导数的定义.ppt

合集下载

第一节导数的概念

第一节导数的概念

lim
x0
y x
lim
x0
f (x0 x) x
f (x0 ) a
存在, 则称 a 为 f (x) 在点 x0 处的左导数. 记为
f(x0 ) a
定理
f (x0 ) a f(x0 ) f(x0 ) a
好像见过面啊!
3. 导函数
定义 若 x(a, b), 函数 f (x) 皆可导, 则说 f (x) 在
2
22
物体由 t 到 t + t 一段的平均速度是
V (t) S(t t) S(t) 1 g(2t t t 2 )
(t t) t 2
t
gt 1 g t 2
求物体在时刻 t 的瞬时速度 vt , 就是
令 t0 的极限过程:
Vt
lim V
t 0
(t)
lim
t 0
S (t
t) t
S (t )
lim y lim f (x0 x) f (x0 ).
x0 x x0
x
二.导数的概念
1. 导数的定义
定义 设函数 f (x) 在 U(x0) 有定义, 且 x0+x U(x0).
如果极限lim f x0 x f x0 lim y a存在
x0
x
x0 x
则称函数 f (x) 在点 x0 处可导, 极限值 a 称为 f (x) 在
f'(0) lim y 1 x0 x
三、基本初等函数的导数
推导一些基 本公式啊 !
1. y = C x R ( C为常数 ) Q lim y lim C C lim 0 0 x0 x x0 x x0
(C) 0
通常说成:常数的导数为零.

高等数学导数的概念教学ppt课件.ppt

高等数学导数的概念教学ppt课件.ppt

h0
h
h0 h 0.
即 (C ) 0.
9
第二章 导数与微分
第一节 导数的概念
例5 设函数 f ( x) sin x,求(sin x)及(sin x) x . 4
解:(sin x) lim sin( x h) sin x
h0
h
h
lim cos( x
h0
h) sin 2 2h
cos
x.
2 即 (sin x) cos x.
定理2.1.2 凡可导函数都是连续函数.
证 设函数 f ( x)在点 x0可导, 即
lim y x0 x
f ( x0 )

lim y
x0
lim
x0
y x
x
f
(
x0
)
lim
x0
x
0
函数 f ( x)在点 x0连续 .
注意: 该定理的逆定理不成立.
15
第二章 导数与微分
第一节 导数的概念
例10 讨论函数 f ( x) x 在x 0处的可导性.
1.左导数:
f( x0 )
lim
x x0
f ( x) f ( x0 ) lim
x x0
x0
f ( x0 x) x
f ( x0 ) ;
2.右导数:
f( x0 )
lim
x x0
f ( x) f ( x0 ) lim
x x0
x0
f ( x0 x) x
f ( x0 ) ;
定理2.1.1
函数 f ( x)在点x0 处可导 左导数 f( x0 ) 和右 导数 f( x0 )都存在且相等.
解: f (0 h) f (0) h ,

导数的概念课件人教新课标

导数的概念课件人教新课标
就无限趋近于t=2时的瞬时速度。
所以:运动员在t=2时的瞬时速度是-13.1m/s 为了表述方便,我们用:
lim h(2 t) h(2) 13.1
t 0
t
表示:“当t=2, △t趋近于0时,平均速 v
度趋近于确定值-13.1”
瞬时速度
那么,运动员在某一时刻t0的瞬时速度?
lim h(t0 t) h(t0 )
x0 x x0
同理可得 f '(6)=5
f (2) 3 说明在第2h附近,原油温度 大约以3 ℃/h的速度降落;
f '(6)=5
说明在第6h附近,原油温度 大约以5 ℃/h的速度上升;
t0
t
函数f (x)在x x0处的瞬时变化率怎样表 示?
导数的概念: 一般地,函数y = f (x) 在x = x0 处的瞬时变 化率是
我们称它为函数y = f (x)在x=x0 处的导数, 记作
即:
y |xx0
注意:
y |xx0
表示函数y关于自变量x在x0处 的导数。
定义:
函数 y = f (x) 在 x = x0 处的导数, 记作
时刻的瞬时速度。
那么,如何求运动员的瞬时速度呢?
比如,t=2时的瞬时速度是多少?
我们先考察t=2附近的情况:
在t=2之前或之后,任意取一个时刻2+△t,
△t是时间改变量,可以是正值, 也可以是负值,但不为0。
当△t<0时, 2+△t 在2之前; 当△t>0 时, 2+△t 在2之后。
计算区间[2+△t ,2]和区间[2,2 +△t ] 内的平均速度 v ,可以得到如下表格:
第三章 导数及其应用 3.1.2 导数的概念

