2020年浙江省金华市中考数学试卷

合集下载

2020年浙江金华中考数学试卷(解析版)

2020年浙江金华中考数学试卷(解析版)

2020年浙江金华中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.实数的相反数是( ).A. B. C. D.2.分式的值是零,则的值为( ).A. B. C. D.3.下列多项式中,能运用平方差公式分解因式的是( ).A. B. C. D.4.下列四个图形中,是中心对称图形的是( ).A.B.C.D.5.如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到号卡片的概率是( ).A.B.C.D.6.如图,工人师傅用角尺画出工件边缘的垂线和,得到,理由是( ).A.连结直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行7.已知点,,在函数 的图象上,则下列判断正确的是( ).A.B.C.D.8.如图,⊙是等边的内切圆,分别切,,于点,,,是上一点,则的度数是( ).A.B.C.D.9.如图,在编写数学谜题时,“”内要求填写同一个数字,若设“”内数字为,则列出方程正确的是( ).A.B.C.D.10.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形与正方形.连结,相交于点,与相交于点.若,则的值是( ).A.B.正方形正方形C.D.二、填空题(本大题共6小题,每小题4分,共24分)11.点在第二象限内,则的值可以是(写出一个即可) .12.数据,,,,的中位数是 .13.如图为一个长方体,则该几何体主视图的面积为 .单位:主视方向14.如图,平移图形,与图形可以拼成一个平行四边形,则图中的度数是 .15.如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点,,均为正六边形的顶点.与地面.所成的锐角为,则的值是 .(1)(2)16.图是一个闭合时的夹子,图是该夹子的主视示意图,夹子两边为,(点与点重合),点是夹子转轴位置,于点,于点,,,,.按图示方式用手指按夹子,夹子两边绕点转动. 图图当,两点的距离最大时,以点,,,为顶点的四边形的周长是.当夹子的开口最大(即点与点重合)时,,两点的距为.三、解答题(本大题共8小题,共66分)17.计算:.18.解不等式:.19.某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如下两幅不完整的统计图表,请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表(1)(2)(3)类别项目人数(人)跳绳健身操俯卧撑开合跳其它抽取的学生最喜爱体育锻炼项目的扇形统计图.跳绳.健身操.俯卧撑.开合跳.其他求参与问卷调查的学生总人数.在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?该市共有初中学生人,估算该市初中学生中最喜爱“健身操”的人数.(1)(2)20.如图,的半径,于点,.求弦的长.求的长.21.某地区山峰的高度每增加百米,气温大约降低.气温和高度(百米)的函数关系如图所示,请根据图象解决下列问题:(1)(2)(3)(百米)求高度为百米时的气温.求关于的函数表达式.测得山顶的气温为,求该山峰的高度.图(1)图1图2(2)22.如图,在中,,,.求边上的高线长.点为线段的中点,点在边上,连结,沿将折叠得到.如图,当点落在上时,求的度数.如图,连结,当时,求的长.23.如图,在平面直角坐标系中,已知二次函数图象的顶点为,与轴交于点,异于顶点的点在该函数图象上.【答案】解析:∵,∴的相反数是.故选:.(1)(2)(3)xy当时,求的值.当时,若点在第一象限内,结合图象,求当时,自变量的取值范围.作直线与轴相交于点当点在轴上方,且在线段上时,求的取值范围.(1)(2)(3)24.如图,在平面直角坐标系中,正方形的两直角边分别在坐标轴的正半轴上,分别过,的中点,作,的平行线,相交于点,已知.备用图求证:四边形为菱形.求四边形的面积.若点在轴正半轴上(异于点),点在轴上,平面内是否存在点,使得以点,,,为顶点的四边形与四边形相似?若存在,求点的坐标;若不存在,试说明理由.A 1.解析:,即,,,经检验不是原方程的解,是原方程的解,故.故选.解析:中心对称图形是旋转后和原图形能够重合,、、均为轴对称图形.解析:由于所有机会均等的结果为种,选中号的情况是种,所以摸到号的概率为,故应选:.解析:工人师傅用角尺画出工件边缘的垂线和,得到,理由是在同一平面内,垂直于同一条直线的两条直线互相平行.故选.解析:反比例函数经过一、三象限,点在第三象限故,点;在第一象限,D 2.C 3.C 4.A 5.B 6.C 7.当函数在第一象限时,随增大而减小且此时,故,∴.故答案为:.解析:如图连接、,∵⊙为的内切圆,分别切、于点、,∴,,∴,∵为等边三角形,∴,四边形中,,∴,所对圆心角为,圆周角为,∴,∴.故选.解析:中的是十位上的数,是个位上的数,中的是十位上的数,是个位上的数,∴.B 8.D 9.B10.解析:设,与交点为点.由题意可知:≌≌≌,∴,,又四边形为正方形,∴,,,∴,与中有,∴≌,∴,,,∵,∴,与中有,∴≌,∴ ,又,∵,∴,又,,,∴,∴,∴,∴,∴中,∵为正方形,∴,又,∴.故选.解析:∵点在第二象限,∴,故(答案不唯一).解析:把这些数从小到大排列为:、、、、,最中间的数是,则中位数是.故答案为:.解析:该几何体的主视图是一个长,宽的长方形,所以主视图的面积是.解析:如图所示,即为与拼成的平分四边形,则,过点作,则,∴,,∴,.正方形正方形正方形正方形(答案不唯一,负数即可)11.12.13.14.解析:设正六边形的边长为,如图所示,在正六边形中,由于正六边形是轴对称图形,对称轴、、交于点,则,∴≌≌≌≌≌,∴,∴、、、、、均为等边三角形.∴,连接交于点,∴,,∴,,过点作于点,过点作,过点作于点,交于点,交于点,于点,交于点,交正六边形于点,交正六边形顶点.∴四边形、、均为矩形.∴,,,又,∴.15.、、(1)(2)又,,,,,,∴.∴,∴.故的值是.解析:由题意可知,若、两点之间的距离最大,则为,即、、三点共线时.∵,,,∴,∴,又∵,故,∴四边形为矩形,∴,∴四边形的周长为:().当夹子开口最大时(点与重合)如图所示:(1)(2)16.连接、相交于点,∵,∴,∵,∴(),∵故,在中,(),∵且,,,∴且,∵,,∴,∴,∴,∴,∴,∵且,,∴,∴,∴,∴().解析:.17.(1)(2)(3)(1)(2)原式.解析:,,,.解析:.∴参与问卷调查的学生总人数为人..答:最喜爱“开合跳”的学生有人.抽取学生中最喜爱“健身操”的初中学生有:(人),.∴最喜爱“健身操”的初中学生人数约为人.解析:在中,,∴.∵,∴.∵,,∴.∴.18.(1)人.(2)人.(3)人.19.(1).(2).20.(1)(2)(3)(1).∴的长是.解析:由题意,得高度增加百米,则温度降低,∴,∴高度为百米时的气温大约是.设,由题意,得,即;当,,,解得,∴.当时,,解得.∴该山峰的高度大约为百米.解析:如图,图(1).(2).(3)百米.21.(1).12(2)..22.12(2)过点作于点.在中,.如图,图由题意,得≌,∴.又∵.∴,∴.如图,图由()可知:在中,,∵,∴.∵≌,∴,则.又∵,∴,∴,即,∴.在中,,则.(1).23.(1)(2)(3)解析:当时,,当时,.当时,将代入函数表达式,得,解得,(舍去),∴此时抛物线的对称轴是直线,根据抛物线的轴对称性,当时,有,,∴的取值范围为.∵点与点不重合,∴,∵抛物线的顶点的坐标是,∴抛物线的顶点在直线上,当时,,∴点的坐标为,xy图xy图xy图xy图抛物线从图向左平移到图的过程中,减小且,点沿轴向上移动,当点与点重合时,,(2).(3)或.(1)(2)解得,(舍去),当点与点重合时,如图,顶点也与点,重合,点到达最高点,∴点的坐标为,∴,解得,当抛物线从图位置继续向左平移时,如图,点不在线段上,∴点在线段上时,的取值范围是或.解析:∵,,∴四边形是平行四边形,∵四边形是正方形,∴,,∵点,是,的中点,∴,∴≌,∴,∴平行四边形是菱形.如图,连接.图∵,,∴(1)证明见解析.(2).(3),,,,.24.正方形(3),∴.由图,连结与相交于点,易得的两直角边之比为.)当为菱形一边时,点在轴上方,有图、图两种情况:如图,与交于点.图∵菱形菱形,∴的两直角边之比为.过点作轴于点,交于点.设.∵,点是的中点,∴点是中点,∴是的中位线,∴.∵,,∴,∴,∴,∴.∵,∴,解得.∴,∴点的坐标为.如图,的两直角边之比为.菱形图过点作轴于点,过点作于点,延长交于点.∵,,∴,∴,设,∴,∴,∴.又∵是的中位线,∴,∴,∴,解得,∴,点的坐标为.)当为菱形一边时,点在轴下方,有图,图两种情况:如图,的两直角边之比为.图过点作轴于点,过点作于点.∵是的中位线,∴.又∵,,∴,∴,则,∴.设,则.∵,∴,解得.∴,∴点的坐标为.如图,的两直角边之比为.图过点作轴于点,交于点,过点作于点,∵是的中位线,∴,,∵,,∴,∴,则.设,则,∵,∴,解得,∴,∴点的坐标为.)当为菱形对角线时,有图一种情况:如图,的两直角边之比为.图过点作轴于点,交于点,过点作于点.∵轴,点为的中点,∴,∴,∵,,∴,∴,则,.∵是的中位线,∴,即,∴点的坐标为.综上所述,点的坐标为,,,,.。

