有限元分析大作业试题

合集下载

机床功能部件有限元分析考核试卷

机床功能部件有限元分析考核试卷
9.在有限元分析中,为了提高计算效率,可以采用__________技术来简化模型。
答案:子模型
10.机床功能部件的优化设计目标之一是__________以提高机床的性能。
答案:减轻重量/提高刚度/降低成本(任选一)
四、判断题(本题共10小题,每题1分,共10分,正确的请在答题括号中画√,错误的画×)
D.应用对称性条件
7.机床刀架在有限元分析中,一般关注的是什么性能指标?()
A.刚度
B.强度
C.稳定性
D.所有上述
8.在有限元分析中,以下哪种方法适用于非线性材料特性的模拟?()
A.线性静态分析
B.非线性动态分析
C.线性稳态热分析
D.线性屈曲分析
9ቤተ መጻሕፍቲ ባይዱ对于机床功能部件的接触分析,以下哪项是正确的?()
A.几何模型简化过度
B.材料属性输入错误
C.载荷施加位置不准确
D.分析类型选择不当
13.以下哪些是机床部件在有限元分析中可能遇到的非线性问题?()
A.材料非线性
B.几何非线性
C.状态非线性
D.载荷非线性
14.以下哪些方法可用于机床功能部件的接触分析?()
A.线性接触分析
B.非线性接触分析
C.粘接接触分析
A.接触压力总是等于法向载荷
B.接触分析一定需要非线性分析
C.接触条件在加载过程中可以改变
D.接触条件总是不变的
10.以下哪种方法通常用于评估机床部件的疲劳寿命?()
A.静态分析
B.动态分析
C.疲劳分析
D.热分析
11.在有限元分析中,关于网格划分,以下哪项是正确的?()
A.网格越细,计算结果越精确
B.网格大小应均匀分布在整个模型

有限元分析试题

有限元分析试题

1. 数学:偏微分方程变换成代数方程进行求解2. 力学:连续体划分成小单元体,各单元节点间相连接并建立力平衡关系.3. 有限元模型:有限元模型是真实系统理想化的数学抽象.由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷.4. 有限元法:是以力学理论为基础,随着力学\数学和计算机科学相结合而发展起来的一种数值计算方法.5. 传统结构设计流程:设计----建模----测试---再设计.(1)作很大简化,计算精度差;(2)结构尺寸与重量偏大;(3)结构局部强度或刚度不足;(4)设计周期长,试制费用高6. 现代产品设计: Design(CAD)----VirtualTest(CAE)---Build---Test---Redesign。

有限元法是CAE 的核心部分7. 汽车结构有限元分析的内容:(1)零部件及整车的疲劳分析,估计产品的寿命,分析部件损坏的原因;(2)结构件、零部件的强度、刚度和稳定性分析(3)结构件模态分析、瞬态分析、谐响应分析和响应谱分析;(4)车身内的声学设计,车身结构模态与车身内声模态耦合;(5)汽车碰撞历程仿真和乘员安全保护分析(被动安全性);(6)结构件、零部件的优化设计(质量或体积为目标函数);(7)车身空气动力学计算,解决高速行驶中的升力、阻力和湍流问题8. 汽车结构有限元分析的流程:(1)制定方案;(2)建立结构模型;(3)划分有限元模型;(4)有限元模型检查;(5)加载和增加约束条件;(6)求解计算;(7)结果分析。

P99. 模态分析:固有频率和振型,从数学上讲,固有频率就是系统矩阵的特征值,振型就是该特征值所对应的特征向量。

10.谐响应分析:确定结构对已知幅值和频率的正弦载荷的响应。

11.瞬态动力学分析:确定结构对随时间变化载荷的响应。

12.单元:用于离散结构的杆、梁、三角形、四边形、四面体、六面体等。

节点:单元与单元之间的连接点。

具有一定自由度和存在相互物理作用。

华科大有限元分析题及大作业题答案——船海专业(DOC)

华科大有限元分析题及大作业题答案——船海专业(DOC)
(1)NDIV取5时的常应变三节点单元(单元数23)
图1-9(a)NDIV为5的网格划分及约束受载图
图1-9(b)NDIV为5的位移分布图
图1-9(c)NDIV为5的应力分布图
(2)NDIV为10的常应变三节点单元(单元数80)
图1-10(a)NDIV为10的网格划分及约束受载图
图1-10(b)NDIV为10的位移分布图
姓名:
学号:
班级:
有限元分析及应用作业报告
一、问题描述
图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较:
1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;
2)分别采用不同数量的三节点常应变单元计算;
3)定义材料参数
4)生成几何模
a. 生成特征点
b.生成坝体截面
5)网格化分:划分网格时,拾取所有线段设定input NDIV 为10,选择网格划分方式为Tri+Mapped,最后得到200个单元。
6)模型施加约束:
约束采用的是对底面BC全约束。
大坝所受载荷形式为Pressure,作用在AB面上,分析时施加在LAB上,方向水平向右,载荷大小沿LAB由小到大均匀分布(见图1-2)。以B为坐标原点,BA方向为纵轴y,则沿着y方向的受力大小可表示为:
(Hale Waihona Puke )其中ρ为水的密度,取g为9.8m/s2,可知Pmax为98000N,Pmin为0。施加载荷时只需对LAB插入预先设置的载荷函数(1)即可。
网格划分及约束受载情况如图1-3(a)和1-4(a)所示。
7)分析计算
8)结果显示
四、计算结果及结果分析

压力容器设计中的有限元分析技巧考核试卷

压力容器设计中的有限元分析技巧考核试卷
A.建立几何模型
B.网格划分
C.材料属性设定
D.实验验证
2.在压力容器设计中,有限元分析的目的是什么?()
A.降低制造成本
B.提高生产效率
C.保证结构安全
D.提高材料利用率
3.在有限元分析中,应力集中现象主要出现在以下哪种情况下?()
A.简单几何形状
B.均匀网格划分
C.尖角或孔洞附近
D.材料属性均匀
答案:__________、__________
8.在压力容器设计规范中,通常使用____来判断结构是否安全。
答案:__________
9.有限元分析中,如果模型的网格划分过细,可能会导致____问题。
答案:__________
10.对于压力容器的疲劳分析,常用的方法是____方法。
答案:__________
A.拉应力
B.压应力
C.剪应力
D.弯曲应力
6.以下哪些情况下需要进行压力容器的非线性分析?()
A.大变形
B.材料非线性
C.接触分析
D.线性分析
7.在有限元分析中,以下哪些因素可能导致计算结果偏小?()
A.网格划分过粗
B.边界条件设置宽松
C.材料属性低估
D.计算精度设置低
8.以下哪些是压力容器有限元分析中的边界条件?()
A.模型简化
B.材料数据不确定性
C.载荷不确定性
D.计算机硬件性能
注意:请将答案填写在答题括号内,多选或少选均不得分。
三、填空题(本题共10小题,每小题2分,共20分,请将正确答案填到题目空白处)
1.在有限元分析中,一个完整的压力容器模型通常包括几何模型、____模型和物理模型。
答案:__________