高中数学《导数的概念》公开课优秀课件

高中数学《导数的概念》公开课优秀课件

高中数学《导数的概念》公开课优秀课件标题:高中数学《导数的概念》公开课优秀课件尊敬的各位老师,大家好!今天我们将一起学习高中数学中一个非常重要的概念——导数的概念。

这个概念在微积分学中占据了重要的地位,对于我们理解函数的变化率,以及在科学、工程、经济和计算机科学等领域都有广泛的应用。

一、导数的定义首先,让我们来看看导数的定义。

假设有一个函数f(x),在某一点x0的附近取一系列的点,这些点的横坐标是x0+Δx。

那么,函数f(x)在点x0的导数就是这一系列点的纵坐标f(x0+Δx)与横坐标之商的极限,记作f'(x0)。

二、导数的几何意义从几何意义上来看,导数表示函数在某一点处的切线的斜率。

当我们把函数在x0附近的点沿着横坐标逐渐移动时,该点的纵坐标会相应地变化,这个变化率就是导数。

三、导数的应用导数的应用非常广泛,它可以用来解决很多实际问题。

例如,在物理学中,导数被用来描述物体的运动学和动力学问题,如速度和加速度;在经济学中,导数被用来分析成本、收益和价格的变化;在计算机科学中,导数被用来研究图像处理和人工智能的问题。

四、导数的计算导数的计算有很多方法,其中最常见的方法是使用导数的定义。

我们可以根据定义来推导出一些基本的导数公式,如常数函数的导数为0,幂函数的导数与其指数有关,三角函数的导数与其角度有关等。

五、总结与复习今天我们学习了导数的概念和计算方法。

导数是微积分学的基础,它描述了函数在某一点处的变化率。

通过学习导数的定义和基本公式,我们可以解决很多实际问题。

六、作业与扩展阅读为了加深对导数概念的理解,请大家完成以下作业:1、复习并熟练掌握导数的基本定义和公式;2、自行寻找并解决一到两个与导数相关的问题(可以从物理、经济或计算机科学等领域寻找)。

