物线的对称轴在Ky 轴右侧,则一 a0.11. 用待定系数法求二次函数的解析式(1)一般式:y ax2 bx c•已知图像上三点或三对x、y的值,通常选择一般式.(2)顶点式:y ax h? k.已知图像的顶点或对称轴,通常选择顶点式(3)交点式:已知图像与x轴的交点坐标x i、X2,通常选用交点式:y ax x1x x2.12. 直线与抛物线的交点2(1)y轴与抛物线y ax bx c得交点为(0, c).2(2)与y轴平行的直线x h与抛物线y ax bx c有且只有一个交点2(h, ah bh c).(3 )抛物线与x轴的交点二次函数y ax2 bx c的图像与x轴的两个交点的横坐标x1、x2,是对应一元2二次方程ax bx c 0的两个实数根.抛物线与x轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点0 抛物线与x轴相交;②有一个交点(顶点在x轴上)0 抛物线与x轴相切;③没有交点0 抛物线与x轴相离.(4)平行于x轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为 k ,则横坐标是ax 2 bx c k 的两个实数根•(5)—次函数 y kx n k 0的图像I 与二次函数 y ax bx c a 0的图像Gy kx n的交点,由方程组厂2的解的数目来确定:①方程组有两组不同的解y ax bx c时 I 与G 有两个交点;②方程组只有一组解时 I 与G 只有一个交点;③方程组无解时 I 与G 没有交点.2A X i,0,B X 2,0,由于X i 、X 2是方程ax bx c 0的两个根,故bc x 1 x 2 ,x 1 x 2 aa考点一、二次函数的概念和图像(3~8分)1、二次函数的概念2一般地,如果y ax bx c (a, b, c 是常数,a 0),那么y 叫做x 的二次函数。

二次函数的基本知识点

二次函数的基本知识点

二次函数的基本知识点I.定义与定义表达式一般地,y=ax^2+bx+c(a,b,c为常数,a≠0)则称y为x的二次函数。

2.图像:一条永无止境的抛物线。

3 抛物线的性质(1)开口:当a>0时,开口向上,当a<0时开口向下,|a|越大,则抛物线的开口越小。

(2)对称轴:抛物线是轴对称图形。

对称轴是直线x=-b/2a.(3)顶点:对称轴与抛物线唯一的交点为抛物线的顶点.顶点坐标是(-b/2a,4ac-b^2/4a).(4)对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧.(5)与y轴交点:抛物线与y轴交于(0,c)(6)与x轴交点个数:Δ= b^2-4ac>0时,抛物线与x轴有2个交点。

Δ= b^2-4ac=0时,抛物线与x轴有1个交点。

Δ= b^2-4ac<0时,抛物线与x轴没有交点。

(x的取值为虚值)4.三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线]5.二次函数与一元二次方程的关系:特别地,二次函数(以下称函数)y=ax^2;+bx+c,当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0此时,函数图象与x轴有无交点即方程有无实数根。

函数与x轴交点的横坐标即为方程的根。

6.有关a,b,c:a :决定抛物线的开口方向和大小b :抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。

c :决定抛物线与y轴交点。

二次函数的知识点

二次函数的知识点

二次函数的复习资料知识点1.二次函数的定义1、一般地,如果y=ax 2+bx+c (a ,b ,c 是常数且a ≠0),那么y 叫做x 的二次函数,它是关于自变量的 次式,二次项系数必须是非零实数时才是二次函数,这也是判断函数是不是二次函数的重要依据.2、当b=c=0时,二次函数y=ax 2是最简单的二次函数.知识点2.二次函数的图像及性质1、已知一个二次函数,确定它的图象名称、开口方向、对称轴、顶点坐标、增减范围、极值。

已知条件中含二次函数开口方向或对称轴、顶点坐标、增减范围、极值,求解析中待定系数的取值。

(1)、二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.(2)、二次函数 c bx ax y ++=2,当0>a 时⇔抛物线开口向上⇔顶点为其最低点;当0<a 时⇔抛物线开口向下⇔顶点为其最高点(3)、对于y=ax 2+bx+c 而言,其顶点坐标为( , ).对于y=a (x -h )2+k 而言其顶点坐标为( , )。

