湖南省邵阳市邵阳县第二中学2019-2020学年高二下学期第二次月考数学试卷

合集下载

湖南省邵阳市2019-2020学年中考数学第二次调研试卷含解析

湖南省邵阳市2019-2020学年中考数学第二次调研试卷含解析

湖南省邵阳市2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,已知正五边形 ABCDE 内接于O e ,连结BD ,则ABD ∠的度数是( )A .60︒B .70︒C .72︒D .144︒2.如图,小颖为测量学校旗杆AB 的高度,她在E 处放置一块镜子,然后退到C 处站立,刚好从镜子中看到旗杆的顶部B .已知小颖的眼睛D 离地面的高度CD =1.5m ,她离镜子的水平距离CE =0.5m ,镜子E 离旗杆的底部A 处的距离AE =2m ,且A 、C 、E 三点在同一水平直线上,则旗杆AB 的高度为( )A .4.5mB .4.8mC .5.5mD .6 m3.已知☉O 的半径为5,且圆心O 到直线l 的距离是方程x 2-4x-12=0的一个根,则直线l 与圆的位置关系是( )A .相交B .相切C .相离D .无法确定 4.下列各式正确的是( ) A .﹣(﹣2018)=2018B .|﹣2018|=±2018C .20180=0D .2018﹣1=﹣20185.运用乘法公式计算(4+x )(4﹣x )的结果是( ) A .x 2﹣16B .16﹣x 2C .16﹣8x+x 2D .8﹣x 26.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,为占有市场份额,且经市场调查:每降价1元,每星期可多卖出20件.现在要使利润为6120元,每件商品应降价( )元. A .3B .2.5C .2D .57.根据如图所示的程序计算函数y 的值,若输入的x 值是4或7时,输出的y 值相等,则b 等于( )A.9 B.7 C.﹣9 D.﹣78.将一副三角板按如图方式摆放,∠1与∠2不一定互补的是()A.B.C.D.9.今年春节某一天早7:00,室内温度是6℃,室外温度是-2℃,则室内温度比室外温度高( ) A.-4℃B.4℃C.8℃D.-8℃10.一元二次方程x2+x﹣2=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根11.下列运算正确的是()A.(﹣2a)3=﹣6a3B.﹣3a2•4a3=﹣12a5C.﹣3a(2﹣a)=6a﹣3a2D.2a3﹣a2=2a12.如图是由若干个小正方体块搭成的几何体的俯视图,小正方块中的数字表示在该位置的小正方体块的个数,那么这个几何体的主视图是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.今年我市初中毕业暨升学统一考试的考生约有35300人,该数据用科学记数法表示为________人.14.竖直上抛的小球离地面的高度h(米)与时间t(秒)的函数关系式为h=﹣2t2+mt+258,若小球经过74秒落地,则小球在上抛的过程中,第____秒时离地面最高.15.如图,矩形OABC的边OA,OC分别在轴、轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应),若AB=1,反比例函数(0)ky k x=≠的图象恰好经过点A′,B ,则的值为_________.16.我们知道:四边形具有不稳定性.如图,在平面直角坐标系xOy 中,矩形ABCD 的边AB 在x 轴上,(3,0)A -,(4,0)B ,边AD 长为5. 现固定边AB ,“推”矩形使点D 落在y 轴的正半轴上(落点记为D ¢),相应地,点C 的对应点C '的坐标为_______.17.如图,平行四边形ABCD 中,AB=AC=4,AB ⊥AC ,O 是对角线的交点,若⊙O 过A 、C 两点,则图中阴影部分的面积之和为_____.18.已知一元二次方程x 2-4x -3=0的两根为m ,n ,则2m -mn +2n = . 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知2是关于x 的方程x 2﹣2mx+3m =0的一个根,且这个方程的两个根恰好是等腰△ABC 的两条边长,则△ABC 的周长为_____.20.(6分)如图,将连续的奇数1,3,5,7…按如图中的方式排成一个数,用一个十字框框住5个数,这样框出的任意5个数中,四个分支上的数分别用a ,b ,c ,d 表示,如图所示.(1)计算:若十字框的中间数为17,则a+b+c+d=______.(2)发现:移动十字框,比较a+b+c+d与中间的数.猜想:十字框中a、b、c、d的和是中间的数的______;(3)验证:设中间的数为x,写出a、b、c、d的和,验证猜想的正确性;(4)应用:设M=a+b+c+d+x,判断M的值能否等于2020,请说明理由.21.(6分)甲班有45人,乙班有39人.现在需要从甲、乙班各抽调一些同学去参加歌咏比赛.如果从甲班抽调的人数比乙班多1人,那么甲班剩余人数恰好是乙班剩余人数的2倍.请问从甲、乙两班各抽调了多少参加歌咏比赛?22.(8分)在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000摸到白球的次数m 65 124 178 302 481 599 1803摸到白球的频率mn0.65 0.62 0.593 0.604 0.601 0.599 0.601(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)假如你摸一次,你摸到白球的概率P(白球)=;试估算盒子里黑、白两种颜色的球各有多少只?23.(8分)如图,一次函数y=ax+b的图象与反比例函数kyx=的图象交于A,B两点,与X轴交于点C,与Y轴交于点D,已知10OA=,A(n,1),点B的坐标为(﹣2,m)(1)求反比例函数的解析式和一次函数的解析式;(2)连结BO,求△AOB的面积;(3)观察图象直接写出一次函数的值大于反比例函数的值时x的取值范围是.24.(10分)如图,在平面直角坐标系中,直线y=x+2与x轴,y轴分别交于A,B两点,点C(2,m)为直线y=x+2上一点,直线y=﹣12x+b过点C.求m和b的值;直线y=﹣12x+b与x轴交于点D,动点P从点D开始以每秒1个单位的速度向x轴负方向运动.设点P的运动时间为t秒.①若点P在线段DA上,且△ACP的面积为10,求t的值;②是否存在t的值,使△ACP为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由.25.(10分)校园手机现象已经受到社会的广泛关注.某校的一个兴趣小组对“是否赞成中学生带手机进校园”的问题在该校校园内进行了随机调查.并将调查数据作出如下不完整的整理;看法频数频率赞成 5无所谓0.1反对40 0.8(1)本次调查共调查了人;(直接填空)请把整理的不完整图表补充完整;若该校有3000名学生,请您估计该校持“反对”态度的学生人数.26.(12分)尺规作图:用直尺和圆规作图,不写作法,保留痕迹.已知:如图,线段a,h.求作:△ABC,使AB=AC,且∠BAC=∠α,高AD=h.27.(12分)计算:2sin30°﹣|13(12)﹣1参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】根据多边形内角和定理、正五边形的性质求出∠ABC 、CD=CB ,根据等腰三角形的性质求出∠CBD ,计算即可. 【详解】∵五边形ABCDE 为正五边形 ∴()1552180108ABC C ∠=∠=-⨯︒=︒ ∵CD CB = ∴181(8326)010CBD ∠=︒-︒=︒ ∴72ABD ABC CBD ∠=∠-∠=︒ 故选:C . 【点睛】本题考查的是正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系、多边形内角和等于(n-2)×180°是解题的关键. 2.D 【解析】 【分析】根据题意得出△ABE ∽△CDE ,进而利用相似三角形的性质得出答案. 【详解】解:由题意可得:AE =2m ,CE =0.5m ,DC =1.5m , ∵△ABC ∽△EDC , ∴,即,解得:AB =6, 故选:D . 【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.3.C【解析】【分析】首先求出方程的根,再利用半径长度,由点O到直线a的距离为d,若d<r,则直线与圆相交;若d=r,则直线与圆相切;若d>r,则直线与与圆相离.【详解】∵x2-4x-12=0,(x+2)(x-6)=0,解得:x1=-2(不合题意舍去),x2=6,∵点O到直线l距离是方程x2-4x-12=0的一个根,即为6,∴点O到直线l的距离d=6,r=5,∴d>r,∴直线l与圆相离.故选:C【点睛】本题考核知识点:直线与圆的位置关系.解题关键点:理解直线与圆的位置关系的判定方法.4.A【解析】【分析】根据去括号法则、绝对值的性质、零指数幂的计算法则及负整数指数幂的计算法则依次计算各项即可解答.【详解】选项A,﹣(﹣2018)=2018,故选项A正确;选项B,|﹣2018|=2018,故选项B错误;选项C,20180=1,故选项C错误;选项D,2018﹣1=12018,故选项D错误.故选A.【点睛】本题去括号法则、绝对值的性质、零指数幂的计算法则及负整数指数幂的计算法则,熟知去括号法则、绝对值的性质、零指数幂及负整数指数幂的计算法则是解决问题的关键.5.B【解析】【分析】根据平方差公式计算即可得解.【详解】222+-=-=-,(4)(4)416x x x x故选:B.【点睛】本题主要考查了整式的乘法公式,熟练掌握平方差公式的运算是解决本题的关键.6.A【解析】【分析】设售价为x元时,每星期盈利为6125元,那么每件利润为(x-40),原来售价为每件60元时,每星期可卖出300件,所以现在可以卖出[300+20(60-x)]件,然后根据盈利为6120元即可列出方程解决问题.【详解】解:设售价为x元时,每星期盈利为6120元,由题意得(x-40)[300+20(60-x)]=6120,解得:x1=57,x2=1,由已知,要多占市场份额,故销售量要尽量大,即售价要低,故舍去x2=1.∴每件商品应降价60-57=3元.故选:A.【点睛】本题考查了一元二次方程的应用.此题找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.此题要注意判断所求的解是否符合题意,舍去不合题意的解.7.C【解析】【分析】先求出x=7时y的值,再将x=4、y=-1代入y=2x+b可得答案.【详解】∵当x=7时,y=6-7=-1,∴当x=4时,y=2×4+b=-1,解得:b=-9,故选C.【点睛】本题主要考查函数值,解题的关键是掌握函数值的计算方法.8.D∠1+∠2=360°-90°×2=180°;B选项:∵∠2+∠3=90°,∠3+∠4=90°,∴∠2=∠4,∵∠1+∠4=180°,∴∠1+∠2=180°;C选项:∵∠ABC=∠DEC=90°,∴AB∥DE,∴∠2=∠EFC,∵∠1+∠EFC=180°,∴∠1+∠2=180°;D选项:∠1和∠2不一定互补.故选D.点睛:本题主要掌握平行线的性质与判定定理,关键在于通过角度之间的转化得出∠1和∠2的互补关系. 9.C【解析】【分析】根据题意列出算式,计算即可求出值.【详解】解:根据题意得:6-(-2)=6+2=8,则室内温度比室外温度高8℃,本题考查了有理数的减法,熟练掌握运算法则是解题的关键. 10.A 【解析】∵∆=12-4×1×(-2)=9>0, ∴方程有两个不相等的实数根. 故选A.点睛:本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2﹣4ac :当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根. 11.B 【解析】 【分析】先根据同底数幂的乘法法则进行运算即可。

邵阳市名校2019-2020学年高二下学期期末2份数学检测试题

邵阳市名校2019-2020学年高二下学期期末2份数学检测试题

同步测试一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设0,0a b >>,若3是33a b 与的等比中项,则11a b+的最小值为( ) A .8B .14C .1D .42.一根细金属丝下端挂着一个半径为1cm 的金属球,将它浸没底面半径为2cm 的圆柱形容器内的水中,现将金属丝向上提升,当金属球被拉出水面时,容器内的水面下降了() A .43cm B .316cm C .34cm D .13cm3.函数()23xe f x x =-在[]2,4上的最大值为( )A .2eB .36eC .413eD .22e4.根据如下样本数据得到的回归方程为ˆybx a =+,则 3456784.02.50.5-0.52.0-3.0-A .0a >,B .0a >,C .0a <,D .0a <,5.已知函数()()f x A x b ωϕ=++(0A >,0>ω)的图象如图所示,则()f x 的解析式为( )A .()2sin()263f x x ππ=++B .1()3sin()236f x x π=-+C .()2sin()366f x x ππ=++ D .()2sin()363f x x ππ=++6.已知向量{},,a b c 是空间的一组基底,则下列可以构成基底的一组向量是( ) A .a b +,a ,a b - B .a b +,b ,a b - C .a b +,c ,a b -D .a b +,2a b -,a b -7.针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”作了一次调查,其中被调查的女生人数是男生人数的,男生喜欢抖音的人数占男生人数的,女生喜欢抖音的人数占女生人数,若有的把握认为是否喜欢抖音和性别有关,则男生至少有( ) 参考公式:0.10 0.05 0.025 0.010 0.005 0.0012.7063.8415.0246.6357.87910.828A .12人B .18人C .24人D .30人8.已知复数z 满足21z i -=(其中i 为虚数单位),则||z =( ) A .1B .2C 3D 59.通过随机询问50名性别不同的大学生是否爱好某项运动,得到如下的列联表,由2()()()()()n ac bd K a b c d a c b d -=++++得2250(2015105)8.33330202525K ⨯-⨯=≈⨯⨯⨯参照附表,得到的正确结论是( ). 爱好 不爱好 合计 男生 20 5 25 女生 10 15 25 合计 302050附表:20()P K k ≥ 0.150.10 0.05 0.025 0.010 0.005 0.0010k2.072 2.7063.841 5.024 6.635 7.879 10.828A .有99.5%以上的把握认为“爱好该项运动与性别有关”B .有99.5%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” 10.有一个奇数列1,3,5,7,9,,现在进行如下分组:第一组含一个数{}1;第二组含二个数{}3,5;第三组含有三个数{}7,9,11;第四组数{}13,15,17,19;有试观察每组内各数之和与组的编号数n 有什么关系( ) A .等于2n B .等于3nC .等于4nD .等于()1n n +11.已知函数())0,||2f x x π⎛⎫=ω+ϕω>ϕ< ⎪⎝⎭,的图象过点30,2⎛⎫- ⎪⎝⎭,且()f x 在37,1717ππ⎛⎫⎪⎝⎭上单调,()f x 的图象向左平移2π个单位后得到的图象与原图象重合,若存在两个不相等的实数127,24,42x x ππ⎛⎫∈ ⎪⎝⎭,满足()()12f x f x =,则()12f x x +=( )A .32-B. CD .3212.已知各项不为0的等差数列{}n a ,满足273110a a a --=,数列{}n b 是等比数列,且77b a =,则68b b = ( ) A .2B .4C .8D .16二、填空题:本题共4小题13.若x ,y ,z 满足约束条件4802400x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则z =__________.14.设函数32()2f x x ax x =++, (1)f '= 9,则a = 15.已知函数(4),0()(4),0x x x f x x x x +≥⎧=⎨-<⎩,则(1)(3)f f +-=__________.16.曲线1ln(1)2y x =+在点(0,0)处的切线方程为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤。

2019-2020学年湖南省邵阳市中心学校高二数学理月考试题含解析

2019-2020学年湖南省邵阳市中心学校高二数学理月考试题含解析

2019-2020学年湖南省邵阳市中心学校高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. “”是“直线与圆相交”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件参考答案:A2. (12分)已知命题:方程有两个不等负根;命题:无实根,若为真命题,为假命题,求实数的取值范围。

参考答案:3. 数在区间内是减函数,则应满足()A.且B.且C.且D.且参考答案:B略4. 如下图所示,在空间直角坐标系中BC=2,原点O是BC的中点,点A的坐标是(,,0),点D在平面yOz上,且∠BDC=90°,∠DCB=30°,则向量的坐标为A. B. C. D.参考答案:B略5. 下面几种推理过程是演绎推理的是()A. 某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人B. 由三角形的性质,推测空间四面体的性质C. 平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分D. 在数列{a n}中,,可得,由此归纳出{a n}的通项公式参考答案:C【分析】推理分为合情推理(特殊→特殊或特殊→一般)与演绎推理(一般→特殊),其中合情推理包含类比推理与归纳推理,利用各概念进行判断可得正确答案.【详解】解:∵A中是从特殊→一般的推理,均属于归纳推理,是合情推理;B中,由平面三角形的性质,推测空间四面体的性质,是由特殊→特殊的推理,为类比推理,属于合情推理;C为三段论,是从一般→特殊的推理,是演绎推理;D为不完全归纳推理,属于合情推理.故选:C.【点睛】本题考查推理中的合情推理与演绎推理,注意理解其概念作出正确判断.6. 过椭圆的中心任作一直线交椭圆于两点,是椭圆的一个焦点,则△周长的最小值是( )A.14 B.16 C.18D.20参考答案:C7. 已知圆x2+y2+x–6y+3=0上的两点P,Q关于直线kx–y+4=0对称,且OP⊥OQ(O为坐标原点),则直线PQ的方程为().(A)y= –x+(B)y= –x+或y= –x+(C)y= –x+(D)y= –x+或y= –x+参考答案:D8. 推理“直线平行于平面,则这条直线平行于平面内所有直线;已知直线平面,直线平面,直线∥平面,则直线∥直线”的结论是错误的,这是因为( )A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误参考答案:A9. 抛线的焦点为F,准线为l,l与x轴的交点为A,点B在l上,直线FB 的倾斜角为45°,且,则的面积为()A. B. 2 C. D. 4参考答案:B【分析】由向量数量积得得值,再结合直线倾斜角得,则面积可求【详解】由题又直线的倾斜角为,故==2,故的面积为故选:B【点睛】本题考查了抛物线的性质,向量数量积,三角形面积公式,考查转化能力,属于基础题.10. 复数z=(1﹣i)(4﹣i)的共轭复数的虚部为()A.﹣5i B.5i C.﹣5 D.5参考答案:D【考点】A5:复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简,进一步求得的答案.【解答】解:∵z=(1﹣i)(4﹣i)=3﹣5i,∴,则复数z=(1﹣i)(4﹣i)的共轭复数的虚部为5.故选:D.二、填空题:本大题共7小题,每小题4分,共28分11. 已知双曲线的一条渐近线方程是,它的一个焦点与抛物线的焦点相同。