2020年浙江省金华市中考数学试卷

2020年浙江省金华市中考数学试卷

2020年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)实数3的相反数是( )A .﹣3B .3C .−13D .13 2.(3分)分式x+5x−2的值是零,则x 的值为( ) A .2 B .5 C .﹣2 D .﹣53.(3分)下列多项式中,能运用平方差公式分解因式的是( )A .a 2+b 2B .2a ﹣b 2C .a 2﹣b 2D .﹣a 2﹣b 24.(3分)下列四个图形中,是中心对称图形的是( )A .B .C .D .5.(3分)如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是( )A .12B .13C .23D .16 6.(3分)如图,工人师傅用角尺画出工件边缘AB 的垂线a 和b ,得到a ∥b .理由是( )A .连结直线外一点与直线上各点的所有线段中,垂线段最短B .在同一平面内,垂直于同一条直线的两条直线互相平行C .在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D .经过直线外一点,有且只有一条直线与这条直线平行7.(3分)已知点(﹣2,a )(2,b )(3,c )在函数y =k x (k >0)的图象上,则下列判断正确的是( )A .a <b <cB .b <a <cC .a <c <bD .c <b <a 8.(3分)如图,⊙O 是等边△ABC 的内切圆,分别切AB ,BC ,AC 于点E ,F ,D ,P 是DF̂上一点,则∠EPF 的度数是( )A .65°B .60°C .58°D .50°9.(3分)如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x .则列出方程正确的是( )A .3×2x +5=2xB .3×20x +5=10x ×2C .3×20+x +5=20xD .3×(20+x )+5=10x +210.(3分)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O 、BD 与HC 相交于点P .若GO =GP ,则S 正方形ABCD S 正方形EFGH 的值是( )A .1+√2B .2+√2C .5−√2D .154二、填空题(本题有6小题,每小题4分,共24分)11.(4分)点P (m ,2)在第二象限内,则m 的值可以是(写出一个即可) .12.(4分)数据1,2,4,5,3的中位数是 .13.(4分)如图为一个长方体,则该几何体主视图的面积为 cm 2.14.(4分)如图,平移图形M ,与图形N 可以拼成一个平行四边形,则图中α的度数是 °.15.(4分)如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A ,B ,C 均为正六边形的顶点,AB 与地面BC 所成的锐角为β.则tan β的值是 .16.(4分)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC ,BD (点A 与点B 重合),点O 是夹子转轴位置,OE ⊥AC 于点E ,OF ⊥BD 于点F ,OE =OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.(1)当E,F两点的距离最大时,以点A,B,C,D为顶点的四边形的周长是cm.(2)当夹子的开口最大(即点C与点D重合)时,A,B两点的距离为cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣2020)0+√4−tan45°+|﹣3|.18.(6分)解不等式:5x﹣5<2(2+x).19.(6分)某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表类别项目人数(人)A跳绳59B健身操▲C俯卧撑31D开合跳▲E其它22(1)求参与问卷调查的学生总人数.(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.̂的半径OA=2,OC⊥AB于点C,∠AOC=60°.20.(8分)如图,AB(1)求弦AB的长.̂的长.(2)求AB21.(8分)某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h (百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.22.(10分)如图,在△ABC中,AB=4√2,∠B=45°,∠C=60°.(1)求BC边上的高线长.(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.①如图2,当点P落在BC上时,求∠AEP的度数.②如图3,连结AP,当PF⊥AC时,求AP的长.23.(10分)如图,在平面直角坐标系中,已知二次函数y=−12(x﹣m)2+4图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.(1)当m=5时,求n的值.(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.24.(12分)如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.2020年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)实数3的相反数是( )A .﹣3B .3C .−13D .13 【解答】解:实数3的相反数是:﹣3.故选:A .2.(3分)分式x+5x−2的值是零,则x 的值为( ) A .2 B .5 C .﹣2 D .﹣5【解答】解:由题意得:x +5=0,且x ﹣2≠0,解得:x =﹣5,故选:D .3.(3分)下列多项式中,能运用平方差公式分解因式的是( )A .a 2+b 2B .2a ﹣b 2C .a 2﹣b 2D .﹣a 2﹣b 2【解答】解:A 、a 2+b 2不能运用平方差公式分解,故此选项错误;B 、2a ﹣b 2不能运用平方差公式分解,故此选项错误;C 、a 2﹣b 2能运用平方差公式分解,故此选项正确;D 、﹣a 2﹣b 2不能运用平方差公式分解,故此选项错误;故选:C .4.(3分)下列四个图形中,是中心对称图形的是( )A .B .C .D .【解答】解:A 、该图形不是中心对称图形,故本选项不合题意;B 、该图形不是中心对称图形,故本选项不合题意;C 、该图形是中心对称图形,故本选项符合题意;D 、该图形不是中心对称图形,故本选项不合题意;故选:C .5.(3分)如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是( )A .12B .13C .23D .16 【解答】解:∵共有6张卡片,其中写有1号的有3张,∴从中任意摸出一张,摸到1号卡片的概率是36=12; 故选:A .6.(3分)如图,工人师傅用角尺画出工件边缘AB 的垂线a 和b ,得到a ∥b .理由是( )A .连结直线外一点与直线上各点的所有线段中,垂线段最短B .在同一平面内,垂直于同一条直线的两条直线互相平行C .在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D .经过直线外一点,有且只有一条直线与这条直线平行【解答】解:由题意a ⊥AB ,b ⊥AB ,∴a ∥b (垂直于同一条直线的两条直线平行),故选:B .7.(3分)已知点(﹣2,a )(2,b )(3,c )在函数y =k x (k >0)的图象上,则下列判断正确的是( )A .a <b <cB .b <a <cC .a <c <bD .c <b <a 【解答】解:∵k >0,∴函数y=kx(k>0)的图象分布在第一、三象限,在每一象限,y随x的增大而减小,∵﹣2<0<2<3,∴b>c>0,a<0,∴a<c<b.故选:C.8.(3分)如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是DF̂上一点,则∠EPF的度数是()A.65°B.60°C.58°D.50°【解答】解:如图,连接OE,OF.∵⊙O是△ABC的内切圆,E,F是切点,∴OE⊥AB,OF⊥BC,∴∠OEB=∠OFB=90°,∵△ABC是等边三角形,∴∠B=60°,∴∠EOF=120°,∴∠EPF=12∠EOF=60°,故选:B.9.(3分)如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x .则列出方程正确的是( )A .3×2x +5=2xB .3×20x +5=10x ×2C .3×20+x +5=20xD .3×(20+x )+5=10x +2【解答】解:设“□”内数字为x ,根据题意可得: 3×(20+x )+5=10x +2. 故选:D .10.(3分)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O 、BD 与HC 相交于点P .若GO =GP ,则S 正方形ABCD S 正方形EFGH的值是( )A .1+√2B .2+√2C .5−√2D .154【解答】解:∵四边形EFGH 为正方形, ∴∠EGH =45°,∠FGH =90°, ∵OG =GP ,∴∠GOP =∠OPG =67.5°, ∴∠PBG =22.5°, 又∵∠DBC =45°, ∴∠GBC =22.5°, ∴∠PBG =∠GBC ,∵∠BGP =∠BG =90°,BG =BG , ∴△BPG ≌△BCG (ASA ), ∴PG =CG .设OG =PG =CG =x , ∵O 为EG ,BD 的交点, ∴EG =2x ,FG =√2x ,∵四个全等的直角三角形拼成“赵爽弦图”, ∴BF =CG =x , ∴BG =x +√2x ,∴BC 2=BG 2+CG 2=x 2(√2+1)2+x 2=(4+2√2)x 2, ∴S 正方形ABCD S 正方形EFGH=(4+2√2)x 22x =2+√2.故选:B .二、填空题(本题有6小题,每小题4分,共24分)11.(4分)点P (m ,2)在第二象限内,则m 的值可以是(写出一个即可) ﹣1(答案不唯一). .【解答】解:∵点P (m ,2)在第二象限内, ∴m <0,则m 的值可以是﹣1(答案不唯一). 故答案为:﹣1(答案不唯一).12.(4分)数据1,2,4,5,3的中位数是 3 .【解答】解:数据1,2,4,5,3按照从小到大排列是1,2,3,4,5, 则这组数据的中位数是3, 故答案为:3.13.(4分)如图为一个长方体,则该几何体主视图的面积为 20 cm 2.【解答】解:该几何体的主视图是一个长为4,宽为5的矩形,所以该几何体主视图的面积为20cm2.故答案为:20.14.(4分)如图,平移图形M,与图形N可以拼成一个平行四边形,则图中α的度数是30°.【解答】解:∵四边形ABCD是平行四边形,∴∠D=180°﹣∠C=60°,∴∠α=180°﹣(540°﹣70°﹣140°﹣180°)=30°,故答案为:30.15.(4分)如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A,B,C均为正六边形的顶点,AB与地面BC所成的锐角为β.则tanβ的值是19√315.【解答】解:如图,作AT∥BC,过点B作BH⊥AT于H,设正六边形的边长为a,则正六边形的半径为,边心距=√32a .观察图象可知:BH =192a ,AH =5√32a , ∵AT ∥BC , ∴∠BAH =β,∴tan β=BH AH =192a 532a =19√315. 故答案为19√315.16.(4分)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC ,BD (点A 与点B 重合),点O 是夹子转轴位置,OE ⊥AC 于点E ,OF ⊥BD 于点F ,OE =OF =1cm ,AC =BD =6cm ,CE =DF ,CE :AE =2:3.按图示方式用手指按夹子,夹子两边绕点O 转动.(1)当E ,F 两点的距离最大时,以点A ,B ,C ,D 为顶点的四边形的周长是 16 cm . (2)当夹子的开口最大(即点C 与点D 重合)时,A ,B 两点的距离为6013cm .【解答】解:(1)当E ,F 两点的距离最大时,E ,O ,F 共线,此时四边形ABCD 是矩形,∵OE =OF =1cm , ∴EF =2cm , ∴AB =CD =2cm ,∴此时四边形ABCD 的周长为2+2+6+6=16(cm ),故答案为16.(2)如图3中,连接EF 交OC 于H .由题意CE =CF =25×6=125(cm ), ∵OE =OF =1cm , ∴CO 垂直平分线段EF ,∵OC =√CE 2+OE 2=√(125)2+12=135(cm ), ∵12•OE •EC =12•CO •EH ,∴EH =1×125135=1213(cm ),∴EF =2EH =2413(cm ) ∵EF ∥AB , ∴EF AB=CE CB=25,∴AB =52×2413=6013(cm ). 故答案为6013.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程) 17.(6分)计算:(﹣2020)0+√4−tan45°+|﹣3|. 【解答】解:原式=1+2﹣1+3=5. 18.(6分)解不等式:5x ﹣5<2(2+x ). 【解答】解:5x ﹣5<2(2+x ),5x﹣5<4+2x5x﹣2x<4+5,3x<9,x<3.19.(6分)某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表类别项目人数(人)A跳绳59B健身操▲C俯卧撑31D开合跳▲E其它22(1)求参与问卷调查的学生总人数.(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.【解答】解:(1)22÷11%=200(人),答:参与调查的学生总数为200人;(2)200×24%=48(人),答:最喜爱“开合跳”的学生有48人;(3)最喜爱“健身操”的学生数为200﹣59﹣31﹣48﹣22=40(人),8000×40200=1600(人),答:最喜爱“健身操”的学生数大约为1600人.20.(8分)如图,AB ̂的半径OA =2,OC ⊥AB 于点C ,∠AOC =60°. (1)求弦AB 的长. (2)求AB̂的长.【解答】解:(1)∵AB ̂的半径OA =2,OC ⊥AB 于点C ,∠AOC =60°, ∴AC =OA •sin60°=2×√32=√3,∴AB =2AC =2√3;(2)∵OC ⊥AB ,∠AOC =60°, ∴∠AOB =120°, ∵OA =2, ∴AB̂的长是:120π×2180=4π3.21.(8分)某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T (℃)和高度h (百米)的函数关系如图所示. 请根据图象解决下列问题: (1)求高度为5百米时的气温; (2)求T 关于h 的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.【解答】解:(1)由题意得,高度增加2百米,则气温降低2×0.6=1.2(°C ), ∴13.2﹣1.2=12,∴高度为5百米时的气温大约是12°C ;(2)设T 关于h 的函数表达式为T =kh +b , 则:{3k +b =13.25k +b =12,解得{k =−0.6b =15,∴T 关于h 的函数表达式为T =﹣0.6h +15;(3)当T =6时,6=﹣0.6h +15, 解得h =15.∴该山峰的高度大约为15百米.22.(10分)如图,在△ABC 中,AB =4√2,∠B =45°,∠C =60°. (1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将△AEF 折叠得到△PEF . ①如图2,当点P 落在BC 上时,求∠AEP 的度数. ②如图3,连结AP ,当PF ⊥AC 时,求AP 的长.【解答】解:(1)如图1中,过点A 作AD ⊥BC 于D .在Rt△ABD中,AD=AB•sin45°=4√2×√22=4.(2)①如图2中,∵△AEF≌△PEF,∴AE=EP,∵AE=EB,∴BE=EP,∴∠EPB=∠B=45°,∴∠PEB=90°,∴∠AEP=180°﹣90°=90°.②如图3中,由(1)可知:AC=ADsin60°=8√33,∵PF⊥AC,∴∠PF A=90°,∵△AEF≌△PEF,∴∠AFE=∠PFE=45°,∴∠AFE=∠B,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴AFAB =AEAC,即4√2=√28√33,∴AF=2√3,在Rt△AFP,AF=FP,∴AP=√2AF=2√6.23.(10分)如图,在平面直角坐标系中,已知二次函数y=−12(x﹣m)2+4图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.(1)当m=5时,求n的值.(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.【解答】解:(1)当m=5时,y=−12(x﹣5)2+4,当x=1时,n=−12×42+4=﹣4.(2)当n=2时,将C(1,2)代入函数表达式y=−12(x﹣m)2+4,得2=−12(1﹣m)2+4,解得m=3或﹣1(舍弃),∴此时抛物线的对称轴x=3,根据抛物线的对称性可知,当y=2时,x=1或5,∴x的取值范围为1≤x≤5.(3)∵点A与点C不重合,∴m≠1,∵抛物线的顶点A的坐标是(m,4),∴抛物线的顶点在直线y=4上,当x=0时,y=−12m2+4,∴点B的坐标为(0,−12m2+4),抛物线从图1的位置向左平移到图2的位置,m逐渐减小,点B沿y轴向上移动,当点B与O重合时,−12m2+4=0,解得m=2√2或﹣2√2,当点B与点D重合时,如图2,顶点A也与B,D重合,点B到达最高点,∴点B(0,4),∴−12m2+4=4,解得m=0,当抛物线从图2的位置继续向左平移时,如图3点B不在线段OD上,∴B点在线段OD上时,m的取值范围是:0≤m<1或1<m<2√2.24.(12分)如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.【解答】(1)证明:如图1中,∵AE∥DF,AD∥EF,∴四边形AEFD是平行四边形,∵四边形ABCD是正方形,∴AC=AB=OC=OB,∠ACE=∠ABD=90°,∵E,D分别是OC,OB的中点,∴CE=BD,∴△CAE≌△ABD(SAS),∴AE=AD,∴四边形AEFD是菱形.(2)解:如图1中,连接DE.∵S△ADB=S△ACE=12×8×4=16,S△EOD=12×4×4=8,∴S△AED=S正方形ABOC﹣2S△ABD﹣S△EOD=64﹣2×16﹣8=24,∴S菱形AEFD=2S△AED=48.(3)解:如图1中,连接AF,设AF交DE于K,∵OE=OD=4,OK⊥DE,∴KE=KD,∴OK=KE=KD=2√2,∵AO=8√2,∴AK=6√2,∴AK=3DK,①当AP为菱形的一边,点Q在x轴的上方,有图2,图3两种情形:如图2中,设AG交PQ于H,过点H作HN⊥x轴于N,交AC于M,设AM=t.∵菱形P AQG∽菱形ADFE,∴PH =3AH ,∵HN ∥OQ ,QH =HP ,∴ON =NP ,∴HN 是△PQO 的中位线,∴ON =PN =8﹣t ,∵∠MAH =∠PHN =90°﹣∠AHM ,∠PNH =∠AMH =90°,∴△HMA ∽△PNH ,∴AM NH =MH PN =AH PH =13, ∴HN =3AM =3t ,∴MH =MN ﹣NH =8﹣3t ,∵PN =3MH ,∴8﹣t =3(8﹣3t ),∴t =2,∴OP =2ON =2(8﹣t )=12,∴P (12,0).如图3中,过点H 作HI ⊥y 轴于I ,过点P 作PN ⊥x 轴交IH 于N ,延长BA 交IN 于M .同法可证:△AMH ∽△HNP ,∴AM HN =MH PN =AH HP =13,设MH =t , ∴PN =3MH =3t ,∴AM=BM﹣AB=3t﹣8,∵HI是△OPQ的中位线,∴OP=2IH,∴HIHN,∴8+t=9t﹣24,∴t=4,∴OP=2HI=2(8+t)=24,∴P(24,0).②当AP为菱形的边,点Q在x轴的下方时,有图4,图5两种情形:如图4中,QH=3PH,过点H作HM⊥OC于M,过D点P作PN⊥MH于N.∵MH是△QAC的中位线,∴MH=12AC=4,同法可得:△HPN∽△QHM,∴NPHM =HNMQ=PHQH=13,∴PN=13HM=43,∴OM=PN=43,设HN=t,则MQ=3t,∵MQ=MC,∴3t=8−4 3,∴t=20 9,∴OP =MN =4+t =569, ∴点P 的坐标为(569,0).如图5中,QH =3PH ,过点H 作HM ⊥x 轴于M 交AC 于I ,过点Q 作QN ⊥HM 于N .∵IH 是△ACQ 的中位线,∴CQ =2HI ,NQ =CI =4,同法可得:△PMH ∽△HNQ ,∴MH NQ =PM HN =PH HQ =13,则MH =13NQ =43, 设PM =t ,则HN =3t ,∵HN =HI ,∴3t =8+43,∴t =289, ∴OP =OM ﹣PM =QN ﹣PM =4﹣t =89,∴P (89,0). ③如图6中,当AP 为菱形的对角线时,有图6一种情形:过点H 作HM ⊥y 轴于于点M ,交AB 于I ,过点P 作PN ⊥HM 于N . ∵HI ∥x 轴,AH =HP ,∴AI =IB =4,∴PN =IB =4,同法可得:△PNH ∽△HMQ ,∴PN HM =HN MQ =PH HQ =13, ∴MH =3PN =12,HI =MH ﹣MI =4,∵HI 是△ABP 的中位线,∴BP =2IH =8,∴OP =OB +BP =16,∴P (16,0),综上所述,满足条件的点P 的坐标为(12,0)或(24,0)或(569,0)或(89,0)或(16,0).。