液力元件的有限元分析考核试卷

液力元件的有限元分析考核试卷
1.液力元件有限元分析中,以下哪些是常用的边界条件类型?()
A.Dirichlet边界条件
B. Neumann边界条件
C. Cauchy边界条件
D.自然边界条件
2.以下哪些因素会影响流体在液力元件中的流动特性?()
A.流体的粘度
B.流体的密度
C.液力元件的几何形状
D.外部环境的温度
3.在进行液力元件的有限元模拟时,以下哪些步骤是必要的?()
7.在流固耦合分析中,固体域与流体域之间的相互作用通过________边界条件来实现。( )
8.液力元件的有限元分析中,常用的湍流模型包括________模型、________模型等。( )
9.在进行液力元件的有限元后处理时,________是用来查看和分析流体速度分布的一种方法。( )
10.为了提高液力元件有限元分析的精度,可以采取________和________等方法。( )
C.温度变化影响流体的粘度
D.结构的振动影响流体的速度场
14.以下哪些软件可以用于液力元件的有限元前处理?()
A. Hypermesh
B. ICEM CFD
C. Gambit
D. Trelis
15.在液力元件的有限元分析中,以下哪些是可能的后处理步骤?()
A.流线可视化
B.应力分布图
C.数据提取和导出
A.网格划分
B.材料特性分析
C.瞬态分析
D.波动光学分析
2.在进行液力元件的有限元分析时,以下哪项不是网格划分的主要考虑因素?()
A.材料的连续性
B.边界条件的复杂性
C.计算资源的多少
D.元件的几何形状
3.下列哪个软件不是常用于液力元件有限元分析的?()

有限元分析大作业

有限元分析大作业

有限元大作业一题目要求:图1所示为一悬臂梁,在端部承受载荷,材料弹性模量为E,泊松比为1/3,悬臂梁的厚度(板厚)为t,若该粱被划分为两个单元,单元和节点编号如图所示,试按平面应力问题计算各个节点位移计支反力。

一、单元划分1.计算简图及单元划分如下所示:2.进行节点及单元编号节点i j m单元① 2 3 4② 3 2 13.节点坐标值节点号1 2 3 4坐标值X 2 2 0 0Y 1 0 1 0二、计算单元刚度矩阵1、计算每个单元面积△以及i b ,i c (m j i i ,,=) ①②单元的面积相等,即12121=⨯⨯=∆ 单元①的i b ,i c⎩⎨⎧=--==-=0)(1m j i m j i y x c y y b ⎩⎨⎧=--==-=2)(0i m ji m j x x c y y b ⎩⎨⎧-=--=-=-=2)(1j i mj i m y x c y y b 对平面应力问题,其表达式为[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+-+-+∆-=s r s r sr s r s r s r s r s r b b uc c cb u b uc b c u c ub c c u b b u Et Krs 21212121)1(42 然后对单元①求解单元刚度子矩阵2==i r 2==i s []⎥⎦⎤⎢⎣⎡=3/1001329)1(22Et K 2==i r 3==j s []⎥⎦⎤⎢⎣⎡=03/23/20329)1(23Et K2==i r 4==m s []⎥⎦⎤⎢⎣⎡----=3/13/23/21329)1(24Et K 3==j r 3==j s []⎥⎦⎤⎢⎣⎡=4003/4329)1(33Et K 3==j r 2==i s []⎥⎦⎤⎢⎣⎡=03/23/20329)1(32Et K 3==j r 4==m s []⎥⎦⎤⎢⎣⎡----=43/23/23/4329)1(34Et K 4==m r 4==m s []⎥⎦⎤⎢⎣⎡=3/133/43/43/7329)1(44Et K 4==m r 2==i s []⎥⎦⎤⎢⎣⎡----=3/13/23/21329)1(42Et K 4==m r 3==j s []⎥⎦⎤⎢⎣⎡----=43/23/23/4329)1(43Et K由子矩阵[]e rs K 合成单元刚度矩阵[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------------=3/133/443/23/13/23/43/73/23/43/2143/24003/23/23/403/43/203/13/203/23/103/213/2001329)1(Et K将单元①的单元刚度矩阵补零升阶变为单元刚度矩阵,其在总体刚度矩阵中的位置为:节点号→单元②的i b ,i c⎩⎨⎧=--=-=-=0)(1m j im j i y x c y y b ⎩⎨⎧-=--==-=2)(0i m ji m j x x c y y b ⎩⎨⎧=--==-=2)(1j i mj i m y x c y y b 然后对单元 求解单元刚度子矩阵:3==i r 3==i s []⎥⎦⎤⎢⎣⎡=3/1001329)2(33Et K 3==i r 2==j s []⎥⎦⎤⎢⎣⎡=03/23/20329)2(32Et K 3==i r 1==m s []⎥⎦⎤⎢⎣⎡----=3/13/23/21329)2(31Et K 1 2 3 412[])1(22K[])1(23K[])1(24K3[])1(32K[])1(33K[])1(34K4[])1(42K[])1(43K[])1(44K2==j r 2==j s []⎥⎦⎤⎢⎣⎡=4003/4329)2(22Et K 2==j r 3==i s []⎥⎦⎤⎢⎣⎡=03/23/20329)2(23Et K 2==j r 1==m s []⎥⎦⎤⎢⎣⎡----=43/23/23/4329)2(21Et K 1==m r 1==m s []⎥⎦⎤⎢⎣⎡=3/133/43/43/7329)2(11Et K 1==m r 3==i s []⎥⎦⎤⎢⎣⎡----=3/13/23/21329)2(13Et K 1==m r 2==j s []⎥⎦⎤⎢⎣⎡----=43/23/23/4329)2(12Et K 由子矩阵[]e rs K 合成单元刚度矩阵[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------------=3/133/443/23/13/23/43/73/23/43/2143/24003/23/23/403/43/203/13/203/23/103/213/2001329)2(Et K将单元②的单元刚度矩阵补零升阶变为单元贡献矩阵,其在总体刚度矩阵中的位置为:节点号→1 2 3 41 [])2(11K[])2(12K[])2(13K2 [])2(21K[])2(22K[])2(23K3 [])2(31K [])2(32K [])2(33K 4三、计算总体刚度矩阵总体刚度矩阵是由各单元的贡献矩阵迭加而成)2()1(][][][][K K K K e +==∑四、进行节点约束处理根据节点约束情况,在总刚矩阵中可采用划行划列处理约束的方法,由题目易知,节点3和4的已知水平位移和垂直位移都为零,划去其相对应的行和列,则总刚矩阵由8阶变为4阶,矩阵如下:⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧--=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------2/02/03/13043/203/73/23/443/23/133/43/23/43/43/73292211p p v u v u Et329][Et K =1 2 3 413/133/43/43/743/23/23/4----3/13/23/21----000243/23/23/4----3/13003/73/43/403/13/23/21----33/13/23/21----3/43/403/13003/743/23/23/4----40003/13/23/21----43/23/23/4----3/133/43/43/7化简⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧--=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------Et p Et p v u v u 3/1603/160130122072412213424472211 五、求解线性方程组方法:采用LU 分解法 1.求解矩阵[]U 各元素⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------75/10775/640075/6475/353007/767/27/7502447~7/877/87/7607/87/337/207/767/27/7502447~13012207241221342447⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----353/44900075/6475/353007/767/27/7502447~ 得到的[]U 矩阵如下:[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=353/44900075/6475/353007/767/27/7502447U 2.求解矩阵[]L 各元素⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----13012207241221342447353/44900075/6475/353007/767/27/75024471353/6475/767/20175/27/40017/40001 得到的[]L 矩阵如下:[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=13012207241221342447L3.进行求解⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧---=⇒⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧--=Et p Et p Et p y Et p Et p Ly 79425/850800225/323/1603/1603/160⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧---=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----⇒=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡Et p Et p Et p v u v u y v u v u U 79425/850800225/323/160353/44900075/6475/353007/7675/27/750244722112211 解得Et p v /422.82-= Et p u /497.12-= Et p v /028.91-= Et p u /897.11=于是求得各节点的位移为:⎩⎨⎧-==Etp v Etp u /028.9/897.111 ⎩⎨⎧-=-=Etp v Etp u /422.8/497.122 ⎩⎨⎧==033v u ⎩⎨⎧==044v u 六、求解相应的支反力(运用静力学的平衡方程进行求解)3号节点和4号节点的支反力如下图所示:。