湖南省邵阳市邵阳县第二中学2019年-2020学年高二下学期期末考试化学试题

湖南省邵阳市邵阳县第二中学2019年-2020学年高二下学期期末考试化学试题

湖南省邵阳市邵阳县第二中学2019年-2020学年高二下学期期末考试化学试题学校_________ 班级__________ 姓名__________ 学号__________一、单选题1. 常温下,物质的量浓度相等的下列物质的水溶液,pH最小的是 ( )A.NH4ClO4B.BaCl2C.HNO3D.K2CO32. 下列化学用语正确的是()A.新戊烷的结构简式:C5H12B.丙烷的比例模型:C.四氯化碳的电子式:D.乙烯的结构式:3. 下列反应的能量变化与其它三个不相同的是A.铝粉与氧化铁的反应B.氯化铵与消石灰的反应C.锌片与稀硫酸反应D.钠与冷水反应4. 一定温度下,在一定体积的密闭容器中,可逆反应2NO(g)+Br2(g)时间/min 5 10 15 20 25 30n(Br2)/mol 0.080 0.075 0.072 0.070 0.070 0.070根据表中的数据,下列时间中表示该反应达到平衡状态的是A.5min B.10min C.15min D.20min5. 下列关于电解精炼铜的说法中不正确的是A.电解质溶液中要含有Cu2+B.粗铜作阳极,精铜作阴极C.电解时,阳极发生氧化反应,阴极发生还原反应D.粗铜中所含Zn、Fe、Ni等杂质电解后以单质形式沉积于阳极泥中6. 醋酸溶液中存在电离平衡 CH3COOH CH3COO- + H+,下列叙述不正确的是A.升高温度,平衡正向移动,醋酸的电离常数Ka增大B.0.10 mol/L的CH3COOH 溶液加水稀释,溶液中c(OH-)增大C.CH3COOH溶液加少量的CH3COONa固体,平衡逆向移动D.室温下,欲使0.1 mol/L醋酸溶液的pH、电离度α都减小,可加入少量水7. HA为酸性略强于醋酸的一元弱酸,在0.1 mol·L-1NaA溶液中,离子浓度关系正确的是A.c(Na+)>c(A-)>c(H+)>c(OH-)B.c(Na+)>c(OH-)>c(A-)>c(H+)C.c(Na+)+c(OH-)=c(A-)+c(H+)D.c(Na+)+ c(H+) = c(A-)+c(OH-)8. 在恒温恒容的条件下,反应:A(g)+B(g)?C(g)+D(s)已达平衡,能使平衡正向移动的措施是( )A.减小C或D的浓度B.增大D的浓度C.减小B的浓度D.增大A或B的浓度9. 下列有机物用系统命名法命名正确的是()A.2—乙基丙烷B.2—甲基—2—丙烯C.CH3CH2CH2CH2OH 1?丁醇D.对二甲苯10. 在容积不变的密闭容器中存在如下反应:2A(g)+B(g)3C(g)+D(s)△H<0,在其他条件不变时,改变某一条件对上述反应的影响,下列分析不正确的是A.图I表示增加反应物浓度对该平衡的影响B.图II表示减小压强对该平衡的影响C.图Ⅲ表示温度对该平衡的影响,温度:乙>甲D.图IV表示催化剂对该平衡的影响,催化效率:甲>乙11. 25℃时,某溶液中由水电离出的c(OH-)=1×10-13mol/L,该溶液中一定不能大量共存的离子组是A.NH、Fe3+、SO、Cl-B.CO、PO、K+、Na+C.Na+、SO、NO、Cl-D.HCO、Na+、HSO、K+二、实验题12. 下列有关实验的描述正确的是()A.实验室配制CuCl2溶液时,需加入盐酸来抑制Cu2+水解B.定容时仰视容量瓶的刻度线,会导致所配溶液的浓度偏高C.用NaOH标准溶液滴定未知浓度的盐酸,未润洗锥形瓶会导致结果偏低D.称取2.0gNaOH固体时,先将天平调平,再将游码调至2.0g,向左盘加NaOH 固体至天平平衡三、单选题13. 一定温度下,将一定质量的冰醋酸加水稀释过程中,溶液的导电能力变化如图所示,有关说法正确的A.a、b、c三点溶液的c(CH3COO-):a>b>cB.a、b、c三点醋酸的电离程度: b > a >cC.a、b、c三点溶液用等体积的氢氧化钾溶液中和,消耗氢氧化钾溶液浓度:a>b>cD.若使b 点溶液中的pH值增大,可采取的措施是稀释溶液或加入醋酸钠晶体14. 我国某知名企业开发了具有多项专利的锂钒氧化物二次电池,其成本较低,对环境无污染,能量密度远远高于其他电池,电池总反应为V2O5+xLiLix V2O5。

邵阳市2019-2020学年高二下学期期末2份数学教学质量检测试题

邵阳市2019-2020学年高二下学期期末2份数学教学质量检测试题

同步练习一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.方程22123x y m m +=-+表示双曲线的一个充分不必要条件是( )A .-3<m <0B .-3<m <2C .-3<m <4D .-1<m <32.如图,在正方形ABCD 中,点E ,F 分别为边BC ,AD 的中点,将Rt ABF ∆、Rt CDE ∆分别沿BF 、DE 所在的直线进行翻折,在翻折的过程中,下列说法错误是( )A .存在某个位置,使得直线AF 与直线CE 所成的角为90︒B .存在某个位置,使得直线AF 与直线CE 所成的角为60︒C .A 、C 两点都不可能重合D .存在某个位置,使得直线AB 垂直于直线CD 3.利用数学归纳法证明不等式*n 1111...(n)(n 2,)2321f n N ++++<≥∈-的过程,由n k =到+1n k =时,左边增加了( ) A .1项B .k 项C .12k -项D .2k 项4.等比数列{}n a 的前n 项和为n S ,已知3215109S a a a =+=,,则1a = A .19B .19-C .13D .13-5.若定义在[,]a b 上的函数()f x 的导函数()f x '的图象如图所示,则( ).A .函数()f x 有1个极大值,2个极小值B .函数()f x 有2个极大值,3个极小值C .函数()f x 有3个极大值,2个极小值D .函数()f x 有4个极大值,3个极小值6.命题:p “20,2x x x ∀≥>”的否定p ⌝为( )A .2000,2x x x ∃≥< B .20,2x x x ∀≥< C .02000,2xx x ∃≥≤D .20,2x x x ∀≥≤7.现有男、女学生共人,从男生中选人,从女生中选人分别参加数学、物理、化学三科竞赛,共有种不同方案,那么男、女生人数分别是( ) A .男生人,女生人 B .男生人,女生人 C .男生人,女生人 D .男生人,女生人8.将甲,乙等5位同学分别保送到北京大学,清华大学,浙江大学等三所大学就读,则每所大学至少保送一人的不同保送的方法数为( ) A .150种B .180种C .240种D .540种9.已知集合U N =,{}*|2,A x x n n N ==∈,{|16}B x x =<,则()U A B =( )A .{2,3,4,5,6}B .{2,4,6}C .{1,3,5}D .{3,5}10.定义在上的奇函数满足,且在上单调递增,则下列结论中正确的是()A. B. C.D.11.斐波那契螺旋线,也称“黄金蜾旋线”,是根据斐波那契数列(1,1,2,3,5,8…)画出来的螺旋曲线,由中世纪意大利数学家列奥纳多•斐波那契最先提出.如图,矩形ABCD 是以斐波那契数为边长的正方形拼接而成的,在每个正方形中作一个圆心角为90°的圆弧,这些圆弧所连成的弧线就是斐波那契螺旋线的一部分.在矩形ABCD 内任取一点,该点取自阴影部分的概率为( )A .8πB .4π C .14D .3412.等差数列{n a }中,385a a +=,则前10项和10S =( ) A .5B .25C .50D .100二、填空题:本题共4小题13.若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线ln(1)y x =+的切线,则b = .14.双曲线M 的焦点是12,F F ,若双曲线M 上存在点P ,使12PF F ∆是有一个内角为23π的等腰三角形,则M 的离心率是______;15.正四棱柱1111ABCD A B C D -中,12AA AB =,则1AD 与平面11BB D 所成角的正弦值为__________. 16.浙江省现行的高考招生制度规定除语、数、英之外,考生须从政治、历史、地理、物理、化学、生物、技术这7门高中学考科目中选择3门作为高考选考科目,成绩计入高考总分.已知报考某高校A 、B 两个专业各需要一门科目满足要求即可,A 专业:物理、化学、技术;B 专业:历史、地理、技术.考生小李今年打算报考该高校这两个专业的选考方式有______ 种.(用数字作答) 三、解答题:解答应写出文字说明、证明过程或演算步骤。

湖南省邵阳市2019-2020学年高二下学期期末2份数学学业质量监测试题

湖南省邵阳市2019-2020学年高二下学期期末2份数学学业质量监测试题

同步测试一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知命题:“,”,命题:“,””若“”是真命题,则实数的取值范围是( ) A .B .C .D .2.函数()122f x x x =-+-的最大值为( )A .5B .5C .1D .23.平面向量(1,2)a =,(4,2)b =,c ma b =+(m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m =( ) A .2-B .1-C .1D .24.已知函数()f x 图象如图,'()f x 是()f x 的导函数,则下列数值排序正确的是( )A .0'(2)'(3)(3)(2)f f f f <<<-B .0'(3)'(2)(3)(2)f f f f <<<-C .0'(3)(3)(2)'(2)f f f f <<-<D .0(3)(2)'(2)'(3)f f f f <-<<5.关于x 的不等式()210x a x a -++<的解集中,恰有3个整数,则a 的取值范围是( )A .[)(]3,24,5--⋃B .()()3,24,5--⋃C .(]4,5D .(4,5)6.设不等式组111x y y x y +≥⎧⎪≤⎨⎪-≤⎩所表示的平面区域为M ,若直线()2y k x =+的图象经过区域M ,则实数k 的取值范围是( ) A .10,4⎡⎤⎢⎥⎣⎦B .11,42⎡⎤⎢⎥⎣⎦C .10,2⎡⎤⎢⎥⎣⎦D .(]1,0,2⎡⎫-∞⋃+∞⎪⎢⎣⎭7.已知经过(3A ,,40B (,)两点的直线AB 与直线l 垂直,则直线l 的倾斜角是() A .30°B .60°C .120°D .150°8.已知函数2()(1)x f x e x =-+,则()f x 的大致图像是( )A .B .C .D .9.函数()ln f x x =过原点的切线的斜率为( ) A .1eB .1C .eD .2e10.设集合(){|lg 32}A x y x ==-,{|1}B y y x ==-,则A B =( )A .[]0,1B .(,1]-∞C .3(,]2-∞D .3[0,)211.若一个直三棱柱的所有棱长都为1,且其顶点都在一个球面上,则该球的表面积为( ). A .πB .7π3C .11π3D .5π12.已知随机变量X 满足(23)7,(23)16E X D X +=+=,则下列选项正确的是( )A .713(),()22E X D X == B .()2, ()4E X =D X = C .()2, ()8E X =D X = D .7(),()84E X D X == 二、填空题:本题共4小题13.集合{}1,0,1-的所有子集个数为_________.14.已知复数2(12i)z =-,其中i 是虚数单位,则||z 的值是____________. 15.已知函数()'cos sin 4f x f x x π⎛⎫=+⎪⎝⎭,则4f π⎛⎫⎪⎝⎭的值为__________. 16.如图,在长方形OABC 内任取一点(,)P x y ,则点P 落在阴影部分BCD 内的概率为________.三、解答题:解答应写出文字说明、证明过程或演算步骤。

2019-2020学年湖南省邵阳市数学高二第二学期期末学业质量监测试题含解析

2019-2020学年湖南省邵阳市数学高二第二学期期末学业质量监测试题含解析

2019-2020学年湖南省邵阳市数学高二第二学期期末学业质量监测试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意) 1.在二项式()91x +的展开式中任取2项,则取出的2项中系数均为偶数的概率为( ) A .512B .215C .13D .815【答案】C 【解析】 【分析】二项式9(1)x +的展开式共十项,从中任取2项,共有210C 种取法,再研究其系数为偶数情况有几个,从中取两个有几种取法得出答案. 【详解】二项式9(1)x +的展开式共十项,从中任取2项,共有21045C =种取法,展开式系数为偶数的有325679999949,,,,C C C C C C ,,共六个,取出的2项中系数均为偶数的取法有2615C =种取法,∴取出的2项中系数均为偶数的概率为151453= 故选:C 【点睛】本题考查二项式定理及等可能事件的概率,正确求解本题的关键是找出哪些项的系数是偶数,求出取出的2项中系数均为偶数的事件包含的基本事件数.2.已知函数()2cos 2f x x x =-的图象向左平移3π个单位长度,横坐标伸长为原来的2倍得函数()g x 的图象,则()g x 在下列区间上为单调递减的区间是()A .,02π⎛⎫- ⎪⎝⎭B .,26ππ⎛⎫-⎪⎝⎭ C .0,6π⎛⎫⎪⎝⎭D .2,63ππ⎛⎫⎪⎝⎭【答案】A 【解析】 【分析】先利用辅助角公式将函数化为sin()y A x ωϕ=+ 的形式,再写出变换后的函数()g x ,最后写出其单调递减区间即可. 【详解】()2cos 2f x x x =-的图象向左平移3π个单位长度,横坐标伸长为原来的2倍变换后()=2cos g x x -,()g x 在区间[2,2],k k k Z πππ-+∈ 上单调递减故选A 【点睛】本题考查三角函数变换,及其单调区间.属于中档题.3.某中学元旦晚会共由6个节目组成,演出顺序有如下要求:节目甲必须排在乙的前面,丙不能排在最后一位,该晚会节目演出顺序的编排方案共有( ) A .720种 B .600种C .360种D .300种【答案】D 【解析】 【分析】根据题意,分2步进行分析:①,将除丙之外的5人排成一排,要求甲在乙的前面,②,5人排好后有5个空位可选,在其中任选1个,安排丙,由分步计数原理计算可得答案. 【详解】解:根据题意,分2步进行分析:将除丙之外的5人排成一排,要求甲在乙的前面,有551602A ⨯=种情况, ② 5人排好后有5个空位可选,在其中任选1个,安排丙,有5种情况, 则有60×5=300种不同的顺序, 故选D . 【点睛】本题考查排列、组合的实际应用,涉及分步计数原理的应用,属于基础题. 4.在复平面内,复数11iz =+,则z 对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 【解析】 【分析】 化简复数11iz =+,计算z ,再计算对应点的象限. 【详解】 复数11-1111+1(1)(1-)2222i z i z i i i i ===-⇒=++ 对应点为:11(,)22故答案选A 【点睛】本题考查了复数的计算,共轭复数,复数对应点象限,意在考查学生的计算能力.5.在2310(1)(1)(1)x x x ++++⋅⋅⋅++的展开式中,含2x 项的系数为( ) A .45 B .55 C .120 D .165【答案】D 【解析】分析:由题意可得展开式中含2x 项的系数为222223410 C C C C +++⋯+ ,再利用二项式系数的性质化为311C ,从而得到答案.详解:()()()2310111x x x ++++⋅⋅⋅++的展开式中含2x 项的系数为222232341011165.C C C C C +++⋯+== 故选D.点睛:本题主要考查二项式定理的应用,求展开式中某项的系数,二项式系数的性质,属于中档题. 6.已知某几何体的三视图如图所示,则该几何体的体积为A .8B .12C .16D .24【答案】A 【解析】 【分析】根据三视图可知几何体为三棱锥,根据棱锥体积公式求得结果. 【详解】由三视图可知,几何体为三棱锥∴三棱锥体积为:1115 2.448332V Sh ==⨯⨯⨯⨯= 本题正确选项:A 【点睛】本题考查棱锥体积的求解,关键是能够通过三视图确定几何体为三棱锥,且通过三视图确定三棱锥的底面和高.7.某村庄对改村内50名老年人、年轻人每年是否体检的情况进行了调查,统计数据如表所示:每年体检每年未体检合计已知抽取的老年人、年轻人各25名.则完成上面的列联表数据错误的是( ) A .18a = B .19b = C .50c d += D .2f e -=-【答案】D 【解析】分析:先根据列联表列方程组,解得a,b,c,d,e,f,再判断真假.详解:因为725,625,6,7,50,50a c b d a e b f c d e f +==+==+=+=+=+=, 所以18,19,50,24,26,2a b c d e f f e ==+===-= 选D.点睛:本题考查列联表有关概念,考查基本求解能力. 8.定积分()1xx e +⎰的值为( )A .eB .12e +C .12e -D .1e +【答案】C 【解析】 【分析】根据微积分基本定理()()()()bba af x F x F b F a ==-⎰,可知()112012xx x e x e ⎛⎫+=+ ⎪⎝⎭⎰求解,即可. 【详解】()11210001111110122222xx x e x e e e e e ⎛⎫⎛⎫⎛⎫+=+=⨯+-⨯+=+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰故选:C 【点睛】本题考查微积分基本定理,属于较易题.9.已知函数()f x 的导函数为()f x ',且()()f x f x '<对任意的x ∈R 恒成立,则下列不等式均成立的是( )A .()()()()2ln 220,20f f f e f <<B .()()()()2ln 220,20f f f e f >>C .()()()()2ln 220,20f f f e f <>D .()()()()2ln 220,20f f f e f ><【答案】A 【解析】 【分析】 构造函数()()x f x g x e=,求出函数()g x 的导数,判断函数的单调性,从而求出结果. 【详解】令()()x f x g x e =,则2()()()()()x x x xe f x e f x f x f x g x e e'--='='. Q ()()f x f x '<,∴()0g x '<,∴()g x 是减函数,则有(ln 2)(0)g g <,(2)(0)g g <,即ln 2020(ln 2)(0)(2)(0),f f f f e e e e<<,所以2(ln 2)2(0),(2)(0)f f f e f <<.选A . 【点睛】本题考查函数与导数中利用函数单调性比较大小.其中构造函数是解题的难点.一般可通过题设已知条件结合选项进行构造.对考生综合能力要求较高.10.执行如图所示的程序框图,若输出的结果为 ,则输入的正整数a 的可能取值的集合是( )A .{2,3,4,5}B .{1,2,3,4,5,6}C .{1,2,3,4,5}D .{2,3,4,5,6}【答案】A 【解析】由题意,循环依次为23135a a +≤⇒≤,2(23)3131a a ++>⇒>, 所以可能取值的集合为{2,3,4,5},故选A .11.如图所示的函数图象,对应的函数解析式可能是( )A .221x y x =--B .2sin y x x =C .ln x y x=D .()22xy x x e -=【答案】D 【解析】 【分析】对B 选项的对称性判断可排除B. 对C 选项的定义域来看可排除C ,对A 选项中,2x =-时,计算得0y <,可排除A ,问题得解. 【详解】Q 2sin y x x =为偶函数,其图象关于y 轴对称,∴排除B. Q 函数ln xy x=的定义域为{}011x x x <或,∴排除C . 对于221x y x =--,当2x =-时,()222210y -=---<,∴排除A故选D 【点睛】本题主要考查了函数的对称性、定义域、函数值的判断与计算,考查分析能力,属于中档题.12.已知函数2log ,0()22,0x x x f x x ->⎧=⎨+≤⎩,则()4f x ≥的解集为()A .(,1][2,)-∞-+∞UB .[1,0][2,)-+∞UC .(,1][16,)-∞-⋃+∞D .[1,0][16,)-⋃+∞【答案】C 【解析】 【分析】根据分段函数的表达式,讨论当0x >和0x ≤时,不等式的解,从而得到答案。