2020年浙江省金华市中考数学试卷

2020年浙江省金华市中考数学试卷

2020年浙江省金华市中考数学试卷和答案解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)实数3的相反数是()A.﹣3B.3C.﹣D.解析:直接利用相反数的定义分析得出答案.参考答案:解:实数3的相反数是:﹣3.故选:A.点拨:此题主要考查了实数的性质,正确掌握相反数的定义是解题关键.2.(3分)分式的值是零,则x的值为()A.2B.5C.﹣2D.﹣5解析:利用分式值为零的条件可得x+5=0,且x﹣2≠0,再解即可.参考答案:解:由题意得:x+5=0,且x﹣2≠0,解得:x=﹣5,故选:D.点拨:此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.3.(3分)下列多项式中,能运用平方差公式分解因式的是()A.a2+b2B.2a﹣b2C.a2﹣b2D.﹣a2﹣b2解析:根据能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反进行分析即可.参考答案:解:A、a2+b2不能运用平方差公式分解,故此选项错误;B、2a﹣b2不能运用平方差公式分解,故此选项错误;C、a2﹣b2能运用平方差公式分解,故此选项正确;D、﹣a2﹣b2不能运用平方差公式分解,故此选项错误;故选:C.点拨:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.4.(3分)下列四个图形中,是中心对称图形的是()A.B.C.D.解析:根据中心对称图形的概念对各图形分析判断即可得解.参考答案:解:A、该图形不是中心对称图形,故本选项不合题意;B、该图形不是中心对称图形,故本选项不合题意;C、该图形是中心对称图形,故本选项符合题意;D、该图形不是中心对称图形,故本选项不合题意;故选:C.点拨:本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3分)如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是()A.B.C.D.解析:根据概率公式直接求解即可.参考答案:解:∵共有6张卡片,其中写有1号的有3张,∴从中任意摸出一张,摸到1号卡片的概率是=;故选:A.点拨:此题考查了概率的求法,用到的知识点为:可能性等于所求情况数与总情况数之比.6.(3分)如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b.理由是()A.连结直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行解析:根据垂直于同一条直线的两条直线平行判断即可.参考答案:解:由题意a⊥AB,b⊥AB,∴a∥b(垂直于同一条直线的两条直线平行),故选:B.点拨:本题考查平行线的判定,平行公理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.7.(3分)已知点(﹣2,a)(2,b)(3,c)在函数y=(k>0)的图象上,则下列判断正确的是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a解析:根据反比例函数的性质得到函数y=(k>0)的图象分布在第一、三象限,在每一象限,y随x的增大而减小,则b>c>0,a<0.参考答案:解:∵k>0,∴函数y=(k>0)的图象分布在第一、三象限,在每一象限,y 随x的增大而减小,∵﹣2<0<2<3,∴b>c>0,a<0,∴a<c<b.故选:C.点拨:本题考查了反比例函数图象上点的坐标特征,熟练掌握反比例函数的性质是解题的关键.8.(3分)如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是上一点,则∠EPF的度数是()A.65°B.60°C.58°D.50°解析:如图,连接OE,OF.求出∠EOF的度数即可解决问题.参考答案:解:如图,连接OE,OF.∵⊙O是△ABC的内切圆,E,F是切点,∴OE⊥AB,OF⊥BC,∴∠OEB=∠OFB=90°,∵△ABC是等边三角形,∴∠B=60°,∴∠EOF=120°,∴∠EPF=∠EOF=60°,故选:B.点拨:本题考查三角形的内切圆与内心,切线的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.(3分)如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是()A.3×2x+5=2x B.3×20x+5=10x×2C.3×20+x+5=20x D.3×(20+x)+5=10x+2解析:直接利用表示十位数的方法进而得出等式即可.参考答案:解:设“□”内数字为x,根据题意可得:3×(20+x)+5=10x+2.故选:D.点拨:此题主要考查了由实际问题抽象出一元一次方程,正确表示十位数是解题关键.10.(3分)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.解析:证明△BPG≌△BCG(ASA),得出PG=CG.设OG=PG =CG=x,则EG=2x,FG=x,由勾股定理得出BC2=(4+2)x2,则可得出答案.参考答案:解:∵四边形EFGH为正方形,∴∠EGH=45°,∠FGH=90°,∵OG=GP,∴∠GOP=∠OPG=67.5°,∴∠PBG=22.5°,又∵∠DBC=45°,∴∠GBC=22.5°,∴∠PBG=∠GBC,∵∠BGP=∠BG=90°,BG=BG,∴△BPG≌△BCG(ASA),∴PG=CG.设OG=PG=CG=x,∵O为EG,BD的交点,∴EG=2x,FG=x,∵四个全等的直角三角形拼成“赵爽弦图”,∴BF=CG=x,∴BG=x+x,∴BC2=BG2+CG2==,∴=.故选:B.点拨:本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,直角三角形的性质等知识,熟练掌握勾股定理的应用是解题的关键.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)点P(m,2)在第二象限内,则m的值可以是(写出一个即可)﹣1(答案不唯一)..解析:直接利用第二象限内点的坐标特点得出m的取值范围,进而得出答案.参考答案:解:∵点P(m,2)在第二象限内,∴m<0,则m的值可以是﹣1(答案不唯一).故答案为:﹣1(答案不唯一).点拨:此题主要考查了点的坐标,正确得出m的取值范围是解题关键.12.(4分)数据1,2,4,5,3的中位数是3.解析:先将题目中的数据按照从小到大排列,即可得到这组数据的中位数.参考答案:解:数据1,2,4,5,3按照从小到大排列是1,2,3,4,5,则这组数据的中位数是3,故答案为:3.点拨:本题考查中位数,解答本题的关键是明确中位数的含义,会求一组数据的中位数.13.(4分)如图为一个长方体,则该几何体主视图的面积为20cm2.解析:根据从正面看所得到的图形,即可得出这个几何体的主视图的面积.参考答案:解:该几何体的主视图是一个长为5,宽为4的矩形,所以该几何体主视图的面积为20cm2.故答案为:20.点拨:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.14.(4分)如图,平移图形M,与图形N可以拼成一个平行四边形,则图中α的度数是30°.解析:根据平行四边形的性质解答即可.参考答案:解:∵四边形ABCD是平行四边形,∴∠D=180°﹣∠C=60°,∴∠α=180°﹣(540°﹣70°﹣140°﹣180°)=30°,故答案为:30.点拨:此题考查平行四边形的性质,关键是根据平行四边形的邻角互补解答.15.(4分)如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A,B,C均为正六边形的顶点,AB与地面BC所成的锐角为β.则tanβ的值是.解析:如图,作AT∥BC,过点B作BH⊥AT于H,设正六边形的边长为a,则正六边形的半径为a,边心距=a.求出BH,AH即可解决问题.参考答案:解:如图,作AT∥BC,过点B作BH⊥AT于H,设正六边形的边长为a,则正六边形的半径为,边心距=a.观察图象可知:BH=a,AH=a,∵AT∥BC,∴∠BAH=β,∴tanβ===.故答案为.点拨:本题考查解直角三角形的应用,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形解决问题.16.(4分)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD(点A与点B重合),点O是夹子转轴位置,OE⊥AC于点E,OF⊥BD于点F,OE=OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.(1)当E,F两点的距离最大时,以点A,B,C,D为顶点的四边形的周长是16cm.(2)当夹子的开口最大(即点C与点D重合)时,A,B两点的距离为cm.解析:(1)当E,F两点的距离最大时,E,O,F共线,此时四边形ABCD是矩形,求出矩形的长和宽即可解决问题.(2)如图3中,连接EF交OC于H.想办法求出EF,利用平行线分线段成比例定理即可解决问题.参考答案:解:(1)当E,F两点的距离最大时,E,O,F共线,此时四边形ABCD是矩形,∵OE=OF=1cm,∴EF=2cm,∴AB=CD=2cm,∴此时四边形ABCD的周长为2+2+6+6=16(cm),故答案为16.(2)如图3中,连接EF交OC于H.由题意CE=CF=×6=(cm),∵OE=OF=1cm,∴CO垂直平分线段EF,∵OC===(cm),∵•OE•EC=•CO•EH,∴EH==(cm),∴EF=2EH=(cm)∵EF∥AB,∴==,∴AB=×=(cm).故答案为.点拨:本题考查旋转的性质,矩形的判定和性质,平行线分线段成比例定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣2020)0+﹣tan45°+|﹣3|.解析:利用零次幂的性质、二次根式的性质、特殊角的三角函数值、绝对值的性质进行计算,再算加减即可.参考答案:解:原式=1+2﹣1+3=5.点拨:此题主要考查了实数运算,关键是掌握零次幂、二次根式的性质、特殊角的三角函数值、绝对值的性质.18.(6分)解不等式:5x﹣5<2(2+x).解析:去括号,移项、合并同类项,系数化为1求得即可.参考答案:解:5x﹣5<2(2+x),5x﹣5<4+2x5x﹣2x<4+5,3x<9,x<3.点拨:本题考查了解一元一次不等式,熟练掌握解不等式的步骤是解题的关键.19.(6分)某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表类别项目人数(人)A跳绳59B健身操▲C俯卧撑31D开合跳▲E其它22(1)求参与问卷调查的学生总人数.(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.解析:(1)从统计图表中可得,“E组其它”的频数为22,所占的百分比为11%,可求出调查学生总数;(2)“开合跳”的人数占调查人数的24%,即可求出最喜爱“开合跳”的人数;(3)求出“健身操”所占的百分比,用样本估计总体,即可求出8000人中喜爱“健身操”的人数.参考答案:解:(1)22÷11%=200(人),答:参与调查的学生总数为200人;(2)200×24%=48(人),答:最喜爱“开合跳”的学生有48人;(3)最喜爱“健身操”的学生数为200﹣59﹣31﹣48﹣22=40(人),8000×=1600(人),答:最喜爱“健身操”的学生数大约为1600人.点拨:考查统计表、扇形统计图的意义和制作方法,理解统计图表中的数量之间的关是解决问题的关键.20.(8分)如图,的半径OA=2,OC⊥AB于点C,∠AOC=60°.(1)求弦AB的长.(2)求的长.解析:(1)根据题意和垂径定理,可以求得AC的长,然后即可得到AB的长;(2)根据∠AOC=60°,可以得到∠AOB的度数,然后根据弧长公式计算即可.参考答案:解:(1)∵的半径OA=2,OC⊥AB于点C,∠AOC =60°,∴AC=OA•sin60°=2×=,∴AB=2AC=2;(2)∵OC⊥AB,∠AOC=60°,∴∠AOB=120°,∵OA=2,∴的长是:=.点拨:本题考查弧长的计算、垂径定理,解答本题的关键是明确题意,利用数形结合的思想解答.21.(8分)某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.解析:(1)根据高度每增加1百米,气温大约降低0.6℃,由3百米时温度为13.2°C,即可得出高度为5百米时的气温;(2)应用待定系数法解答即可;(3)根据(2)的结论解答即可.参考答案:解:(1)由题意得,高度增加2百米,则气温降低2×0.6=1.2(°C),∴13.2﹣1.2=12,∴高度为5百米时的气温大约是12°C;(2)设T关于h的函数表达式为T=kh+b,则:,解得,∴T关于h的函数表达式为T=﹣0.6h+15;(3)当T=6时,6=﹣0.6h+15,解得h=15.∴该山峰的高度大约为15百米.点拨:本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.22.(10分)如图,在△ABC中,AB=4,∠B=45°,∠C=60°.(1)求BC边上的高线长.(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF 将△AEF折叠得到△PEF.①如图2,当点P落在BC上时,求∠AEP的度数.②如图3,连结AP,当PF⊥AC时,求AP的长.解析:(1)如图1中,过点A作AD⊥BC于D.解直角三角形求出AD即可.(2)①证明BE=EP,可得∠EPB=∠B=45°解决问题.②如图3中,由(1)可知:AC==,证明△AEF∽△ACB,推出=,由此求出AF即可解决问题.参考答案:解:(1)如图1中,过点A作AD⊥BC于D.在Rt△ABD中,AD=AB•sin45°=4×=4.(2)①如图2中,∵△AEF≌△PEF,∴AE=EP,∵AE=EB,∴BE=EP,∴∠EPB=∠B=45°,∴∠PEB=90°,∴∠AEP=180°﹣90°=90°.②如图3中,由(1)可知:AC==,∵PF⊥AC,∴∠PFA=90°,∵△AEF≌△PEF,∴∠AFE=∠PFE=45°,∴∠AFE=∠B,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴=,即=,∴AF=2,在Rt△AFP,AF=FP,∴AP=AF=2.方法二:AE=BE=PE可得直角三角形ABP,由PF⊥AC,可得∠AFE=45°,可得∠FAP=45°,即∠PAB=30°.AP=ABcos30°=2.点拨:本题属于三角形综合题,考查了解直角三角形的应用,翻折变换,全等三角形的性质,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.23.(10分)如图,在平面直角坐标系中,已知二次函数y=﹣(x ﹣m)2+4图象的顶点为A,与y轴交于点B,异于顶点A的点C (1,n)在该函数图象上.(1)当m=5时,求n的值.(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.解析:(1)利用待定系数法求解即可.(2)求出y=2时,x的值即可判断.(3)由题意点B的坐标为(0,﹣m2+4),求出几个特殊位置m 的值即可判断.参考答案:解:(1)当m=5时,y=﹣(x﹣5)2+4,当x=1时,n=﹣×42+4=﹣4.(2)当n=2时,将C(1,2)代入函数表达式y=﹣(x﹣m)2+4,得2=﹣(1﹣m)2+4,解得m=3或﹣1(舍弃),∴此时抛物线的对称轴x=3,根据抛物线的对称性可知,当y=2时,x=1或5,∴x的取值范围为1≤x≤5.(3)∵点A与点C不重合,∴m≠1,∵抛物线的顶点A的坐标是(m,4),∴抛物线的顶点在直线y=4上,当x=0时,y=﹣m2+4,∴点B的坐标为(0,﹣m2+4),抛物线从图1的位置向左平移到图2的位置,m逐渐减小,点B 沿y轴向上移动,当点B与O重合时,﹣m2+4=0,解得m=2或﹣2,当点B与点D重合时,如图2,顶点A也与B,D重合,点B到达最高点,∴点B(0,4),∴﹣m2+4=4,解得m=0,当抛物线从图2的位置继续向左平移时,如图3点B不在线段OD 上,∴B点在线段OD上时,m的取值范围是:0≤m<1或1<m<2.点拨:本题属于二次函数综合题,考查了二次函数的性质,待定系数法,一次函数的性质等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,属于中考常压轴题.24.(12分)如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.解析:(1)根据邻边相等的四边形是菱形证明即可.(2)连接DE,求出△ADE的面积即可解决问题.(3)首先证明AK=3DK,①当AP为菱形的一边,点Q在x轴的上方,有图2,图3两种情形.②当AP为菱形的边,点Q在x 轴的下方时,有图4,图5两种情形.③如图6中,当AP为菱形的对角线时,有图6一种情形.分别利用相似三角形的性质求解即可.参考答案:(1)证明:如图1中,∵AE∥DF,AD∥EF,∴四边形AEFD是平行四边形,∵四边形ABCD是正方形,∴AC=AB=OC=OB,∠ACE=∠ABD=90°,∵E,D分别是OC,OB的中点,∴CE=BD,∴△CAE≌△ABD(SAS),∴AE=AD,∴四边形AEFD是菱形.(2)解:如图1中,连接DE.∵S△ADB=S△ACE=×8×4=16,S△EOD=×4×4=8,∴S△AED=S正方形ABOC﹣2S△ABD﹣S△EOD=64﹣2×16﹣8=24,∴S菱形AEFD=2S△AED=48.(3)解:如图1中,连接AF,设AF交DE于K,∵OE=OD=4,OK⊥DE,∴KE=KD,∴OK=KE=KD=2,∵AO=8,∴AK=6,∴AK=3DK,①当AP为菱形的一边,点Q在x轴的上方,有图2,图3两种情形:如图2中,设AG交PQ于H,过点H作HN⊥x轴于N,交AC 于M,设AM=t.∵菱形PAQG∽菱形ADFE,∴PH=3AH,∵HN∥OQ,QH=HP,∴ON=NP,∴HN是△PQO的中位线,∴ON=PN=8﹣t,∵∠MAH=∠PHN=90°﹣∠AHM,∠PNH=∠AMH=90°,∴△HMA∽△PNH,∴===,∴HN=3AM=3t,∴MH=MN﹣NH=8﹣3t,∵PN=3MH,∴8﹣t=3(8﹣3t),∴t=2,∴OP=2ON=2(8﹣t)=12,∴P(12,0).如图3中,过点H作HI⊥y轴于I,过点P作PN⊥x轴交IH于N,延长BA交IN于M.同法可证:△AMH∽△HNP,∴===,设MH=t,∴PN=3MH=3t,∴AM=BM﹣AB=3t﹣8,∵HI是△OPQ的中位线,∴OP=2IH,∴HIHN,∴8+t=9t﹣24,∴t=4,∴OP=2HI=2(8+t)=24,∴P(24,0).②当AP为菱形的边,点Q在x轴的下方时,有图4,图5两种情形:如图4中,QH=3PH,过点H作HM⊥OC于M,过D点P作PN⊥MH于N.∵MH是△QAC的中位线,∴MH=AC=4,同法可得:△HPN∽△QHM,∴===,∴PN=HM=,∴OM=PN=,设HN=t,则MQ=3t,∵MQ=MC,∴3t=8﹣,∴t=,∴OP=MN=4+t=,∴点P的坐标为(,0).如图5中,QH=3PH,过点H作HM⊥x轴于M交AC于I,过点Q作QN⊥HM于N.∵IH是△ACQ的中位线,∴CQ=2HI,NQ=CI=4,同法可得:△PMH∽△HNQ,∴===,则MH=NQ=,设PM=t,则HN=3t,∵HN=HI,∴3t=8+,∴t=,∴OP=OM﹣PM=QN﹣PM=4﹣t=,∴P(,0).③如图6中,当AP为菱形的对角线时,有图6一种情形:过点H作HM⊥y轴于于点M,交AB于I,过点P作PN⊥HM 于N.∵HI∥x轴,AH=HP,∴AI=IB=4,∴PN=IB=4,同法可得:△PNH∽△HMQ,∴===,∴MH=3PN=12,HI=MH﹣MI=4,∵HI是△ABP的中位线,∴BP=2IH=8,∴OP=OB+BP=16,∴P(16,0),综上所述,满足条件的点P的坐标为(12,0)或(24,0)或(,0)或(,0)或(16,0).点拨:本题属于相似形综合题,考查了正方形的性质,菱形的判定和性质,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会寻找相似三角形,利用相似三角形的性质构建方程解决问题,属于中考压轴题.。