同时,我推荐大家阅读《微积分的概念》这本书,作者是著名的数学家Richard Courant。

这本书对微积分的概念有深入且生动的解释,对于我们深入理解导数的概念非常有帮助。

导数的几何意义ppt

导数的几何意义ppt

导数的物理意义
80%
速度
导数可以用来描述物理量随时间 的变化速率,例如速度是位移对 时间的导数。
100%
斜率
在物理量中,导数可以表示斜率 ,例如加速度是速度对时间的导 数。
80%
变化率
导数可以用来描述物理量的变化 率,例如电流强度是电荷对时间 的导数。
02
导数与切线斜率
切线的定义
பைடு நூலகம்01
切线是过曲线上某一点的直线, 该点称为切点。
导数在经济问题中的应用
边际分析与决策
导数可以用来描述边际成本、边际收益和边际利润等概念,帮助 企业做出最优的决策。
供需关系
导数可以用来分析市场的供需关系,例如通过分析需求函数和供给 函数的导数,可以了解市场均衡点的变化趋势。
经济增长与人口变化
导数可以用来描述经济增长和人口变化的趋势,例如通过分析GDP 和人口增长率的导数,可以了解经济和人口的发展趋势。
04
导数在实际问题中的应用
导数在物理问题中的应用
速度与加速度
导数可以用来描述物体运动的速度和加速度,通过分析导 数可以了解物体的运动状态和变化趋势。
斜率与曲线
导数可以用来描述曲线的斜率,例如在分析弹性、阻力和 引力等物理现象时,导数可以帮助我们理解物体在曲线上 的运动状态。
能量与功率
在物理中,导数可以用来描述能量和功率的变化,例如在 分析电路、热传导和流体动力学等问题时,导数可以帮助 我们建立数学模型并求解。
导数与函数极值
总结词
导数可以用来确定函数的极值点。
详细描述
函数的极值点出现在导数为零或变号的点上。在极值点处,函数值可能达到最大或最小。因此,通过求函数的导 数并找到导数为零的点,可以确定函数的极值点。

高中数学导数的概念 PPT课件 图文

高中数学导数的概念 PPT课件 图文

导数的定义:
从函数lyim=f(xf )(在x0x=x0x处) 的f瞬( x时0 )变化lim率是f: ,
x0
x
x0 x
我们称它为函数 y f ( x)在x x0
处的导数 , 记作 f ( x0 )或y xx0 ,即 :
f (x0 )
lim
x0
f
( x0
数值的改变量与自变的量改变量之比,即:
y f (x2) f (x1) .
x
x2 x1
我们用它来刻画函数在值区间[x1, x2]上变化的快慢.
对于一般函y数 f (x),在自变量 x从x0变到x1的
过程中,若设x x1 x0,则函数的平均变化:率是
y f (x1) f (x0) f (x0 x) f (x0).
x) x
f
(x0 )
例题讲解
例 1一条水管中流 y(单 过位 :m 的 3)时 水间 x(量 单位 :s) 的函y数 f(x)3x.求函y数 f(x)在x2处的导数 f(2)并 , 解释它的. 实际意义
解:当x从2变到2x时,函数值3从2变
到3(2x),函数值 y关于x的平均变化率 : 为
例2一名食品加工厂的上工班人后开始连续, 工作 生产的食品数 y(单 量位:kg)是其工作时x(间 单位:h) 的函数 y f (x).假设函y数 f (x)在x1和x3处 的导数分别: f为(1) 4和f (3) 3.5,试解释它们 的实际意. 义
如 其 解 4kg:果 生 的 f (保 产 1食) 持 速 品.4(表 这 度 即示 一 工该 生 作工 产 效,人 速 )那 率 为上 4度 么kg班 他/h后 .每 也1工 h时 就的作 可 是时以 说 ,候, 生一 其 产 f(3生 生 )3产 产 .5表 速 速 ,那 示 3.度 度 5么 k该 g为 /他 h工 .也每 人 就时 上 是可 ,如 班 说 33h.以 5的 果 k后g的 生 时 保 工食 产 ,候 持 作 .品 这

高等数学导数的概念ppt课件.ppt

高等数学导数的概念ppt课件.ppt

x0 处的右 (左) 导数, 记作
y
y x
o
x
机动 目录 上页 下页 返回 结束
定理2. 函数 是
在点 可导的充分必要条件 且
简写为 f (x0) 存在
f(x0 )
定理3. 函数 在点 处右 (左) 导数存在
在点 必 右 (左) 连续.
若函数
在开区间
内可导, 且
都存在 , 则称
在闭区间
上可导.
显然:
f
(0)
lim
x 0
sin x
x
0
0
1
ax 0
f
(0)
lim
x 0
x0
a
故 a 1 时
此时