二次函数c bx ax y ++=2用配方法或公式法(求h 时可用代入法)可化成:k h x a y +-=2)(的形式,其中h= ,k=(4)、二次函数 c bx ax y ++=2的对称轴为直线x=-2b a运用抛物线的对称性求对称轴,由于抛物线是以对称轴为轴的轴对称图形,所以对称点的连线段的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.若抛物线上有两点A (m,n )、B(p,n)的纵坐标相等,则它的对称轴为直线x=-2p m + (5)增减性:二次函数 c bx ax y ++=2的增减性分对称轴左右两侧描述(数形结合理解它的增减性)若0>a ,当x 时(在对称轴 侧),y 随x 的增大而增大,当x 时(在对称轴 侧),y 随x 的增大而减小,若0<a ,当x 时(在对称轴 侧),y 随x 的增大而增大,当x 时(在对称轴 侧),y 随x(6)最大(小)值:当a>0时,函数有最 值,并且当x= 时,y 最 值= ;当a<0时,函数有最 值,并且当x= 时,y 最 值= ;②若顶点横坐标不在自变量的取值范围内,只考虑在端点处是否取得最值。

二次函数知识点总结

二次函数知识点总结

第二十二章二次函数知识点一:二次函数的定义1.二次函数的定义:一般地,形如2y ax bx c=++(a b c,,是常数,0a≠)的函数,叫做二次函数.其中a是二次项系数,b是一次项系数,c是常数项.知识点二:二次函数的图象与性质⇒⇒抛物线的三要素:开口、对称轴、顶点2.二次函数()2=-+的图象与性质y a x h k(1)二次函数基本形式2=的图象与性质:a的绝对值越大,抛物线的开口越y ax小(2)2=+的图象与性质:上加下减y ax c(3)()2=-的图象与性质:左加右减y a x h(4)二次函数()2y a x h k =-+的图象与性质3. 二次函数c bx ax y ++=2的图像与性质 (1)当0a >时,抛物线开口向上,对称轴为2bx a=-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a=-时,y 有最小值244ac b a-.(2)当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.4. 二次函数常见方法指导(1)二次函数2y ax bx c =++图象的画法 ①画精确图 五点绘图法(列表-描点-连线)利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、 对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图. ②画草图 抓住以下几点:开口方向,对称轴,与x 轴的交点,顶点. (2)二次函数图象的平移 平移步骤:① 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ② 可以由抛物线2ax y =经过适当的平移得到。

数学二次函数知识点总结【通用6篇】

数学二次函数知识点总结【通用6篇】

数学二次函数知识点总结【通用6篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、演讲致辞、法律文书、心得体会、岗位职责、鉴定评语、实习文案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, speeches, legal documents, personal experiences, job responsibilities, appraisal comments, internship copywriting, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学二次函数知识点总结【通用6篇】作为一名辛苦耕耘的教育工作者,可能需要进行教案编写工作,教案是实施教学的主要依据,有着至关重要的作用。