2020浙江省金华市中考数学试卷(解析版)

2020浙江省金华市中考数学试卷(解析版)
一、选择题(本题有 10 小题,每小题 3 分,共 30 分) 1.(3 分)实数 3 的相反数是( )
A.﹣3
B.3
C.﹣
2020 年浙江省金华市中考数学试卷
参考答案与试题解析
D.
【分析】直接利用相反数的定义分析得出答案. 【解答】解:实数 3 的相反数是:﹣3. 故选:A. 2.(3 分)分式 的值是零,则 x 的值为( )
A.2
B.5
C.﹣2
D.﹣5
【分析】利用分式值为零的条件可得 x+5=0,且 x﹣2≠0,再解即可.
【解答】解:由题意得:x+5=0,且 x﹣2≠0,
解得:x=﹣5,
故选:D.
3.(3 分)下列多项式中,能运用平方差公式分解因式的是( )
A.a2+b2
B.2a﹣b2
C.a2﹣b2
D.﹣a2﹣b2
【分析】根据能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反进行分析即可. 【解答】解:A、a2+b2 不能运用平方差公式分解,故此选项错误; B、2a﹣b2 不能运用平方差公式分解,故此选项错误;
故选:A. 6.(3 分)如图,工人师傅用角尺画出工件边缘 AB 的垂线 a 和 b,得到 a∥b.理由是( )
第 2 页(共 23 页)
A.连结直线外一点与直线上各点的所有线段中,垂线段最短 B.在同一平面内,垂直于同一条直线的两条直线互相平行 C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线 D.经过直线外一点,有且只有一条直线与这条直线平行 【分析】根据垂直于同一条直线的两条直线平行判断即可. 【解答】解:由题意 a⊥AB,b⊥AB, ∴a∥b(垂直于同一条直线的两条直线平行), 故选:B.

浙江省金华市2020年中考数学试卷(含解析)

浙江省金华市2020年中考数学试卷(含解析)