有限元分析大作业

有限元分析大作业

《有限元分析及应用》大作业——齿根弯曲应力计算报告班级:无可奉告姓名:无可奉告学号:无可奉告指导老师:无可奉告目录目录 (2)1.概述 (3)1.1工程问题描述 (3)1.2问题分析 (3)2.建模过程 (4)2.1几何建模 (4)2.2CAE网格划分与计算 (5)2.3后处理 (8)3.多方案比较与结果分析 (9)3.1多方案比较 (9)3.2结果分析 (11)1.概述1.1工程问题描述我在本次作业中的选题为齿根弯曲应力的计算与校核。

通过对机械设计的学习,我们可以知道,齿轮的失效形式主要是齿面接触疲劳和齿根弯曲断裂,而闭式传动硬齿面齿轮的失效形式以齿根弯曲断裂,这个时候进行齿根弯曲应力的校核才比较有意义,在设计问题的时候应当选取这种类型的算例。

设计计算的另一个主要思路是将有限元计算的结果与传统机械设计的结算结果进行对比,以从多方面验证计算结果的准确性。

综上,我们最终选取了《机械原理》(第三版)P50例3-1中的问题进行校核计算。

已知起重机械用的一对闭式直齿圆柱齿轮,传动,输入转速n1=730r/min,输入功率P1=35kW,每天工作16小时,使用寿命5年,齿轮为非对称布置,轴的刚性较大,原动机为电动机,工作机载荷为中等冲击。

z1=29,z2=129,m=2.5mm,b1=48mm,b2=42mm,大、小齿轮均为20CrMnTi,渗碳淬火,齿面硬度为58~62HRC,齿轮精度为7级,试验算齿轮强度。

齿面为硬齿面,传动方式为闭式传动。

根据设计手册查出的许用接触应力为1363.6Mpa,计算结果为1260Mpa,强度合格。

根据设计手册查出的许用弯曲应力为613.3MPa,计算结果为619Mpa,强度略显不够。

1.2问题分析大小齿轮啮合,小齿轮受载荷情况较为严峻,故分析对象应当为小齿轮。

可以看出,由于齿轮单侧受载荷,传动过程中每个齿上载荷的变化过程是相同的,故问题可被简化为反对称问题,仅需研究单个齿。

电机组件的有限元分析考核试卷

电机组件的有限元分析考核试卷
A.温度边界
B.力边界
C.位移边界
D.材料属性
7.在电磁场分析中,哪些物理量通常作为输入参数?()
A.磁势
B.电势
C.电流密度
D.材料电阻
8.哪些方法可以用来提高电机组件有限元分析的收敛性?()
A.优化网格划分
B.调整边界条件
C.选择合适的求解器
D.增加计算机硬件配置
9.以下哪些是电机组件动态分析的主要内容?()
A.检查网格质量
B.检查边界条件设置
C.对比理论值和计算结果
D.优化计算模型
19.以下哪种方法适用于电机组件的疲劳分析?()
A.静态分析
B.动态分析
C.稳态热分析
D.疲劳分析
20.在电机组件的有限元分析中,以下哪个参数代表材料的磁性能?()
A.磁导率
B.电导率
C.比热容
D.电阻率
二、多选题(本题共20小题,每小题1.5分,共30分,在每小题给出的四个选项中,至少有一项是符合题目要求的)
3.热传递机制包括传导、对流和辐射。优化包括改善材料布局、散热设计和边界条件设置。
4.耦合效应处理包括顺序耦合和同时耦合。解决方法有直接耦合法和间接耦合法。
1. ×
2. ×
3. √
4. ×
5. √
6. √
7. ×
8. √
9. ×
10. ×
五、主观题(参考)
1.基本流程包括建模、网格划分、材料属性定义、边界条件设定、加载求解和结果分析。挑战包括模型简化、网格质量、收敛性和计算资源需求。
2.选择求解器需考虑问题类型、求解精度和计算效率。策略包括预处理、迭代方法和后处理优化。
5.在有限元分析中,所有的边界条件都必须在加载步骤中定义。()

有限元分析与应用详细例题

有限元分析与应用详细例题

《有限元分析与应用》详细例题试题1:图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较:1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;2)分别采用不同数量的三节点常应变单元计算;3)当选常应变三角单元时,分别采用不同划分方案计算。

.问题描述及数学建模无限长的刚性地基上的三角形大坝受齐顶的水压作用可看作一个平面问题,简化为平面三角形受力问题,把无限长的地基看着平面三角形的底边受固定支座约束的作用,受力面的受力简化为受均布载荷的作用。

二.建模及计算过程1.分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算F面简述三节点常应变单元有限元建模过程(其他类型的建模过程类似)进入ANSYS【开始】T【程序】T ANSYS T ANSYS Product Launcher 宀change the working directory Job Name: shiti1 T Run设置计算类型选择单元类型单元是三节点常应变单元,可以用4节点退化表示。

ANSYS Main Menu: Preprocessor Element Type Add/Edit/Delete Add select Solid Quad 4 node 42 OK (back to Element Types window) Options select K3: Plane Strain03 Close (the Eleme nt Type wi ndow)定义材料参数材料为钢,可查找钢的参数并在有限元中定义,其中弹性模量E=210Gpa,泊松比v=。

ANSYSMain Menu: Preprocessor Material Props Material Models Structural Linear Elastic T Isotropic in put EX:, PRXY: OK生成几何模型生成特征点ANSYSMain Menu: Preprocessor T Modeling T Create T Keypoints T In Active CS T依次输入四个点的坐标:input:1(0,0),2(3,0),3(6,0),4(3,5),5(0,10),6(0,5) T OK生成坝体截面ANSYSMain Menu: Preprocessor T Modeling T Create T Areas T Arbitrary T Through KPS T依次连接1,2,6;2,3,4;2,4,6;4,5,6这三个特征点T OK网格划分ANSYS Mai n Me nu : Preprocessor T Meshi ng T Mesh Tool T (Size Con trols) Global: Set T in put NDIV: 1 T OK T (back to the mesh tool window)Mesh: Areas, Shape: Tri, Free T Mesh T Pick All (in Picking Menu) T Close( the Mesh Tool window)模型施加约束分别给下底边和竖直的纵边施加x和y方向的约束ANSYS Main Menu: Solution T Define Loads T Apply T Structural T Displacement T On lines T选择底边T OK T select:ALL DOF T OK给斜边施加x方向的分布载荷ANSYS命令菜单栏:Parameters宀Functions Define/Edit 1)在下方的下拉列表框内选择x , 作为设置的变量;2)在Result窗口中出现{X},写入所施加的载荷函数:1000*{X} ; 3) File>Save(文件扩展名:func)T返回:Parameters宀Functions 宀Read from file :将需要的.func文件打开,任给一个参数名,它表示随之将施加的载荷T OK T ANSYS Main Menu: Solution T Define Loads T Apply T Structural T Pressure T On Lines T拾取斜边;OK T在下拉列表框中,选择:Existing table (来自用户定义的变量)T OK T选择需要的载荷参数名T OK分析计算ANSYSMain Menu: Solution T Solve T Current LS T OK(to close the solve Current Load Step window)T OK结果显示确定当前数据为最后时间步的数据ANSYS Main Menu: General Postproc T Read Result T Last Set查看在外力作用下的变形ANSYS Main Menu: General Postproc T Plot Results T Deformed Shape T select Def + Undeformed T OK 查看节点位移分布情况Con tour Plot T Nodal Solu -T select: DOF solutio n T Displaceme nt vctor sum T Def + Un deformed T OK 查看节点应力分布情况Contour Plot T Nodal Solu -T select: Stress T XY shear stress T Def + Undeformed T OK退出系统ANSYS Utility Menu: File T Exit -T Save Everything T OK三节点常应变单元(6 个节点,4 个单元)几何模型图变形图,节点位移图,节点应力图,节点应变图六节点常应变单元(6个节点,4个单元)几何模型图Ahl OCT lfl 2010T :5PIJ.mC3crJTZ»-L m ■£I ZE-:,iOCT ;41gGDSZ ZC-TTrSRSTEl^nini H匚ZKT■S5T5-PZMX - . II » -2«isrIM-MH3ETi5.Ult-M 弼HJ-lM<O-S-0e变形图,节点位移图,节点应力图,节点应变图分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算结果比较单兀划分方案变形大小应力大小应变大小值的比较分析三节点三角形 DMX: DMX: DMX: 1•最大变形值小;单元SMX: SMN:2778 SMN: 2•最大应力值小;ANw ia soldJIT IKK? srrxcHL ■ VE •—工 » 7弋却3TII-1 5TB -1E934- :出馳相符。