《二次函数》知识点梳理

《二次函数》知识点梳理

《二次函数》知识点梳理一、二次函数的定义、图像和性质1. 定义:一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a的绝对值越大,抛物线的开口越小.2. 几种特殊的二次函数的图像特征如下:【典型例题】当k分别取-1,1,2时,函数y=(k-1)x2-4x+5-k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.解析:先求出当k分别取-1,1,2时对应的函数,再根据函数的性质讨论最大值.(1)当k=1时,函数y=-4x+4为一次函数,无最值.(2)当k=2时,函数y=x2-4x+3为二次函数且图象开口向上,无最大值.(3)当k=-1时,函数y=-2x2-4x+6=-2(x+1)2+8为二次函数且图象开口向下,对称轴为直线x=-1,顶点坐标为(-1,8),所以当x=-1时,y最大值=8.点评:本题考查一次函数和二次函数的基本性质,熟知函数的性质是求最值的关键.二、二次函数与一元二次方程的关系函数y=ax2+bx+c(a≠0),当y=0时,得到一元二次方程ax2+bx+c=0(a≠0),那么一元二次方程的解就是二次函数的图象与x轴交点的横坐标,因此二次函数图象与x轴的交点情况决定一元二次方程根的情况.通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:注意点:二次函数图象与x轴的交点的个数由△=b2-4ac 的值来确定.(1)当二次函数的图象与x轴有两个交点,这时△=b2-4ac>0(a≠0),则方程有两个不相等实根x1,2=■.(2)当二次函数的图象与x轴有且只有一个交点,这时△=b2-4ac=0,则方程有两个相等实根x1=x2=-■(3)当二次函数的图象与x轴没有交点,这时△=b2-4ac<0,则方程没有实根.【典型例题】已知:二次函数y=(2m-1)x2-(5m+3)x+3m+5(1)m为何值时,此抛物线必与x轴相交于两个不同的点;(2)m为何值时,这两个交点在原点的左右两边;(3)m为何值时,抛物线的对称轴是y轴;(4)m为何值时,二次函数有最大值-■.解析:(1)∵△=[-(5m+3)]2-4(2m-1)(3m+5)=m2+2m+29>0,∴当m≠■时,此抛物线必与x轴相交于两个不同的点;(2)据题意,得■<0,则-■<m<■;(3)据题意,得-(5m+3)=0;则m=-■;(4)据题意,得■=-■,化简,得m2-8m+34=0,此方程无实数根,则不存在.三、二次函数解析式的求法与一次函数和反比例函数类似,我们也是用待定系数法来求二次函数的关系式,不过我们要注意根据已知条件选择合适的关系式的设法,可分三种情况:(1)设一般式y=ax2+bx+c(a≠0):如果已知抛物线上三点的坐标或三组x,y的对应值,可设所求二次函数为y=ax2+bx+c(a≠0),将已知条件带入关系式,得到关于a,b,c的三元一次方程组,解方程组的值,求出a,b,c的值,关系式便可得出.(2)设顶点式y=a(x-h)2+k(a≠0):如果已知对称轴和最大值(或最小值)或顶点坐标,可设所求二次函数y=a (x-h)2+k(a≠0),将已知条件代入,求出待定系数a,从而求得函数关系式,最后要注意,把关系式化成一般形式.(3)设交点式y=a(x-x1)(x-x2)(a≠0):如果已知或较容易求得抛物线与x轴的交点坐标(x1,0)和(x2,0)及另一点的坐标或一组x,y的对应值,可设所求函数为y=a (x-x1)(x-x2),将另一点的坐标或一组的x,y对应值代入,求出待定系数a,进而得到函数关系式,最后也要注意将其化为一般形式.【典型例题】已知二次函数y=(t+1)x2+2(t+2)x+■在x=0和x=2时的函数值相等.(1)求二次函数的解析式;(2)若一次函数y=kx+6的图象与二次函数的图象都经过点A(-3,m),求m和k的值.解析:(1)由题意可知二次函数图象的对称轴为直线x=1,则-■=1,∴t=-■.∴y=-■x2+x+■.(2)∵二次函数图象必经过A点,∴m=-■×(-3)2+(-3)+■=-6.又∵一次函数y=kx+6的图象经过A点,∴-3k+6=-6,∴k=4.四、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.利用二次函数解决实际问题的一般步骤是:第一步,设自变量;第二步,建立函数解析式;第三步,确定自变量取值范围;第四步,根据顶点坐标公式或配方法求出最值(在自变量的取值范围内).【典型例题】铜仁市某电解金属锰厂从今年1月起安装使用回收净化设备(安装时间不计),这样既改善了环境,又降低了原料成本,根据统计,在使用回收净化设备后的1至x月的利润的月平均值w(万元)满足w=10x+90.(1)设使用回收净化设备后的1至x月的利润和为y,请写出y与x的函数关系式.(2)请问前多少个月的利润和等于1620万元?解析:(1)y=w?x=(10x+90)x=10x2+90x(x为正整数)(2)设前x个月的利润和等于1620万元,10x2+90x=1620即:x2+9x-162=0得x=■x1=9,x2=-18(舍去),所以前9个月的利润和等于1620万元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学知识点整理
一、《二次函数》
1、二次函数的定义:形如y=ax2+bx+c (a≠0)形式叫二次函数。