都存在,
机动 目录 上页 下页 返回 结束
作业
P49 5 , 7, 9
第二节 目录 上页 下页 返回 结束
备用题
1. 设
存在, 且

解: 因为
1 f (1 (x)) f (1)
lim
2 x0
(x)
在闭区间 [a , b] 上可导
与 f(b)
机动 目录 上页 下页 返回 结束
练习:讨论下列函数在x=0时候的连 续性与可导性.
练习:习题2.1题8
f
x
xk
sin
1 x
,
x0
0, x 0.
若函数在x 0连续,则
lim f x lim xk sin 1 f 0 0,
x0
x0
x
必须满足 lim xk 0, k 0即可. x0
反例:
在 x = 0 处连续 , 但不可导. o
x
机动 目录 上页 下页 返回 结束

课件2:5.1.2 导数的概念及其几何意义

课件2:5.1.2 导数的概念及其几何意义

答案:(1)A
(2)曲线 f(x)=x3 在点(a,a3)(a≠0)处的切线与 x 轴,直线
x=a 围成的三角形的面积为16,则 a=________.
解析:(2)因为 f′(a)=lim Δx→0
a+ΔΔxx3-a3=3a2,
所以曲线在点(a,a3)处的切线方程为 y-a3=3a2(x-a).
令 y=0,得切线与 x 轴的交点为32a,0,
2.若函数 f(x)=-3x-1,则 f′(x)=( )
A.0
B.-3x
C.3
D.-3
解析:k= lim Δx→0
-3x+Δx-Δ1x--3x-1=-3.
答案:D
3.设曲线 y=x2+x-2 在点 M 处的切线斜率为 3,则点
M 的坐标为( )
A.(0,-2)
B.(1,0)
C.(0,0)
D.(1,1)
方法归纳 求满足某条件的曲线的切点坐标的步骤 (1)先设切点坐标(x0,y0); (2)求导函数 f′(x); (3)求切线的斜率 f′(x0); (4)由斜率间的关系列出关于 x0 的方程,解方程求 x0; (5)点(x0,y0)在曲线 f(x)上,将(x0,y0)代入求 y0 得切点坐标.
微点 2 与曲线的切点相关的问题 例 4 已知直线 l1 为曲线 y=x2+x-2 在(1,0)处的切线, l2 为该曲线的另一条切线,且 l1⊥l2. (1)求直线 l2 的方程; (2)求由直线 l1,l2 和 x 轴围成的三角形面积.
方法归纳 1.求曲线上某点切线方程的三个步骤
2.过曲线外的点 P(x1,y1)求曲线的切线方程的步骤 (1)设切点为 Q(x0,y0). (2)求出函数 y=f(x)在点 x0 处的导数 f′(x0). (3)利用 Q 在曲线上和 f′(x0)=kPQ,解出 x0,y0 及 f′(x0). (4)根据直线的点斜式方程,得切线方程为 y-y0=f′(x0)(x-x0).

高等数学-导数概念

高等数学-导数概念

f ( x0 x) x
f ( x0 )
,
导数也可记为
f (x0 ) 或
df dx
. x x0

f (x0 )
y
y
x x0
lim
x0
x
lim
x0
f (x0 x) x
f (x0 )
其它形式
令h x
f (x0 )
lim h0
f
( x0
h) h
f
(x0 ) .
令x x0 x
f
( x0
U ( x0 , )内有定义 , 且 x0 x U ( x0 , )
若 lim f ( x0 x) f ( x0 ) 存在, 则称 f ( x) 在
x0
x
x0 点可导 , 且称极限值为 f ( x) 在 x0 点的导数 ,
记为
dy dx

x x0
y( x0 ),
即 dy dx
x x0
lim x0
yx
x
2. 设函数 f (x)在点 x0连续, 但
lim y lim f (x0 x) f (x0 )
x x0
x0
x
例如, f ( x) 3 x 1,
在 x 1处不可导.
y y 3 x 1
0
1
x
3. 函数 f ( x)在连续点的左右导数都不存在
(指摆动不定) , 则 x0点不可导 .
变速直线运动:路程对时间的导数为物体的 瞬时速度.
v(t) lim s ds . t0 t dt
小结
1. 导数的实质: 增量比的极限;
2. f ( x0 ) a f( x0 ) f( x0 ) a; 3. 导数的几何意义: 切线的斜率;