有限元分析大作业

有限元分析大作业

一、有限元方法的手工计算结果与ansys分析结果的对比1分析的问题描述如图1所示,桁架的杆截面面积为8,由钢制成(E=200GPa)。

用有限元法计算出每个节点的位移以及反作用力。

(1)(2)(3)图1对于上述问题,本文将用手工计算和ansys软件分别计算出结果,对计算出来的结果进行对比。

2手工计算2.1桁架结构的有限元计算方法对于桁架结构,每个单元的刚度矩阵为,(2-1)YX图2其中,为桁架单元在整体坐标系中与X轴的夹角;,A为桁架的截面积,E 为弹性模量,L为桁架长度。

在固体力学问题中,有限元公式通常由如下的一般形式,Ku=F(2-2)其中,K为刚度矩阵,u为位移矩阵,F为载荷矩阵。

运用公式(2-3),就能求出反作用力,R=Ku-F(2-3)其中,R为反作用力矩阵。

2.2计算过程计算每个桁架单元的刚度,用公式(2-1)计算每个每个桁架单元的刚度矩阵,将每个单元放入总刚度矩阵,他们的位置分别为:10-100000 00000000 -10100000 00000000 00000000 00000000 00000000 0000000000000000 00000000 0010-1000 0000000000-101000 00000000 00000000 000000003.9-4.90000-3.9 4.9-4.9 6.10000 4.9-6.1 00000000 00000000 00000000 00000000-3.9 4.90000 3.9-4.9 4.9-6.10000-4.9 6.100000000 00000000 00000000 000 1.28000-1.28 00000000 00000000 00000000 000-1.28000 1.2800000000 00000000 00000000 00000000 0000 3.9 4.9-3.9-4.9 0000 4.9 6.1-4.9-6.1 0000-3.9-4.9 3.9 4.9 0000-4.9-6.1 4.9 6.1将个刚度矩阵相加得到总刚度矩阵为,19.9-4.90-16000-3.9 4.9 -4.9 6.100000 4.9-6.1 -160320-16000 00012.8000-12.8 00-16019.9 4.9-3.9-4.9 0000 4.9 6.1-4.9-6.1 -3.9 4.900-3.9-4.97.80 4.9-6.10-12.8-4.9-6.1025应用边界条件施加载荷,将总刚度矩阵带入式(2-2)得:19.9-4.90-16000-3.9 4.9Ux1 -4.9 6.100000 4.9-6.1Uy1 -160320-16000Ux2 00012.8000-12.8Uy200-16019.9 4.9-3.9-4.9Ux3 0000 4.9 6.1-4.9-6.1Uy3 -3.9 4.900-3.9-4.97.80Ux4 4.9-6.10-12.8-4.9-6.1025Uy4带入边界条件解得:将结果带入(2-3)得:=Fx1Fy1Fx2Fy2Fx3Fy3Fx4Fy43用ansys软件求解(单位统一N,mm,Mpa)(1)选择单元(图3)图3(2)附材料属性(图4)图4(3)创建模型(图5)图5(4)施加载荷(图6)图6(5)求解每个节点的位移(图7)图7节点的反力(图8)图8(6)模型变形图(7)位移等值线分布图4结果对比及分析手算结果ansys 计算结果位移(mm)Ux100Uy100Ux2-0.0016-0.0016Uy2-0.0468-0.0468Ux300Uy300Ux4-0.0066-0.0066Uy4-0.0317-0.0317表1手算结果ansys计算结果节点反力(N)Fx1-1027.8-1027.8 Fy11608.31608.3 Fx2 5.60 Fy2-100 Fx32066.72063.1 Fy32257.12255.4 Fx48.80 Fy4-2.70表2由表1和表2可以看出,手工计算的结果与ansys计算的结果基本一致。

有限元试卷和答案

有限元试卷和答案
3 a 1
a
图1
1、解: 设图 1 所示的各点坐标为 点 1( a, 0) ,点 2(a,a) ,点 3(0,0) 于是,可得单元的面积为 (1) 形函数矩阵 N 为
1 (0 + ax − ay ) a2 1 N1 = 2 (0 + 0gx + ay ) a 1 N1 = 2 (a 2 − ax + 0gy ) a N1 =
判断正误 (×)1. 节点的位置依赖于形态,而并不依赖于载荷的位置 (√)2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元 (×)3. 不能把梁单元、壳单元和实体单元混合在一起作成模型 (√)4. 四边形的平面单元尽可能作成接近正方形形状的单元 (×)5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化 处理的话会得到一样的答案 (×)6. 用有限元法不可以对运动的物体的结构进行静力分析 (√)7. 一般应力变化大的地方单元尺寸要划的小才好 (×)8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度 (×)9. 线性应力分析也可以得到极大的变形 (√)10. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小 (1)用加权余量法求解微分方程,其权函数 V 和场函数 u 的选择没有任何限 制。 ( × ) (2)四结点四边形等参单元的位移插值函数是坐标 x、y 的一次函数。 (√ ) (3)在三角形单元中,其面积坐标的值与三结点三角形单元的结点形函数值 相等。 续。 (√ ) (× ) (× ) (6)等参单元中 Jacobi 行列式的值不能等于零。 (√) (7)在位移型有限元中,单元交界面上的应力是严格满足平衡条件的。 (× ) (4)二维弹性力学问题的有限元法求解,其收敛准则要求试探位移函数 C1 连 (5)有限元位移法求得的应力结果通常比应变结果精度低。

有限元分析大作业试题

有限元分析大作业试题

有限元分析大作业试题要求:1)以小组为单位完成有限元分析计算;2)以小组为单位编写计算分析报告;3)计算分析报告应包括以下部分:A、问题描述及数学建模;B、有限元建模(单元选择、结点布置及规模、网格划分方案、载荷及边界条件处理、求解控制)C、计算结果及结果分析(位移分析、应力分析、正确性分析评判)D、多方案计算比较(结点规模增减对精度的影响分析、单元改变对精度的影响分析、不同网格划分方案对结果的影响分析等)E、建议与体会4)6月10日前必须完成,并递交计算分析报告(报告要求打印)。

试题1:图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较:1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;2)分别采用不同数量的三节点常应变单元计算;3)当选常应变三角单元时,分别采用不同划分方案计算。

试题2:图示薄板左边固定,右边受均布压力P=100Kn/m作用,板厚度为0.3cm;试采用如下方案,对其进行有限元分析,并对结果进行比较。

1)三节点常应变单元;(2个和200个单元)2)四节点矩形单元;(1个和50个单元)3)八节点等参单元。

(1个和20个单元)试题3:图示为一带圆孔的单位厚度(1M )的正方形平板,在x 方向作用均布压力0.25Mpa ,试用三节点常应变单元和六节点三角形单元对平板进行有限元分析,并对以下几种计算方案的计算结果进行比较:1) 分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;2) 分别采用不同数量的三节点常应变单元计算;在y 轴上,孔边应力的精确解为:MPa x 75.0-=σ,在x 轴上,孔边应力的精确解为:MPa y 25.0=σ试题4:图示为带方孔(边长为80mm)的悬臂梁,其上受部分均布载荷(p=10Kn/m)作用,试采用一种平面单元,对图示两种结构进行有限元分析,并就方孔的布置进行分析比较,如将方孔设计为圆孔,结果有何变化?(板厚为1mm,材料为钢)试题5:图示为一隧道断面,其内受均布水压力q,外受土壤均布压力p;试采用不同单元计算断面内的位移及应力,并分别分析q=0或p=0时的位移和应力分布情况。