2020年浙江省金华市中考数学试卷一、选择题(共10小题,每小题3分,共30分).1.实数3的相反数是()A.3-B.3C.13-D.132.分式52xx+-的值是零,则x的值为()A.2B.5C.2-D.5-3.下列多项式中,能运用平方差公式分解因式的是()A.22a b+B.22a b-C.22a b-D.22a b--4.下列四个图形中,是中心对称图形的是()A.B.C.D.5.如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是()A.12B.13C.23D.166.如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到//a b.理由是()A.连结直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D .经过直线外一点,有且只有一条直线与这条直线平行 7.已知点(2-,)(2a ,)(3b ,)c 在函数(0)ky k x=>的图象上,则下列判断正确的是( ) A .a b c <<B .b a c <<C .a c b <<D .c b a <<8.如图,O 是等边ABC ∆的内切圆,分别切AB ,BC ,AC 于点E ,F ,D ,P 是DF 上一点,则EPF ∠的度数是( )A .65︒B .60︒C .58︒D .50︒9.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x .则列出方程正确的是( )A .3252x x ⨯+=B .3205102x x ⨯+=⨯C .320520x x ⨯++=D .3(20)5102x x ⨯++=+10.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O 、BD 与HC 相交于点P .若GO GP =,则ABCD EFGHS S 正方形正方形的值是( )A .12B .22C .52D .154二、填空题(本题有6小题,每小题4分,共24分)11.点(,2)P m 在第二象限内,则m 的值可以是(写出一个即可) .12.数据1,2,4,5,3的中位数是 .13.如图为一个长方体,则该几何体主视图的面积为 2cm .14.如图,平移图形M ,与图形N 可以拼成一个平行四边形,则图中α的度数是 ︒.15.如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A ,B ,C 均为正六边形的顶点,AB 与地面BC 所成的锐角为β.则tan β的值是 .16.图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC ,BD (点A 与点B 重合),点O 是夹子转轴位置,OE AC ⊥于点E ,OF BD ⊥于点F ,1OE OF cm ==,6AC BD cm ==,CE DF =,:2:3CE AE =.按图示方式用手指按夹子,夹子两边绕点O 转动.(1)当E ,F 两点的距离最大时,以点A ,B ,C ,D 为顶点的四边形的周长是 cm . (2)当夹子的开口最大(即点C 与点D 重合)时,A ,B 两点的距离为 cm .三、解答题(本题有8小题,共66分,各小题都必须写出解答过程) 17.计算:0(2020)4tan 45|3|-+︒+-.18.解不等式:552(2)x x -<+.19.某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题: 抽取的学生最喜爱体育锻炼项目的统计表 类别 项目 人数(人)A 跳绳 59B 健身操 ▲C 俯卧撑 31D 开合跳 ▲ E其它22(1)求参与问卷调查的学生总人数;(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生8000人,估算该市初中学生中最喜爱“健身操”的人数.20.如图,AB 的半径2OA =,OC AB ⊥于点C ,60AOC ∠=︒. (1)求弦AB 的长. (2)求AB 的长.21.某地区山峰的高度每增加1百米,气温大约降低0.6C ︒,气温(C)T ︒和高度h (百米)的函数关系如图所示.请根据图象解决下列问题: (1)求高度为5百米时的气温; (2)求T 关于h 的函数表达式;(3)测得山顶的气温为6C ︒,求该山峰的高度.22.如图,在ABC ∆中,42AB =,45B ∠=︒,60C ∠=︒. (1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将AEF ∆折叠得到PEF ∆. ①如图2,当点P 落在BC 上时,求AEP ∠的度数. ②如图3,连结AP ,当PF AC ⊥时,求AP 的长23.如图,在平面直角坐标系中,已知二次函数21()42y x m =--+图象的顶点为A ,与y 轴交于点B ,异于顶点A 的点(1,)C n 在该函数图象上. (1)当5m =时,求n 的值.(2)当2n =时,若点A 在第一象限内,结合图象,求当2y 时,自变量x 的取值范围. (3)作直线AC 与y 轴相交于点D .当点B 在x 轴上方,且在线段OD 上时,求m 的取值范围.24.如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分OB .别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知8(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点)D,点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.参考答案一、选择题(本题有10小题,每小题3分,共30分) 1.实数3的相反数是( ) A .3-B .3C .13-D .13解:实数3的相反数是:3-. 故选:A . 2.分式52x x +-的值是零,则x 的值为( ) A .2B .5C .2-D .5-解:由题意得:50x +=,且20x -≠, 解得:5x =-, 故选:D .3.下列多项式中,能运用平方差公式分解因式的是( ) A .22a b +B .22a b -C .22a b -D .22a b --解:A 、22a b +不能运用平方差公式分解,故此选项错误; B 、22a b -不能运用平方差公式分解,故此选项错误; C 、22a b -能运用平方差公式分解,故此选项正确;D 、22a b --不能运用平方差公式分解,故此选项错误;故选:C .4.下列四个图形中,是中心对称图形的是( )A .B .C .D .解:A 、该图形不是中心对称图形,故本选项不合题意; B 、该图形不是中心对称图形,故本选项不合题意; C 、该图形是中心对称图形,故本选项符合题意;D 、该图形不是中心对称图形,故本选项不合题意;故选:C .5.如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是( )A .12 B .13C .23D .16解:共有6张卡片,其中写有1号的有3张, ∴从中任意摸出一张,摸到1号卡片的概率是3162=; 故选:A .6.如图,工人师傅用角尺画出工件边缘AB 的垂线a 和b ,得到//a b .理由是( )A .连结直线外一点与直线上各点的所有线段中,垂线段最短B .在同一平面内,垂直于同一条直线的两条直线互相平行C .在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D .经过直线外一点,有且只有一条直线与这条直线平行 解:由题意a AB ⊥,b AB ⊥,//a b ∴(垂直于同一条直线的两条直线平行),故选:B .7.已知点(2-,)(2a ,)(3b ,)c 在函数(0)ky k x=>的图象上,则下列判断正确的是( ) A .a b c << B .b a c << C .a c b << D .c b a <<解:0k >, ∴函数(0)ky k x=>的图象分布在第一、三象限,在每一象限,y 随x 的增大而减小, 2023-<<<, 0b c ∴>>,0a <,a cb ∴<<.故选:C .8.如图,O 是等边ABC ∆的内切圆,分别切AB ,BC ,AC 于点E ,F ,D ,P 是DF 上一点,则EPF ∠的度数是( )A .65︒B .60︒C .58︒D .50︒解:如图,连接OE ,OF .O 是ABC ∆的内切圆,E ,F 是切点, OE AB ∴⊥,OF BC ⊥, 90OEB OFB ∴∠=∠=︒, ABC ∆是等边三角形, 60B ∴∠=︒, 120EOF ∴∠=︒,1602EPF EOF ∴∠=∠=︒, 故选:B .9.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x .则列出方程正确的是( )A .3252x x ⨯+=B .3205102x x ⨯+=⨯C .320520x x ⨯++=D .3(20)5102x x ⨯++=+解:设“□”内数字为x ,根据题意可得: 3(20)5102x x ⨯++=+.故选:D .10.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O 、BD 与HC 相交于点P .若GO GP =,则ABCD EFGHS S 正方形正方形的值是( )A .12B .22C .52D .154解:四边形EFGH 为正方形, 45EGH ∴∠=︒,90FGH ∠=︒, OG GP =,67.5GOP OPG ∴∠=∠=︒, 22.5PBG ∴∠=︒,又45DBC ∠=︒, 22.5GBC ∴∠=︒, PBG GBC ∴∠=∠,90BGP BG ∠=∠=︒,BG BG =,()BPG BCG ASA ∴∆≅∆, PG CG ∴=.设OG PG CG x ===, O 为EG ,BD 的交点,2EG x ∴=,2FG x =, 四个全等的直角三角形拼成“赵爽弦图”, BF CG x ∴==,2BG x x ∴=+,2222222(21)(422)BC BG CG x x x ∴=+=++=+,∴()22422222ABCDEFGH x S S x +==+正方形正方形.故选:B .二、填空题(本题有6小题,每小题4分,共24分)11.点(,2)P m 在第二象限内,则m 的值可以是(写出一个即可) 1-(答案不唯一). . 解:点(,2)P m 在第二象限内,0m ∴<,则m 的值可以是1-(答案不唯一).故答案为:1-(答案不唯一).12.数据1,2,4,5,3的中位数是 3 .解:数据1,2,4,5,3按照从小到大排列是1,2,3,4,5,则这组数据的中位数是3,故答案为:3.13.如图为一个长方体,则该几何体主视图的面积为 20 2cm .解:该几何体的主视图是一个长为4,宽为5的矩形,所以该几何体主视图的面积为220cm .故答案为:20.14.如图,平移图形M ,与图形N 可以拼成一个平行四边形,则图中α的度数是 30 ︒.解:四边形ABCD 是平行四边形,18060D C ∴∠=︒-∠=︒,180(54070140180)30α∴∠=︒-︒-︒-︒-︒=︒,故答案为:30.15.如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A ,B ,C 均为正六边形的顶点,AB 与地面BC 所成的锐角为β.则tan β的值是 19315.解:如图,作//AT BC ,过点B 作BH AT ⊥于H ,设正六边形的边长为a ,则正六边形的半径为,边心距32a =.观察图象可知:192BH a =,532AH =, //AT BC , BAH β∴∠=,191932tan 15532a BH AH a β∴===. 故答案为19315. 16.图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC ,BD (点A 与点B 重合),点O 是夹子转轴位置,OE AC ⊥于点E ,OF BD ⊥于点F ,1OE OF cm ==,6AC BD cm ==,CE DF =,:2:3CE AE =.按图示方式用手指按夹子,夹子两边绕点O 转动.(1)当E ,F 两点的距离最大时,以点A ,B ,C ,D 为顶点的四边形的周长是 16 cm .(2)当夹子的开口最大(即点C 与点D 重合)时,A ,B 两点的距离为 cm .解:(1)当E ,F 两点的距离最大时,E ,O ,F 共线,此时四边形ABCD 是矩形, 1OE OF cm ==,2EF cm ∴=,2AB CD cm ∴==,∴此时四边形ABCD 的周长为226616()cm +++=,故答案为16.(2)如图3中,连接EF 交OC 于H .由题意2126()55CE CF cm ==⨯=,1OE OF cm ==,CO ∴垂直平分线段EF ,13()5OC CE cm ===, 1122OE EC CO EH =, 121125()13135EH cm ⨯∴==, 242()13EF EH cm ∴== //EF AB ,∴25EF CE AB CB ==, 52460()21313AB cm ∴=⨯=. 故答案为6013. 三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.计算:0(2020)tan 45|3|-+︒+-.解:原式12135=+-+=.18.解不等式:552(2)x x -<+.解:552(2)x x -<+,5542x x -<+5245x x -<+,39x <,3x <.19.某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表B 健身操 ▲C 俯卧撑 31D 开合跳 ▲E 其它 22(1)求参与问卷调查的学生总人数;(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生8000人,估算该市初中学生中最喜爱“健身操”的人数.解:(1)2211%200÷=(人),答:参与调查的学生总数为200人;(2)20024%48⨯=(人),答:最喜爱“开合跳”的学生有48人;(3)最喜爱“健身操”的学生数为2005931482240----=(人),4080001600200⨯=(人),答:最喜爱“健身操”的学生数大约为1600人.20.如图,AB 的半径2OA =,OC AB ⊥于点C ,60AOC ∠=︒.(1)求弦AB 的长.(2)求AB 的长.解:(1)AB 的半径2OA =,OC AB ⊥于点C ,60AOC ∠=︒,3sin 60232AC OA ∴=︒==,223AB AC ∴==;(2)OC AB ⊥,60AOC ∠=︒,120AOB ∴∠=︒,2OA =,∴AB 的长是:120241803ππ⨯=. 21.某地区山峰的高度每增加1百米,气温大约降低0.6C ︒,气温(C)T ︒和高度h (百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T 关于h 的函数表达式;(3)测得山顶的气温为6C ︒,求该山峰的高度.解:(1)由题意得,高度增加2百米,则气温降低20.6 1.2()C ⨯=︒,13.2 1.212∴-=,∴高度为5百米时的气温大约是12C ︒;(2)设T 关于h 的函数表达式为T kh b =+,则:313.2512k b k b +=⎧⎨+=⎩, 解得0.615k b =-⎧⎨=⎩, T ∴关于h 的函数表达式为0.615T h =-+;(3)当6T =时,60.615h =-+,解得15h =.∴该山峰的高度大约为15百米.22.如图,在ABC ∆中,42AB =,45B ∠=︒,60C ∠=︒.(1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将AEF ∆折叠得到PEF ∆.①如图2,当点P 落在BC 上时,求AEP ∠的度数.②如图3,连结AP ,当PF AC ⊥时,求AP 的长解:(1)如图1中,过点A 作AD BC ⊥于D .在Rt ABD ∆中,2sin 454242AD AB =︒=⨯=.(2)①如图2中,AEF PEF ∆≅∆,AE EP ∴=,AE EB =,BE EP ∴=,45EPB B ∴∠=∠=︒,90PEB ∴∠=︒,1809090AEP ∴∠=︒-︒=︒.②如图3中,由(1)可知:83sin 603AD AC ==︒,PF AC ⊥,90PFA ∴∠=︒,AEF PEF ∆≅∆,45AFE PFE ∴∠=∠=︒,AFE B ∴∠=∠,EAF CAB ∠=∠,AEF ACB ∴∆∆∽, ∴AF AE AB AC =2242833AF =, 23AF ∴=在Rt AFP ∆,AF FP =,226AP ∴==.23.如图,在平面直角坐标系中,已知二次函数21()42y x m =--+图象的顶点为A ,与y 轴交于点B ,异于顶点A 的点(1,)C n 在该函数图象上.(1)当5m =时,求n 的值.(2)当2n =时,若点A 在第一象限内,结合图象,求当2y 时,自变量x 的取值范围. (3)作直线AC 与y 轴相交于点D .当点B 在x 轴上方,且在线段OD 上时,求m 的取值范围.解:(1)当5m =时,21(5)42y x =--+,当1x =时,214442n =-⨯+=-.(2)当2n =时,将(1,2)C 代入函数表达式21()42y x m =--+,得212(1)42m =--+,解得3m =或1-(舍弃),∴此时抛物线的对称轴3x =,根据抛物线的对称性可知,当2y =时,1x =或5,x ∴的取值范围为15x .(3)点A 与点C 不重合,1m ∴≠,抛物线的顶点A 的坐标是(,4)m ,∴抛物线的顶点在直线4y =上,当0x =时,2142y m =-+,∴点B 的坐标为21(0,4)2m -+,抛物线从图1的位置向左平移到图2的位置,m 逐渐减小,点B 沿y 轴向上移动, 当点B 与O 重合时,21402m -+=, 解得22m =或22-当点B 与点D 重合时,如图2,顶点A 也与B ,D 重合,点B 到达最高点,∴点(0,4)B ,21442m ∴-+=,解得0m =, 当抛物线从图2的位置继续向左平移时,如图3点B 不在线段OD 上,B ∴点在线段OD 上时,m 的取值范围是:01m <或122m <<.24.如图,在平面直角坐标系中,正方形ABOC 的两直角边分别在坐标轴的正半轴上,分别过OB ,OC 的中点D ,E 作AE ,AD 的平行线,相交于点F ,已知8OB =. (1)求证:四边形AEFD 为菱形.(2)求四边形AEFD 的面积.(3)若点P 在x 轴正半轴上(异于点)D ,点Q 在y 轴上,平面内是否存在点G ,使得以点A ,P ,Q ,G 为顶点的四边形与四边形AEFD 相似?若存在,求点P 的坐标;若不存在,试说明理由.【解答】(1)证明:如图1中,//AE DF ,//AD EF ,∴四边形AEFD 是平行四边形,四边形ABCD 是正方形,AC AB OC OB ∴===,90ACE ABD ∠=∠=︒, E ,D 分别是OC ,OB 的中点,CE BD ∴=,()CAE ABD SAS ∴∆≅∆,AE AD ∴=,∴四边形AEFD 是菱形.(2)解:如图1中,连接DE .184162ADB ACE S S ∆∆==⨯⨯=,14482EOD S ∆=⨯⨯=,264216824AED ABD EOD ABOC S S S S ∆∆∆∴=--=-⨯-=正方形,248AED AEFD S S ∆∴==菱形.(3)解:如图1中,连接AF ,设AF 交DE 于K ,4OE OD ==,OK DE ⊥,KE KD ∴=,2OK KE KD ∴===,82AO =,62AK ∴=,3AK DK ∴=,①当AP 为菱形的一边,点Q 在x 轴的上方,有图2,图3两种情形: 如图2中,设AG 交PQ 于H ,过点H 作HN x ⊥轴于N ,交AC 于M ,设AM t =.菱形PAQG ∽菱形ADFE ,3PH AH ∴=, //HN OQ ,QH HP =,ON NP ∴=,HN ∴是PQO ∆的中位线,8ON PN t ∴==-,90MAH PHN AHM ∠=∠=︒-∠,90PNH AMH ∠=∠=︒,HMA PNH ∴∆∆∽,∴13AMMHAHNH PN PH ===,33HN AM t ∴==,83MH MN NH t ∴=-=-,3PN MH =,83(83)t t ∴-=-,2t ∴=,22(8)12OP ON t ∴==-=,(12,0)P ∴.如图3中,过点H 作HI y ⊥轴于I ,过点P 作PN x ⊥轴交IH 于N ,延长BA 交IN 于M .同法可证:AMH HNP ∆∆∽, ∴13AMMHAHHN PN HP ===,设MH t =,33PN MH t ∴==,38AM BM AB t ∴=-=-, HI 是OPQ ∆的中位线,2OP IH ∴=,HIHN ∴,8924t t ∴+=-,4t ∴=,22(8)24OP HI t ∴==+=,(24,0)P ∴.②当AP 为菱形的边,点Q 在x 轴的下方时,有图4,图5两种情形: 如图4中,3QH PH =,过点H 作HM OC ⊥于M ,过D 点P 作PN MH ⊥于N .MH 是QAC ∆的中位线,142MH AC ∴==, 同法可得:HPN QHM ∆∆∽, ∴13NP HN PH HM MQ QH ===, 1433PN HM ∴==, 43OM PN ∴==,设HN t =,则3MQ t =, MQ MC =,4383t ∴=-, 209t ∴=, 5649OP MN t ∴==+=, ∴点P 的坐标为56(9,0).如图5中,3QH PH =,过点H 作HM x ⊥轴于M 交AC 于I ,过点Q 作QN HM ⊥于N .IH 是ACQ ∆的中位线,2CQ HI ∴=,4NQ CI ==,同法可得:PMH HNQ ∆∆∽, ∴13MH PM PH NQ HN HQ ===,则1433MH NQ ==,设PM t =,则3HN t =,HN HI =,4383t ∴=+,289t ∴=,849OP OM PM QN PM t ∴=-=-=-=,8(9P ∴,0).③如图6中,当AP 为菱形的对角线时,有图6一种情形:过点H 作HM y ⊥轴于于点M ,交AB 于I ,过点P 作PN HM ⊥于N . //HI x 轴,AH HP =,4AI IB ∴==,4PN IB ∴==,同法可得:PNH HMQ ∆∆∽, ∴13PN HN PH HM MQ HQ ===,312MH PN ∴==,4HI MH MI =-=, HI 是ABP ∆的中位线,28BP IH ∴==,16OP OB BP ∴=+=,(16,0)P ∴,综上所述,满足条件的点P 的坐标为(12,0)或(24,0)或56(9,0)或8(9,0)或(16,0).。

2020年浙江省金华市中考数学经典试题附解析

2020年浙江省金华市中考数学经典试题附解析

2020年浙江省金华市中考数学经典试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如果用□表示1个立方体,用 表示两个立方体叠加,•用■表示三个立方体叠加,那么下图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( )B CAD2.二次函数y=ax 2+bx+c 的图象的对称轴位置 ( ) A .只与a 有关 B .只与b 有关 C .只与a, b 有关 D .与 a , b ,c 都有关 3.已知213y x x =-,226y x =-,当12y y =时,x 的值为( )A .2x =或3x =B .1x =或6x =C .1x =-或6x =D .2x =-或3x =- 4.已知关于x 的不等式2x 3m ->-的解的解如图所示,则m 的值等于( )A .2B .1C . -1D .05.如图,在等边ABC △中,9AC =,点O 在AC 上,且3AO =,点P 是AB 上一动点,连结OP ,将线段OP 绕点O 逆时针旋转60得到线段OD .要使点D 恰好落在BC 上,则AP 的长是( )A .4B .5C .6D .86.已知2x y m=⎧⎨=⎩是二元一次方程5x+3y=1的一组解,则m 的值是( )A .3B .3-C .113D .113-7.不解方程判断方程21230111x xx -+=+--的解是( ) A .OB .1C .2D .138.如图,每个正方形均由边长为l的小正方形组成,则下列图形中的三角形(阴影部分)是△ABC经相似变换后得到的像是()9.按下列图示的程序计算,若开始输入的值为x=3,则最后输出的结果是()A.6 B.21 C.156 D.23110.若代数式2a a695++的值是()3.++的值是 6,则代数式2231a aA.18 B.16 C.15 D.20二、填空题11.如图,△ABC 和△DEF 是位似三角形,且AC= 2DF,那么 OE:OB= .12.如图,火焰 AC 通过纸板 EF 上的一个小孔0照射到屏幕上形成倒立的实像,像的长度BD= 2 cm,QA = 60 cm,OB = 20 cm,则火焰 AC 的长为 cm.13.如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是.14.矩形ABCD中,对角线AC,BD相交于点0,若∠AOB=100°,则∠OAB= .15.汽车以每小时60 km的速度行驶5h,中途停驶2h,后又以每小时80 km行驶3 h,则汽车平均每小时行驶 km.16.如图,直线AD,BC被AB所截时,∠1的同位角是.17.如图,在长方形 ABCD中,AB=3,BC=7,则AB,CD 间的距离是.18.计算:(1)72()()÷;-÷-;(3)232a b a b-÷-;(2)52()()b b(5)(5)÷⋅(4)32()()-÷-;(5)844x y y xa a a解答题19.有一个均匀的正十二面体形状的骰子,其中 3个面标有“1 ”,1个面标有“2”,4 个面标有“3”, 1 个面标有“4”,2 个面标有“5”,1 个面标有“6”,将这个骰子掷出后,数字朝上的可能性最大,为.20.如图所示,在图②、③中画出由图①所示的阴影部分图形绕点P按顺时针方向旋转90°和l80°后所成的图形.三、解答题21.小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:朝上的点数123456出现的次数79682010(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?(3)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.22.如图,在直角坐标系xOy 中,一次函数y =k 1x +b 的图象与反比例函数xk y 2的图象交于A(1,4)、B(3,m)两点. (1)求一次函数的解析式; (2)求△AOB 的面积.23.如图,在直角坐标系中△ABC 的A 、B 、C 三点坐标为A (7,1)、B (8,2)、C (9,0). 请在图中画出△ABC 的一个以点P (12,0)为位似中心,相似比为3的位似图形(要求与△ABC 同在P 点一侧).24.如图所示的两组图形中,各有两个三角形相似,求图中 x 、y 的值.25.将进货单价为 90 元的某种商品按100 元一个售出时,能卖出 500 个,已知这种商品每涨价1 元,其销售量就要减少 10个,为了获得最大利润应怎样定价?26.如图,已知反比例函数8yx=-和一次函数2y x=-+的图象交于A、B两点,求:(1)A、B 两点的坐标;(2)若O为坐标原点,求△AOB 的面积.27.如图,在四边形ABCD中,AC⊥BD,过四个顶点分别作对角线AC,BD的平行线,分别相交于E,F,G,H四点.求证:四边形EFGH是矩形.28.如图,E是□ABCD外一点,∠AEC=∠BED=90°.求证:□ABCD是矩形.29.已知,4425,7522==y x 求22)()(y x y x --+的值.30.第一次从外面向仓库运进化肥 48. 5 t ,第二次从仓库里运出化肥 54 t ,结果怎样?试列出有理教运算的算式,通过计算作答.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.A4.B5.C6.B7.A8.A9.D10.D二、填空题11. 1:2.12.613.AD=BC14.4015.5416.∠B17.7.18.(1)5b -;(2)-125;(3)42a b ;(4)x y -;(5)8a19.3,1320.图略三、解答题 21.解:(1)“3点朝上”出现的频率是616010=; “5点朝上”出现的频率是201603=; (2)小颖的说法是错误的.这是因为,“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的频率最大.只有当实验的次数足够大时,该事件发生的频率稳定在事件发生的概率附近.小红的判断是错误的,因为事件发生具有随机性,故“6点朝上”的次数不一定是100次. (3)列表如下:1 2 3 4 5 6 1234567小红投掷的点数 小颖投掷 的点数2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9 10 5 6 7 8 9 10 11 67 8 9 10 11 12∴121(3)363P ==点数之和为的倍数. 22.(1)31634+-=x y ;(2))316 23.略.24.302820x =,42x =. 152535y=,21y =. 25.设利润为 y 元,商品涨价x 元.(10090)(50010)y x x =+--,由己知得由配方法得210(20)9000y x =--+由二次函数的性质得当 x= 20 时,9000y =最大值 ∴为获得最大利润应定价120 元.26.(1)由28y x y x =-+⎧⎪⎨=-⎪⎩得2280x x --=,解得:x 1 = 4,x 2 =-2x 1 = 4时,y 1 =-2;x 2 =--2 时,y 2 =4,∴A 、B 坐标分别是(4,一2)和(—2,4). (2)设直线 AB 与 x 轴交于C.则点 C 的坐标为(2,0).112422622AOB AOC OBC s S s ∆∆∆=+==⨯⨯+⨯⨯=.27.先证□EFGH ,再证一个内角为直角即可28.连结AC ,BD 交于O ,连结OE ,证AC=BD29.32.30.运出5. 5 t。