人教版高中数学选择性必修2《导数的概念及其意义》PPT课件

人教版高中数学选择性必修2《导数的概念及其意义》PPT课件
高中数学
选择性必修第二册 RJ
RJA
第五章
1
5.1导数的概念及其意义
5.1.2 导数的概念
及其几何意义
学习目标
1.通过实例分析,经历由平均变化率过渡到瞬时变化率的过程.
2.理解函数平均变化率、瞬时变化率的概念以及它们之间的关系.
3.掌握函数平均变化率、瞬时变化率的求法.
4.掌握导数的概念及其几何意义,会用导数的概念求简单函数在某点处的导数及曲
4x (x) 2 7 x

x 3,
x
了原油温度在时刻x0附近的变化情况.
y
lim (x 3) 3.
x 0 x
x 0
所以f '(2) lim
同理可得 ′(6)=5.
在第2 h与第6 h时,原油温度的瞬时变化率分别为−3 ℃/h与5 ℃/h.说明在第2 h附近,
y
所以v '(2) lim
lim t 2 2. 同理可得 ′(6)= − 6.
t 0 t
t 0
在第2 s与第6 s时,汽车的瞬时加速度分别是2 m/s2与−6 m/s2.说明在第2 s附近,汽车的速度
每秒大约增加2 m/s;在第6 s附近,汽车的速度每秒大约减少6 m/s.
我们知道,导数 ′(0)表示函数=()在=0处的瞬时变化率,反映了函数
=()在=0附近的变化情况.那么导数 ′(0)的几何意义是什么?
思考:观察函数=()的图象(如下图),平均变化率
原油温度大约以3 ℃/h的速率下降;在第6 h附近,原油温度大约以5 ℃/h的速率上升.
例3
一辆汽车在公路上沿直线变速行驶,假设 s时汽车的速度(单位:m/s)为
=()= − 2 + 6 + 60,求汽车在第2 s与第6 s时的瞬时加速度,并说明它们的意义.

导数的几何意义课件(共28张PPT)

导数的几何意义课件(共28张PPT)
y
y f x
P1
T P
y
y f x
P2
T
n 1, 2, 3, 4
O
x
O
x
1
y f x
y
2
y f x
时, 割线PPn的 变 化 趋势 是 什么?
P
P3
T
T
P4 P
O
x
O
x
3
4
图1.1 2
新 授
1、曲线上一点的切线的定义
y=f(x) y Q 割 线 T 切线
当点Q沿着曲线无限接近点P即Δ x→0时,割线PQ有一个 极限位置PT.则我们把直线PT称为曲线在点P处的切线. 设切线的倾斜角为α ,那么当Δx→0时,割线PQ的斜率, 称为曲线在点P处的切线的斜率.
f ( x0 x ) f ( x0 ) y 即: k切线 tan lim lim x 0 x x 0 x
题型三:导数的几何意义的应用
例1:(1)求函数y=3x2在点(1,3)处的导数.
2 3(1 x) 2 3 12 3 x 6x 解:y |x 1 lim lim x 0 x x 0 x
lim 3( x 2) 6
x 0
(2)求曲线y=f(x)=x2+1在点P(1,2)处的切线方程.
C
割线与切线的斜率有何关系呢?
k PQ
y=f(x) y Q(x1,y1)
△y
y f ( x x ) f ( x ) = x x
即:当△x→0时,割线 PQ的斜率的极限,就是曲线 在点P处的切线的斜率,
P(x0,y0)
△x
M
o
x