2019-2020学年湖南省邵阳市数学高二下期末学业质量监测试题含解析

2019-2020学年湖南省邵阳市数学高二下期末学业质量监测试题含解析

2019-2020学年湖南省邵阳市数学高二(下)期末学业质量监测试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意) 1.复数z 满足,则复数z =( )A .1-iB .1+2iC .1+iD .-1-i2.已知复数z 满足()12z i i +=,则复数z 在复平面内对应点所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限3.点的直角坐标为,则点的极坐标可以为( )A .B .C .D .4.随机变量a 服从正态分布()21,N σ,且()010.3000P a <<=.已知0,1a a >≠,则函数1xy a a=+-图象不经过第二象限的概率为( ) A .0.3750B .0.3000C .0.2500D .0.20005.用反证法证明“,20x x ∀∈>R ”时,应假设( ) A .00,20x x ∃∈≤RB .00,20x x ∃∈<R C .,20x x ∀∈≤RD .00,20x x ∃∈>R6.已知i 是虚数单位, 复数()1z a R a i=∈-在复平面内对应的点位于直线2y x =上, 则a =( ) A .12B .2C .2-D .12-7.在ABC △中,内角,,A B C 所对应的边分别为,,a b c ,且sin 2sin 0a B b A +=,若2a c +=,则边b 的最小值为( ) A .4B .33C .23D 38.若圆()()221:3425O x y -+-=和圆()()()2222:28510O x y r r +++=<<相切,则r 等于( ) A .6B .7C .8D .99.函数()f x 在(,)-∞+∞单调递增,且为奇函数,若(1)1f =,则满足1(2)1f x -≤-≤的x 的取值范围是( ). A [2,2]-B [1,1]-C [0,4]D [1,3]10.已知函数()sin()(0)3f x x πωω=->,若函数()f x 在区间3(,)2ππ上为单调递减函数,则实数ω的取值范围是( ) A .211[,]39B .511[,]69C .23[,]34D .25[,]3611.已知随机变量X 服从的分布列为则k 的值为( ) A .1B .2C .12D .312.小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母都不与他相邻,则不同坐法的总数为( ) A .12B .36C .84D .96二、填空题(本题包括4个小题,每小题5分,共20分)13.给出定义 :对于三次函数32()(0),f x ax bx cx d a =+++≠设'()f x 是函数()y f x =的导数,()f x ''是'()f x 的导数,若方程()0f x ''=有实数解0x ,则称点0,0((())x f x 为函数()y f x =的“拐点”,经过研究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.已知函数3232115()32,()33212h x x x x g x x x x =-++=-+-.设1234037()()()......(),2019201920192019h h h h n ++++=1232018()()()......()2019201920192019g g g g m +++=.若2()(1),t x mx nxt '=+则(0)t '=__________. 14.某保险公司新开设了一项保险业务.规定该份保单任一年内如果事件E 发生,则该公司要赔偿a 元,假若在一年内E 发生的概率为p ,为保证公司收益不低于a 的110,公司应要求该份保单的顾客缴纳的保险金最少为____________元.15.若55432543210(3)x a x a x a x a x a x a -=+++++,则012345a a a a a a +++++=__________.16.已知一个总体为:1、3、4、7、x ,且总体平均数是4,则这个总体的方差是______. 三、解答题(本题包括6个小题,共70分) 17.选修4—4:坐标系与参数方程 xOy 1cos x t α=+⎧为极轴建立极坐标系,曲线C的极坐标方程为24cos1cosθρθ=-.点E的直角坐标为(2,23),直线l与曲线C交于A B、两点.(Ⅰ)写出点E的极坐标和曲线C的普通方程;(Ⅱ)当tan3α=时,求点E到两点A B、的距离之积.18.在某地区2008年至2014年中,每年的居民人均纯收入y(单位:千元)的数据如下表:对变量t与y进行相关性检验,得知t与y之间具有线性相关关系.(1)求y关于t的线性回归方程;(2)预测该地区2016年的居民人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:121()()ˆ()ni iiniit t y ybt t==--=-∑∑,ˆˆa y bt=-19.(6分)如图,四边形ABCD为菱形,60DAB∠=︒,ED⊥平面ABCD,EF AB∥,22ED AD EF===,M为的中点.(Ⅰ)求证:FM P平面BDE(Ⅱ)求证:AC BE⊥(Ⅲ)若G为线段BE上的点,当三棱锥G BCD-23BGBE的值.20.(6分)目前,学案导学模式已经成为教学中不可或缺的一部分,为了了解学案的合理使用是否对学生的期末复习有着重要的影响某校随机抽取200名学生,对学习成绩和学案使用程度进行了调查,统计数据如下表所示:学习成绩优秀 40 学习成绩一般 30 合计200已知随机抽查这200名学生中的一名学生,抽到善于使用学案的学生概率是0.6.参考公式:22()()()()()n ad bc K a b c d a c b d '-=++++,其中n a b c d =+++.()20P K k ≥ 0.15 0.10 0.05 0.025 0.010 0.005 0.0010k2.072 2.7063.841 5.024 6.635 7.879 10.828(I )完成22⨯列联表(不用写计算过程);(Ⅱ)试运用独立性检验的思想方法分析有多大的把握认为学生的学习成绩与对待学案的使用态度有关? 21.(6分)如图所示,在四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 为直角梯形,其中90BAD ADC ∠=∠=o ,且2PA AD DC ===,4AB =,H 是PD 的中点.(Ⅰ)求证:AH PC ⊥;(Ⅱ)求CP 与平面AHC 所成角的正弦值. 22.(8分)已知函数2()3ln f x ax x a x=---,其中a 为常数. (1)证明:函数()f x 的图象经过一个定点A ,并求图象在A 点处的切线方程; (2)若2'()13f =,求函数()f x 在[1,]e 上的值域.参考答案一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意)【分析】直接利用复数代数形式的乘除运算化简得答案. 【详解】,,故选D .【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题. 2.A 【解析】 【分析】把已知变形等式,再由复数代数形式的乘除运算化简得答案. 【详解】 由()12z i i +=,得()122=1255i i ii z i -+==+, ∴复数z 在复平面内对应的点的坐标为2155⎛⎫⎪⎝⎭,,在第一象限.故选:A . 【点睛】本题考查复数的代数表示法及其几何意义,属于基础题. 3.D 【解析】 【分析】先判断点的位置,然后根据公式:,求出,根据点的位置,求出. 【详解】因为点的直角坐标为,所以点在第二象限.,因为点在第二象限,本题考查了点的直角坐标化为极坐标,关键是要知道点的具体位置. 4.C 【解析】1x y a a =+-Q 图象不经过第二象限,11,2a a ∴-≤-∴≥,随机变量ξ服从正态分布()21,N σ,且()()()()1010.3000,120.3000,210.60000.20002P a P a P a <<=∴<<=∴>=-=,∴函数1x y a a =+-图象不经过第二象限的概率为0.20.250010.2=-,故选C.5.A 【解析】 【分析】根据反证法的步骤,假设是对原命题结论的否定,即可得出正确选项. 【详解】根据反证法的步骤,假设是对原命题的否定,P (x 0)成立的否定是使得P (x 0)不成立,即用反证法证明“∀x ∈R ,2x >0”,应假设为∃x 0∈R ,02x ≤0 故选:A . 【点睛】本题考查反证法的概念,全称命题的否定,注意 “ 改量词否结论” 6.A 【解析】 【分析】 【详解】分析:等式分子分母同时乘以()a i +,化简整理,得出z ,再将z 的坐标代入2y x =中求解a 即可. 详解:2221111a i a i z a i a a a +===+-+++,所以221211a a a =++. 解得12a = 故选B点睛:复数的除法运算公式()()22c di ac bd ad bc iz a bi a b++-+==++,在复平面内点在直线上,则坐标满足直线方程. 7.D 【解析】根据sin2sin 0a B b A +=由正弦定理可得23B π=,由余弦定理可得24b ac =- ,利用基本不等式求出b ≥b 的最小值.【详解】根据sin2sin 0a B b A +=由正弦定理可得12sin2sin sin 0cos ,,23sunA B B A B B π+=⇒=-∴=3A C π+=.由余弦定理可得22222224b a c ac cosB a c ac a c ac ac =+-⋅=++=+-=-().2a c +=≥Q1ac ∴≤ .243b ac ∴=-≥, 即b ≥,故边b 故选D . 【点睛】本题主要考查了余弦定理、基本不等式的应用,解三角形,属于中档题. 8.C 【解析】 【分析】根据的圆标准方程求得两圆的圆心与半径,再根据两圆内切、外切的条件,分别求得r 的值并验证510r <<即可得结果.【详解】圆()()221:3425O x y -+-=的圆心()13,4O ,半径为5;圆()()2222:28O x y r +++=的圆心()22,8O --,半径为r.=|r -5|,求得r =18或-8,不满足5<r<10.=|r +5|,求得r =8或-18(舍去),故选C . 【点睛】本题主要考查圆的方程以及圆与圆的位置关系,属于基础题. 两圆半径为,R r ,两圆心间的距离为d ,比较d 与R r -及d 与R r +的大小,即可得到两圆的位置关系. 9.D 【解析】()f x 是奇函数,故()()111f f -=-=- ;又()f x 是增函数,()121f x -≤-≤,即()(1)2(1)f f x f -≤-≤ 则有121x -≤-≤ ,解得13x ≤≤ ,故选D.【点睛】解本题的关键是利用转化化归思想,结合奇函数的性质将问题转化为()(1)2f f x -≤-(1)f ≤,再利用单调性继续转化为121x -≤-≤,从而求得正解.10.B 【解析】因为32x ππ<<,所以33323x ππωππωπω-<-<-,由正弦函数的单调性可得32{33232ππωπωπππ-≥-≤,即1132{313232ωω-≥-≤,也即56{31126ωω≥≤,所以51169ω≤≤,应选答案B 。

2019-2020学年高二数学下学期第二次月考试题 理(10).doc

2019-2020学年高二数学下学期第二次月考试题 理(10).doc

2019-2020学年高二数学下学期第二次月考试题理(10)一、单选题(共12题;每题5分;共60分)1、复数(i是虚数单位)的虚部是()A、 B、 C、 D、2、将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A、12种B、10种C、9种D、8种3、定积分(2x+e x)dx的值为()A、e+2B、e+1C、eD、e﹣14、某班新年联欢会原定的5个节目已排成节目单, 开演前又增加了两个新节目. 如果将这两个新节目插入原节目单中, 那么不同插法的种数为 ( )A、42B、96C、48D、1245、(2x﹣)n的展开式的各个二项式系数之和为64,则在(2x﹣)n的展开式中,常数项为()A、﹣120B、120C、﹣60D、606、复数在复平面上对应的点位于()A、第一象限B、第二象限C、第三象限D、第四象限7、用数学归纳法证明“1+2+22+…+2n-1=2n-1(n∈N+)”的过程中,第二步n=k时等式成立,则当n=k+1时,应得到( )A、1+2+22+…+2k-2+2k-1=2k+1-1B、1+2+22+…+2k+2k+1=2k-1+2k+1C、1+2+22+…+2k-1+2k+1=2k+1-1D、1+2+22+…+2k-1+2k=2k+1-18、由直线x= ,x=2,曲线y= 及x轴所围成的图形的面积是()A、 B、 C、 D、2ln29、5位同学站成一排照相,其中甲与乙必须相邻,且甲不能站在两端的排法总数是()A、40B、36C、32D、2410、若二项式(+ )n的展开式中各项的系数和为32,则该展开式中含x的系数为()A、1B、5C、10D、2011、已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于()A、 B、 C、 D、12、若函数f(x)=x3+ax2+bx+c有极值点x1, x2,且f(x1)=x1<x2,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数是()A、3B、4C、5D、6二、填空题二、填空题(共4题;每题5分;共20分)13、曲线y=e x在点A(0,1)处的切线斜率为________.14、若复数z满足z+i= ,其中i为虚数单位,则|z|=________.15、已知x>0,观察下列式子:类比有,a=________.16、某车队有7辆车,现在要调出4辆,再按一定顺序出去执行任务.要求甲、乙两车必须参加而且甲车在乙车前开出,那么不同的调度方案有________种.(用数字作答)三、解答题(共6题;第17题10分;18-22题,每题12分;共70分)17、设,且,求证:a3+b3>a2b+ab2 .(提示a3+b3=(a+b)(a2-ab+b2) )18、已知函数f(x)=e x+x﹣1(e为自然对数的底数).(Ⅰ)求过点(1,f(1))处的切线方程;(Ⅱ)在第一问的基础上,求切线方程与坐标轴围成的三角形的面积。

湖南省邵阳市2019-2020学年数学高二下期末学业质量监测试题含解析

湖南省邵阳市2019-2020学年数学高二下期末学业质量监测试题含解析
【详解】
由题意, 在 上为增函数,
则 ,解得 ,
所以 的取值范围为 .
故选:D
【点睛】
本题主要考查分段函数的单调性以及指数函数和一次函数的单调性,考查学生的理解分析能力,属于基础题.
8.某市委积极响应十九大报告提出的“到2020年全面建成小康社会”的目标,鼓励各县积极脱贫,计划表彰在农村脱贫攻坚战中的杰出村代表,已知A,B两个贫困县各有15名村代表,最终A县有5人表现突出,B县有3人表现突出,现分别从A,B两个县的15人中各选1人,已知有人表现突出,则B县选取的人表现不突出的概率是()
【详解】
,函数 在 上不单调,即 在 内有极值点,因为 ,且 ,所以有 ,即 ,解得 .
故答案为D.
【点睛】
本题考查了函数的单调性,考查了二次函数的性质,考查了学生分析问题与解决问题的能力,属于中档题.
2.下列命题中正确的个数是( )
①命题“若 ,则 ”的逆否命题为“若 ,则 ;
②“ ”是“ ”的必要不充分条件;
③若 为假命题,则 , 为假命题;
④若命题 ,则 , .
A. B. C. D.
【答案】B
【解析】
【分析】
根据逆否命题的概念、必要不充分条件的知识、含有简单逻辑联结词命题真假性的知识、特称命题的否定是全称命题的知识,对四个命题逐一分析,由此得出正确选项.
【详解】
对于①,根据逆否命题的概念可知,①正确.对于②,当“ ”时, 可能成立,当“ ”时,“ ”,故“ ”是“ ”的必要不充分条件,即②正确.对于③,若 为假命题,则 , 至少有一个假命题,故②错误.对于④,根据特称命题的否定是全称命题的知识可知④正确.综上所述,正确命题个数为 个,故选B.
【答案】C