2020年浙江省金华市中考数学试卷(原卷版)

2020年浙江省金华市中考数学试卷(原卷版)

2020年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)实数3的相反数是()A.﹣3 B.3 C.﹣D.2.(3分)分式的值是零,则x的值为()A.2 B.5 C.﹣2 D.﹣53.(3分)下列多项式中,能运用平方差公式分解因式的是()A.a2+b2B.2a﹣b2C.a2﹣b2D.﹣a2﹣b24.(3分)下列四个图形中,是中心对称图形的是()A.B.C.D.5.(3分)如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是()A.B.C.D.6.(3分)如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b.理由是()A.连结直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行7.(3分)已知点(﹣2,a)(2,b)(3,c)在函数y=(k>0)的图象上,则下列判断正确的是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a8.(3分)如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是上一点,则∠EPF 的度数是()A.65°B.60°C.58°D.50°9.(3分)如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是()A.3×2x+5=2x B.3×20x+5=10x×2C.3×20+x+5=20x D.3×(20+x)+5=10x+210.(3分)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)点P(m,2)在第二象限内,则m的值可以是(写出一个即可).12.(4分)数据1,2,4,5,3的中位数是.13.(4分)如图为一个长方体,则该几何体主视图的面积为cm2.14.(4分)如图,平移图形M,与图形N可以拼成一个平行四边形,则图中α的度数是°.15.(4分)如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A,B,C均为正六边形的顶点,AB与地面BC所成的锐角为β.则tanβ的值是.16.(4分)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD(点A与点B重合),点O是夹子转轴位置,OE⊥AC于点E,OF⊥BD于点F,OE=OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.(1)当E,F两点的距离最大时,以点A,B,C,D为顶点的四边形的周长是cm.(2)当夹子的开口最大(即点C与点D重合)时,A,B两点的距离为cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣2020)0+﹣tan45°+|﹣3|.18.(6分)解不等式:5x﹣5<2(2+x).19.(6分)某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表类别项目人数(人)A跳绳59B健身操▲C俯卧撑31D开合跳▲E其它22(1)求参与问卷调查的学生总人数.(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.20.(8分)如图,的半径OA=2,OC⊥AB于点C,∠AOC=60°.(1)求弦AB的长.(2)求的长.21.(8分)某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.22.(10分)如图,在△ABC中,AB=4,∠B=45°,∠C=60°.(1)求BC边上的高线长.(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.①如图2,当点P落在BC上时,求∠AEP的度数.②如图3,连结AP,当PF⊥AC时,求AP的长.23.(10分)如图,在平面直角坐标系中,已知二次函数y=﹣(x﹣m)2+4图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.(1)当m=5时,求n的值.(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.24.(12分)如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G 为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.。

2020年浙江省金华中考数学试卷附答案解析版

2020年浙江省金华中考数学试卷附答案解析版

D. 1 3




A.5
B.2
C. 2
D. 5
3.下列多项式中,能运用平方差公式分解因式的是



A. a2 b2
B. 2a b2
C. a2 b2
D. a2 b2
4.下列四个图形中,是中心对称图形的是



A
B
C
D
数学试卷 第 1 页(共 6 页)
5.如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸
12.数据 1,2,4,5,3 的中位数是

13.如图为一个长方体,则该几何体主视图的面积为
cm2 .
第 13 题图
第 14 题图
第 15 题图
14. 如图,平移图形 M ,与图形 N 可以拼成一个平行四边形,则图中 的度数是
°.
15. 如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,
∴△BPG≌△BCGASA ,
∴PG CG . 设OG PG CG x , ∵O 为 EG , BD 的交点, ∴EG 2x , FG 2x ,
∵ 四个全等的直角三角形拼成“赵爽弦图”, ∴BF CG x , ∴BG x 2x ,
∴BC2 BG2 CG2 x2 2 1 2 x2 4 2 2 x2 ,
抽取的学生最喜爱体育锻炼项目统计表
类别
项目
人数
A
跳绳
59
B
健身操

C
俯卧撑
31
D
开合跳

E
其它
22
第 19 题图
1 求参与问卷调查的学生总人数.

2020年浙江金华中考数学试题初中数学

2020年浙江金华中考数学试题初中数学

2020年浙江金华中考数学试题初中数学卷Ⅰ一、选择题〔此题有10小题,每题4分,共40分〕1.运算(2)3-⨯所得结果正确的选项是〔 〕A .5B .6C .5-D .6- 2.将抛物线23y x =向上平移2个单位,得到抛物线的解析式是〔 〕A .232y x =-B .23y x =C .23(2)y x =+D .232y x =+ 3.06年,我市深入实施环境污染整治,某经济开发区的40家化工企业中已关停、整改32家,每年排放的污水减少了167000吨.将167000用科学记数法表示为〔 〕A .316710⨯B .416.710⨯C .51.6710⨯D .60.16710⨯ 4.如图是小玲在九月初九〝重阳节〞送给她外婆的礼盒,图中所示礼盒的主视图是〔 〕5.不等式260x ->的解集在数轴上表示正确的选项是〔 〕6.如图,点A B C ,,都在⊙O 上,假设34C =∠,那么AOB ∠的度数为〔 〕A .34B .56C .60D .687.以下函数中,图象通过点(11)-,的反比例函数解析式是〔 〕 A .1y x = B .1y x -= C .2y x = D .2y x-= 8.北京奥组委从4月15日起分三个时期向境内公众销售门票,开幕式门票分为五个档次,票价分不为人民币5000元、3000元、1500元、800元和200元.某网点第一周内开幕式门票的销售情形见统计图,那么第一周售出的门票票价..的众数是〔 〕A .1500元B .11张C .5张D .200元9.国家级历史文化名城——金华,风光秀丽,花木葱郁.某广场上一个形状是平行四边形的花坛〔如图〕,分不种有红、黄、蓝、绿、橙、紫6种颜色的花.假如有AB EF DC ∥∥,BC GH AD ∥∥,那么以下讲法中错误的选项是〔 〕A .红花、绿花种植面积一定相等B .紫花、橙花种植面积一定相等C .红花、蓝花种植面积一定相等D .蓝花、黄花种植面积一定相等10.一次函数1y kx b =+与2y x a =+的图象如图,那么以下结论 ①0k <;②0a >;③当3x <时,12y y <中,正确的个数是〔 〕A .0B .1C .2D .3卷Ⅱ二、填空题〔此题有6小题,每题5分,共30分〕112的相反数是 .12.分解因式:2218x -= .13.如图,直线AB CD ∥,EF CD ⊥,F 为垂足.假如20GEF =∠,那么1∠的度数是 °.14.自由下落物体的高度h 〔米〕与下落的时刻t 〔秒〕的关系为24.9h t =.现有一铁球从离地面19.6米高的建筑物的顶部作自由下落,到达地面需要的时刻是 秒.15.如下图为一弯形管道,其中心线是一段圆弧,半径60cm OA =,108AOB =∠,那么管道的长度〔即的长〕为 cm .〔结果保留π〕16.如图,在由24个边长都为1的小正三角形的网格中,点P 是正六边形的一个顶点,以 点P 为直角顶点作格点直角三角形〔即顶点均在格点上的三角形〕,请你写出所有可能的直角三角形斜边的长 .三、解答题〔此题有8小题,共80分,各小题都必须写出解答过程〕17.〔此题8分〕〔1〕运算:03(3)2tan 45-+π-; 〔2〕解方程组:521x y x y +=⎧⎨-=⎩ 18.〔此题8分〕如图,A E B D ,,,在同一直线上,在ABC △与DEF △中,AB DE =,AC DF =,AC DF ∥.〔1〕求证:ABC DEF △≌△;〔2〕你还能够得到的结论是 〔写出一个即可,不再添加其它线段,不再标注或使用其它字母〕.19.〔此题8分〕水果种植大户小方,为了吸引更多的顾客,组织了观光采摘游活动.每一位来采摘水果的顾客都有一次抽奖机会:在一只不透亮的盒子里有A B C D ,,,四张外形完全相同的卡片,抽奖时先随机抽出一张卡片,再从盒子中剩下的3张中随机抽取第二张.〔1〕请利用树状图〔或列表〕的方法,表示前后两次抽得的卡片所有可能的情形;〔2〕假如抽得的两张卡片是同一种水果图片就可获得奖励,那么得到奖励的概率是多少?20.〔此题8分〕在直角坐标系中,ABC △的三个顶点的位置如下图.〔1〕请画出ABC △关于y 轴对称的A B C '''△〔其中A B C ''',,分不是A B C ,,的对应点,不写画法〕;〔2〕直截了当写出A B C ''',,三点的坐标:(_____)(_____)(_____)A B C ''',,.21.〔此题10分〕如图,AB 是⊙O 的切线,A 为切点,AC 是⊙O 的弦,过O 作OH AC ⊥于点H .假设2OH =,12AB =,13BO =.求:〔1〕⊙O 的半径;〔2〕sin OAC ∠的值;〔3〕弦AC 的长〔结果保留两个有效数字〕.22.〔此题12分〕光明中学七年级1班同学积极响应〝阳光体育工程〞的号召,利用课外活动时刻积极参加体育锤炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情形及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.请你依照图表中的信息回答以下咨询题:〔1〕选择长跑训练的人数占全班人数的百分比是 ,该班共有同学 人; 〔2〕求训练后篮球定时定点投篮人均进球数;〔3〕依照测试资料,训练后篮球定时定点投篮的人均进球数比训练之前人均进球数增加25%.要求出参加训练之前的人均进球数.23.〔此题12分〕学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时刻,身高为1.6m 的小明()AB 的影子BC 长是3m ,而小颖()EH 刚好在路灯灯泡的正下方H 点,并测得6m HB .〔1〕请在图中画出形成影子的光线,交确定路灯灯泡所在的位置G ;〔2〕求路灯灯泡的垂直高度GH ;〔3〕假如小明沿线段BH 向小颖〔点H 〕走去,当小明走到BH 中点1B 处时,求其影子11B C 的长;当小明连续走剩下路程的13到2B 处时,求其影子22B C 的长;当小明连续走剩下路程的14到3B 处,…按此规律连续走下去,当小明走剩下路程的11n +到n B 处时,其影子n n B C 的长为 m 〔直截了当用n 的代数式表示〕.24.〔此题14分〕如图1,在平面直角坐标系中,点(043)A ,,点B 在x 正半轴上,且30ABO =∠.动点P 在线段AB 上从点A 向点B 以每秒3个单位的速度运动,设运动时刻为t 秒.在x 轴上取两点M N ,作等边PMN △.〔1〕求直线AB 的解析式;〔2〕求等边PMN △的边长〔用t 的代数式表示〕,并求出当等边PMN △的顶点M 运动到与原点O 重合时t 的值;〔3〕假如取OB 的中点D ,以OD 为边在Rt AOB △内部作如图2所示的矩形ODCE ,点C 在线段AB 上.设等边PMN △和矩形ODCE 重叠部分的面积为S ,要求出当02t ≤≤秒时S 与t 的函数关系式,并求出S 的最大值.。