数学分析--导数 ppt课件

数学分析--导数  ppt课件

数,如果要讨论改函数在端点处的变化率时,就要对导数概念加以补充,引出单 侧导数的概念。
定义 2 设函数 y f (x) 在点 x0 的某右邻域 (x0 ,x 0 δ)上有定义,若右
极限 或
l i m Δ y l i m f ( x0 Δ x ) f ( x0 ) (0< x < )
Δ x Δx 0
理 5.1, f(x) x 在 x x 0 0 处不可导。
当 x0 0 时,由于 D(x) 为有界函数, 因此得到
f(0)
lim
f(x)
f(0)
li
mxD(x)
0.
x0 x 0
x 0
ppt课件
下页 18
(二)函数在一点的单侧导数
类似于函数在一点有左、右极限, 对于定义在某个闭区间或半开区间上的函
dx
dx
运算,待到学过“微分”之后,将说明这个记号实际上是一个“商”,相应于上述各种
表示导数的形式,f |x x 0 或
dy dx
|xx0

ppt课件
下页 23
例 6 证明:
(i) ( xn ) nxn1, n 为正整数 ;
(ii) (sinx) cosx , (cosx) sinx
(iii)
y 1
-1/π
0
1/π
x
ppt课件
下页 22
(三)导函数 若函数在区间 I 上每一点都可导(对区间端点,仅考虑相应的单侧导数),则称 f
为 I 上的可导函数。此时对每一个χ∈I,都有 f 的一个导数 f '(x) (或单侧导数)与之
对应,这样就定义了一个在 I 上的函数,称为 f 在 I 上的导函数,也简称为导数,记作

高等数学课件21导数的概念1

高等数学课件21导数的概念1

y yf(x) N
f(x0)
CM
T
说明: 在经济学中, 边际成本率, o x 0 x x
边际劳动生产率和边际税率等从数学角度看就是导数.
机动 目录 上页 下页 返回 结束
yf(x)f(x0) xxx0
若上述极限不存在 , 就说函数 在点 x 0 不可导.
若 lim y , 也称 x0 x
x
y
曲线过
下降;
切线与 x 轴平行, 称为驻点;
(x0 , y0)
切线与 x 轴垂直 .
o y
x 0 x
曲线在点
处的
切线方程:
o
x0
x
法线方程:
(f(x0)0)
机动 目录 上页 下页 返回 结束
例7. 问曲线
哪一点有垂直切线 ? 哪一点处
的切线与直线
平行 ? 写出其切线方程.
解:
1x32 3
y xx0 ;
f(x0);
dy dx
x

x0
;
df (x) dx x x0

y
xx0
f(x0)
lim y x0 x
机动 目录 上页 下页 返回 结束
运动质点的位置函数 sf(t)
在 t 0 时刻的瞬时速度
f (t0 )
o t0
f (t) s t
f(t0)
曲线 C:yf(x)在 M 点处的切线斜率
机动 目录 上页 下页 返回 结束
2. 曲线的切线斜率
y
曲线
在 M 点处的切线
yf(x)
N
割线 M N 的极限位置 M T
(当
时)
CM
T
切线 MT 的斜率