有限元作业试题

有限元作业试题

有限元方法及应用试题1、试简要阐述有限元理论分析的基本步骤主要有哪些?答:单元离散(划分、剖分)—单元分析—整体分析有限元分析的主要步骤主要有:A结构的离散化B单元分析。

选择位移函数、根据几何方程建立应变与位移的关系、根据物理方程建立应力与位移的关系、根据虚功原理建立节点力与节点位移的关系(单元刚度方程)C等效节点载荷计算D整体分析,建立整体刚度方程E引入约束,求解整体平衡方程2、有限元网格划分的基本原则是什么?指出图示网格划分中不合理的地方。

题2图答:一般选用三角形或四边形单元,在满足一定精度情况,尽可能少一些单元。

有限元划分网格的基本原则是:1、拓朴正确性原则。

即单元间是靠单元顶点、或单元边、或单元面连接2、几何保形原则。

即网格划分后,单元的集合为原结构近似3、特性一致原则。

即材料相同,厚度相同4、单元形状优良原则。

单元边、角相差尽可能小5、密度可控原则。

即在保证一定精度的前提下,网格尽可能稀疏一些图中:(a)(b)中节点没有有效连接,且b中,单元边长相差很大。

(c )中没有考虑对称性,单元相差太大。

3、分别指出图示平面结构划分为什么单元?有多少个节点?多少个自由度?题3图答:(a )划分为杆单元, 8个节点,12个自由度 (b )划分为平面梁单元,8个节点,15个自由度 (c )平面四节点,四边形单元,8个节点,13个自由度 (d )平面三角形单元,29个节点,38个自由度4、什么是等参数单元?。

如果坐标变换和位移插值采用相同的节点,并且单元的形状变换函数与位移插值的形函数一样,则称这种变换为等参变换,这样的单元称为等参单元。

5、在平面三节点三角形单元中,能否选取如下的位移模式,为什么?(1).⎪⎩⎪⎨⎧++=++=26543221),(),(y x y x v yx y x u αααααα (2). ⎪⎩⎪⎨⎧++=++=2652423221),(),(yxy x y x v yxy x y x u αααααα 答:不能取这样的位移模式,因为在平面三节点三角形单元中,位移模式应该是呈线性的。

有限元分析与应用大作业

有限元分析与应用大作业

有限元分析及应用大作业课程名称: 有限元分析及应用班级:姓名:试题2:图示薄板左边固定,右边受均布压力P=100Kn/m作用,板厚度为0.3cm;试采用如下方案,对其进行有限元分析,并对结果进行比较。

1)三节点常应变单元;(2个和200个单元)2)四节点矩形单元;(1个和50个单元)3)八节点等参单元。

(1个和20个单元)图2-1 薄板结构及受力图一、建模由图2-1可知,此薄板长和宽分别为2m和1.5m,厚度仅为0.3cm,本题所研究问题为平面应力问题。

经计算,平板右边受均匀载荷P=33.33MPa,而左边被固定,所以要完全约束个方向的自由度,如图2-2所示。

取弹性模量E=2.1×11Pa,泊松比μ=0.3。

P=33.33MPa图2-2 数学模型二、第一问三节点常应变单元(2个和200个单元)三节点单元类型为PLANE42,设置好单元类型后,实常数设置板厚为0.3M。

采用2个单元的网格划分后的结果如图2-3,200个单元的网格划分图如图2-6所示。

约束的施加方式和载荷分布如图2-2中所示。

约束右边线上节点全部自由度。

计算得到的位移云图分别如图2-4、7所示,应力云图如图2-5、8所示。

图2-3 2个三角形单元的网格划分图图2-4 2个三角形单元的位移云图图2-5 2个三角形单元的应力云图图2-6 200个三角形单元的网格划分图图2-7 200个三角形单元的位移云图图2-8 200个三角形单元的应力云图三、第二问四节点矩形单元的计算四节点单元类型为PLANE42,设置好单元类型后,实常数设置板厚为0.3M。

采用1个单元的网格划分后的结果如图2-9,50个单元的网格划分图如图2-12所示。

约束的施加方式和载荷分布如图2-2中所示。

约束右边线上节点全部自由度。

计算得到的位移云图分别如图2-10、11所示,应力云图如图2-13、14所示。

图2-9 1个四边形单元的网格划分图图2-10 1个四边形单元的位移云图图2-11 1个四边形单元的应力云图图2-12 50个四边形单元的网格划分图图2-13 50个四边形单元的位移云图图2-14 50个四边形单元的应力云图四、第三问八节点等参单元的计算四节点单元类型为PLANE82,设置好单元类型后,实常数设置板厚为0.3M。

汽车有限元分析试题集及答案(很全)

汽车有限元分析试题集及答案(很全)

一、20分)(×)1. 节点的位置依赖于形态,而并不依赖于载荷的位置(√)2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元(×)3. 不能把梁单元、壳单元和实体单元混合在一起作成模型(√)4. 四边形的平面单元尽可能作成接近正方形形状的单元(×)5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化处理的话会得到一样的答案(×)6. 用有限元法不可以对运动的物体的结构进行静力分析(√)7. 一般应力变化大的地方单元尺寸要划的小才好(×)8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度(√)9. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小(√)10一维变带宽存储通常比二维等带宽存储更节省存储量。

二、填空(20分)1.平面应力问题与薄板弯曲问题的弹性体几何形状都是薄板,但前者受力特点是:平行于板面且沿厚度均布载荷作用,变形发生在板面内;后者受力特点是:垂直于板面的力的作用,板将变成有弯有扭的曲面。

2.平面应力问题与平面应变问题都具有三个独立的应力分量:σx,σy,τxy,三个独立的应变分量:εx,εy,γxy,但对应的弹性体几何形状前者为 薄板 ,后者为 长柱体 。