湖南省邵阳市2019-2020学年中考数学二月模拟试卷含解析

湖南省邵阳市2019-2020学年中考数学二月模拟试卷含解析

湖南省邵阳市2019-2020学年中考数学二月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,AB 是一垂直于水平面的建筑物,某同学从建筑物底端B 出发,先沿水平方向向右行走20米到达点C ,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD 到达点D ,然后再沿水平方向向右行走40米到达点E (A ,B ,C ,D ,E 均在同一平面内).在E 处测得建筑物顶端A 的仰角为24°,则建筑物AB 的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)( )A .21.7米B .22.4米C .27.4米D .28.8米2.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应 的颜色,转动转盘,转盘停止后,指针指向蓝色区域的概率是 ( )A .16B .13C .12D .23 3.,a b 是两个连续整数,若7a b <,则,a b 分别是( ). A .2,3 B .3,2 C .3,4 D .6,84.下列事件中必然发生的事件是( )A .一个图形平移后所得的图形与原来的图形不全等B .不等式的两边同时乘以一个数,结果仍是不等式C .200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D .随意翻到一本书的某页,这页的页码一定是偶数5.能说明命题“对于任何实数a ,|a|>﹣a”是假命题的一个反例可以是( )A .a =﹣2B .a =13C .a =1D .a 26.在银行存款准备金不变的情况下,银行的可贷款总量与存款准备金率成反比例关系.当存款准备金率为7.5%时,某银行可贷款总量为400亿元,如果存款准备金率上调到8%时,该银行可贷款总量将减少多少亿( )A .20B .25C .30D .357.下列计算结果正确的是( )A .329()a a -=B .236a a a ⋅=C .3332a a a +=D .0(cos 600.5)1︒-= 8.如图,点A 、B 、C 都在⊙O 上,若∠AOC=140°,则∠B 的度数是( )A .70°B .80°C .110°D .140°9.4的平方根是( )A .2B .±2C .8D .±810.如图,直角三角形ABC 中,∠C=90°,AC=2,AB=4,分别以AC 、BC 为直径作半圆,则图中阴影部分的面积为( )A .2π﹣3B .π+3C .π+23D .2π﹣2311.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( )A .1000100030x x -+=2 B .1000100030x x -+=2 C .1000100030x x --=2 D .1000100030x x --=2 12.在一次体育测试中,10名女生完成仰卧起坐的个数如下:38,52,47,46,50,50,61,72,45,48,则这10名女生仰卧起坐个数不少于50个的频率为( )A .0.3B .0.4C .0.5D .0.6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,CD 是⊙O 直径,AB 是弦,若CD ⊥AB ,∠BCD=25°,则∠AOD=_____°.14.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=kx的图象上,则k的值为________.15.如图,折叠长方形纸片ABCD,先折出对角线BD,再将AD折叠到BD上,得到折痕DE,点A的对应点是点F,若AB=8,BC=6,则AE的长为_____.16.如图,正方形ABCD边长为1,以AB为直径作半圆,点P是CD 中点,BP与半圆交于点Q,连结DQ.给出如下结论:①DQ=1;②;③S△PDQ=;④cos∠ADQ=.其中正确结论是_________.(填写序号)17.计算(2a)3的结果等于__.18.如图,点P是边长为2的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC 于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD 上运动时(不包括B、D两点),以下结论:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是2.其中正确的是________.(把你认为正确结论的序号都填上)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某商场计划购进A,B两种新型节能台灯共100盏,A型灯每盏进价为30元,售价为45元;B型台灯每盏进价为50元,售价为70元.(1)若商场预计进货款为3500元,求A型、B型节能灯各购进多少盏?根据题意,先填写下表,再完成本问解答:型号A型B型购进数量(盏)x _____购买费用(元)_____ _____(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?20.(6分)据调查,超速行驶是引发交通事故的主要原因之一.小强用所学知识对一条笔直公路上的车辆进行测速,如图所示,观测点C到公路的距离CD=200m,检测路段的起点A位于点C的南偏东60°方向上,终点B位于点C的南偏东45°方向上.一辆轿车由东向西匀速行驶,测得此车由A处行驶到B处的时间为10s.问此车是否超过了该路段16m/s的限制速度?(观测点C离地面的距离忽略不计,参考数据:2≈1.41,3≈1.73)21.(6分)已知开口向下的抛物线y=ax2-2ax+2与y轴的交点为A,顶点为B,对称轴与x轴的交点为C,点A与点D关于对称轴对称,直线BD与x轴交于点M,直线AB与直线OD交于点N.(1)求点D的坐标.(2)求点M的坐标(用含a的代数式表示).(3)当点N在第一象限,且∠OMB=∠ONA时,求a的值.22.(8分)如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.(1)求证:∠ACD=∠B;(2)如图2,∠BDC的平分线分别交AC,BC于点E,F,求∠CEF的度数.23.(8分)在平面直角坐标系xOy 中,点M 的坐标为()11,x y ,点N 的坐标为()22,x y ,且12x x ≠,12y y =,我们规定:如果存在点P ,使MNP ∆是以线段MN 为直角边的等腰直角三角形,那么称点P 为点M 、N 的“和谐点”.(1)已知点A 的坐标为()1,3,①若点B 的坐标为()3,3,在直线AB 的上方,存在点A ,B 的“和谐点”C ,直接写出点C 的坐标; ②点C 在直线x =5上,且点C 为点A ,B 的“和谐点”,求直线AC 的表达式.(2)⊙O 的半径为r ,点()1,4D 为点()1,2E 、(),F m n 的“和谐点”,且DE =2,若使得DEF ∆与⊙O 有交点,画出示意图直接写出半径r 的取值范围.24.(10分)如图,在正方形ABCD 中,点P 是对角线AC 上一个动点(不与点,A C 重合),连接PB 过点P 作PF PB ⊥,交直线DC 于点F .作PE AC ⊥交直线DC 于点E ,连接,AE BF .(1)由题意易知,ADC ABC ∆∆≌,观察图,请猜想另外两组全等的三角形∆ ∆≌ ;∆ ∆≌ ;(2)求证:四边形AEFB 是平行四边形;(3)已知22AB =PFB ∆的面积是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由.25.(10分)Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O 交AC 边于点D ,E 是边BC 的中点,连接DE ,OD .(1)如图①,求∠ODE的大小;(2)如图②,连接OC交DE于点F,若OF=CF,求∠A的大小.26.(12分)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B处,求此时轮船所在的B处与灯塔P的距离.(参考数据:6≈2.449,结果保留整数)27.(12分)已知:如图,∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°=AMEM,构建方程即可解决问题.【详解】作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵140.753CNDN==,设CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=AM EM,∴0.45=866AB +,∴AB=21.7(米),故选A.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.2.B【解析】试题解析:∵转盘被等分成6个扇形区域,而黄色区域占其中的一个,∴指针指向黄色区域的概率=16.故选A.考点:几何概率.3.A【解析】<< 【详解】<<a=2,b=1. 故选A .【点睛】<4.C【解析】【分析】直接利用随机事件、必然事件、不可能事件分别分析得出答案.【详解】A 、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B 、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C 、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D 、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选C .【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键.5.A【解析】【分析】将各选项中所给a 的值代入命题“对于任意实数a ,a a >- ”中验证即可作出判断.【详解】 (1)当2a =-时,22?(2)2a a =-=-=--=,,此时a a =-, ∴当2a =-时,能说明命题“对于任意实数a ,a a >- ”是假命题,故可以选A ;(2)当13a =时,11 33a a =-=-,,此时a a >-, ∴当13a =时,不能说明命题“对于任意实数a ,a a >- ”是假命题,故不能B ; (3)当1a =时,1?1a a =-=-,,此时a a >-, ∴当1a =时,不能说明命题“对于任意实数a ,a a >- ”是假命题,故不能C ;(4)当a =?a a =-=a a >-,∴当a =“对于任意实数a ,a a >- ”是假命题,故不能D ;故选A.【点睛】 熟知“通过举反例说明一个命题是假命题的方法和求一个数的绝对值及相反数的方法”是解答本题的关键. 6.B【解析】设可贷款总量为y ,存款准备金率为x ,比例常数为k ,则由题意可得:k y x=,4007.5%30k =⨯=, ∴30y x=, ∴当8%x =时,303758%y ==(亿), ∵400-375=25,∴该行可贷款总量减少了25亿.故选B.7.C【解析】【分析】利用幂的乘方、同底数幂的乘法、合并同类项及零指数幂的定义分别计算后即可确定正确的选项.【详解】A 、原式6a =,故错误;B 、原式5a =,故错误;C 、利用合并同类项的知识可知该选项正确;D 、cos600.5︒=,cos600.50︒-=,所以原式无意义,错误,故选C .【点睛】本题考查了幂的运算性质及特殊角的三角函数值的知识,解题的关键是能够利用有关法则进行正确的运算,难度不大.8.C【解析】分析:作»AC 对的圆周角∠APC ,如图,利用圆内接四边形的性质得到∠P=40°,然后根据圆周角定理求∠AOC的度数.详解:作»AC对的圆周角∠APC,如图,∵∠P=12∠AOC=12×140°=70°∵∠P+∠B=180°,∴∠B=180°﹣70°=110°,故选:C.点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.B【解析】【分析】依据平方根的定义求解即可.【详解】∵(±1)1=4,∴4的平方根是±1.故选B.【点睛】本题主要考查的是平方根的定义,掌握平方根的定义是解题的关键.10.D【解析】分析:观察图形可知,阴影部分的面积= S半圆ACD +S半圆BCD -S△ABC,然后根据扇形面积公式和三角形面积公式计算即可.详解:连接CD.∵∠C=90°,AC=2,AB=4,∴.∴阴影部分的面积= S 半圆ACD +S 半圆BCD -S △ABC=2211112222ππ⨯+⨯-⨯⨯=322ππ+-2π=-.故选:D . 点睛:本题考查了勾股定理,圆的面积公式,三角形的面积公式及割补法求图形的面积,根据图形判断出阴影部分的面积= S 半圆ACD +S 半圆BCD -S △ABC 是解答本题的关键.11.A【解析】分析:设原计划每天施工x 米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x 米,则实际每天施工(x+30)米, 根据题意,可列方程:1000100030x x -+=2, 故选A .点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程. 12.C【解析】【分析】用仰卧起坐个数不少于10个的频数除以女生总人数10计算即可得解.【详解】仰卧起坐个数不少于10个的有12、10、10、61、72共1个,所以,频率=510=0.1. 故选C .【点睛】本题考查了频数与频率,频率=频数数据总和. 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.50【解析】【分析】由CD 是⊙O 的直径,弦AB ⊥CD ,根据垂径定理的即可求得»AD=»BD ,又由圆周角定理,可得∠AOD=50°. 【详解】∵CD 是⊙O 的直径,弦AB ⊥CD ,∴»AD=»BD , ∵∠BCD=25°=,∴∠AOD=2∠BCD=50°,故答案为50【点睛】本题考查角度的求解,解题的关键是利用垂径定理.14.-6【解析】因为四边形OABC 是菱形,所以对角线互相垂直平分,则点A 和点C 关于y 轴对称,点C 在反比例函数上,设点C 的坐标为(x,k x ),则点A 的坐标为(-x,k x ),点B 的坐标为(0,2k x ),因此AC=-2x,OB=2K X,根据菱形的面积等于对角线乘积的一半得:()OABC 122122k S x x=⨯-⨯=菱形,解得 6.k =- 15.3【解析】【分析】先利用勾股定理求出BD ,再求出DF 、BF ,设AE=EF=x .在Rt △BEF 中,由EB 2=EF 2+BF 2,列出方程即可解决问题.【详解】∵四边形ABCD 是矩形,∴∠A=90°.∵AB=8,AD=6,∴BD 2268=+=1.∵△DEF 是由△DEA 翻折得到,∴DF=AD=6,BF=2.设AE=EF=x .在Rt △BEF 中,∵EB 2=EF 2+BF 2,∴(8﹣x )2=x 2+22,解得:x=3,∴AE=3.故答案为:3.【点睛】本题考查了矩形的性质、勾股定理等知识,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.16.①②④【解析】【分析】①连接OQ,OD,如图1.易证四边形DOBP是平行四边形,从而可得DO∥BP.结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,则有DQ=DA=1;②连接AQ,如图4,根据勾股定理可求出BP.易证Rt△AQB∽Rt△BCP,运用相似三角形的性质可求出BQ,从而求出PQ的值,就可得到PQBQ的值;③过点Q作QH⊥DC于H,如图4.易证△PHQ∽△PCB,运用相似三角形的性质可求出QH,从而可求出S△DPQ的值;④过点Q作QN⊥AD于N,如图3.易得DP∥NQ∥AB,根据平行线分线段成比例可得32 DN PQAN BQ==,把AN=1-DN代入,即可求出DN,然后在Rt△DNQ中运用三角函数的定义,就可求出cos∠ADQ的值.【详解】解:①连接OQ,OD,如图1.易证四边形DOBP是平行四边形,从而可得DO∥BP.结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,则有DQ=DA=1.故①正确;②连接AQ,如图4.则有CP=12,BP=22151()22+=.易证Rt△AQB∽Rt△BCP,运用相似三角形的性质可求得BQ=55,则PQ=5535 255-=,∴32 PQBQ=.故②正确;③过点Q作QH⊥DC于H,如图4.易证△PHQ∽△PCB,运用相似三角形的性质可求得QH=35,∴S△DPQ=12DP•QH=12×12×35=320.故③错误;④过点Q作QN⊥AD于N,如图3.易得DP∥NQ∥AB,根据平行线分线段成比例可得32 DN PQAN BQ==,则有3 12 DNDN=-,解得:DN=35.由DQ=1,得cos ∠ADQ=35DN DQ =. 故④正确. 综上所述:正确结论是①②④.故答案为:①②④.【点睛】本题主要考查了圆周角定理、平行四边形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、平行线分线段成比例、等腰三角形的性质、平行线的性质、锐角三角函数的定义、勾股定理等知识,综合性比较强,常用相似三角形的性质、勾股定理、三角函数的定义来建立等量关系,应灵活运用. 17.8【解析】试题分析:根据幂的乘方与积的乘方运算法则进行计算即可考点:(1)、幂的乘方;(2)、积的乘方18.②③④【解析】【分析】①可用特殊值法证明,当P 为BD 的中点时,0MC =,可见MF MC ≠.②可连接PC ,交EF 于点O ,先根据SAS 证明ADP CDP ≅V V ,得到DAP DCP ∠=∠,根据矩形的性质可得DCP CFE ∠=∠,故DAP CFE ∠=∠,又因为90DAP AMD ∠+∠=︒,故90CFE AMD ∠+∠=︒,故AH EF ⊥.③先证明CPM HPC V :V ,得到PC PM HP PC=,再根据ADP CDP ≅V V ,得到AP PC =,代换可得. ④根据EF PC AP ==,可知当AP 取最小值时,EF 也取最小值,根据点到直线的距离也就是垂线段最短可得,当AP BD ⊥时,EF 取最小值,再通过计算可得.【详解】解:①错误.当P 为BD 的中点时,0MC =,可见MF MC ≠;②正确.如图,连接PC ,交EF 于点O ,Q 45AD CD ADP CDP DP DP =⎧⎪∠=∠=︒⎨⎪=⎩∴()ADP CDP SAS ≅V V∴DAP DCP ∠=∠,Q PF CD ⊥,PE BC ⊥,90BCD ∠=︒,∴四边形PECF 为矩形,∴OF OC =,∴DCP CFE ∠=∠,∴DAP CFE ∠=∠,Q 90DAP AMD ∠+∠=︒,∴90CFE AMD ∠+∠=︒,∴90FGM ∠=︒,∴AH EF ⊥.③正确.Q //AD BH ,∴H DAP ∠=∠,Q ADP CDP ≅V V ,∴DAP DCP ∠=∠,∴H DCP ∠=∠,又Q CPH MPC ∠=∠,∴CPM HPC V :V , ∴PC PM HP PC=, Q AP PC =, ∴AP PM HP AP=, ∴2AP PM PH =g .④正确.Q ()ADP CDP SAS ≅V V 且四边形PECF 为矩形,∴EF PC AP ==,∴当AP BD ⊥时,EF 取最小值,此时sin 4522AP AB =︒=⨯=g故EF .故答案为:②③④.【点睛】本题是动点问题,综合考查了矩形、正方形的性质,全等三角形与相似三角形的性质与判定,线段的最值问题等,合理作出辅助线,熟练掌握各个相关知识点是解答关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)30x , y ,50y ;(2)商场购进A 型台灯2盏,B 型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.【解析】【分析】(1)设商场应购进A 型台灯x 盏,表示出B 型台灯为y 盏,然后根据“A ,B 两种新型节能台灯共100盏”、“进货款=A 型台灯的进货款+B 型台灯的进货款”列出方程组求解即可;(2)设商场销售完这批台灯可获利y 元,根据获利等于两种台灯的获利总和列式整理,再求出x 的取值范围,然后根据一次函数的增减性求出获利的最大值.【详解】解:(1)设商场应购进A 型台灯x 盏,则B 型台灯为y 盏,根据题意得: 10030503500x y x y +=⎧⎨+=⎩解得:7525x y =⎧⎨=⎩. 答:应购进A 型台灯75盏,B 型台灯2盏.故答案为30x ;y ;50y ;(2)设商场应购进A 型台灯x 盏,销售完这批台灯可获利y 元,则y=(45﹣30)x+(70﹣50)(100﹣x )=15x+1﹣20x=﹣5x+1,即y=﹣5x+1.∵B 型台灯的进货数量不超过A 型台灯数量的3倍,∴100﹣x≤3x ,∴x≥2.∵k=﹣5<0,y 随x 的增大而减小,∴x=2时,y 取得最大值,为﹣5×2+1=1875(元).答:商场购进A 型台灯2盏,B 型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.【点睛】本题考查了一元一次方程的应用、二元一次方程组的应用以及一次函数的应用,主要利用了一次函数的增减性,(2)题中理清题目数量关系并列式求出x 的取值范围是解题的关键.20.此车没有超过了该路段16m/s 的限制速度.【解析】分析:根据直角三角形的性质和三角函数得出DB ,DA ,进而解答即可.详解:由题意得:∠DCA=60°,∠DCB=45°,在Rt △CDB 中,tan ∠DCB=1200DB DB DC ==, 解得:DB=200,在Rt △CDA 中,tan ∠DCA=200DA DA DC ==解得:∴AB=DA ﹣200≈146米, 轿车速度14614.61610AB v t ===<, 答:此车没有超过了该路段16m/s 的限制速度.点睛:本题考查了解直角三角形的应用﹣方向角问题,解答本题的关键是利用三角函数求出AD 与BD 的长度,难度一般.21.(1)D (2,2);(2)22,0M a ⎛⎫- ⎪⎝⎭;(3)1 【解析】【分析】(1)令x=0求出A 的坐标,根据顶点坐标公式或配方法求出顶点B 的坐标、对称轴直线,根据点A 与点D 关于对称轴对称,确定D 点坐标.(2)根据点B 、D 的坐标用待定系数法求出直线BD 的解析式,令y=0,即可求得M 点的坐标.(3)根据点A 、B 的坐标用待定系数法求出直线AB 的解析式,求直线OD 的解析式,进而求出交点N 的坐标,得到ON 的长.过A 点作AE ⊥OD ,可证△AOE 为等腰直角三角形,根据OA=2,可求得AE 、OE 的长,表示出EN 的长.根据tan ∠OMB=tan ∠ONA ,得到比例式,代入数值即可求得a 的值.【详解】(1)当x=0时,2y =,∴A 点的坐标为(0,2)∵()222212y ax ax a x a =-+=-+-∴顶点B 的坐标为:(1,2-a ),对称轴为x= 1,∵点A 与点D 关于对称轴对称∴D 点的坐标为:(2,2)(2)设直线BD 的解析式为:y=kx+b把B (1,2-a )D (2,2)代入得:2{22a k bk b -=+=+ ,解得:{22k ab a ==-∴直线BD 的解析式为:y=ax+2-2a当y=0时,ax+2-2a=0,解得:x=22a -∴M 点的坐标为:22,0a ⎛⎫- ⎪⎝⎭(3)由D(2,2)可得:直线OD 解析式为:y=x设直线AB 的解析式为y=mx+n,代入A(0,2)B (1,2-a )可得:2{2n m n a =+=- 解得:{2m an =-=∴直线AB 的解析式为y= -ax+2联立成方程组:{2y x y ax ==-+ ,解得:21{21x a y a =+=+ ∴N 点的坐标为:(2211a a ++,)21a +) 过A 点作AE ⊥OD 于E 点,则△AOE 为等腰直角三角形.∵OA=2∴,21a +)12(1a a -+) ∵M 22,0a ⎛⎫- ⎪⎝⎭,C(1,0), B (1,2-a ) ∴MC=2221a a a---=,BE=2-a ∵∠OMB=∠ONA∴tan ∠OMB=tan ∠ONA ∴AE BE EN CM =221a a a a -=-⎪+⎭解得:a=1a 1=-∵抛物线开口向下,故a<0,∴ a=12=-+舍去,a12【点睛】本题是一道二次函数与一次函数及三角函数综合题,掌握并灵活应用二次函数与一次函数的图象与性质,以及构建直角三角形借助点的坐标使用相等角的三角函数是解题的关键.22.(1)详见解析;(2)∠CEF=45°.【解析】试题分析:(1)连接OC,根据切线的性质和直径所对的圆周角是直角得出∠DCO=∠ACB=90°,然后根据等角的余角相等即可得出结论;(2)根据三角形的外角的性质证明∠CEF=∠CFE即可求解.试题解析:(1)证明:如图1中,连接OC.∵OA=OC,∴∠1=∠2,∵CD是⊙O切线,∴OC⊥CD,∴∠DCO=90°,∴∠3+∠2=90°,∵AB 是直径,∴∠1+∠B =90°,∴∠3=∠B .(2)解:∵∠CEF =∠ECD +∠CDE ,∠CFE =∠B +∠FDB ,∵∠CDE =∠FDB ,∠ECD =∠B ,∴∠CEF =∠CFE ,∵∠ECF =90°,∴∠CEF =∠CFE =45°.23.(1)①点C 坐标为()1,5C 或()3,5C ';②y =x +2或y =-x +3;(2)217r ≤≤或517r ≤≤【解析】【分析】(1)①根据“和谐点”的定义即可解决问题;②首先求出点C 坐标,再利用待定系数法即可解决问题;(2)分两种情形画出图形即可解决问题.【详解】(1)①如图1.观察图象可知满足条件的点C 坐标为C (1,5)或C'(3,5);②如图2.由图可知,B (5,3).∵A (1,3),∴AB=3.∵△ABC 为等腰直角三角形,∴BC=3,∴C 1(5,7)或C 2(5,﹣1).设直线AC 的表达式为y=kx+b (k≠0),当C 1(5,7)时,357k b k b +=⎧⎨+=⎩,∴12k b =⎧⎨=⎩,∴y=x+2,当C 2(5,﹣1)时,351k b k b +=⎧⎨+=-⎩,∴14k b =-⎧⎨=⎩,∴y=﹣x+3. 综上所述:直线AC 的表达式是y=x+2或y=﹣x+3.(2)分两种情况讨论:①当点F 在点E 左侧时:连接OD .则OD=221417+=,∴217r ≤≤.②当点F 在点E 右侧时:连接OE ,OD .∵E (1,2),D (1,3),∴22125+221417+=517r ≤≤综上所述:217r ≤≤517r ≤≤【点睛】本题考查了一次函数综合题、圆的有关知识、等腰直角三角形的判定和性质、“和谐点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的首先思考问题,属于中考压轴题.24.(1),,,PEF PCB ADE BCF ;(2)见解析;(3)存在,2【解析】【分析】(1)利用正方形的性质及全等三角形的判定方法证明全等即可;(2)由(1)可知PEF PCB ∆∆≌,则有EF BC =,从而得到AB EF =,最后利用一组对边平行且相等即可证明;(3)由(1)可知PEF PCB ∆∆≌,则PF PB =,从而得到PBF ∆是等腰直角三角形,则当PB 最短时,PBF ∆的面积最小,再根据AB 的值求出PB 的最小值即可得出答案.【详解】解:(1)Q 四边形ABCD 是正方形,,45AD DC BC ACD ACB ︒∴==∠=∠=,,PE AC PB PF ⊥⊥Q ,90EPC BPF ︒∴∠=∠=,,45EPF CPB PEC PCE ︒∴∠=∠∠=∠=,PE PC ∴=,在PEF ∆和PCB ∆中,PEF BCP PE PCEPF CPB ∠=∠⎧⎪=⎨⎪∠=∠⎩()PEF PCB ASA ∴∆∆≌EF BC DC ∴==DE CF ∴=在ADE ∆和BCF ∆中,90AD BC D BCF DE CF ︒=⎧⎪∠=∠=⎨⎪=⎩,()ADE BCF SAS ∴∆∆≌故答案为,,,PEF PCB ADE BCF ;(2)证明:由(1)可知PEF PCB ∆∆≌,EF BC ∴=,AB BC =QAB EF ∴=//AB EF Q∴四边形AEFB 是平行四边形.(3)解:存在,理由如下:PEF PCB ∆∆Q ≌PF PB ∴=90BPF ︒∠=QPBF ∆∴是等腰直角三角形,PB ∴最短时,PBF ∆的面积最小,∴当PB AC ⊥时,PB 最短,此时2cos 452222PB AB =⋅︒=⨯=, PBF ∆∴的面积最小为12222⨯⨯=. 【点睛】本题主要考查全等三角形的判定及性质,平行四边形的判定,掌握全等三角形的判定方法和平行四边形的判定方法是解题的关键.25.(1)∠ODE=90°;(2)∠A=45°. 【解析】分析:(Ⅰ)连接OE ,BD ,利用全等三角形的判定和性质解答即可;(Ⅱ)利用中位线的判定和定理解答即可.详解:(Ⅰ)连接OE ,BD .∵AB 是⊙O 的直径,∴∠ADB=90°,∴∠CDB=90°.∵E 点是BC 的中点,∴DE=12BC=BE . ∵OD=OB ,OE=OE ,∴△ODE ≌△OBE ,∴∠ODE=∠OBE .∵∠ABC=90°,∴∠ODE=90°;(Ⅱ)∵CF=OF ,CE=EB ,∴FE 是△COB 的中位线,∴FE ∥OB ,∴∠AOD=∠ODE ,由(Ⅰ)得∠ODE=90°,∴∠AOD=90°.∵OA=OD ,∴∠A=∠ADO=18090452︒-︒=︒.点睛:本题考查了圆周角定理,关键是根据学生对全等三角形的判定方法及切线的判定等知识的掌握情况解答.26.此时轮船所在的B处与灯塔P的距离是98海里.【解析】【分析】过点P作PC⊥AB,则在Rt△APC中易得PC的长,再在直角△BPC中求出PB的长即可.【详解】作PC⊥AB于C点,∴∠APC=30°,∠BPC=45°,AP=80(海里),在Rt△APC中,cos∠APC=PC PA,∴PC=PA•cos∠3,在Rt△PCB中,cos∠BPC=PC PB,∴PB=403cosPCBPC=∠6≈98(海里),答:此时轮船所在的B处与灯塔P的距离是98海里.【点睛】本题考查了解直角三角形的应用举例,正确添加辅助线构建直角三角形是解题的关键. 27.作图见解析.【解析】【分析】由题意可知,先作出∠ABC的平分线,再作出线段BD的垂直平分线,交点即是P点.【详解】∵点P到∠ABC两边的距离相等,∴点P在∠ABC的平分线上;∵线段BD为等腰△PBD的底边,∴PB=PD,∴点P在线段BD的垂直平分线上,∴点P是∠ABC的平分线与线段BD的垂直平分线的交点,如图所示:【点睛】此题主要考查了尺规作图,正确把握角平分线的性质和线段垂直平分线的性质是解题的关键.。