5.1.2 导数的概念及其几何意义课件ppt

5.1.2 导数的概念及其几何意义课件ppt

y
y
,即
x
x
=
f(x 0 +x)-f(x 0 )
x
叫做函数y=f(x)从x0到x0+Δx的平均变化率.
(x0+Δx)-x0
名师点析 (1)Δx是自变量的变化量,它可以为正,也可以为负,但不能等于零,
而Δy是相应函数值的变化量,它可以为正,可以为负,也可以等于零.
(2)函数平均变化率的物理意义:如果物体的运动规律是s=s(t),那么函数s(t)
Δ
所以 =-Δx-2x+3.故函数的导数
Δ
Δ
f'(x)= lim
Δ→0 Δ
= (-Δx-2x+3)=-2x+3.
Δ→0
反思感悟 (1)利用定义求函数 y=f(x)的导数的步骤
①求函数值的变化量 Δy=f(x+Δx)-f(x);
Δ
②求函数的平均变化率
Δ
③取极限,得
=
(+Δ)-()
(2)若函数y=f(x)在某区间[x0,x0+Δx]上的平均变化率为0,能不能说明函数值在区
间[x0,x0+Δx]上的函数值都相等?
提示 不能.因为函数在某区间[x0,x0+Δx]上的平均变化率为0只能说明
f(x0+Δx)=f(x0).
(3)函数y=f(x)在区间[x0,x0+Δx]上的平均变化率的几何意义是什么?
它是一个确定的值,与给定的函数及x(或x0)的位置有关,而与Δx无关;导函
数是对一个区间而言的,它是一个确定的函数,依赖于函数本身,也与Δx无
关.
微练习
求函数 y=f(x)= x的导数.
解 函数的导数为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当 x无限趋近于0时,kPQ无限趋近点P处切线的斜率
例1:已知 f (x) x2,求曲线
y=f(x)在x=2处的切线的斜率.
解 : 先求过(2,4)点的任意一条割线入手
P(2,4),Q(2 x, (2 x)2 ),则
kPQ
(2 x)2 4 (2 x) 2
4
x
当x无限趋近于0时, kPQ无限趋近于常数4 所以点P(2,4)处的切线斜率为4
求曲线在某点处的切线方程的基本步骤:
1、先利用直线斜率的定义求出割线的 斜率; 2.求出当△x趋近于0时切线的斜率 3、然后利用点斜式求切线方程.
课堂练习
1.已知曲线 y 2x2 上一点 A(1,2),
求(1) 点 A 处的切线的斜率. (2)点 A 处的切线的方程.
2.求曲线 y x2 1在点 P(-2,5) 处的切线方程.
根据导数的定义,f
(2
x) x
f
(2)
4x (x)2 7x x 3 x
所以, f (2) lim f lim (x 3) 3.
x0 x x0
同理可得 f (6) 5.
在第2h和第6h时, 原油温度的瞬时变化率分别为–3和5. 它说
明在第2h附近, 原油温度大约以3 C / h的速率下降; 在第6h附近,
拓展研究
已知曲线y x2 2x在 某点的切线斜率为2, 求此点坐标.
新课讲解
二、物理意义——瞬时速度
在物理学中,我们学过平均速度v s t
平均速度反映了在某一段时间内 运动的快慢程度,那么,如何刻画在 某一时刻运动的快慢程度呢?
实例:
某同学去蹦极,假设某同学下降的运动
符合方程 s 1 gt2 ,请同学们计算 某同学从3秒到2 5秒间的平均速度,如何
原油温度大约以5 C / h的速率上升.
例1 将原油精炼为汽油、柴油、塑胶等各种不同产品,
需要对原油进行冷却和加热. 如果第 x h时, 原油的温度(单 位: C )为 f (x) = x2 – 7x+15 ( 0≤x≤8 ) . 计算第2h和第6h,
原油温度的瞬时变化率, 并说明它们的意义.
1.1.2 瞬时变化率
导数 ——
一.复习 平均变化率
一般的,函数 f (x)在区间上 [ x1, x2 ] 的平均变化率为
y f (x2) f (x1) f (x1 x) f (x1)
x
x2 x1
x
如何求曲线上一点的切线?
(1)概念:曲线的割线和切线 y=f(x)
割 线
y
Q
T 切线
P
f
( x0