3.位移模式需反映 刚体位移 ,反映 常变形 ,满足 单元边界上位移连续 。

4.单元刚度矩阵的特点有:对称性 , 奇异性 ,还可按节点分块。

5.轴对称问题单元形状为:三角形或四边形截面的空间环形单元 ,由于轴对称的特性,任意一点变形只发生在子午面上,因此可以作为 二 维问题处理。

6.等参数单元指的是:描述位移和描述坐标采用相同的形函数形式。

等参数单元优点是:可以采用高阶次位移模式,能够模拟复杂几何边界,方便单元刚度矩阵和等效节点载荷的积分运算。

7.有限单元法首先求出的解是 节点位移 ,单元应力可由它求得,其计算公式为{}{}[][]eD B σδ=。

有限元分析题及大作业题答案资料

有限元分析题及大作业题答案资料

姓名:学号:班级:有限元分析及应用作业报告一、问题描述图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较:1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;2)分别采用不同数量的三节点常应变单元计算;3)当选常应变三角单元时,分别采用不同划分方案计算。二、几何建模与分析图1-2力学模型由于大坝长度>>横截面尺寸,且横截面沿长度方向保持不变,因此可将大坝看作无限长的实体模型,满足平面应变问题的几何条件;对截面进行受力分析,作用于大坝上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力,满足平面应变问题的载荷条件。因此该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图1-2所示,建立几何模型,进行求解。假设大坝的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比σ=0.3三、第1问的有限元建模本题将分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算。1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences为Structural2)选择单元类型:三节点常应变单元选择的类型是PLANE42(Quad 4node42),该单元属于是四节点单元类型,在网格划分时可以对节点数目控制使其蜕化为三节点单元;六节点三角形单元选择的类型是PLANE183(Quad 8node183),该单元属于是八节点单元类型,在网格划分时可以对节点数目控制使其蜕化为六节点单元。因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。3)定义材料参数4)生成几何模a. 生成特征点b.生成坝体截面5)网格化分:划分网格时,拾取所有线段设定input NDIV 为10,选择网格划分方式为Tri+Mapped,最后得到200个单元。6)模型施加约束:约束采用的是对底面BC全约束。大坝所受载荷形式为Pressure,作用在AB面上,分析时施加在L AB上,方向水平向右,载荷大小沿L AB由小到大均匀分布(见图1-2)。以B为坐标原点,BA方向为纵轴y,则沿着y方向的受力大小可表示为:ρ (1)P-=gh=ρg=-98000{*}98000)(Y10y其中ρ为水的密度,取g为9.8m/s2,可知P max为98000N,P min为0。施加载荷时只需对L AB插入预先设置的载荷函数(1)即可。网格划分及约束受载情况如图1-3(a)和1-4(a)所示。7)分析计算8)结果显示四、计算结果及结果分析4.1计算结果(1)三节点常应变单元(4 node 42)图1-3(a)常应变三节点单元的网格划分及约束受载图图1-3(b)常应变三节点单元的位移分布图(2)六节点三角形单元图1-4(a)六节点三角形单元网格划分及约束受载图图1-4(b) 六节点三角形单元的变形分布图根据以上位移和应力图,可以得出常应变三节点单元和六节点三角形单元的最小最大位移应力如表1-1所示。4.2 结果分析由以上各图和数据表可知,采用三节点和六节点的三角形单元分析计算:(1)最大位移都发生在A点,即大坝顶端,最大应力发生在B点附近,即坝底和水的交界处,且整体应力和位移变化分布趋势相似,符合实际情况;(2)结果显示三节点和六节点单元分析出来的最大应力值相差较大,原因可能是B点产生了虚假应力,造成了最大应力值的不准确性。(3)根据结果显示,最小三节点和六节点单元分析出来的最小应力值相差极为悬殊,结合理论分析,实际上A点不承受载荷,最小应力接近于零,显然六节点三角形单元分析在这一点上更准确。(4)六节点的应力范围较大,所以可判断在单元数目相同的前提下,节点数目越多,分析精度就越大;但是节点数目的增多会不可避免地带来计算工作量增加和计算效率降低的问题。五、第2问的有限元建模及计算结果此次分析选择的单元类型为常应变三节点单元。选用三种不同单元数目情况进行比较分析。具体做法如下:有限元建模步骤与第1小题类似,只是在划分网格时,依次设置NDIV值为5,10,50,所获得的单元数目依次为23(图1-9(a))、80(图1-10(a))、1850(图1-11(a));分别计算并得到位移变化图如图1-9(b)、1-10(b)、1-11(c)所示;分别计算并得到应力变化云图如图1-9(c)、1-10(c)、1-11(c)所示。(1)NDIV取5时的常应变三节点单元(单元数23)图1-9(a) NDIV为5的网格划分及约束受载图图1-9(b) NDIV为5的位移分布图(2)NDIV为10的常应变三节点单元(单元数80)图1-10(a)NDIV为10的网格划分及约束受载图图1-10(b)NDIV为10的位移分布图图1-10(c)NDIV为10的应力分布图(3)NDIV为50的常应变三节点单元(单元数1850)图1-11(a)NDIV为50的网格划分及约束受载图图1-11(b) NDIV为50的位移分布图图1-11(c)NDIV为50的应力分布图由以上不同单元数目的位移应力分布图可以看出,大坝截面所受位移和应力的变化趋势是相同的,最大应力都发生在坝底和水的交界点附近,最小应力发生在大坝顶端;最大变形位移也是发生在坝顶。不同单元数目下计算的数据如表1-2所示。表1-2 不同单元数目下计算数据表(4)结果分析由以上分析结果可知:(1)随着单元数目的增加,最大位移变化不大,应力变化范围逐步增大;(2)随着单元数目的增加,即网格划分越密,分析的结果准确度将会提高;但是单元数目的增加和节点数目的增加都会造成计算量的增加和计算速度的下降的问题。(3)对于本次计算结果,仍可能存在虚假应力,应力的准确值无法准确得出,只是网格划分越密,计算结果越精确。所以减少虚假应力影响的措施之一就是增加单元的数目,提高网格划分的密度。五、第3问的有限元建模及计算结果由图1-1所示的划分方案可知,需采用手动划分网格:首先创建6个节点,然后采用不同的方式连接节点创建单元,从而分别得到两种不同的网格划分方式,见下图1-12所示。对底边的三个节点施加全约束;载荷建立方程式并创建table;其他的处理方式与第1小题相同。图1-12方案一和二的划分方案图有限元模型建立完成后进行求解,则可得到方案一和方案二的的位移图和应力图,如图1-13(a)、1-13(b)、1-14(a)、1-14(b)所示。图1-13(a)方案一网格划分方式下的位移图图1-13(b)方案一网格划分方式下的应力图图1-14(a) 方案二网格划分方式下的位移图图1-14(b)方案二网格划分方式下的应力图由以上两种方案的位移和应力图可得出的最大位移和最小最大应力如表1-3所示:表1-3 方案一和方案二计算数据表由以上分析结果可知,由于方案一和二都只有四个单元,所以在计算应力和位移的时结果的准确度较低。分析应力图可知,方案二得出的最大应力不在坝底和水的交界处,不符合实际情况,而方案一的最大应力所在位置符合实际情况,所以总体来说,方案一的分析结果优于方案二。原因是方案一具有整体几何保形性的单元数目多于方案二的数目。六、总结和建议通过以上分析情况可以看出,如果要使分析结果较为精确,单元的类型选择要恰当。由第(1)小问计算结果可知,不同的单元类型会造成结果的不同,节点较多可以保证计算精度较高;由第(2)小问的计算结果可知,划分网格时,单元数目也不能太少,单元数目的增加也可以提高计算的精度;但是对于实际工程而言,采用较多节点的单元反而会增加计算的工作量,影响工作效率和经济性。因此在保证网格划分大小适当和均匀的前提下,使应力集中处划的密集些,这样也能得到较为精确的结果。实验四试题4:图示为带方孔(边长为80mm)的悬臂梁,其上受部分均布载荷(p=10Kn/m)作用,试采用一种平面单元,对图示两种结构进行有限元分析,并就方孔的布置进行分析比较,如将方孔设计为圆孔,结果有何变化?(板厚为1mm,材料为钢)一、物理模型:图示为带方孔(边长为80mm)的悬臂梁,其上受均布载荷(p=10Kn/m)的作用,试采用一种平面单元,对图示两种结构进行有限元分析比较,如将方孔设计为圆孔,结果有何变化?(板厚为1mm,材料为钢)(图略)采用平面单元结构solid:quad 4nodes 42结构施加载荷:线载荷于上边的一半长度处施加约束:左侧完全刚固,限制所有自由度网格划分:NDIV取10,默认smart划分选择网格划分方式为Tri+free竖方孔有限元模型竖方孔位移云图竖方孔应力云图横方孔有限元模型横方孔位移云图横方孔应力云图圆孔有限元模型圆孔位移云图圆孔应力云图结果是较为精确的,也符合实际情况在上述三种悬臂梁中,可以得到以下结论:1、对于同种孔不同的开口位置:横孔的最大位移大于竖向开孔,但其最小应力和最大应力均显著小于竖向开孔,说明横向开孔的应力集中现象相对较小,但刚度略差。2、对于不同的开孔形状,圆孔在最大位移方面优于方孔,最小应力差于方孔,最大应力与横方孔持平,好于竖方孔。所以横方孔或圆孔是我们在悬臂梁设计中应该采用的工艺措施。加筋板建模ANSYS 作业一、加筋板建模加筋板的几何图形如图1所示。图1 加筋板的几何模型四边简支的板,受到均布压力0.1Mpa 的作用,求变形和应力。 要求:使用shell63和beam188单元。(1) 两个计算模型:无加筋板和加筋板(如图1)。 (2) 取图:两个计算模型的:a 、几何模型、有限元模型(把边界条件和加载显示出来)b 、加筋板把截面形状显示出来,即分别取图显示角钢L15010010⨯⨯和T 型材2020028100⨯⊥⨯的截面形状。c 、计算结果云图。位移云图和应力云图。(3)下结论。横向加强筋加筋板有限元模型普通平板几何模型普通平板有限元模型T 型材几何模型L型材几何模型加筋板应力云图普通板应力云图有限元参数:弹性模量:2.1e11,泊松比:0.3,NDIV为10,平板采用shell63单元,梁采用beam188单元。模型施加约束:四边简支,限制UX,UY,UZ三个方向自由度模型施加载荷:施加载荷于面上,均布载荷选择网格划分方式为Tri+free与实际相比,正确性良好,基本反映了真实的变形与应变情况。结论:可以看到,加筋板在减少变形以及减轻应力方面的巨大作用。加筋板的最大位移和最小应力比普通平板少了一个数量级,最大应力也远小于普通平板。因此在强度和刚度两方面指标上,加筋板远胜于普通平板。。