湖南省邵阳市2019-2020学年数学高二第二学期期末学业质量监测试题含解析

湖南省邵阳市2019-2020学年数学高二第二学期期末学业质量监测试题含解析

湖南省邵阳市2019-2020学年数学高二第二学期期末学业质量监测试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意)1.某校1000名学生中, O 型血有400人, A 型血有250人, B 型血有250人, AB 型血有100人,为了研究血型与色弱的关系,要从中抽取一个容量为60人的样本,按照分层抽样的方法抽取样本,则O 型血、A 型血、B 型血、AB 型血的人要分别抽的人数为( ) A .24,15,15,6 B .21,15,15,9 C .20,18,18,4 D .20,12,12,62.如果21()2nx x-的展开式中只有第4项的二项式系数最大,那么展开式中的所有项的系数和是( ) A .0B .256C .64D .1643.点是双曲线在第一象限的某点,、为双曲线的焦点.若在以为直径的圆上且满足,则双曲线的离心率为()A. B. C. D.4.把四个不同的小球放入三个分别标有1~3号的盒子中,不允许有空盒子的放法有( ) A .12种B .24种C .36种D .48种5.有10名学生和2名老师共12人,从这12人选出3人参加一项实践活动则恰有1名老师被选中的概率为( ) A .B .C .D .6.袋中有大小完全相同的2个红球和2个黑球,不放回地依次摸出两球,设“第一次摸得黑球”为事件A ,“摸得的两球不同色”为事件B ,则概率()|P B A 为( ) A .14B .23C .13D .127.《易经》是我国古代预测未来的著作,其中同时抛掷三枚古钱币观察正反面进行预测未知,则抛掷一次时出现两枚正面一枚反面的概率为( ) A .18B .14C .38D .128.已知定义在R 上的函数()y f x =在[1,)+∞上单调递减,且(1)y f x =+是偶函数,不等式(2)(1)f m f x +≥-对任意的[1,0]x ∈-恒成立,则实数m 的取值范围是( )A .[3,1]-B .(,3][1,)-∞-+∞C .[4,2]-D .[3,1]--9.已知集合{}|11A x x =-<,{}0,1,2B =,则A B =( )A .{}0B .{}0,1C .{}1D .{}1,210.根据中央对“精准扶贫”的要求,某市决定派7名党员去甲、乙、丙三个村进行调研,其中有4名男性党员,3名女性党员现从中选3人去甲村若要求这3人中既有男性,又有女性,则不同的选法共有( ) A .35种B .30种C .28种D .25种11.在101()x x+的展开式中,x 的幂指数是整数的共有 A .3项B .4项C .5项D .6项12.若对任意正数x ,不等式211ax x≤+恒成立,则实数a 的最小值( ) A .1B .2C .22D .12二、填空题(本题包括4个小题,每小题5分,共20分)13.把4个相同的球放进3个不同的盒子,每个球进盒子都是等可能的,则没有一个空盒子的概率为________14.在正方体ABCD ﹣A 1B 1C 1D 1,二面角A ﹣BD ﹣A 1的大小为_____.15.已知212()log (3)f x x ax a =-+在区间[2,+∞)上为减函数,则实数a 的取值范围是______. 16.设向量a,b,c 满足0++=a b c ,()-⊥a b c ,⊥a b ,若1=a ,则222||||++a b c 的值是________三、解答题(本题包括6个小题,共70分) 17.已知函数()|21||1|f x x x =-++. (1)解不等式()3f x ;(2)记函数()()|1|g x f x x =++的值域为M ,若t M ∈,证明:2313t t t++. 18.已知()11f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若()0,1x ∈时不等式()f x x >成立,求a 的取值范围.19.(6分)若存在常数k (0k >),使得对定义域D 内的任意1x ,2x (12x x ≠),都有1212|()()|||f x f x k x x -≤-成立,则称函数()f x 在其定义域D 上是“k -利普希兹条件函数”.(1)判断函数2()log f x x =是否是“2-利普希兹条件函数”,若是,请证明,若不是,请说明理由; (2)若函数()f x x =(14x ≤≤)是“k -利普希兹条件函数”,求常数k 的最小值;(3)若()y f x =(x ∈R )是周期为2的“1-利普希兹条件函数”,证明:对任意的实数1x ,2x ,都有12|()()|1f x f x -≤.20.(6分)已知实数,设函数.(1)证明:;(2)若,求的取值范围.21.(6分)若0,0,a b c d b c >><, (Ⅰ)求证:0b c +>;(Ⅱ)求证:22()()b c a da cb d ++<--;(Ⅲ)在(Ⅱ)中的不等式中,能否找到一个代数式,满足2()b c a c +<-所求式2()a db d +<-?若能,请直接写出该代数式;若不能,请说明理由.22.(8分)已知函数()f x 为定义在R 上的奇函数,且当0x >时,()2f x x 4x =-+(Ⅰ)求函数()f x 的解析式;(Ⅱ)求函数()f x 在区间[]2,(2)a a ->-上的最小值.参考答案一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意) 1.A 【解析】 【分析】根据分层抽样中各层抽样比与总体抽样比相等可得出每种血型的人所抽的人数. 【详解】根据分层抽样的特点可知,O 型血的人要抽取的人数为40060241000⨯=, A 型血的人要抽取的人数为25060151000⨯=,B 型血的人要抽取的人数为25060151000⨯=, AB 型血的人要抽取的人数为1006061000⨯=,故答案为A. 【点睛】本题考查分层抽样,考查分层抽样中每层样本容量,解题时要充分利用分层抽样中各层抽样比与总体抽样比相等来计算,考查计算能力,属于基础题. 2.D 【解析】分析:先确定n 值,再根据赋值法求所有项的系数和.详解:因为展开式中只有第4项的二项式系数最大,所以n =6.令x =1,则展开式中所有项的系数和是611(1)264-=,选D.点睛:二项式系数最大项的确定方法①如果n 是偶数,则中间一项(第12n+ 项)的二项式系数最大; ②如果n 是奇数,则中间两项第12n +项与第1(1)2n ++项的二项式系数相等并最大. 3.D 【解析】试题分析:根据题画图,可知P 为圆与双曲线的交点,根据双曲线定义可知:122PF PF a -=,所以2PF a =,12PF a =又2221212PF PF F F +=,即()()22222a a c +=,所以2254a c =,2254c a =,双曲线离心率1e >,所以2c e a ==。

湖南省邵阳市2019-2020学年中考第二次质量检测数学试题含解析

湖南省邵阳市2019-2020学年中考第二次质量检测数学试题含解析

湖南省邵阳市2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如果向北走6km记作+6km,那么向南走8km记作()A.+8km B.﹣8km C.+14km D.﹣2km2.大箱子装洗衣粉36千克,把大箱子里的洗衣粉分装在4个大小相同的小箱子里,装满后还剩余2千克洗衣粉,则每个小箱子装洗衣粉()A.6.5千克B.7.5千克C.8.5千克D.9.5千克3.已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b的值为()A.4 B.﹣4 C.3 D.﹣34.如图,在5×5的方格纸中将图①中的图形N平移到如图②所示的位置,那么下列平移正确的是( )A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格5.已知一元二次方程ax2+ax﹣4=0有一个根是﹣2,则a值是()A.﹣2 B.23C.2 D.46.函数y=mx2+(m+2)x+12m+1的图象与x轴只有一个交点,则m的值为()A.0 B.0或2 C.0或2或﹣2 D.2或﹣2 7.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0D.抛物线的对称轴是直线x=3 28.如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°9.下列实数0,23,3,π,其中,无理数共有( ) A .1个 B .2个C .3个D .4个10.若分式11x x -+的值为零,则x 的值是( ) A .1B .1-C .1±D .211.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140°12.化简2(21)÷-的结果是( ) A .221-B .22-C .12-D .2+2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知函数||(2)31m y m x x =+-+是关于x 的二次函数,则m =__________.14.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是________________15.不等式组2332x x -<⎧⎨+<⎩的解集是 _____________.16.如图,某商店营业大厅自动扶梯AB 的倾斜角为31°,AB 的长为12米,则大厅两层之间的高度为____米.(结果保留两个有效数字)(参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601)17.如图,在平面直角坐标系中,二次函数y=ax 2+c (a≠0)的图象过正方形ABOC 的三个顶点A ,B ,C ,则ac 的值是________.18.如图,AB是⊙O的直径,AC与⊙O相切于点A,连接OC交⊙O于D,连接BD,若∠C=40°,则∠B=_____度.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)填空并解答:某单位开设了一个窗口办理业务,并按顾客“先到达,先办理”的方式服务,该窗口每2分钟服务一位顾客.已知早上8:00上班窗口开始工作时,已经有6位顾客在等待,在窗口工作1分钟后,又有一位“新顾客”到达,且以后每5分钟就有一位“新顾客”到达.该单位上午8:00上班,中午11:30下班.(1)问哪一位“新顾客”是第一个不需要排队的?分析:可设原有的6为顾客分别为a1、a2、a3、a4、a5、a6,“新顾客”为c1、c2、c3、c4….窗口开始工作记为0时刻.a1a2a3a4a5a6c1c2c3c4…到达窗口时刻0 0 0 0 0 0 1 6 11 16 …服务开始时刻0 2 4 6 8 10 12 14 16 18 …每人服务时长 2 2 2 2 2 2 2 2 2 2 …服务结束时刻 2 4 6 8 10 12 14 16 18 20 …根据上述表格,则第位,“新顾客”是第一个不需要排队的.(2)若其他条件不变,若窗口每a分钟办理一个客户(a为正整数),则当a最小取什么值时,窗口排队现象不可能消失.分析:第n个“新顾客”到达窗口时刻为,第(n﹣1)个“新顾客”服务结束的时刻为.20.(6分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线1y x32=-+交AB,BC分别于点M,N,反比例函数kyx=的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.21.(6分)一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;搅匀后,从中任意取一个球,标号为正数的概率是;搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.22.(8分)如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx-k的图象的交点坐标为A(m,2).(1)求m的值和一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,求△AOB的面积;(3)直接写出使函数y=kx-k的值大于函数y=x的值的自变量x的取值范围.23.(8分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A 0≤x<30 4B 30≤x<60 16C 60≤x<90 aD 90≤x<120 bE x≥120 2请根据以上图表,解答下列问题:填空:这次被调查的同学共有人,a+b=,m=;求扇形统计图中扇形C的圆心角度数;该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.24.(10分)甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原价为x(x>0)元,让利后的购物金额为y元.(1)分别就甲、乙两家商场写出y关于x的函数解析式;(2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.25.(10分)在等腰Rt△ABC中,∠ACB=90°,AC=BC,点D是边BC上任意一点,连接AD,过点C 作CE⊥AD于点E.(1)如图1,若∠BAD=15°,且CE=1,求线段BD的长;(2)如图2,过点C作CF⊥CE,且CF=CE,连接FE并延长交AB于点M,连接BF,求证:AM=BM.26.(12分)(本题满分8分)如图,四边形ABCD中,,E是边CD 的中点,连接BE并延长与AD的延长线相较于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.27.(12分)如图1,在直角梯形ABCD中,动点P从B点出发,沿B→C→D→A匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.(1)在这个变化中,自变量、因变量分别是、;(2)当点P运动的路程x=4时,△ABP的面积为y=;(3)求AB的长和梯形ABCD的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】正负数的应用,先判断向北、向南是不是具有相反意义的量,再用正负数表示出来【详解】解:向北和向南互为相反意义的量.若向北走6km记作+6km,那么向南走8km记作﹣8km.故选:B.【点睛】本题考查正负数在生活中的应用.注意用正负数表示的量必须是具有相反意义的量.2.C【解析】【分析】设每个小箱子装洗衣粉x千克,根据题意列方程即可.【详解】设每个小箱子装洗衣粉x千克,由题意得:4x+2=36,解得:x=8.5,即每个小箱子装洗衣粉8.5千克,故选C.【点睛】本题考查了列一元一次方程解实际问题,弄清题意,找出等量关系是解答本题的关键.3.A【解析】【分析】根据一元二次方程根与系数的关系和整体代入思想即可得解.【详解】∵x1,x2是关于x的方程x2+bx﹣3=0的两根,∴x1+x2=﹣b,x1x2=﹣3,∴x1+x2﹣3x1x2=﹣b+9=5,解得b=4.故选A.【点睛】本题主要考查一元二次方程的根与系数的关系(韦达定理),韦达定理:若一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,那么x1+x2=,x1x2=.4.C【解析】【分析】根据题意,结合图形,由平移的概念求解.【详解】由方格可知,在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是:先向下移动2格,再向左移动1格,故选C.【点睛】本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后物体的位置.5.C【解析】分析:将x=-2代入方程即可求出a的值.详解:将x=-2代入可得:4a-2a-4=0,解得:a=2,故选C.点睛:本题主要考查的是解一元一次方程,属于基础题型.解方程的一般方法的掌握是解题的关键.6.C【解析】【分析】根据函数y=mx2+(m+2)x+12m+1的图象与x轴只有一个交点,利用分类讨论的方法可以求得m的值,本题得以解决.【详解】解:∵函数y=mx2+(m+2)x+12m+1的图象与x轴只有一个交点,∴当m=0时,y=2x+1,此时y=0时,x=﹣0.5,该函数与x轴有一个交点,当m≠0时,函数y=mx2+(m+2)x+12m+1的图象与x轴只有一个交点,则△=(m+2)2﹣4m(12m+1)=0,解得,m1=2,m2=﹣2,由上可得,m的值为0或2或﹣2,故选:C.【点睛】本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用分类讨论的数学思想解答.7.D【解析】【分析】A、由a=1>0,可得出抛物线开口向上,A选项错误;B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、由抛物线开口向上,可得出y无最大值,C选项错误;D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-32,D选项正确.综上即可得出结论.【详解】解:A、∵a=1>0,∴抛物线开口向上,A选项错误;B、∵抛物线y=x1-3x+c与y轴的交点为(0,1),∴c=1,∴抛物线的解析式为y=x1-3x+1.当y=0时,有x1-3x+1=0,解得:x1=1,x1=1,∴抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、∵抛物线开口向上,∴y无最大值,C选项错误;D、∵抛物线的解析式为y=x1-3x+1,∴抛物线的对称轴为直线x=-b2a=-321=32,D选项正确.故选D.【点睛】本题考查了抛物线与x轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键.8.A【解析】分析:如图求出∠5即可解决问题.详解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°-∠5=125°,故选:A.点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题.9.B【解析】【分析】根据无理数的概念可判断出无理数的个数.【详解】3π.故选B.【点睛】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.10.A【解析】试题解析:∵分式11xx-+的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1. 故选A . 11.A 【解析】解:∵把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A . 12.D 【解析】 【分析】将除法变为乘法,化简二次根式,再用乘法分配律展开计算即可. 【详解】原式×+1). 故选D. 【点睛】本题主要考查二次根式的加减乘除混合运算,掌握二次根式的混合运算法则是解题关键. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.1 【解析】 【分析】根据一元二次方程的定义可得:2m =,且20m +≠,求解即可得出m 的值. 【详解】解:由题意得:2m =,且20m +≠, 解得:2m =±,且2m ≠-, ∴2m = 故答案为:1. 【点睛】此题主要考查了一元二次方程的定义,关键是掌握“未知数的最高次数是1”且“二次项的系数不等于0”. 14.222()2a b a ab b +=++ 【解析】由图形可得:()2222a b a ab b +=++15.x <-1【解析】2332x x -<⎧⎨+<⎩①② 解不等式①得:x<5,解不等式②得:x<-1所以不等式组的解集是x<-1.故答案是:x<-1.16.6.2【解析】【分析】根据题意和锐角三角函数可以求得BC 的长,从而可以解答本题.【详解】解:在Rt △ABC 中,∵∠ACB=90°,∴BC=AB•sin ∠BAC=12×0.515≈6.2(米),答:大厅两层之间的距离BC 的长约为6.2米.故答案为:6.2.【点睛】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.17.-1.【解析】【分析】设正方形的对角线OA 长为1m ,根据正方形的性质则可得出B 、C 坐标,代入二次函数y=ax 1+c 中,即可求出a 和c ,从而求积.【详解】设正方形的对角线OA 长为1m ,则B (﹣m ,m ),C (m ,m ),A (0,1m );把A ,C 的坐标代入解析式可得:c=1m ①,am 1+c=m ②,①代入②得:am 1+1m=m ,解得:a=-1m , 则ac=-1m⨯1m=-1. 考点:二次函数综合题.18.25【解析】∵AC是⊙O的切线,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故答案为:25.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)5;(2)5n﹣4,na+6a.【解析】【分析】(1)第5位,“新顾客”到达时间是20分钟,第11位顾客结束服务的时间是20分钟,所以第5位“新顾客”是第一个不需要排队的;(2)由表格中信息可得,“新顾客”到达时间为1,6,11,16,…,则第n个“新顾客”到达窗口时刻为5n﹣4,由表格可知,“新顾客”服务开始的时间为6a,7a,8a,…,第n﹣1个“新顾客”服务开始的时间为(6+n﹣1)a=(5+n)a,第n﹣1个“新顾客”服务结束的时间为(5+n)a+a=na+6a.【详解】(1)第5位,“新顾客”到达时间是20分钟,第11位顾客结束服务的时间是20分钟,所以第5位“新顾客”是第一个不需要排队的;故答案为:5;(2)由表格中信息可得,“新顾客”到达时间为1,6,11,16,…,∴第n个“新顾客”到达窗口时刻为5n﹣4,由表格可知,“新顾客”服务开始的时间为6a,7a,8a,…,∴第n个“新顾客”服务开始的时间为(6+n)a,∴第n﹣1个“新顾客”服务开始的时间为(6+n﹣1)a=(5+n)a,∵每a分钟办理一个客户,∴第n﹣1个“新顾客”服务结束的时间为(5+n)a+a=na+6a,故答案为:5n﹣4,na+6a.【点睛】本题考查了列代数式,用代数式表示数的规律,解题关键是要读懂题目的意思,根据题目给出的条件,寻找规律,列出代数式.20.(1)4y x =;(2)点P 的坐标是(0,4)或(0,-4). 【解析】【分析】(1)求出OA=BC=2,将y=2代入1y x 32=-+求出x=2,得出M 的坐标,把M 的坐标代入反比例函数的解析式即可求出答案.(2)求出四边形BMON 的面积,求出OP 的值,即可求出P 的坐标.【详解】(1)∵B (4,2),四边形OABC 是矩形,∴OA=BC=2. 将y=2代入1y x 32=-+3得:x=2,∴M (2,2). 把M 的坐标代入k y x =得:k=4, ∴反比例函数的解析式是4y x=; (2)AOM CON BMON OABC 1S S S S 422442∆∆=--=⨯-⨯⨯=四边形矩形. ∵△OPM 的面积与四边形BMON 的面积相等, ∴1OP AM 42⋅⋅=. ∵AM=2,∴OP=4.∴点P 的坐标是(0,4)或(0,-4).21.(1)23;(2)49 【解析】【分析】(1)直接运用概率的定义求解;(2)根据题意确定k>0,b>0,再通过列表计算概率.【详解】解:(1)因为1、-1、2三个数中由两个正数, 所以从中任意取一个球,标号为正数的概率是23. (2)因为直线y=kx+b 经过一、二、三象限,所以k>0,b>0,又因为取情况:-1 -1,1 -1,-1 -1.2 2 2,1 2,-1 2,2 共9种情况,符合条件的有4种,所以直线y=kx+b经过一、二、三象限的概率是4 9 .【点睛】本题考核知识点:求规概率. 解题关键:把所有的情况列出,求出要得到的情况的种数,再用公式求出.22.(1)y=1x﹣1(1)1(3)x>1【解析】试题分析:(1)先把A(m,1)代入正比例函数解析式可计算出m=1,然后把A(1,1)代入y=kx﹣k 计算出k的值,从而得到一次函数解析式为y=1x﹣1;(1)先确定B点坐标,然后根据三角形面积公式计算;(3)观察函数图象得到当x>1时,直线y=kx﹣k都在y=x的上方,即函数y=kx﹣k的值大于函数y=x 的值.试题解析:(1)把A(m,1)代入y=x得m=1,则点A的坐标为(1,1),把A(1,1)代入y=kx﹣k得1k﹣k=1,解得k=1,所以一次函数解析式为y=1x﹣1;(1)把x=0代入y=1x﹣1得y=﹣1,则B点坐标为(0,﹣1),所以S△AOB=×1×1=1;(3)自变量x的取值范围是x>1.考点:两条直线相交或平行问题23.50;28;8【解析】【分析】1)用B组的人数除以B组人数所占的百分比,即可得这次被调查的同学的人数,利用A组的人数除以这次被调查的同学的人数即可求得m的值,用总人数减去A、B、E的人数即可求得a+b的值;(2)先求得C组人数所占的百分比,乘以360°即可得扇形统计图中扇形的圆心角度数;(3)用总人数1000乘以每月零花钱的数额在范围的人数的百分比即可求得答案.【详解】解:(1)50,28,8;(2)(1-8%-32%-16%-4%)× 360°=40%× 360°=144°.即扇形统计图中扇形C的圆心角度数为144°;(3)1000×2850=560(人).即每月零花钱的数额x元在60≤x<120范围的人数为560人.【点睛】本题考核知识点:统计图表. 解题关键点:从统计图表获取信息,用样本估计总体.24.(1)y1=0.85x,y2=0.75x+50 (x>200),y2=x (0≤x≤200);(2)x>500时,到乙商场购物会更省钱,x=500时,到两家商场去购物花费一样,当x<500时,到甲商场购物会更省钱.【解析】【分析】(1)根据单价乘以数量,可得函数解析式;(2)分类讨论,根据消费的多少,可得不等式,根据解不等式,可得答案.【详解】(1)甲商场写出y关于x的函数解析式y1=0.85x,乙商场写出y关于x的函数解析式y2=200+(x﹣200)×0.75=0.75x+50(x>200),即y2=x(0≤x≤200);(2)由y1>y2,得0.85x>0.75x+50,解得x>500,即当x>500时,到乙商场购物会更省钱;由y1=y2得0.85x=0.75x+50,即x=500时,到两家商场去购物花费一样;由y1<y2,得0.85x<0.75x+500,解得x<500,即当x<500时,到甲商场购物会更省钱;综上所述:x>500时,到乙商场购物会更省钱,x=500时,到两家商场去购物花费一样,当x<500时,到甲商场购物会更省钱.【点睛】本题考查了一次函数的应用,分类讨论是解题关键.25.(1) 2;(2)见解析【解析】分析:(1)先求得:∠CAE=45°-15°=30°,根据直角三角形30°角的性质可得AC=2CE=2,再得∠ECD=90°-60°=30°,设ED=x,则CD=2x x=1,求得x的值,可得BD的长;(2)如图2,连接CM,先证明△ACE≌△BCF,则∠BFC=∠AEC=90°,证明C、M、B、F四点共圆,则∠BCM=∠MFB=45°,由等腰三角形三线合一的性质可得AM=BM.详解:(1)∵∠ACB=90°,AC=BC,∴∠CAB=45°,∵∠BAD=15°,∴∠CAE=45°﹣15°=30°,Rt△ACE中,CE=1,∴AC=2CE=2,Rt△CED中,∠ECD=90°﹣60°=30°,∴CD=2ED,设ED=x,则CD=2x,∴CE=3x,∴3x=1,x=3,∴CD=2x=23,∴BD=BC﹣CD=AC﹣CD=2﹣23;(2)如图2,连接CM,∵∠ACB=∠ECF=90°,∴∠ACE=∠BCF,∵AC=BC,CE=CF,∴△ACE≌△BCF,∴∠BFC=∠AEC=90°,∵∠CFE=45°,∴∠MFB=45°,∵∠CFM=∠CBA=45°,∴C、M、B、F四点共圆,∴∠BCM=∠MFB=45°,∴∠ACM=∠BCM=45°,∵AC=BC,∴AM=BM.点睛:本题考查了三角形全等的性质和判定、等腰直角三角形的性质和判定、等腰三角形三线合一的性质、直角三角形30°角的性质和勾股定理,第二问有难度,构建辅助线,证明△ACE≌△BCF是关键.26.(1)见解析;(2)6或【解析】试题分析:(1)根据平行线的性质和中点的性质证明三角形全等,然后根据对角线互相平分的四边形是平行四边形完成证明;(2)由等腰三角形的性质,分三种情况:①BD=BC,②BD=CD,③BC=CD,分别求四边形的面积.试题解析:(1)证明:∵∠A=∠ABC=90°∴AF∥BC∴∠CBE=∠DFE,∠BCE=∠FDE∵E是边CD的中点∴CE=DE∴△BCE≌△FDE(AAS)∴BE=EF∴四边形BDFC是平行四边形(2)若△BCD是等腰三角形①若BD=DC在Rt△ABD中,AB=∴四边形BDFC的面积为S=×3=6;②若BD=DC过D作BC的垂线,则垂足为BC得中点,不可能;③若BC=DC过D作DG⊥BC,垂足为G在Rt△CDG中,DG=∴四边形BDFC的面积为S=.考点:三角形全等,平行四边形的判定,勾股定理,四边形的面积27.(1)x,y;(2)2;(3)AB=8,梯形ABCD的面积=1.【解析】【分析】(1)依据点P运动的路程为x,△ABP的面积为y,即可得到自变量和因变量;(2)依据函数图象,即可得到点P运动的路程x=4时,△ABP的面积;(3)根据图象得出BC的长,以及此时三角形ABP面积,利用三角形面积公式求出AB的长即可;由函数图象得出DC的长,利用梯形面积公式求出梯形ABCD面积即可.【详解】(1)∵点P运动的路程为x,△ABP的面积为y,∴自变量为x,因变量为y.故答案为x,y;(2)由图可得:当点P运动的路程x=4时,△ABP的面积为y=2.故答案为2;(3)根据图象得:BC=4,此时△ABP为2,∴12AB•BC=2,即12×AB×4=2,解得:AB=8;由图象得:DC=9﹣4=5,则S梯形ABCD=12×BC×(DC+AB)=12×4×(5+8)=1.【点睛】本题考查了动点问题的函数图象,弄清函数图象上的信息是解答本题的关键.。