)
lim
x0
f (x0 Δx) f (x0 ) x
.
(1). f (x0 )与x0的值有关,不同的x0其导数值一般也不相同;
f (x0 )与x的具体取值无关。 (2).瞬时变化率与导数是同一概念的两个名称。
导数的定义:
函数 y = f (x) 在 x = x0 处的瞬时变化率是
lim f (x0 Δx) f (x0 ) lim f
v(t) t 2 3求t=5秒时轿车的
加速度. ( 10 )
小结:
(1)求曲线上一点切线的斜率时,先利用 平均变化率求出割线的斜率,再令 x 0 求出切线的斜率
(2)在求瞬时速度时,先利用平均变化率求
出平均速度,再令x 0,求出瞬时速度
(3)在求瞬时加速度时,先利用平均变化
率求出平均加速度,再令x 0 ,求出瞬
时加速度.
重要结论:
x 0
平均变化率
瞬时变化率
导数的定义:
函数 y = f (x) 在 x = x0 处的瞬时变化率是
lim f (x0 Δx) f (x0 ) lim f
x 0
x
x0 x
称为函数 y = f (x) 在 x = x0 处的导数, 记作 f (x0 )
或 y |xx0 , 即
结论:
设物体作直线运动所经过的路程
为s=s(t). 以t0为起始时刻,物体在t
时间内的平均速度为
vvss ff ((tt00 t)t)f (ft0(t)0。) 。
tt
t t当t0时, v 常数这个常数就是物体在t0时刻
的瞬时速度.
二、物理意义——瞬时加速度
设一辆轿车在公路上做加速 直线运动,假设t秒时的速度为
计算出在第3秒时的速度,即t=3时的
瞬时速度呢?
s 1 gt 2(s表示位移,t表示时间) 2
解 : 先计算t 3到t 3 t时间内的平均速度,
v
s
1 2
g(3 t)2
1 2
g 32
1
g(6 t)
t
(3 t) 3
2
当t无限趋近于0时, v无限趋近于常数3g,
此即t 3秒时的瞬时时速
练习: 计算第3h和第5h时原油的瞬时变化率, 并说 明它们的意义.
练习:
课堂练习:
1、如果质点A按规律 s 2t3 则在t=3s
时的瞬时速度为( )
A.6
B.18
C.54 D.81
2 、
总结:
1、导数的定义: 2、求函数 y = f (x)的导数的一般方法:
利用割线求切线
例2:求曲线y=f(x)=x2+1在点P(1,2) 处的切线方程.
解 : P(1, 2),Q(1 x, (1 x)2 1),则
kPQ
(1 x)2 1 (1 x) 1
2
2
x
当x无限趋近于0时, kPQ无限趋近于常数2 所以点P(1, 2)处的切线斜率为2
因此,切线方程为y-2=2(x-1),即y=2x.
o
x
结论:当Q点无限逼近P点时,此时
直线PQ就是P点处的切线.
(2)如何求割线的斜率? y=f(x)
y
Q
o
P
x
f (x x) f (x) f (x x) f (x)
kPQ (x x) x
x
y=f(x)
(3)如何求切线的斜率?
割 线
y
Q
T 切线
o
P
x
kPQ
f (x x) x
f (x)
2. 求平均变化率 f f (x0 x) f (x0 ) ;
3.
求值
f
( x0
)
x
lim
x0
f x
.
x
一差、二化、三极限
例1 将原油精炼为汽油、柴油、塑胶等各种不同 产品, 需要对原油进行冷却和加热. 如果第 x h时, 原油 的温度(单位: C )为 f (x) = x2 – 7x+15 ( 0≤x≤8 ) . 计算 第2h和第6h, 原油温度的瞬时变化率, 并说明它们的意 义. 解: 在第2h和第6h时, 原油温度的瞬时变化率就是 f (2)和 f (6).
x 0
x
x0 x
称为函数 y = f (x) 在 x = x0 处的导数, 记作 f (x0 )
或 y |xx0 , 即
f
(x0 )
lim
x0
f
( x0
Δx) x
f
(x0 )
.
由导数的定义可知, 求函数 y = f (x)的导数的一般方法:
1. 求函数的改变量 f f (x0 x) f (x0 );
相关文档
最新文档