有限元分析大作业

有限元分析大作业

机电工程学院有限元分析及应用直齿圆柱齿轮的模态分析学号:S314070064专业:机械工程学生姓名:***任课教师:*** 教授2014年12月一 研究目的齿轮传动是机械工程领域应用最广泛的传动之一,模态分析技术已经成为振动系统分析与设计中广泛使用的重要手段,它是研究结构动力特性的一种近代方法,是系统辨别方法在工程振动领域中的应用。

模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。

齿轮在传递运动和动力时,传动系统通过各种外部激励和内部激励传递给齿轮系统,从而使齿轮在传动过程中产生振动。

齿轮的固有频率是齿轮的动态特性之一,对动载荷的产生与传递以及系统的振动形式有很重要的影响,因此分析齿轮的动态特性,对齿轮的设计和改进以及整个传递系统的动态性能的改进都有非常重要的实际意义。

二 齿轮模态求解分析齿轮副在啮合过程中,因加工误差、齿侧间隙和轮齿受载弹性变形及热变形,会产生啮合合成基节误差,使轮齿啮合时产生转速差异与突变,引起振动,也就是固有频率,从传统的静力学分析,固有频率可有下式近似计算mk f π210= (1) 式中:m 和k 分别为齿轮的等效质量和刚度系数,其大小根据查阅手册选取或据经验而定。

传统的模态分析技术无法有效地处理含有接触关系的非线性系统的装配体模态分析问题,为处理此问题,人们采取了一些线性化的近似处理方法,例如将装配体视为单一实体零件,或在将零件间的联接简化成线性弹簧等。

这种线性化的简化分析方法,难以对含有非线性接触联接的装配体进行准确分析。

而且往往要多次计算,消耗大量人力物力,为此在材料力学基础上产生了弹性力学的有限元法。

其中,齿轮系统的运动微分方程为()t F KX X C X M =++ (2)式中:M,C,K 分别是齿轮系统质量矩阵、阻尼矩阵和刚度矩阵,F 为收到外界激振力向量。

若无外力作用,即F(t)=0,则是系统自由振动方程,刚度矩阵与约束有关,但由于啮合部位的接触面积不断变化,K 也会发生相应变化,用传统的线性分析方法不易分析,有限元采用分段逼近方法,模拟连续体的约束条件是求解问题的关键。

有限元考试试题

有限元考试试题

有限元考试试题一、选择题(每题5分,共30分)1、在有限元分析中,我们通常使用什么方法来求解偏微分方程?A.积分法B.差分法C.有限差分法D.有限元法2、下列哪个不是有限元法的优点?A.可以处理复杂几何形状B.可以处理非线性问题C.可以处理大规模问题D.可以处理不稳定问题3、在有限元分析中,我们通常将连续的物理场离散化为一系列的什么?A.有限个点B.无限个小段C.有限个小段D.无限个点4、下列哪个不是有限元分析的基本步骤?A.划分网格B.建立模型C.执行计算D.编写代码5、在有限元分析中,我们通常使用什么来描述物理场的性质?A.偏微分方程B.泛函方程C.常微分方程D.边界条件6、下列哪个不是有限元分析的应用领域?A.结构分析B.流体动力学C.电磁学D.社会科学二、填空题(每题10分,共40分)7、______是一种将连续的物理场离散化为一系列有限个点的方法,是有限元分析的基础。

8、在有限元分析中,我们通常使用______来对物理场进行离散化处理。

9、______是一种求解偏微分方程的数值方法,广泛应用于有限元分析。

10、在有限元分析中,我们通常使用______来描述物理场的性质。

三、解答题(每题20分,共60分)11、请简述有限元分析的基本步骤,并解释其在结构分析中的应用。

12、请说明在有限元分析中,如何处理边界条件,并举例说明。

13、请简述有限元分析的优点和局限性。

有限空间培训考试试题及答案一、选择题1、在有限空间内,以下哪个行为是危险的?A.带压操作B.穿著宽松衣服C.使用电动工具D.所有上述答案:D.所有上述。

在有限空间内,带压操作、穿著宽松衣服和使用电动工具都是危险的。

2、当进入有限空间前,应该进行哪项操作?A.排放内部气体B.测试内部气体C.对内部进行冲洗D.所有上述答案:D.所有上述。

在进入有限空间前,应该进行排放内部气体、测试内部气体并对内部进行冲洗。

3、有限空间内的危险因素不包括以下哪个?A.缺氧B.有毒气体C.电击D.所有上述答案:C.电击。

有限元分析大作业试题

有限元分析大作业试题

有限元分析习题及大作业试题要求:1)个人按上机指南步骤至少选择习题中3个习题独立完成,并将计算结果上交;也可根据自己科研工作给出计算实例。

2)以小组为单位完成有限元分析计算;3)以小组为单位编写计算分析报告;4)计算分析报告应包括以下部分:A、问题描述及数学建模;B、有限元建模(单元选择、结点布置及规模、网格划分方案、载荷及边界条件处理、求解控制)C、计算结果及结果分析(位移分析、应力分析、正确性分析评判)D、多方案计算比较(结点规模增减对精度的影响分析、单元改变对精度的影响分析、不同网格划分方案对结果的影响分析等)E、建议与体会4)1月8日前必须完成,并递交计算分析报告(报告要求打印)。