2、解析式的形式:①一般式:y=ax2+bx+c (a≠0)
②顶点式:y=a(x-h)2+k
3、图像性质:
【顶点的横坐标即图像的对称轴,纵坐标即函数的极值】
4 、a、b、c的作用
①a决定:图像的开口方向,a>0,开口向上,a<0,开口向下。

②|a︳决定:图像的开口大小,|a︳越大,开口越小。

②a、b共同决定:对称轴,当a、b同号时,对称轴在y轴的左侧。

当a、b异号时,对称轴在y轴的右侧。

③c决定:图像与Y轴交点的纵坐标。

5、变换求解析式时,考虑两个方面:
①a的值
②顶点的变化
6二次函数与一元二次方程
对于二次函数y=ax2+bx+c(a≠0),当Y=0时,得一元二次方程ax2+bx+c=0 当b2-4ac>0时,方程有两个不相等的实数根,抛物线与x轴有两个交点,交
点横坐标为方程的实根。

当b2-4ac=0时,方程有两个相等的实数根,抛物线与x轴有且只有一个交点,交点横坐标为方程的实根。

当b2-4ac<0时,方程没有实数根,抛物线与x轴没有交点。

7、对于二次函数y=ax2+bx+c(a≠0)
①如何求与x轴的交点坐标:令y=0代入函数关系式,解得方程的根即为交点的横坐标。

②如何求与y轴的交点坐标:令x=0代入函数关系式。

交点坐标为(0,c)
③如何求两个函数图像的交点坐标:将两个函数解析式组成方程组求解。

8、对于二次函数y=ax2+bx+c(a≠0)
①当图像顶点在x轴上时,b2-4ac=0 对应解析式为y=a(x-h)2
②当图像顶点在y轴上时,b=0 对应解析式为y=ax2+c
③当图像顶点在原点时,对应解析式为y=ax2
④当图像过原点时,c=0 对应解析式为y=ax2+bx
9、①方程ax2+bx+c=K的解为函数y=ax2+bx+c与直线Y=K的交点的横坐标。

②抛物线的对称轴方程为
22
1x
x
,其中x
1,x
2
为图像上两对称点的横坐标。

③抛物线上对称点的坐标特征是:纵坐标相同。

④对于函数y=ax2+bx+c,当x=1时,y=a+b+c,
当x=-1时,y=a-b+c,
当x=2时,y=4a+2b+c,
当x=-2时,y=4a-2b+c,
∠A的邻边b
∠A的对边a 斜边c C
B
A
二、《一函数、反比列函数》
三、三角函数
∠A 的余弦,记作cosA ,即cosA=
A ∠的邻边斜边=c
b

∠A 的正切,记作tanA ,即tanA=A A
∠∠的对边的邻边=
a
b

∠A 的正弦,记作sinA ,即sinA=斜边
的对边=a
c ;
四、《圆》 1、几种位置关系
①点与圆的位置关系: 点在圆外 点在圆上 点在圆内 ②直线与圆的位置关系:相离 相切 相交 ③圆与圆的位置关系:外离 内含 外切 内切 相交
D
2、判断位置关系的方法:
点与圆:d 与r 的大小(d
:圆心到点的距离) 直线与圆:d 与r 的大小(d :圆心到直线的距离) 圆与圆:
3、几个定理
①垂径定理:∵AB 过圆心,A B ⊥CD
∴CE=DE ,BC=BD,AC=AD
②等对等定理:在同圆或等圆中,两个圆心角, 两条弦,两条弧,有一组量等, 其余各组量都等。

③圆周角定理及推论
在⊙O 中,∵∠A,∠B 都对DC,
∴∠A=∠B
在⊙O 中,∵∠A,∠O 都对DC,
∴∠A=21
∠O
在⊙O 中,∵∠A=90°∴BC 为⊙O 直径 ∵BC 为⊙O 直径∴∠A=90°
① 切线的性质定理:圆的切线垂直与过切点的直径(半径) ∵AB 切⊙O 于点C, ∴OC ⊥AB
【遇切线常用的辅助线是连接圆心和切点,得垂直,得半径】
D
C
C
B
圆心距d 内切
外切