湖南省邵阳市2019-2020学年中考第二次模拟数学试题含解析

湖南省邵阳市2019-2020学年中考第二次模拟数学试题含解析

湖南省邵阳市2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下列实数中,无理数是()A.3.14 B.1.01001 C.39D.22 73.某工厂计划生产210个零件,由于采用新技术,实际每天生产零件的数量是原计划的1.5倍,因此提前5天完成任务.设原计划每天生产零件x个,依题意列方程为()A.21021051.5x x-=B.21021051.5x x-=-C.21021051.5x x-=+D.2102101.55x=+4.如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为()A.2 B.4 C.6 D.85.如图,甲、乙、丙图形都是由大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数.其中主视图相同的是( )A.仅有甲和乙相同B.仅有甲和丙相同C.仅有乙和丙相同D.甲、乙、丙都相同6.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④7.如图,在直角坐标系中,等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),直角顶点B在第二象限,等腰直角△BCD的C点在y轴上移动,我们发现直角顶点D点随之在一条直线上移动,这条直线的解析式是()A.y=﹣2x+1 B.y=﹣12x+2 C.y=﹣3x﹣2 D.y=﹣x+28.郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是()A.13B.14C.15D.169.如图,将周长为8的△ABC沿BC方向平移1个单位长度得到DEF,则四边形ABFD的周长为()A.8 B.10 C.12 D.1610.下图是由八个相同的小正方体组合而成的几何体,其左视图是()A.B.C.D.11.不解方程,判别方程2x2﹣2x=3的根的情况()A.有两个相等的实数根B.有两个不相等的实数根C.有一个实数根D.无实数根12.实数213-的倒数是()A.52-B.52C.35-D.35二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为_____.14.若实数m、n在数轴上的位置如图所示,则(m+n)(m-n)________ 0,(填“>”、“<”或“=”)15.不透明袋子中装有5个红色球和3个蓝色球,这些球除了颜色外没有其他差别.从袋子中随机摸出一个球,摸出蓝色球的概率为_______.16.如图,这是一幅长为3m,宽为1m的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为___________________m1.17.如图,在△ABC中,D,E分别是AB,AC边上的点,DE∥BC.若AD=6,BD=2,DE=3,则BC=______.18.如图1,在R t△ABC中,∠ACB=90°,点P以每秒2cm的速度从点A出发,沿折线AC﹣CB运动,到点B停止.过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长的值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,E为AB的中点.(1)求证:△ADC∽△ACB;(2)CE与AD有怎样的位置关系?试说明理由;(3)若AD=4,AB=6,求ACAF的值.20.(6分)张老师在黑板上布置了一道题:计算:2(x+1)2﹣(4x﹣5),求当x=12和x=﹣12时的值.小亮和小新展开了下面的讨论,你认为他们两人谁说的对?并说明理由.21.(6分)2018年平昌冬奥会在2月9日到25日在韩国平昌郡举行,为了调查中学生对冬奥会比赛项目的了解程度,某中学在学生中做了一次抽样调查,调查结果共分为四个等级:A、非常了解B、比较了解C、基本了解D、不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.对冬奥会了解程度的统计表对冬奥会的了解程度百分比A非常了解10%B比较了解15%C基本了解35%D不了解n%(1)n= ;(2)扇形统计图中,D 部分扇形所对应的圆心角是 ; (3)请补全条形统计图;(4)根据调查结果,学校准备开展冬奥会的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定谁参赛,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4然后放到一个不透明的袋中,一个人先从袋中摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为偶数,则小明去,否则小刚去,请用画树状图或列表的方法说明这个游戏是否公平.22.(8分)问题:将菱形的面积五等分.小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题.如图,点O 是菱形ABCD 的对角线交点,AB =5,下面是小红将菱形ABCD 面积五等分的操作与证明思路,请补充完整.(1)在AB 边上取点E ,使AE =4,连接OA ,OE ; (2)在BC 边上取点F ,使BF =______,连接OF ; (3)在CD 边上取点G ,使CG =______,连接OG ;(4)在DA 边上取点H ,使DH =______,连接OH .由于AE =______+______=______+______=______+______=______.可证S △AOE =S 四边形EOFB =S 四边形FOGC =S 四边形GOHD =S △HOA .23.(8分)如图,抛物线交X 轴于A 、B 两点,交Y 轴于点C ,445,OB OA CBO ︒=∠=.(1)求抛物线的解析式;(2)平面内是否存在一点P,使以A,B,C,P为顶点的四边形为平行四边形,若存在直接写出P的坐标,若不存在请说明理由。

2022年湖南省邵阳市新邵县第二中学高二数学理月考试题含解析

2022年湖南省邵阳市新邵县第二中学高二数学理月考试题含解析

2022年湖南省邵阳市新邵县第二中学高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知平面与平面相交,直线,则()A.内必存在直线与平行,且存在直线与垂直B.内不一定存在直线与平行,不一定存在直线与垂直C.内不一定存在直线与平行,但必存在直线与垂直D.内必存在直线与平行,不一定存在直线与垂直参考答案:C试题分析:作两个相交平面,交线为,使得直线,假设内一定存在直线与平行,因为,而,所以直线,而,所以,这与平面与平面相交不一定垂直矛盾,所以内不一定存在直线与平行,因为直线,,所以,所以在内不一定存在直线与平行,但必存在直线与垂直,故选C.考点:线面位置关系的判定与证明.2. 已知第一象限内的点M既在双曲线C1:﹣=1(a>0,b>0)上,又在抛物线C2:y2=2px上,设C1的左,右焦点分别为F1、F2,若C2的焦点为F2,且△MF1F2是以MF1为底边的等腰三角形,则双曲线的离心率为()A.B.C.1+D.2+参考答案:C【考点】双曲线的简单性质.【分析】根据条件得到抛物线和双曲线的焦点相同,根据双曲线和抛物线的定义得到△MF1F2为等腰直角三角形,利用定义建立方程进行求解即可.【解答】解:∵设C1的左,右焦点分别为F1、F2,若C2的焦点为F2,∴抛物线的准线方程为x=﹣c,若△MF1F2是以MF1为底边的等腰三角形,由于点M也在抛物线上,∴过M作MA垂直准线x=﹣c则MA=MF2=F1F2,则四边形AMF2F1为正方形,则△MF1F2为等腰直角三角形,则MF2=F1F2=2c,MF1=MF2=2c,∵MF1﹣MF2=2a,∴2c﹣2c=2a,则(﹣1)c=a,则离心率e===1+,故选:C【点评】本题主要考查双曲线离心率的计算,根据双曲线和抛物线的定义得到△MF1F2为等腰直角三角形是解决本题的关键.考查学生的转化和推理能力.3. 下面进位制之间转化错误的是()A.31(4)=62(2)B.101(2)=5(10)C.119(10)=315(6)D.27(8)=212(3)参考答案:A【考点】进位制.【分析】由于31(4)=3×41+1×40=26(2)写法不正确,即可得出进位制之间转化是错误的.【解答】解:对于A:∵31(4)=3×41+1×40=26(2),因此进位制之间转化错误的是A.故选:A.4. 已知函数的图像在点处的切线与直线平行,则a=A. 1B. -eC. eD. -1参考答案:D【分析】求出曲线在点处切线的斜率,求出函数的导函数,根据两直线平行的条件,令,,求出;【详解】,所以,又直线得斜率为,由两直线平行得:,所以故选:D【点睛】本题考查了利用导数研究曲线上某点切线方程,考查了运算能力,属于中档题.5. 若,则的值为A. B. C. D.参考答案:B6. 直线与曲线相切于点(1,4),则的值为()A. 2B. -1C. 1D. -2参考答案:A 【分析】求得函数的导数,可得切线的斜率,由切点满足切线的方程和曲线的方程,解方程即可求解,得到答案.【详解】由题意,直线与曲线相切于点,则点满足直线,代入可得,解得,又由曲线,则,所以,解得,即,把点代入,可得,解答,所以,故选A.【点睛】本题主要考查了利用导数的几何意义求解参数问题,其中解答中熟记导数的几何意义,合理准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.7. 在等差数列中,,设,则数列的前n项和为()A. B. C. D.参考答案:C8. 给出下列两个命题:命题p:是有理数;命题q:若a>0,b>0,则方程表示椭圆.那么下列命题中为真命题的是()A. p∧qB. p∨qC. (﹁p)∧qD. (﹁p)∨q 参考答案:D略9. 复数的共轭复数是A. B. C. D.参考答案:D略10. 为调查某校学生喜欢数学课的人数比例,采用如下调查方法:在该校中随机抽取名学生,并编号在箱内放置两个白球和三个红球,让抽取的名学生分别从箱中随机摸出一球,记住颜色并放回;请下列两类学生举手:ⅰ摸到白球且号数为偶数的学生;ⅱ摸到红球且不喜欢数学课的学生。

2019-2020学年湖南省邵阳市数学高二下期末学业质量监测试题含解析

2019-2020学年湖南省邵阳市数学高二下期末学业质量监测试题含解析

2019-2020学年湖南省邵阳市数学高二下期末学业质量监测试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. “01k <<”是“方程2212x y k-=表示双曲线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】 【分析】若方程2212x y k-=表示双曲线,则有0k >,再根据充分条件和必要条件的定义即可判断.【详解】因为方程2212x y k-=表示双曲线等价于0k >,所以“01k <<”,是“方程2212x y k-=表示双曲线”的充分不必要条件,故选A.【点睛】本题考查充分条件与必要条件以及双曲线的性质,属于基础题.2.从4名男同学和3名女同学中选出3名参加某项活动,则男女生都有的选法种数是( ) A .18 B .24 C .30 D .36【答案】C 【解析】 【分析】由于选出的3名学生男女生都有,所以可分成两类,一类是1男2女,一类是2男1女. 【详解】由于选出的3名学生男女生都有,所以可分成两类:(1)3人中是1男2女,共有12434312C C =⨯=; (2)3人中是2男1女,共有21436318C C =⨯=;所以男女生都有的选法种数是121830+=. 【点睛】本题考查分类与分步计算原理,考查分类讨论思想及简单的计算问题.3.若复数z 满足()1i z i +=,则在复平面内,z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D 【解析】 【分析】由复数的基本运算将其化为z a bi =+形式,z 对应的点为(),a b 【详解】由题可知()()()()22121211111i i z i i i i i--=====-++--,所以z 对应的点为()1,1-,位于第四象限.故选D. 【点睛】本题考查复数的运算以及复数的几何意义,属于简单题.4.已知6个高尔夫球中有2个不合格,每次任取1个,不放回地取两次.在第一次取到合格高尔夫球的条件下,第二次取到不合格高尔夫球的概率为() A .35B .25C .23D .310【答案】B 【解析】 【分析】记事件{A =第一次取到的是合格高尔夫球},事件{B =第二次取到不合格高尔夫球},由题意可得事件B 发生所包含的基本事件数()428n A B ⋂=⨯=,事件A 发生所包含的基本事件数()4520n A =⨯=,然后即可求出答案.【详解】记事件{A =第一次取到的是合格高尔夫球}事件{B =第二次取到不合格高尔夫球}由题意可得事件B 发生所包含的基本事件数()428n A B ⋂=⨯= 事件A 发生所包含的基本事件数()4520n A =⨯=所以()()()82205n A B P B A n A ⋂=== 故选:B 【点睛】本题考查的是条件概率,较简单.5.已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A .(0,]2B .3(0,]4C .2D .3[,1)4【答案】A 【解析】试题分析:设1F 是椭圆的左焦点,由于直线:340l x y -=过原点,因此,A B 两点关于原点对称,从而1AF BF 是平行四边形,所以14BF BF AF BF +=+=,即24a =,2a =,设(0,)M b ,则45b d =,所以4455b ≥,1b ≥,即12b ≤<,又22224c a b b =-=-,所以0c <≤0c a <≤.故选A . 考点:椭圆的几何性质.【名师点睛】本题考查椭圆的离心率的范围,因此要求得,a c 关系或范围,解题的关键是利用对称性得出AF BF +就是2a ,从而得2a =,于是只有由点到直线的距离得出b 的范围,就得出c 的取值范围,从而得出结论.在涉及到椭圆上的点到焦点的距离时,需要联想到椭圆的定义.6.已知命题p 是命题“若ac bc >,则a b >”的否命题;命题q :若复数22(1)(2)x x x i -++-是实数,则实数1x =,则下列命题中为真命题的是( ) A .p q ∨ B .()p q ⌝∧ C .()p q ∧⌝ D .()()p q ⌝∧⌝【答案】D 【解析】分析:先判断命题p ,q 的真假,再判断选项的真假. 详解:由题得命题p:若a>b,则ac bc >,是假命题.因为()()2212x x x i -++-是实数,所以220,2 1.x x x x +-=∴=-=或所以命题q 是假命题,故()()p q ⌝∧⌝是真命题.故答案为 D.点睛:(1)本题主要考查四个命题和复数的基本概念,考查复合命题的真假,意在考查学生对这些知识的掌握水平.(2)复合命题的真假判断口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真. 7. “三个臭皮匠,赛过诸葛亮”,这是我们常说的口头禅,主要是说集体智慧的强大. 假设李某智商较高,他独自一人解决项目M 的概率为10.3P =;同时,有n 个水平相同的人也在研究项目M ,他们各自独立地解决项目M 的概率都是0.1.现在李某单独研究项目M ,且这n 个人组成的团队也同时研究项目M ,设这个n 人团队解决项目M 的概率为2P ,若21P P ≥,则n 的最小值是( ) A .3 B .4 C .5 D .6【答案】B 【解析】 【分析】设这个n 人团队解决项目M 的概率为2P ,则021(0.9)n n P C =-,由21P P ,得10.90.3n -, 由此能求出n 的最小值. 【详解】李某智商较高,他独自一人解决项目M 的概率为10.3P =,有n 个水平相同的人也在研究项目M ,他们各自独立地解决项目M 的概率都是0.1, 现在李某单独研究项目M ,且这n 个人组成的团队也同时研究M , 设这个n 人团队解决项目M 的概率为2P ,则021(0.9)n nP C =-, 21P P ,10.90.3n∴-, 解得4n ≥.n ∴的最小值是1.故选B . 【点睛】本题考查实数的最小值的求法,考查n 次独立重复试验中事件A 恰好发生k 次的概率的计算 公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题. 8.复数131iZ i-=-,则Z 的共轭复数Z 在复平面内对应点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 【解析】 【分析】 化简131iZ i-=-,写出共轭复数Z 即可根据复平面的定义选出答案. 【详解】13(13(1)21(1)(1)i i i Z i i i i --+===---+),2+Z i =在复平面内对应点为(2,1) 故选A【点睛】本题考查复数,属于基础题.9.在(x 10的展开式中,6x 的系数是( ) A .-27510C B .27410CC .-9510CD .9410C【答案】D 【解析】试题分析:通项T r +1=10rC x 10-r )r r 10rC x 10-r .令10-r =6,得r =4.∴x 6的系数为9410C 考点:二项式定理 10.若复数2aiz i-=(其中i 为虚数单位,a R ∈)为纯虚数,则z 等于( ) A .2i - B .2-C .0D .2【答案】D 【解析】 【分析】先利用复数的除法将复数z 表示为一般形式,结合题中条件求出a 的值,再利用复数求模公式求出z . 【详解】()222221ai i ai a iz a i i i --+∴====---,由于复数z 为纯虚数,所以,0a -=,得0a =, 2z i ∴=-,因此,2z =,故选D.【点睛】本题考查复数的除法、复数的概念以及复数求模,解决复数问题,要通过复数的四则运算将复数表示为一般形式,结合复数相关知识求解,考查计算能力,属于基础题.11.己知一组样本数据12345x ,x ,x ,x ,x 恰好构成公差为5的等差数列,则这组数据的方差为 A .25 B .50C .125D .250【答案】B 【解析】 【分析】先计算数据平均值,再利用方差公式得到答案. 【详解】数据12345x ,x ,x ,x ,x 恰好构成公差为5的等差数列331245+++x x x x x +5x x ==2222221050510505s ++++==故答案选B 【点睛】本题考查了数据的方差的计算,将平均值表示为3x 是解题的关键,意在考查学生的计算能力. 12.若函数 ()2ln 2f x x ax =+- 在区间 1,22⎛⎫⎪⎝⎭内单调递增,则实数 a 的取值范围是( ) A .(],2-∞- B .()2,-+∞C .12,8⎛⎫-- ⎪⎝⎭D .1,8⎡⎫-+∞⎪⎢⎣⎭【答案】B 【解析】 【分析】求出函数的导数,问题转化为a >-212x ,而g (x )=﹣212x 在(12,2)递增,求出g (x )的最小值,从而求出a 的范围即可. 【详解】 f′(x )=1x+2ax , 若f (x )在区间(12,2)内存在单调递增区间, 则f′(x )>0在x ∈(12,2)有解,故a >-212x min , 而g (x )=﹣212x 在(12,2)递增,g (x )>g (12)=﹣2,故a >﹣2, 故选:B . 【点睛】本题考查函数的导数的应用,函数有解以及函数的最值的求法,可以用变量分离的方法求参数的范围,也考查转化思想以及计算能力. 二、填空题:本题共4小题13.一个口袋中装有2个白球和3个红球,每次从袋中摸出两个球,若摸出的两个球颜色相同为中奖,否则为不中奖,则中奖的概率为_________. 【答案】25【解析】试题分析:口袋中五个球分别记为1,2,,,a b c 从中摸出两球的方法有:1,2;1,;1,;1,;2,;2,;2,;,;,;,a b c a b c a b a c b c 共10种,其中颜色相同的有1,2;,;,;,a b a c b c 共四种,有古典概率的求法可知42105P ==. 考点:古典概率的求法. 14.若3sin(),(0,)25πααπ+=-∈,则sin α=___________. 【答案】45【解析】 【分析】先化简已知得3cos 5α=-,再利用平方关系求解. 【详解】 由题得3cos 5α=-,因为()0,απ∈,所以234(,),sin 1().255παπα∈∴=--= 故答案为:45【点睛】本题主要考查诱导公式和同角的平方关系,意在考察学生对这些知识的掌握水平和分析推理能力. 15.已知正六棱柱的底面边长为2,侧棱为3,则该正六棱柱的体积为_________ 【答案】18 【解析】 【分析】先计算出底面正六边形的面积,然后根据棱柱的体积公式V S h =⋅,即可求解出正六棱柱的体积. 【详解】因为底面是6个边长为2的正三角形,所以底面积为2362634S =⋅⋅=, 所以正六棱柱的体积为:63318V S h =⋅=⋅=. 故答案为:18. 【点睛】本题考查正棱柱的体积计算,难度较易.棱柱的体积计算公式:V S h =⋅(S 是棱柱的底面积,h 是棱柱的高). 16.在的展开式中,x 的整数次幂项的系数和为_____.【答案】【解析】 【详解】 令,.由二项式定理,知P 、Q 中的x 的整数次幂项之和相同,记作S (x ),非整数次幂项之和互为相反数.故令.则所求的系数和为.三、解答题:解答应写出文字说明、证明过程或演算步骤。