2020年浙江省金华市中考数学测试试卷附解析

2020年浙江省金华市中考数学测试试卷附解析

2020年浙江省金华市中考数学测试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1. 如图,⊙O 是直角△ABC 的内切圆,切斜边AB 于D ,切直角边 BC 、CA 于点 E 、F ,已知 AC=5,BC=12,则四边形 OFCE 的面积为( )A .1B . 15C .152D .42.在平面直角坐标系内有一点 P (tan45°,sin60°),则点P 关于x 轴的对称点 P 1 的坐 标为( )A .(-13B . 3-1)C .(1,3D .(31) 3.函数22(2)4y x =-+的最小值是( )A .2B .4C .8D .234.“数轴上的点并不都表示有理数,如图中数轴上的点P 所表示的数是2”,这种说明问题的方式体现的数学思想方法叫做( )A .代入法B .换元法C .数形结合D .分类讨论 5.已知关于x 的一元一次方程431x m x -=+的解是负数,则m 的取值范围是( ) A .1m >-B .1m <-C .1m ≥-D .1m ≤- 6.考试开始了,你所在的教室里,有一位同学数学考试成绩会得90分,这是( ) A .必然事件B .不确定事件C .不可能事件D .无法判断 7.若1044m x x x--=--无解,则m 的值是( ) A .-2 B .2 C .3 D .-38. 一架飞机在无风的情况下每小时飞行 1200千米,若逆风飞完长为x 千米的航线用 3小时,而顺风飞完这条航线只需 2小时. 根据题意列方程,得1200120032x x -=-.这个方程所表示的意义是( )A .飞机往返一次的总时间不变B .顺风与逆风飞行,飞机自身的速度不变C .飞机往返一次的总路程不变D .顺风与逆风的风速相等二、填空题9.如图,已知△ABC 的一边BC 与以AC 为直径的⊙O 相切于点C ,若BC=4,AB=5,则cosB= . 10.某口袋中有红色、黄色、蓝色玻璃球 80个.小明通过多次模球实验后,发现摸到红球、黄球、蓝球的频率依次为 20、30、50,则可估计口袋中红球的数目为 ,黄球的数目为 ,蓝球的数目为 .11.如图所示,水坝的迎水坡AB=25 m ,坝高55m ,则坡角α≈ .12. 如果二次函数y =x 2-3x -2k,不论x 取任何实数,都有y>0,则k 的取值范围是_______.k<-9813.一学生推铅球时,铅球行进高度 y(m)与水平距离 x(m)的函数图象如图所示,则铅球推出的距离为 m .14.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那最省事的办法是( )A .带①去B .带②去C .带③去D .带①②去15.某人沿电车路线行走,每12分钟有一辆电车从后面赶上,每 4分钟有一辆电车迎面开来,若行人与电车都是匀速前进的,则电车每隔 分钟从起点开出一辆.16.写出一个以23x y =⎧⎨=⎩为解的二元一次方程组 .17. 如图,△ABC 中,∠A=30°,以 BE 为边,将此三角形对折,其次,又以BA 为边,再一次对折,C 点落在BE 上,此时∠CDB= 80°,则原三角形的∠B 等于 .18.如图,映在镜子里的这个英文单词是_________.19.(1)7点整,分针和时针之间的夹角的度数是 . (2)从午夜0时到早上8时,时针所转过的角度是 .20.一个立方体由 个面围成;有 条棱(面与面的交线叫做棱);有 个顶点(棱与棱的交点叫顶点).21.2x-7 与 4互为相反数,则x= .三、解答题22.如图,在△ABC 中,∠C= 90°,∠A = 30°,0 为AB 上一点,BO=m ,⊙O 的半径为12cm ,当m 在什么范围内取值,直线BC 与⊙O 相离?相切?相交?23.如图,△ABC 内接于⊙O ,AH ⊥BC ,垂足为 H ,AD 平分∠BAC ,交⊙O 于D . 求证:AD 平分∠HAO .24.如图,已知AOB OA OB ∠=,,点E 在OB 边上,四边形AEBF 是矩形.请你只用无刻度的直尺在图中画出AOB ∠的平分线(请保留画图痕迹).25.已知一个平行四边形可以剪开而拼成一个矩形,如图①所示,那么一个等腰梯形(如图②)是台能剪升拼成一个矩形?请画图说明.若在等腰梯形ABCD中,AD∥BC,AC=5 cm,梯形的高为4 cm,求梯形的面积.26.如图,在□ABCD中,E、F是对角线BD上的两点,且BE=DF.求证:(1)AE=CF;(2)AE∥CF.F C DAEB27.已知关于x的方程42a x+=的解是负数,求a的取值范围.12a>28.A 口袋中装有2个小球,分别标有数字 1和2;B 口袋中装有3个小球,分别标有数字3、4和 5. 每个小球除数字外都相同. 甲、乙两人玩游戏,从A、B两个口袋中随机地各取出 1个小球,若两个小球上的数字之和为偶数,则甲赢;若和为奇数,则乙赢. 这个游戏对甲、乙双方公平吗?请说明理由.29.规律探究:(1)观察下列一组数, 找出规律并在空格内填上相应的数:4,1,2,5,-- ____, 11,14…_________(第50个数)…(2) (本题2分)请观察下列算式, 并回答问题211211-=⨯,3121321-=⨯,4131431-=⨯,5141541-=⨯…… 根据上述算式请把下面2个分数写成形如“111a b c=+”的形式(b c ≠): 1115________=+ 1112009________=+ (3)计算下列各式:①67⨯=________ ②6667⨯=_________③666667⨯=_________ ④66666667⨯=_________请你利用你发现的规律,直接算出:166666667n n -⨯个()个的结果.30.某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初出售,可获利l5%,并可用本和利再投资其它商品,到月底又可获利l0%;如果月末出售可获利30%,但要付仓储费700元,请问根据商场的资金状况,如何购销才能获利最多?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.C3.A4.C5.B6.B7.C8.D二、填空题9.410.516,24,4011.263354o'''12.13.1014.A15.616.答案不唯一,如521x yx y+=⎧⎨-=⎩等17.75°18.HAPPY19.(1)150°(2)240°20.6,12,8 21.32三、解答题22.当33m>时相离;当33m=时相切;当33m<<时相交.23.连结 OD,∵AD平分∠BAC,∴⌒BD =⌒CD,∴OD⊥BC,∵AH⊥BC,∴.OD∥AH,∴∠ODA=∠HAD ,∵OA=OD,∴∠ODA=∠OAD,∴∠HAD=∠OADlD,即 AD 平分∠HAO.24.连结AB、EF相交于点P,连结OP,OP就是所求的AOB∠的平分线(图略).25.能,12 cm226.利用△ABE≌△CDF即可27.12a>28.画数状图:或列表:3451(3 ,1)和为4(4, 1)和为5(5 ,1 )和为 62(3,2)和为5(4,2)和为6(5 ,2)和为7数字之和共有 6种可能情况,其中和为偶数的情况有 3种,和为奇数的情况有 3种.所以P(和为偶数)=12,P(和为奇数)=12.所以游戏对甲、乙双方是公平的.29.(1)8;143(2)5×6;6;2009×2010;2010(3) 42 ; 4422 ;444222 ;44442222,444……222(n个4,n个2)30.设投入资金为a元,月初售出可获利:a(1+15%)(1+10%)-a=0.265a月末售出可获利:[a(1+30%)-700]-a=0.3a-700∴当a=20000元时,获利一样多;当a>20000元时,月末售出获利多;当a<20000元时,月初售出获利。

【解析版】2020年浙江省金华市中考数学试卷

【解析版】2020年浙江省金华市中考数学试卷
【分析】根据平行四边形的性质解答即可. 【解答】解:∵四边形 ABCD 是平行四边形,
∴∠D=180°﹣∠C=60°, ∴∠α=180°﹣(540°﹣70°﹣140°﹣180°)=30°, 故答案为:30. 【点评】此题考查平行四边形的性质,关键是根据平行四边形的邻角互补解答. 15.(4 分)如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边
∵﹣2<0<2<3, ∴b>c>0,a<0, ∴a<c<b. 故选:C. 【点评】本题考查了反比例函数图象上点的坐标特征,熟练掌握反比例函数的性质是解 题的关键.
8.(3 分)如图,⊙O 是等边△ABC 的内切圆,分别切 AB,BC,AC 于点 E,F,D,P 是 上一点,则∠EPF 的度数是( )
A.
B.
C.
D.
【分析】根据概率公式直接求解即可. 【解答】解:∵共有 6 张卡片,其中写有 1 号的有 3 张, ∴从中任意摸出一张,摸到 1 号卡片的概率是 = ;
故选:A. 【点评】此题考查了概率的求法,用到的知识点为:可能性等于所求情况数与总情况数 之比. 6.(3 分)如图,工人师傅用角尺画出工件边缘 AB 的垂线 a 和 b,得到 a∥b.理由是( )
∴∠PBG=∠GBC,
∵∠BGP=∠BG=90°,BG=BG,
∴△BPG≌△BCG(ASA),
∴PG=CG.
设 OG=PG=CG=x,
∵O 为 EG,BD 的交点,
∴EG=2x,FG= x,
∵四个全等的直角三角形拼成“赵爽弦图”,
∴BF=CG=x,
∴BG=x+ x,
∴BC2=BG2+CG2=



观察图象可知:BH= a,AH= a, ∵AT∥BC, ∴∠BAH=β,

2020年浙江省金华市中考数学试卷(学生版)

2020年浙江省金华市中考数学试卷(学生版)

2020年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)实数3的相反数是()A.﹣3 B.3 C.﹣D.2.(3分)分式的值是零,则x的值为()A.2 B.5 C.﹣2 D.﹣53.(3分)下列多项式中,能运用平方差公式分解因式的是()A.a2+b2B.2a﹣b2C.a2﹣b2D.﹣a2﹣b24.(3分)下列四个图形中,是中心对称图形的是()A.B.C.D.5.(3分)如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是()A.B.C.D.6.(3分)如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b.理由是()A.连结直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行7.(3分)已知点(﹣2,a)(2,b)(3,c)在函数y=(k>0)的图象上,则下列判断正确的是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a8.(3分)如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是上一点,则∠EPF 的度数是()A.65°B.60°C.58°D.50°9.(3分)如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是()A.3×2x+5=2x B.3×20x+5=10x×2C.3×20+x+5=20x D.3×(20+x)+5=10x+210.(3分)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)点P(m,2)在第二象限内,则m的值可以是(写出一个即可).12.(4分)数据1,2,4,5,3的中位数是.13.(4分)如图为一个长方体,则该几何体主视图的面积为cm2.14.(4分)如图,平移图形M,与图形N可以拼成一个平行四边形,则图中α的度数是°.15.(4分)如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A,B,C均为正六边形的顶点,AB与地面BC所成的锐角为β.则tanβ的值是.16.(4分)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD(点A与点B重合),点O是夹子转轴位置,OE⊥AC于点E,OF⊥BD于点F,OE=OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.(1)当E,F两点的距离最大时,以点A,B,C,D为顶点的四边形的周长是cm.(2)当夹子的开口最大(即点C与点D重合)时,A,B两点的距离为cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣2020)0+﹣tan45°+|﹣3|.18.(6分)解不等式:5x﹣5<2(2+x).19.(6分)某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表类别项目人数(人)A跳绳59B健身操▲C俯卧撑31D开合跳▲E其它22(1)求参与问卷调查的学生总人数.(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.20.(8分)如图,的半径OA=2,OC⊥AB于点C,∠AOC=60°.(1)求弦AB的长.(2)求的长.21.(8分)某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.22.(10分)如图,在△ABC中,AB=4,∠B=45°,∠C=60°.(1)求BC边上的高线长.(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.①如图2,当点P落在BC上时,求∠AEP的度数.②如图3,连结AP,当PF⊥AC时,求AP的长.23.(10分)如图,在平面直角坐标系中,已知二次函数y=﹣(x﹣m)2+4图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.(1)当m=5时,求n的值.(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.24.(12分)如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G 为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.更多微信扫上方二维码码获取。

浙江省金华市、丽水市2020年中考数学试卷(解析版)

浙江省金华市、丽水市2020年中考数学试卷(解析版)