切线的判定方法:
ⅰ当直线与圆无公共点时,过圆心向直线作垂线d ,证d 等于r 。

ⅱ当直线与圆有公共点时,连接圆心和公共点,证连得的半径和直线垂直。

③切线长定理: ∵PA 、PB ⊙O 与点A 、B ,
∴PA=PB,PO 平分∠APB
4、三角形内心:三角形内切圆圆心,是三个内角平分线的交点,到三角形三边
的距离相等。

三角形外心:三角形外接圆圆心,是三边垂直平分线的交点,到三角形三顶
点的距离相等。

5、公式
①直角三角形的外接圆半径R=2c ,内切圆半径r=2
c
b a -+
③ O 是外心, ∠A 为锐角时,则∠BOC=2
1
∠A
∠A 为钝角时,则∠BOC=360°-2∠A
③O 是内心, ∠BOC=90°+2
1
∠A
④弧长L=
180
r n π 扇形面积S=
360
2
r n π或S=2
1lR
⑤S 圆锥侧面=πrl 母
⑥S 圆柱侧面=2πrl 母
③ 正多边形中的几个概念:
中心:正多边形的外接圆圆心,也是内切圆圆心。

半径: 正多边形的外接圆半径,即中心到顶点的距离。

边心距;中心到一边的垂线段,是内切圆半径。

中心角:正多边形一边所对的圆心角。

④ 正n 边形内角和=180°(n-2)
中心角=n
360
A
D
h
P
五、《一元二次方程》
1、一元二次方程的一般形式为:ax 2+bx+c=0 (a ≠0), 二次项:ax 2,一次项:bx , 常数项:c 二次项系数:a ,一次项系数:b
2、解法
2x 2-5x+2=0(配方法) 2x 2-5x+2=0 ( 公式法) 六、《三角形 四边形》
1、中点四边形的形状和原四边形的对角线有关: 一般四边形的中点四边形是平行四边形。

原四边形的对角线相等.....,中点四边形为菱形..。

原四边形的对角线垂直.....,中点四边形为矩形..。

2、中点四边形的周长=原四边形对角线和 中点四边形的面积=原四边形面积的一半
3、梯形的中位线性质:平行上底下底,等于上下底和的一半。

4、①边长为a 的等边三角形面积S=
24
3a ②梯形的面积S=)(2
1
下上 ×高÷2 或 =中位线×高
③菱形面积S=底×高 或 S=对角线乘积的一半 ④对角线垂直的四边形面积S=对角线乘积的一半
6、基本图形:
七、四边形的判定
1、平行四边形的判定: 两组对边分别平行的四边形
两组对边分别相等的四边形 一组对边平行且相等的四边形 对角线互相平分的四边形
2、矩形的判定:有一个角是直角的平行四边形 对角线相等的平行四边形
三角是直角的四边形
3、菱形的判定:一组邻边相等的平行四边形
对角线垂直的平行四边形 四边相等的四边形
7、正方形的判定:一组邻边相等,有一个角为直角的平行四边形
有一个角是直角的菱形 一组邻边相等的矩形
8、等腰梯形的判定:两腰相等的梯形
同一底上的两角相等的梯形
八、《方差》等 方差S 2=
方差、极差、标准差越小,数据的波动越小,数据越稳定。

极差:最大数减最小数。

标准差:方差的算术平方根。

众数:一组数据中出现次数最多的那个数
中位数:将数据从小到大排序后,中间的那个数或中间两数的平均数 九、《二次根式》
1、代数式有意义的x 的取值范围:
①x 1
(x ≠0) ②x (x ≥0) ③x
1(x >0) 2、2a =a = (a )=a (a ≥0) 3、最简二次根式:①被开方数中不含有开得尽方的因数或因式
②分母中不含根号,如 ③根号中不含分母,如
十、分式:形如
B A
分式有意义的条件:B ≠0 分式无意义的条件:B ≠0 分式值为0的条件:A=0,B ≠0。

相关文档
最新文档