湖南省邵阳市2019-2020学年中考数学二模试卷含解析

湖南省邵阳市2019-2020学年中考数学二模试卷含解析

湖南省邵阳市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. “a 是实数,|a|≥0”这一事件是( )A .必然事件B .不确定事件C .不可能事件D .随机事件2.已知函数y=1x 的图象如图,当x≥﹣1时,y 的取值范围是( )A .y <﹣1B .y≤﹣1C .y≤﹣1或y >0D .y <﹣1或y≥03.两个同心圆中大圆的弦AB 与小圆相切于点C ,AB=8,则形成的圆环的面积是( )A .无法求出B .8C .8πD .16π 4.下列博物院的标识中不是轴对称图形的是( ) A . B .C .D .5.在一张考卷上,小华写下如下结论,记正确的个数是m ,错误的个数是n ,你认为m n (-= ) ①有公共顶点且相等的两个角是对顶角 40.00041 4.110--=-⨯②2525=③ ④若12390∠∠∠++=o ,则它们互余A .4B .14 C .3- D .136.广西2017年参加高考的学生约有365000人,将365000这个数用科学记数法表示为( )A .3.65×103B .3.65×104C .3.65×105D .3.65×1067.如图,一个斜边长为10cm的红色三角形纸片,一个斜边长为6cm的蓝色三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形,则红、蓝两张纸片的面积之和是()A.60cm2B.50cm2C.40cm2D.30cm28.据统计,2018年全国春节运输人数约为3 000 000 000人,将3 000 000 000用科学记数法表示为()A.0.3×1010B.3×109C.30×108D.300×1079.下列图形中,可以看作中心对称图形的是( )A.B.C.D.10.如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋转60°为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是()A.(2017,0)B.(2017,12)C.(2018,3)D.(2018,0)11.下列图形中,是轴对称图形的是()A.B.C.D.12.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x(单位:环).下列说法中正确的是()A.若这5次成绩的中位数为8,则x=8B.若这5次成绩的众数是8,则x=8C.若这5次成绩的方差为8,则x=8D.若这5次成绩的平均成绩是8,则x=8二、填空题:(本大题共6个小题,每小题4分,共24分.)13.北京奥运会国家体育场“鸟巢”的建筑面积为258000平方米,那么258000用科学记数法可表示为.14.函数y=231xx+-中自变量x的取值范围是_____.15.如图,用10 m长的铁丝网围成一个一面靠墙的矩形养殖场,其养殖场的最大面积________m1.16.点C 在射线AB上,若AB=3,BC=2,则AC为_____.17.若分式方程x a2x4x4=+--的解为正数,则a的取值范围是______________.18.如图,小强和小华共同站在路灯下,小强的身高EF=1.8m,小华的身高MN=1.5m,他们的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且两人相距4.7m,则路灯AD的高度是___.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D.求证:BE=CF ;当四边形ACDE为菱形时,求BD的长.20.(6分)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x 的函数关系图象.(1)求y与x的函数关系式;(2)直接写出自变量x的取值范围.21.(6分)已知关于x 的一元二次方程()2()20(x m x m m ---=为常数). ()1求证:不论m 为何值,该方程总有两个不相等的实数根;()2若该方程一个根为5,求m 的值.22.(8分)(2017江苏省常州市)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:根据统计图所提供的信息,解答下列问题:(1)本次抽样调查中的样本容量是 ;(2)补全条形统计图;(3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数.23.(8分)如图,已知AB 为⊙O 的直径,AC 是⊙O 的弦,D 是弧BC 的中点,过点D 作⊙O 的切线,分别交AC 、AB 的延长线于点E 和点F ,连接CD 、BD .(1)求证:∠A =2∠BDF ;(2)若AC =3,AB =5,求CE 的长.24.(10分)如图1,在长方形ABCD 中,12AB cm =,BC 10cm =,点P 从A 出发,沿A B C D →→→的路线运动,到D 停止;点Q 从D 点出发,沿D C B A →→→路线运动,到A 点停止.若P 、Q 两点同时出发,速度分别为每秒lcm 、2cm ,a 秒时P 、Q 两点同时改变速度,分别变为每秒2cm 、54cm (P 、Q 两点速度改变后一直保持此速度,直到停止),如图2是APD ∆的面积2()s cm 和运动时间x (秒)的图象. (1)求出a 值;(2)设点P 已行的路程为1()y cm ,点Q 还剩的路程为2()y cm ,请分别求出改变速度后,12,y y 和运动时间x (秒)的关系式;(3)求P 、Q 两点都在BC 边上,x 为何值时P ,Q 两点相距3cm ?25.(10分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元.求甲、乙两种型号设备的价格;该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有几种购买方案;在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.26.(12分)先化简,再求值:22222+b a b a b a a ab b a b a -+÷--+-,其中,a 、b 满足2428a b a b -=-⎧⎨+=⎩. 27.(12分)如图,平面直角坐标系中,将含30°的三角尺的直角顶点C 落在第二象限.其斜边两端点A 、B 分别落在x 轴、y 轴上且AB =12cm(1)若OB =6cm .①求点C 的坐标;②若点A 向右滑动的距离与点B 向上滑动的距离相等,求滑动的距离;(2)点C与点O的距离的最大值是多少cm.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,由a是实数,得|a|≥0恒成立,因此,这一事件是必然事件.故选A.2.C【解析】试题分析:根据反比例函数的性质,再结合函数的图象即可解答本题.解:根据反比例函数的性质和图象显示可知:此函数为减函数,x≥-1时,在第三象限内y的取值范围是y≤-1;在第一象限内y的取值范围是y>1.故选C.考点:本题考查了反比例函数的性质点评:此类试题属于难度一般的试题,考生在解答此类试题时一定要注意分析反比例函数的基本性质和知识,反比例函数y=kx的图象是双曲线,当k>1时,图象在一、三象限,在每个象限内y随x的增大而减小;当k<1时,图象在二、四象限,在每个象限内,y随x的增大而增大3.D【解析】试题分析:设AB于小圆切于点C,连接OC,OB.∵AB于小圆切于点C,∴OC ⊥AB ,∴BC=AC=12AB=12×8=4cm . ∵圆环(阴影)的面积=π•OB 2-π•OC 2=π(OB 2-OC 2)又∵直角△OBC 中,OB 2=OC 2+BC 2∴圆环(阴影)的面积=π•OB 2-π•OC 2=π(OB 2-OC 2)=π•BC 2=16π.故选D .考点:1.垂径定理的应用;2.切线的性质.4.A【解析】【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,对题中选项进行分析即可.【详解】A 、不是轴对称图形,符合题意;B 、是轴对称图形,不合题意;C 、是轴对称图形,不合题意;D 、是轴对称图形,不合题意;故选:A .【点睛】此题考查轴对称图形的概念,解题的关键在于利用轴对称图形的概念判断选项正误5.D【解析】【分析】首先判断出四个结论的错误个数和正确个数,进而可得m 、n 的值,再计算出m n -即可.【详解】解:①有公共顶点且相等的两个角是对顶角,错误;40.00041 4.110--=-⨯②,正确;=④若12390∠∠∠++=o ,则它们互余,错误;则m 1=,n 3=,m 1n 3-=,故选D.【点睛】此题主要考查了二次根式的乘除、对顶角、科学记数法、余角和负整数指数幂,关键是正确确定m、n的值.6.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将365000这个数用科学记数法表示为3.65×1.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.D【解析】【分析】标注字母,根据两直线平行,同位角相等可得∠B=∠AED,然后求出△ADE和△EFB相似,根据相似三角形对应边成比例求出53DEBF=,即53EFBF=,设BF=3a,表示出EF=5a,再表示出BC、AC,利用勾股定理列出方程求出a的值,再根据红、蓝两张纸片的面积之和等于大三角形的面积减去正方形的面积计算即可得解.【详解】解:如图,∵正方形的边DE∥CF,∴∠B=∠AED,∵∠ADE=∠EFB=90°,∴△ADE∽△EFB,∴10563 DE AEBF BE===,∴53 EFBF=,设BF=3a,则EF=5a,∴BC=3a+5a=8a,AC=8a×53=403a,在Rt△ABC中,AC1+BC1=AB1,即(403a)1+(8a)1=(10+6)1,解得a1=18 17,红、蓝两张纸片的面积之和=12×403a×8a-(5a)1,=1603a1-15a1,=853a1,=853×1817,=30cm1.故选D.【点睛】本题考查根据相似三角形的性质求出直角三角形的两直角边,利用红、蓝两张纸片的面积之和等于大三角形的面积减去正方形的面积求解是关键.8.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.【详解】解:根据科学计数法的定义可得,3 000 000 000=3×109,故选择B.【点睛】本题考查了科学计数法的定义,确定n的值是易错点.9.B【解析】【分析】根据中心对称图形的概念求解.【详解】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选:B.【点睛】此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10.C【解析】【分析】本题是规律型:点的坐标;坐标与图形变化-旋转,正六边形ABCDEF一共有6条边,即6次一循环;因为2017÷6=336余1,点F滚动1次时的横坐标为2F滚动7次时的横坐标为8,纵坐F滚动2107次时的纵坐标与相同,横坐标的次数加1,由此即可解决问题.【详解】.解:∵正六边形ABCDEF一共有6条边,即6次一循环;∴2017÷6=336余1,∴点F滚动1次时的横坐标为2,点F滚动7次时的横坐标为8,∴点F滚动2107次时的纵坐标与相同,横坐标的次数加1,∴点F滚动2107次时的横坐标为2017+1=2018∴点F滚动2107次时的坐标为(2018),故选C.【点睛】本题考查坐标与图形的变化,规律型:点的坐标,解题关键是学会从特殊到一般的探究方法,是中考常考题型.11.B【解析】分析:根据轴对称图形的概念求解.详解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选B.点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.12.D【解析】【分析】根据中位数的定义判断A ;根据众数的定义判断B ;根据方差的定义判断C ;根据平均数的定义判断D .【详解】A 、若这5次成绩的中位数为8,则x 为任意实数,故本选项错误;B 、若这5次成绩的众数是8,则x 为不是7与9的任意实数,故本选项错误;C 、如果x=8,则平均数为15(8+9+7+8+8)=8,方差为15 [3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本选项错误;D 、若这5次成绩的平均成绩是8,则15(8+9+7+8+x )=8,解得x=8,故本选项正确; 故选D .【点睛】本题考查中位数、众数、平均数和方差:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差()()()()22221232...n x x x x x x x xS n -+-+-++-=,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2.58×1【解析】科学记数法就是将一个数字表示成(a×10的n 次幂的形式),其中1≤|a|<10,n 表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n 次幂.258 000=2.58×1. 14.x≥﹣32且x≠1. 【解析】【分析】根据分式有意义的条件、二次根式有意义的条件列式计算.【详解】由题意得,2x+3≥0,x-1≠0, 解得,x≥-32且x≠1, 故答案为:x≥-32且x≠1. 【点睛】本题考查的是函数自变量的取值范围,①当表达式的分母不含有自变量时,自变量取全体实数.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.设与墙平行的一边长为xm ,则另一面为202x - , 其面积=2201·1022x x x x -=--, ∴最大面积为241005042ac b a -== ; 即最大面积是2m 1.故答案是2.【点睛】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a 的绝对值是较小的整数时,用配方法较好,如y=-x1-1x+5,y=3x1-6x+1等用配方法求解比较简单.16.2或2.【解析】解:本题有两种情形:(2)当点C 在线段AB 上时,如图,∵AB=3,BC=2,∴AC=AB ﹣BC=3-2=2;(2)当点C 在线段AB 的延长线上时,如图,∵AB=3,BC=2,∴AC=AB+BC=3+2=2.故答案为2或2.点睛:在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.17.a <8,且a≠1【解析】分式方程去分母得:x=2x-8+a ,解得:x=8- a ,根据题意得:8- a >2,8- a≠1,解得:a <8,且a≠1.故答案为:a <8,且a≠1.【点睛】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,根据分式方程解为正数求出a 的范围即可.此题考查了分式方程的解,需注意在任何时候都要考虑分母不为2.18.4m【解析】设路灯的高度为x(m),根据题意可得△BEF∽△BAD,再利用相似三角形的对应边正比例整理得DF=x﹣1.8,同理可得DN=x﹣1.5,因为两人相距4.7m,可得到关于x的一元一次方程,然后求解方程即可. 【详解】设路灯的高度为x(m),∵EF∥AD,∴△BEF∽△BAD,∴,即,解得:DF=x﹣1.8,∵MN∥AD,∴△CMN∽△CAD,∴,即,解得:DN=x﹣1.5,∵两人相距4.7m,∴FD+ND=4.7,∴x﹣1.8+x﹣1.5=4.7,解得:x=4m,答:路灯AD的高度是4m.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析(22【解析】【分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以22,于是利用BD=BE﹣DE求解.(1)∵△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,∴AE=AB ,AF=AC ,∠EAF=∠BAC ,∴∠EAF+∠BAF=∠BAC+∠BAF ,即∠EAB=∠FAC ,在△ACF 和△ABE 中,AC AB CAF BAE AF AE =⎧⎪∠=∠⎨⎪=⎩∴△ACF ≌△ABE∴BE=CF.(2)∵四边形ACDE 为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC ∥DE ,∴∠AEB=∠ABE ,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE 为等腰直角三角形,∴,∴BD=BE ﹣1.考点:1.旋转的性质;2.勾股定理;3.菱形的性质.20.(1)y=-2x+31,(2)20≤x≤1【解析】试题分析:(1)根据函数图象经过点(20,300)和点(30,280),利用待定系数法即可求出y 与x 的函数关系式;(2)根据试销期间销售单价不低于成本单价,也不高于每千克1元,结合草莓的成本价即可得出x 的取值范围.试题解析:(1)设y 与x 的函数关系式为y=kx+b ,根据题意,得:2030030280k b k b +=⎧⎨+=⎩解得:2340k b =-⎧⎨=⎩∴y 与x 的函数解析式为y=-2x+31,(2) ∵试销期间销售单价不低于成本单价,也不高于每千克1元,且草莓的成本为每千克20元, ∴自变量x 的取值范围是20≤x≤1.(1)将原方程整理成一般形式,令0V >即可求解,(2)将x=1代入,求得m 的值,再重新解方程即可. 【详解】()1证明:原方程可化为()222220x m x m m -+++=,1a Q =,()22b m =-+,22c m m =+,()()2224[22]4240b ac m m m ∴=-=-+-+=>V ,∴不论m 为何值,该方程总有两个不相等的实数根. ()2解:将5x =代入原方程,得:()2(5)250m m ---=,解得:13m =,25m =.m ∴的值为3或1.【点睛】本题考查了参数对一元二次方程根的影响.中等难度.关键是将根据不同情况讨论参数的取值范围. 22.(1)100;(2)作图见解析;(3)1.【解析】试题分析:(1)根据百分比=所占人数总人数计算即可; (2)求出“打球”和“其他”的人数,画出条形图即可;(3)用样本估计总体的思想解决问题即可.试题解析:(1)本次抽样调查中的样本容量=30÷30%=100, 故答案为100;(2)其他有100×10%=10人,打球有100﹣30﹣20﹣10=40人,条形图如图所示:(1)连接AD,如图,利用圆周角定理得∠ADB=90°,利用切线的性质得OD⊥DF,则根据等角的余角相等得到∠BDF=∠ODA,所以∠OAD=∠BDF,然后证明∠COD=∠OAD得到∠CAB=2∠BDF;(2)连接BC交OD于H,如图,利用垂径定理得到OD⊥BC,则CH=BH,于是可判断OH为△ABC 的中位线,所以OH=1.5,则HD=1,然后证明四边形DHCE为矩形得到CE=DH=1.【详解】(1)证明:连接AD,如图,∵AB为⊙O的直径,∴∠ADB=90°,∵EF为切线,∴OD⊥DF,∵∠BDF+∠ODB=90°,∠ODA+∠ODB=90°,∴∠BDF=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD=∠BDF,∵D是弧BC的中点,∴∠COD=∠OAD,∴∠CAB=2∠BDF;(2)解:连接BC交OD于H,如图,∵D是弧BC的中点,∴OD⊥BC,∴CH=BH,∴OH为△ABC的中位线,∴113 1.522OH AC==⨯=,∴∠ACB =90°,∴四边形DHCE 为矩形,∴CE =DH =1.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理.24.(1)6;(2)126y x =-;259524y x =-;(3)10或15413; 【解析】【分析】(1)根据图象变化确定a 秒时,P 点位置,利用面积求a ;(2)P 、Q 两点的函数关系式都是在运动6秒的基础上得到的,因此注意在总时间内减去6秒; (3)以(2)为基础可知,两个点相距3cm 分为相遇前相距或相遇后相距,因此由(2)可列方程.【详解】(1)由图象可知,当点P 在BC 上运动时,△APD 的面积保持不变,则a 秒时,点P 在AB 上. 110302AP ⨯=, ∴AP=6,则a=6;(2)由(1)6秒后点P 变速,则点P 已行的路程为y 1=6+2(x ﹣6)=2x ﹣6,∵Q 点路程总长为34cm ,第6秒时已经走12cm ,故点Q 还剩的路程为y 2=34﹣12﹣5595(6)424x x -=-; (3)当P 、Q 两点相遇前相距3cm 时,59524x -﹣(2x ﹣6)=3,解得x=10, 当P 、Q 两点相遇后相距3cm 时,(2x ﹣6)﹣(59524x -)=3,解得x=15413, ∴当x=10或15413时,P 、Q 两点相距3cm 【点睛】本题是双动点问题,解答时应注意分析图象的变化与动点运动位置之间的关系.列函数关系式时,要考虑到时间x 的连续性才能直接列出函数关系式.25.(1)甲,乙两种型号设备每台的价格分别为12万元和10万元.(2)有6种购买方案.(3)最省钱的购买方案为,选购甲型设备4台,乙型设备6台.(1)设甲、乙两种型号设备每台的价格分别为x 万元和y 万元,根据购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元可列出方程组,解之即可;(2)设购买甲型设备m 台,乙型设备()10m -台,根据购买节省能源的新设备的资金不超过110万元列不等式,解之确定m 的值,即可确定方案;(3)因为公司要求每月的产量不低于2040吨,据此可得关于m 的不等式,解之即可由m 的值确定方案,然后进行比较,做出选择即可.【详解】(1)设甲、乙两种型号设备每台的价格分别为x 万元和y 万元,由题意得:3216263x y x y -=⎧⎨+=⎩, 解得:1210x y =⎧⎨=⎩, 则甲,乙两种型号设备每台的价格分别为12万元和10万元;(2)设购买甲型设备m 台,乙型设备()10m -台,则()121010110m m +-≤,∴5m ≤,∵m 取非负整数,∴0,1,2,3,4,5m =,∴有6种购买方案;(3)由题意:()240180102040m m +-≥,∴4m ≥,∴m 为4或5,当4m =时,购买资金为:124106108⨯+⨯=(万元),当5m =时,购买资金为:125105110⨯+⨯=(万元),则最省钱的购买方案是选购甲型设备4台,乙型设备6台.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系、不等关系列出方程组与不等式是解题的关键.26.35先根据分式混合运算顺序和运算法则化简原式,再解方程组求得a、b的值,继而代入计算可得.【详解】原式=()2()•()a b a b a b aa b a b a b+----++,=a b aa b a b+-++,=ba b+,解方程组2428a ba b--⎧⎨+⎩==得23ab⎧⎨⎩==,所以原式=33=2+35.【点睛】本题主要考查分式的化简求值和解二元一次方程组,解题的关键是熟练掌握分式混合运算顺序和运算法则.27.(1)①点C的坐标为(-33,9);②滑动的距离为6(3﹣1)cm;(2)OC最大值1cm.【解析】试题分析:(1)①过点C作y轴的垂线,垂足为D,根据30°的直角三角形的性质解答即可;②设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,根据锐角三角函数和勾股定理解答即可;(2)设点C的坐标为(x,y),过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,证得△ACE∽△BCD,利用相似三角形的性质解答即可.试题解析:解:(1)①过点C作y轴的垂线,垂足为D,如图1:在Rt△AOB中,AB=1,OB=6,则BC=6,∴∠BAO=30°,∠ABO=60°,又∵∠CBA=60°,∴∠CBD=60°,∠BCD=30°,∴BD=3,CD=3,所以点C的坐标为(﹣3,9);AO=1×cos∠BAO=1×cos30°=6.∴A'O=6﹣x,B'O=6+x,A'B'=AB=1在△A'O B'中,由勾股定理得,(6﹣x)2+(6+x)2=12,解得:x=6(﹣1),∴滑动的距离为6(﹣1);(2)设点C的坐标为(x,y),过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,如图3:则OE=﹣x,OD=y,∵∠ACE+∠BCE=90°,∠DCB+∠BCE=90°,∴∠ACE=∠DCB,又∵∠AEC=∠BDC=90°,∴△ACE∽△BCD,∴,即,∴y=﹣x,OC2=x2+y2=x2+(﹣x)2=4x2,∴当|x|取最大值时,即C到y轴距离最大时,OC2有最大值,即OC取最大值,如图,即当C'B'旋转到与y轴垂直时.此时OC=1,故答案为1.考点:相似三角形综合题.。