习题及上机指南:(试题见上机指南)例题1 坝体的有限元建模与受力分析例题2 平板的有限元建模与变形分析例题1:平板的有限元建模与变形分析计算分析模型如图1-1 所示, 习题文件名: plane图1-1 受均布载荷作用的平板计算分析模型1.1进入ANSYS程序→ANSYSED 6.1 →Interactive →change the working directory into yours →input Initial jobname: plane→Run1.2设置计算类型ANSYS Main Menu: Preferences →select Structural →OK1.3选择单元类型ANSYS Main Menu: Preprocessor →Element T ype→Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element T ypes window)→Options… →select K3: Plane stress w/thk →OK→Close (the Element T ype window)1.4定义材料参数ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural→Linear→Elastic→Isotropic→input EX:2.1e11, PRXY:0.3→OK1.5定义实常数ANSYS Main Menu: Preprocessor →Real Constants… →Add… →select T ype 1→OK→input THK:1 →OK →Close (the Real Constants Window)1.6生成几何模型✓生成特征点ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS→依次输入五个点的坐标:input:1(0,0),2(1,0), 3(1,1),4(0,1),5(0.5,0.5) →OK✓生成平板ANSYS Main Menu: Preprocessor →Modeling →Create →Areas →Arbitrary →Through KPS→连接特征点1,2,5 →Apply →连接特征点2,3,5 →Apply →连接特征点3,4,5 →Apply →连接特征点4,1,5 →OK1.7网格划分ANSYS Main Menu: Preprocessor →Meshing→Mesh T ool →(Size Controls) lines: Set →Pick All(in Picking Menu) →input NDIV:1→OK→(back to the mesh tool window)Mesh: Areas, Shape: Tri, Free →Mesh →Pick All (in Picking Menu) →Close( the Mesh T ool window)1.8模型施加约束✓给模型施加x方向约束ANSYS Main Menu: Solution→Define Loads →Apply→Structural →Displacement→On Lines→拾取模型左部的竖直边:Lab2: UX →OK✓施加y方向约束ANSYS Main Menu: Solution→Define Loads →Apply→Structural →Displacement→On Keypoints→拾取4# 特征点:Lab2: UY →OK1.9 分析计算ANSYS Main Menu: Solution →Solve →Current LS→OK(to close the solve Current Load Step window) →OK1.10 结果显示ANSYS Main Menu: General Postproc →Plot Results→Deformed Shape…→select Def + Undeformed→OK (back to Plot Results window) →Contour Plot→Nodal Solu →select: DOF solution, UX,UY, Def + Undeformed →OK1.11 退出系统ANSYS Utility Menu: File→Exit →Save Everything→OK例题2:坝体的有限元建模与应力应变分析计算分析模型如图2-1 所示, 习题文件名: dam。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限元分析习题及大作业试题要求:1)个人按上机指南步骤至少选择习题中3个习题独立完成,并将计算结果上交;2)以小组为单位完成有限元分析计算;3)以小组为单位编写计算分析报告;4)计算分析报告应包括以下部分:A、问题描述及数学建模;B、有限元建模(单元选择、结点布置及规模、网格划分方案、载荷及边界条件处理、求解控制)C、计算结果及结果分析(位移分析、应力分析、正确性分析评判)D、多方案计算比较(结点规模增减对精度的影响分析、单元改变对精度的影响分析、不同网格划分方案对结果的影响分析等)E、建议与体会4)11月1日前必须完成,并递交计算分析报告(报告要求打印)。

习题及上机指南:(试题见上机指南)例题1 坝体的有限元建模与受力分析 例题2 平板的有限元建模与变形分析 例题1:平板的有限元建模与变形分析计算分析模型如图1-1 所示, 习题文件名: plane0.5 m 0.5 m0.5 m0.5 m板承受均布载荷:1.0e 5 P a图1-1 受均布载荷作用的平板计算分析模型1.1 进入ANSYS程序 →ANSYSED 6.1 →Interactive →change the working directory into yours →input Initial jobname: plane →Run1.2设置计算类型ANSYS Main Menu : Preferences →select Structural → OK 1.3选择单元类型ANSYS Main Menu : Preprocessor →Element T ype →Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element T ypes window) → Options… →select K3: Plane stress w/thk →OK →Close (the Element T ype window)1.4定义材料参数ANSYS Main Menu : Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY :0.3 → OK1.5定义实常数ANSYS Main Menu: Preprocessor →Real Constant s… →Add … →select T ype 1→ OK →input THK:1 →OK →Close (the Real Constants Window)1.6生成几何模型✓生成特征点ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS→依次输入五个点的坐标:input:1(0,0),2(1,0), 3(1,1),4(0,1),5(0.5,0.5) →OK✓生成平板ANSYS Main Menu: Preprocessor →Modeling →Create →Areas →Arbitrary →Through KPS→连接特征点1,2,5 →Apply →连接特征点2,3,5 →Apply →连接特征点3,4,5 →Apply →连接特征点4,1,5 →OK1.7网格划分ANSYS Main Menu: Preprocessor →Meshing→Mesh T ool →(Size Controls) lines: Set →Pick All(in Picking Menu) →input NDIV:1→OK→(back to the mesh tool window)Mesh: Areas, Shape: Tri, Free →Mesh →Pick All (in Picking Menu) →Close( the Mesh T ool window)1.8模型施加约束✓给模型施加x方向约束ANSYS Main Menu: Solution→Define Loads →Apply→Structural →Displacement→On Lines→拾取模型左部的竖直边:Lab2: UX →OK✓施加y方向约束ANSYS Main Menu: Solution→Define Loads →Apply→Structural →Displacement→On Keypoints→拾取4# 特征点:Lab2: UY →OK1.9 分析计算ANSYS Main Menu: Solution →Solve →Current LS→OK(to close the solve Current Load Step window) →OK1.10 结果显示ANSYS Main Menu: General Postproc →Plot Results→Deformed Shape…→select Def + Undeformed→OK (back to Plot Results window) →Contour Plot→Nodal Solu →select: DOF solution, UX,UY, Def + Undeformed →OK1.11 退出系统ANSYS Utility Menu: File→Exit →Save Everything→OK例题2:坝体的有限元建模与应力应变分析计算分析模型如图2-1 所示, 习题文件名: dam。

1m5m 0.55m图2-1 坝体的计算分析模型2.1进入ANSYS程序→ANSYSED 6.1 →Interactive →change the working directory into yours →input Initial jobname: dam→Run2.2设置计算类型ANSYS Main Menu: Preferences →select Structural →OK2.3选择单元类型ANSYS Main Menu: Preprocessor →Element T ype→Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element T ypes window)→Options… →select K3: Plane Strain →OK→Close (the Element T ype window)2.4定义材料参数ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural→Linear→Elastic→Isotropic→input EX:2.1e11, PRXY:0.3→OK2.5生成几何模型✓生成特征点ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS→依次输入四个点的坐标:input:1(0,0),2(1,0),3(1,5),4(0.45,5)→OK✓生成坝体截面ANSYS Main Menu: Preprocessor →Modeling →Create →Areas →Arbitrary →Through KPS→依次连接四个特征点,1(0,0),2(10,0),3(1,5),4(0.45,5) →OK2.6网格划分ANSYS Main Menu: Preprocessor →Meshing →Mesh T ool→(Size Controls) lines:Set →依次拾取两条横边:OK→input NDIV: 15 →Apply→依次拾取两条纵边:OK →input NDIV: 20 →OK →(back to the mesh tool window)Mesh: Areas, Shape: Quad, Mapped →Mesh →Pick All (in Picking Menu) →Close( the Mesh T ool window)2.7模型施加约束✓分别给下底边和竖直的纵边施加x和y方向的约束ANSYS Main Menu: Solution→Define Loads →Apply→Structural →Displacement→On lines→pick the lines →OK→select Lab2:UX, UY →OK✓给斜边施加x方向的分布载荷ANSYS 命令菜单栏: Parameters→Functions →Define/Edit→1) 在下方的下拉列表框内选择x ,作为设置的变量;2) 在Result窗口中出现{X},写入所施加的载荷函数:1000*{X};3) File>Save(文件扩展名:func) →返回:Parameters→Functions →Read from file:将需要的.func文件打开,任给一个参数名,它表示随之将施加的载荷→OK →ANSYS Main Menu: Solution→Define Loads →Apply→Structural →Pressure →On Lines →拾取斜边;OK →在下拉列表框中,选择:Existing table →OK →选择需要的载荷参数名→OK2.8 分析计算ANSYS Main Menu: Solution →Solve →Current LS→OK(to close the solve Current Load Step window) →OK2.9 结果显示ANSYS Main Menu: General Postproc →Plot Results→Deformed Shape…→select Def + Undeformed→OK (back to Plot Results window)→Contour Plot→Nodal Solu…→select: DOF solution, UX,UY, Def + Undeformed , Stress ,SX,SY,SZ, Def + Undeformed→OK2.10 退出系统ANSYS Utility Menu: File→Exit…→Save Everything→OK大作业试题1:图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较:1) 分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;2) 分别采用不同数量的三节点常应变单元计算; 3) 当选常应变三角单元时,分别采用不同划分方案计算。

相关文档
最新文档