湖南省邵阳市2019-2020学年中考第二次大联考数学试卷含解析

湖南省邵阳市2019-2020学年中考第二次大联考数学试卷含解析

湖南省邵阳市2019-2020学年中考第二次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.在3-,1-,0,1这四个数中,最小的数是( ) A .3-B .1-C .0D .12.如图,已知第一象限内的点A 在反比例函数y=上,第二象限的点B 在反比例函数上,且OA ⊥OB ,,则k 的值为( )A .﹣2B .4C .﹣4D .23.工信部发布《中国数字经济发展与就业白皮书(2018)》)显示,2017年湖北数字经济总量1.21万亿元,列全国第七位、中部第一位.“1.21万”用科学记数法表示为( ) A .1.21×103 B .12.1×103 C .1.21×104 D .0.121×1054.把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是( ) A .16B .17C .18D .195.自1993年起,联合国将每年的3月11日定为“世界水日”,宗旨是唤起公众的节水意识,加强水资源保护.某校在开展“节约每一滴水”的活动中,从初三年级随机选出10名学生统计出各自家庭一个月的节约用水量,有关数据整理如下表. 节约用水量(单位:吨) 1 1.1 1.4 1 1.5 家庭数46531这组数据的中位数和众数分别是( ) A .1.1,1.1;B .1.4,1.1;C .1.3,1.4;D .1.3,1.1.6.下列说法错误的是( ) A .2-的相反数是2 B .3的倒数是13C .()()352---=D .11-,0,4这三个数中最小的数是07.已知⊙O 的半径为3,圆心O 到直线L 的距离为2,则直线L 与⊙O 的位置关系是( ) A .相交B .相切C .相离D .不能确定8.为了解某小区小孩暑期的学习情况,王老师随机调查了该小区8个小孩某天的学习时间,结果如下(单位:小时):1.5,1.5,3,4,2,5,2.5,4.5,关于这组数据,下列结论错误的是()A.极差是3.5 B.众数是1.5 C.中位数是3 D.平均数是39.如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则sin∠AFG的值为()A.217B.277C.5714D.7710.如图所示的四边形,与选项中的一个四边形相似,这个四边形是()A.B.C.D.11.某公园里鲜花的摆放如图所示,第①个图形中有3盆鲜花,第②个图形中有6盆鲜花,第③个图形中有11盆鲜花,……,按此规律,则第⑦个图形中的鲜花盆数为()A.37 B.38 C.50 D.5112.如图所示是由几个完全相同的小正方体组成的几何体的三视图.若小正方体的体积是1,则这个几何体的体积为()A.2 B.3 C.4 D.5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A的坐标(6,0),B的坐标(0,8),点C的坐标(﹣25,4),点M,N分别为四边形OABC边上的动点,动点M从点O开始,以每秒1个单位长度的速度沿O→A→B路线向终点B匀速运动,动点N从O点开始,以每秒2个单位长度的速度沿O→C→B→A路线向终点A匀速运动,点M,N同时从O点出发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间为t秒(t>0),△OMN的面积为S.则:AB的长是_____,BC的长是_____,当t=3时,S的值是_____.14.对于任意实数m、n,定义一种运算m※n=mn﹣m﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=1.请根据上述定义解决问题:若a<2※x<7,且解集中有两个整数解,则a的取值范围是_____.15.如图,在矩形ABCD中,DE⊥AC,垂足为E,且tan∠ADE=43,AC=5,则AB的长____.16.如图所示的网格是正方形网格,点P到射线OA的距离为m,点P到射线OB的距离为n,则m__________ n.(填“>”,“=”或“<”)17.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的四边形,AB∥CD,CD⊥BC于C,且AB、BC、CD边长分别为2,4,3,则原直角三角形纸片的斜边长是_______.18.分解因式:x2﹣1=____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A :菜包、B :面包、C :鸡蛋、D :油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.按约定,“某顾客在该天早餐得到两个鸡蛋”是 事件(填“随机”、“必然”或“不可能”);请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.20.(6分)路边路灯的灯柱BC 垂直于地面,灯杆BA 的长为2米,灯杆与灯柱BC 成120︒角,锥形灯罩的轴线AD 与灯杆AB 垂直,且灯罩轴线AD 正好通过道路路面的中心线(D 在中心线上).已知点C 与点D 之间的距离为12米,求灯柱BC 的高.(结果保留根号)21.(6分)计算:(π﹣3.14)02﹣1|﹣2sin45°+(﹣1)1. 22.(8分)为奖励优秀学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元,购买2个文具袋和3个圆规需39元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B 两点,若△F1AB 是以 A 为直角顶点的等腰直角三角形,则离心率为 ( )
2
A.
2
B. 2 3
C. 5 2
D. 6 3
12 . 双 曲 线
x2 a2
y2 b2
1(a 0,b 0)
的两个焦点为
F1, F2
,若
P
为其上一点,且
| PF1 | 2 | PF2 | ,则双曲线离心率的取值范围为( )
B.必要不充分条件 D.既不充分也不必要条件
2.命题“若 x>0,则 2x>1 的否命题是( )
A.若 x>0,则 2x≤1
B.若 x≤0,则 2x>1
C.若 x≤0,则 2x≤1
D.若 2x>1,则 x>0
3.椭圆 x2 y2 1的焦点坐标是( ) 45
A.(±1,0)
B.(±3,0)
C.(0,±1)
A. (1,3)
B.[3, )
C. (3, )
D. (1,3]
2
第Ⅱ卷(非选择题)
二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)
13.命题“ x0 R, x02 x0 1 0 ”的否定是
.
14.设 F1,F2 为椭圆 x2 y2 1的两个焦点,P 为椭圆上一点且∠F1PF2=90°,则△F1PF2 94
D.(0,±3)
4. F1 , F2 是距离为 6 的两定点,动点 M 满足∣ MF1 ∣+∣ MF2 ∣=6,则 M 点的轨迹是


A.椭圆
B.直线
C.线段
D.圆
x2
5.双曲线
y2
1的渐近线方程为(

16 9
A. y 16 x 9
B. y 9 x 16
C. y 3 x 4
D. y 4 x 3
A. x2 y2 1 16 12
B. x2 y2 1 12 16
C. x2 y2 1 16 4
D. x2 y2 1 4 16
8.已知原命题“如果|a|≤1,那么关于 x 的不等式(a2﹣4)x2+(a+2)x﹣1≥0 的解集为∅”,
它的原命题、逆命题、否命题及逆否命题中是假命题的共有( )
17.(10 分)(1)写出命题“若 a,b 都是奇数,则 a+b 是偶数”的逆命题,否命题,逆否命 题,并判断真假. (2)证明:若 a2﹣b2+2a﹣4b﹣3≠0,则 a﹣b≠1. 解:(1)命题的逆命题为:若 a+b 是偶数,则 a,b 都是奇数。为假命题,当 a,b 都是 偶数时也满足条件., 否命题:若 a,b 不都是奇数,则 a+b 不是偶数。为假命题,因为逆命题和否命题为逆否 命题, 逆否命题为:若 a+b 不是偶数,则 a,b 不都是奇数。为真命题,原命题为真命题,则逆 否命题为真命题. (2)证明:命题的逆否命题为若 a﹣b=1,则 a2﹣b2+2a﹣4b﹣3=0, 若 a﹣b=1, 则 a2﹣b2+2a﹣4b﹣3=(a﹣b)(a+b)+2a﹣4b﹣3=a+b+2a﹣4b﹣3=3a﹣3b﹣3=3(a ﹣b)﹣3=3﹣3=0, 即若 a2﹣b2+2a﹣4b﹣3≠0,则 a﹣b≠1 成立.
17.(10 分)(1)写出命题“若 a,b 都是奇数,则 a+b 是偶数”的逆命题,否命题,逆否命 题,并判断真假. (2)证明:若 a2﹣b2+2a﹣4b﹣3≠0,则 a﹣b≠1.
18.(12 分)求满足下列条件的椭圆或双曲线的标准方程: (1)椭圆的焦点在 y 轴上,焦距为 4,且经过点 A(3,2); (2)双曲线的焦点在 x 轴上,右焦点为 F,过 F 作重直于 x 轴的直线交双曲线于 A,B
20.(12 分)设 p:实数 x 满足 x2﹣4ax+3a2<0,其中 a<0,q:实数 x 为函数 y=ln(x2+2x﹣ 8)的定义域. (1)求满足条件 p,q 的不等式的解集. (2)若¬p 是¬q 的必要不充分条件,求 a 的取值范围..
21.(12 分) 如图,已知两点 A( 5, 0) 、 B( 5, 0) , ABC 的内切圆的圆心在直线 x 2
A.1 个
B.2 个
C.3 个
D.4 个
9.下列说法正确的是( )
A.若¬(p∧q)为真命题,则 p,q 均为假命题
B.命题“∀x∈R,ax+b≤0”的否定是“∃x∈R,ax+b≥0”
C.等比数列{an}的前 n 项和为 Sn,若“ a1 0 ”则“S2019>S2018”的否命题为真命题
D.“平面向量 a 与 b 的夹角为钝角”的充要条件是“ a b 0 ”
在 x 轴上的双曲线. (1)命题 q 为真命题,求实数 k 的取值范围; (2)若命题“ p q ”为真,命题“ p q ”为假,求实数 k 的取值范围.
20.(12 分)设 p:实数 x 满足 x2﹣4ax+3a2<0,其中 a<0,q:实数 x 为函数 y=ln(x2+2x﹣ 8)的定义域.
10.若命题“ x [
,
], 2
3 cos2 x sin(2x ) m 0 ”为假命题,则 m 的取值范围
62
3
为( )
A. ( 3 , ) 2
B. (1 3, )
C. (, 3 ) 2
D. (1 3, ) 2
x2 11.已知椭圆 a2
y2 b2
1(a b 0) 的左、右焦点分别为 F1,F2,过 F2 的直线与椭圆交于 A、
4
22.(12 分)
已知椭圆
C:
x2 a2
y2 b2
1(a
b
0)
的离心率为
6 ,且过点 (1, 3
6) . 3
(1)求椭圆 C 的方程;
(2)设与圆 O: x2 y2 3 相切的直线 l 交椭圆 C 与 A,B 两点,求△OAB 面积的最大 4
值,及取得最大值时直线 l 的方程.
5
6
1
18.(12 分)求满足下列条件的椭圆或双曲线的标准方程: (1)椭圆的焦点在 y 轴上,焦距为 4,且经过点 A(3,2); (2)双曲线的焦点在 x 轴上,右焦点为 F,过 F 作重直于 x 轴的直线交双曲线于 A,B
两点,且|AB|=3,离心率为 5 2
2
19.(12 分) 已知命题 p : k 2 8k 20 0 ,命题 q :方程 x2 y2 1 表示焦点 4k 1k
的面积为

15.有下列命题:①双曲线 x2 y2 1 与椭圆 x2 y2 1 有相同的焦点;②“ 1 x 0 ”
25 9
35
2
是“
2x2
5x
3
0
”的必要不充分条件;③若
a

b
共线,则
a
,
b
所在直线平行;④若
a,b, c 三向量两两共面,则 a,b, c 三向量一定也共面;⑤ x R, x2 3x 3 0 .其中正确
21.(12 分) 如图,已知两点 A( 5, 0) 、 B( 5, 0) , ABC 的内切圆的圆心在直线 x 2
上移动. (Ⅰ)求点 C 的轨迹方程;
(Ⅱ)过点 M (2, 0) 作两条射线,分别交(Ⅰ)中所求轨迹于 P,Q 两点,且 MP MQ 0 , 求证:直线 P,Q 必过定点.
数学·试卷
时量:120 分钟 满分:150 分
学校:
姓名:
班级:
注意事项:
1. 答题前填写好自己的姓名、班级、考号等信息
2. 请将答案正确填写在答题卡上
考号:
第Ⅰ卷(选择题)
一、单选题(本大题 12 小题,每小题 5 分,共 60 分)
1.“ x 1 ”是“ x2 3x 2 0 ”的( )
A.充分不必要条件 C.充要条件
6.点 P(4, 2) 与圆 x2 y2 4 上任一点连线的中点轨迹方程是( )
A. (x 2)2 ( y 1)2 1
B. (x 2)2 ( y 1)2 1
C. (x 4)2 ( y 2)2 4
D. (x 2)2 ( y 1)2 1
1
7.以双曲线 x2 y2 1 的焦点为顶点,顶点为焦点的椭圆方程为( ) 4 12
(2)设与圆 O: x2 y2 3 相切的直线 l 交椭圆 C 与 A,B 两点,求△OAB 面积的最大 4
值,及取得最大值时直线 l 的方程.
4
参考答案
一、单选题
1-12 ACCC CADB
CADD
二、填空题 13、 x R, x2 x 1 0
14、
4
15、 ①⑤
16、 1 3
三、简答题
5
两点,且|AB|=3,离心率为
2
3
19.(12 分) 已知命题 p : k 2 8k 20 0 ,命题 q :方程 x2 y2 1 表示焦点在 x 轴 4k 1k
上的双曲线.
(1)命题 q 为真命题,求实数 k 的取值范围; (2)若命题“ p q ”为真,命题“ p q ”为假,求实数 k 的取值范围.
(1)求满足条件 p,q 的不等式的解集. (2)若¬p 是¬q 的必要不充分条件,求 a 的取值范围..
3
解:(1)由 x2﹣4ax+3a2<0,其中 a<0 得 3a<x<a,a<0, 由 x2+2x﹣8>0 得 x>2 或 x<﹣4, 即条件 p 对应的表达式的解集为 A={x|3a<x<a,a<0}, 条件 q 对应的表达式的解集为 B={x|x>2 或 x<﹣4}. (2)若¬p 是¬q 的必要不充分条件即 q 是 p 的必要不充分条件, 则 A⊊B, 即 3a≥2,或 a≤﹣4, ∵a<0, ∴a≤﹣4, 即实数 a 的取值范围是(﹣∞,﹣4]
相关文档
最新文档