浙江省金华市、丽水市2020年中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.实数3的相反数是()A. −3B. 3C. −13D. 132.分式 x+5x−2的值是零,则x的值为()A. 5B. 2C. -2D. -53.下列多项式中,能运用平方差公式分解因式的是()A. a2+b2B. 2a−b2C. a2−b2D. −a2−b24.下列四个图形中,是中心对称图形的是()A. B. C. D.5.如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是()A. 12B. 13C. 23D. 166.如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b,理由是()A. 连结直线外一点与直线上各点的所有线段中,垂线段最短B. 在同一平面内,垂直于同一条直线的两条直线互相平行C. 在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D. 经过直线外一点,有且只有一条直线与这条直线平行7.已知点(-2,a),(2,b),(3,c)在函数y=kx(k>0)的图象上,则下列判断正确的是()A. a<b<c B. b<a<c C. a<c<b D. c<b<a8.如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是DF上一点,则∠EPF的度数是()A. 65°B. 60°C. 58°D. 50°9.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x,则列出方程正确的是()A. 3×2x+5=2xB. 3×20x+5=10x×2C. 3×20+x+5=20xD. 3×(20+x)+5=10x+210.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O,BD与HC相交于点P.若GO=GP,则S正方形ABCDS正方形EFGH的值是()A. 1+√2B. 2+√2C. 5−√2D. 154二、填空题(本题有6小题,每小题4分,共24分)11.点P(m,2)在第二象限内,则m的值可以是(写出一个即可)________.12.数据1,2,4,5,3的中位数是________.13.如图为一个长方体,则该几何体主视图的面积为________cm2.14.如图,平移图形M,与图形N可以拼成一个平行四边形,则图中α的度数是________°.15.如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A,B,C均为正六边形的顶点,AB与地面BC所成的锐角为β,则tanβ的值是________.16.图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD(点A与点B重合),点O是夹子转轴位置,OE⊥AC于点E,OF⊥BD于点F,OE=OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.(1)当E,F两点的距离最大值时,以点A,B,C,D为顶点的四边形的周长是________cm.(2)当夹子的开口最大(点C与点D重合)时,A,B两点的距离为________cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.计算:(−2020)0+√4−tan45o+|−3|.18.解不等式:5x−5<2(2+x).19.某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如下两幅不完整的统计图表,请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表类别项目人数(人)A 跳舞59B 健身操C 俯卧撑 31D 开合跳E 其它22(1)求参与问卷调查的学生总人数.(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.20.如图,的半径OA=2,OC⊥AB于点C,∠AOC=60°.(1)求弦AB的长.(2)求的长.21.某地区山峰的高度每增加1百米,气温大约降低0.6℃.气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温.(2)求T关于h的函数表达式.(3)测得山顶的气温为6℃,求该山峰的高度.22.如图,在△ABC中,AB= 4√2,∠B=45°,∠C=60°.(1)求BC边上的高线长.(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.①如图2,当点P落在BC上时,求∠AEP的度数.②如图3,连结AP,当PF⊥AC时,求AP的长.23.如图,在平面直角坐标系中,已知二次函数图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.(1)当m=5时,求n的值.(2)当n=2时,若点A在第一象限内,结合图象,求当y 时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.24.如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.答案解析一、选择题(本题有10小题,每小题3分,共30分)1.【答案】A【考点】实数的相反数【解析】【解答】解:3的相反数是-3.故答案为:A.【分析】只有符号不同的两个数互为相反数,据此判断即可.2.【答案】D【考点】分式的值为零的条件【解析】【解答】解:由题意得x+5=0且x-2≠0,解得x=-5.故答案为:D.【分析】分式值为0的条件:分子为0且分母不为0,据此解答即可.3.【答案】C【考点】平方差公式及应用【解析】【解答】解:A、两符号相同,不能用平方差公式分解,故A不符合题意;B、虽然符号相反,但缺少平方项,∴不能用平方差公式分解,故B不符合题意;C、a2-b2=(a+b)(a-b),故C符合题意;D、两符号相同,不能用平方差公式分解,故D不符合题意;故答案为:C.【分析】平方差公式a2-b2=(a+b)(a-b),据此逐一分析即可.4.【答案】C【考点】中心对称及中心对称图形【解析】【解答】解:A、不是中心对称图形,故A不符合题意;B、不是中心对称图形,故B不符合题意;C、是中心对称图形,故C符合题意;D、不是中心对称图形,故D不符合题意;【分析】中心对称图形:把一个图形绕着某一点旋转180°后,旋转后的图形能够与原来的图形重合,据此逐一判断即可.5.【答案】A【考点】概率公式【解析】【解答】解:一共有6张卡片,写有1号的有3张,∴=故答案为:A.【分析】直接利用概率公式计算即可.6.【答案】B【考点】平行线的判定【解析】【解答】解:∵a⊥AB,b⊥AB,∴a∥b(在同一平面内,垂直于同一直线的两直线互相平行).故答案为:B.【分析】在同一平面内,垂直于同一直线的两直线互相平行,据此解答即可.7.【答案】C【考点】反比例函数的性质(k>0)的图象位于一,三象限,∴在每个象限内,y随x的增大而减【解析】【解答】解:∵函数y=kx小,∵-2<0<2<3,∴(2,b),(3,c)位于第一象限,b>c>0,(-2,a)位于第三象限,∴a<0,∴a<c<b.故答案为:C.【分析】根据反比例函数的性质进行解答即可.8.【答案】B【考点】多边形内角与外角,圆周角定理,切线的性质【解析】【解答】解:连接OE,OF,∵点EF分别是切点,∴∠OEB=∠OFB=90°,∵△ABC是等边三角形,∴∠B=60°,∴∠EOF=360°-∠OEB-∠OFB-∠B=120°,∠EOF=60°.∴∠P=12故答案为:B.【分析】连接OE,OF,根据切线的性质可得∠OEB=∠OFB=90°,利用等边三角形的性质可得∠B=60°,根∠EOF,据此求出结论.据四边形内角和等于360°,可求出∠EOF的度数,根据圆周角定理可得∠P=129.【答案】D【考点】一元一次方程的实际应用-数字、日历、年龄问题【解析】【解答】解:若设“□”内数字为x,可得:3×(2×10+x)+5=10x+2,即3(20+x)+5=10x+2.故答案为:D.【分析】若设“□”内数字为x,可得2□=2×10+x,□2=10x+2,据此解答即可.10.【答案】B【考点】全等三角形的判定与性质,勾股定理,正方形的性质,相似三角形的判定与性质,直角三角形的性质【解析】【解答】解:设AF=y,BF=x,∴正方形EFGH的边长GH=y-x,∴EG=√∴正方形ABCD的面积为x2+y2,正方形EFGH的面积为(y-x)2,∵ED∥BG,∴∠EDO=∠GBO,∵ED=BG,∠EOD=∠BOG,∴△EOD≌GOB,∴EO=GO,∵GP=GO,∴GH:GP=√∴PH:PG=√2−1∵DH∥GB,∴△DHP∽BGH,==√2−1,∴x=(√2−1)y=2+√2.=x2+y2(y−x)2故答案为:B.【分析】设AF=y,BF=x,可得正方形EFGH的边长GH=y-x,即得EG=√面积公式可得正方形ABCD的面积为x2+y2,正方形EFGH的面积为(y-x)2,先证△EOD≌GOB,√2−1,由于DH∥GB,可得△DHP∽BGH,利用相似三角形对应边成比例可得DH:GB=x:y=√2−1,代入正方形的面积进行计算即得结论.二、填空题(本题有6小题,每小题4分,共24分)11.【答案】如-1等(答案不唯一,负数即可)【考点】点的坐标与象限的关系【解析】【解答】解:∵点P(m,2)在第二象限内,∴m<0,m可以是-1.故答案为:-1(答案不唯一).【分析】根据第二象限点的坐标符号为负正,据此解答即可.12.【答案】3【考点】中位数【解析】【解答】解:将数据从小大排列1,2,3,4,5,最中间的数据是3,∴中位数是:3.故答案为:3.【分析】中位数:先把数据从小到大(或从大到小)进行排列,如果数据的个数是奇数,那么最中间的那个数据就是中位数,如果数据的个数是偶数,那么最中间的那两个数据的平均数就是中位数;据此解答即可.13.【答案】20【考点】简单几何体的三视图【解析】【解答】解:主视图是一个长4,高为5的长方体,∴主视图的面积为:4×5=20cm2.故答案为:20.【分析】主视图:是从物体正面所看的的平面图形,根据长方体的尺寸确定主视图的长,高,然后计算即可.14.【答案】30【考点】多边形内角与外角,平行四边形的性质 【解析】【解答】解:如图,∵∠1+∠2+70°+140°+120°=(5-2)×180°, ∴∠1+∠2=210°,∵平移图形M ,与图形N 可以拼成一个平行四边形 , ∴∠2+120°=180°,∠1+a=180°, ∴∠2+120°+∠1+a=360°, ∴a=30°. 故答案为:30.【分析】根据五边形的内角和可求出∠1+∠2=210°,根据平行四边形的性质及平角的定义可得∠2+120°=180°,∠1+a=180°,从而求出a 的度数. 15.【答案】1915√3【考点】正多边形和圆,锐角三角函数的定义【解析】【解答】如图,过作AD ∥BC ,过点B 作BH ⊥AD 垂足为H ,∴∠A=β,设正六边形的边长为a ,∴BH=6×2a=12a ,∠AED=120°,AE=AD=a , 在等腰三角形ADE 中,∠ADE=∠EAD=30°, ∴AD=√3a ,∴AH=√3a+√3a+√32a=5√32a,tan β=tanA=BHAH =24√315.故答案为:24√315.【分析】如图,过作AD ∥BC ,过点B 作BH ⊥AD 垂足为H ,可得∠A=β,设正六边形的边长为a ,根据正六边形的性质及卡通图形,可得BH=12a ,∠ADE=∠EAD=30°,AE=AD=a ,从而求出AD=√3a ,从而可得AH=5√32a ,由tan β=tanA=BHAH 即可求出结论.16.【答案】 (1)16(2)【考点】等腰三角形的性质,勾股定理,矩形的性质,锐角三角函数的定义【解析】【解答】解:(1)当点E 、O 、F 三点共线时,E 、F 两点的距离最大,此时四边形ABDC 是矩形,∴AB=CD=EF=2cm , ∴ 以点A ,B ,C ,D 为顶点的四边形的周长为:2+6+2=6=16cm;(2)当夹子的开口最大(点C 与点D 重合)时 ,如图,连接CO 并延长交AB 于点H ,∴CH ⊥AB ,AH=BH ,∵ AC=BD=6cm ,CE:AE=2:3,∴CE=125cm ,在Rt △OEF 中,CO=√OE 2+CE 2=135 ,∵sin ∠ECO=OE CO =AH AC , ∴AH=3013 ,∴AB=2AH=6013.【分析】(1)当点E 、O 、F 三点共线时,E 、F 两点的距离最大,此时四边形ABDC 是矩形,可得AB=CD=EF=2cm ,根据矩形的性质求出周长即可;(2)当夹子的开口最大(点C 与点D 重合)时 ,如图,;连接CO 并延长交AB 于点H ,可得CH ⊥AB ,AH=BH ,利用已知先求出CE=125cm ,在Rt △OEF 中利用勾股定理求出CO 的长,由sin ∠ECO=OE CO =AH AC , 求出AH ,从而求出AB=2AH 的长.三、解答题 (本题有8小题,共66分,各小题都必须写出解答过程)17.【答案】 解:原式=1+2-1+3=5【考点】实数的运算,特殊角的三角函数值【解析】【分析】利用零指数幂,算术平方根,特殊角的三角函数值,绝对值的意义将原式简化,然后进行加减运算即可.18.【答案】 解:5x -5<4+2x ,5x -2x<4+5,3x<9,x <3【考点】解一元一次不等式【解析】【分析】利用去括号,移项合并,系数化为1求出不等式的解集即可.19.【答案】(1)解:22÷11%=200.∴参与问卷调查的学生总人数为200人.(2)解:200×24%=48.答:最喜爱“开合跳”的学生有48人.(3)解:抽取学生中最喜爱“健身操”的初中学生有200-59-31-48-22=40(人),40200×8000=1600.∴最喜爱“健身操”的初中学生人数约为1600人.【考点】用样本估计总体,统计表,扇形统计图【解析】【分析】(1)利用跳绳的人数除以其百分比即得参与问卷调查的学生总人数.(2)利用参与问卷调查的学生总人数乘以“开合跳”的学生百分比即得“开合跳”的学生的人数;(3)利用8000乘以样本中最喜爱“健身操”人数的百分比即得结论.20.【答案】(1)解:在Rt△AOC中,∠AOC=60°,∴AC=AO·sin∠AOC =2sin60°=√3,∵OC⊥AB,∴AB=2AC=2 √3(2)解:∵OA= OB=2,OC⊥AB,∴∠AOB=2∠AOC=120°.∴= nπr180=120π×2180=4π3.∴的长是4π3.【考点】垂径定理,圆周角定理,弧长的计算【解析】【分析】(1)在Rt△AOC中,由AC=AO·sin∠AOC,可求出AC=√AB=2AC=2√3;(2)根据等腰三角形的性质可得∠AOB=2∠AOC=120°,直接利用弧长公式即可求出结论.21.【答案】(1)解:由题意得高度增加2百米,则温度降低2×0.6=1.2(℃).∴13.2-1.2=12∴高度为5百米时的气温大约是12℃.(2)解:设T=kh+b(k≠0),当h=3时,T=13.2,13.2=-0.6 ×3+b,解得b=15.∴T=-0.6h+15(3)解:当T=6时,6=-0.6h+15,解得h=15.∴该山峰的高度大约为15百米.【考点】一次函数的实际应用【解析】【分析】(1)由高度每增加1百米,气温大约降低0.6℃,可得高度增加2百米,则温度降低2×0.6=1.2(℃),从而可得高度为5百米时的气温大约是13.2-1.2=12℃;(2)直接利用待定系数法求一次函数解析式T=-0.6h+15;(3)利用(2)直接求出当T=6时,h的值即可.22.【答案】(1)解:如图1,过点A作AD⊥BC于点D,在Rt△ABD中,AD=AB⋅sin45°= 4√2×√2=4.2(2)解:①如图2,∵△AEF≌△PEF,∴AE=EP.又∵AE=BE ,∴BE=EP,∴∠EPB=∠B=45°,∴∠AEP=90°.②如图3,由(1)可知:在Rt△ADC中,AC=ADsin60°=8√33.∵PF⊥AC,∴∠PFA=90°.∵△AEF≌△PEF,∴∠AFE=∠PFE=45°,则∠AFE=∠B. 又∵∠EAF=∠CAB,∴△EAF∽△CAB,∴AFAB =AEAC,即4√2=√28√33,∴AF=2√3在Rt△AFP中,AF=PF,则AP=√2AF=2√6.【考点】翻折变换(折叠问题),相似三角形的判定与性质,解直角三角形,等腰直角三角形【解析】【分析】(1)如图1,过点A作AD⊥BC于点D,在Rt△ABD中,AD=AB⋅sin45°=4;(2)①由折叠知△AEF≌△PEF,可得AE=EP,利用线段的中点及等量代换,可得BE=EP,根据等边对等角,可得∠EPB=∠B=45°,利用三角形内角和即可求出∠AEP=90°;②由(1)可知:在Rt△ADC中,AC=ADsin60°=8√33,由∠EAF=∠CAB,∠AFE=∠B,可证,据此求出AF的长,在等腰直角△APF中,AP=√2AF,从而求出结论.23.【答案】(1)解:当m=5时,y= −12(x−5)2+4,当x=1时,n=−12×42+4=−4.(2)解:当n=2时,将C(1,2)代入函数表达式y=−12(x−m)2+4,得2=−12(1−m)2+4,解得m1=3,m2=-1(舍去).∴此时抛物线的对称轴为直线x=3,根据抛物线的轴对称性,当y=2时,有x1=1 ,x2=5.∴x的取值范围为1≤x≤5.(3)解:∵点A与点C不重合,∴m≠1.∵抛物线的顶点A的坐标是(m,4) ,∴抛物线的顶点在直线y=4上.m2+4,当x=0时,y=−12∴点B的坐标为(0,−1m2+4).2抛物线从试题图位置向左平移到图2的位置前,m减小,点B沿y轴上向上移动.m2+4=0,当点B与点O重合时,−12解得m1=2√2,m2=−2√2.当点B与点D重合时,如图2,顶点A也与点B,D 重合,点B到达最高点.∴点B的点坐标为(0,4),∴−1m2+4=4,解得m=0.2当抛物线从图2位置继续向左平移时,如图3点B不在线段OD上.∴ B点在线段OD上时,m的取值范围是0≤m<1或1<m<2 √2.【考点】二次函数图象的几何变换,二次函数图象上点的坐标特征,二次函数y=a(x-h)^2+k的图象,二次函数y=a(x-h)^2+k的性质【解析】【分析】(1)将m=5,x=1代入中,即可求出n值;(2)当n=2时,将C(1,2)代入函数表达式中,求出m=3值,即得此时抛物线的对称轴为直线x=3,(x-3)2+4=2,解得x1=1 ,x2=5,由于抛物线开口向下,当1≤x≤5时,抛物线的图象当y=2时,即y=−12在直线y=2直线的上方,据此即得结论;(3)点A与点C不重合,可得m≠1.由抛物线的顶点A的坐标是(m,4) ,可知抛物线的顶点在直线ym2+4).抛物线从试题图位置向左平移到图2的位置前,m =4上.利用抛物线求出点B的坐标为(0,−12减小,点B沿y轴上向上移动,①当点B与点O重合时,②如图2,顶点A也与点B,D 重合,点B 到达最高点.③当抛物线从图2位置继续向左平移时,如图3点B不在线段OD上,分别求出m的范围即可.24.【答案】(1)证明:∵DF∥AE,EF∥AD,∴四边形AEFD是平行四边形.∵四边形ABOC是正方形,∴OB=OC=AB=AC,∠ACE=∠ABD=Rt∠.∵点D,E是OB,OC的中点,∴CE=BD,∴△ACE≌△ABD(SAS),∴AE=AD,∴□AEFD是菱形.(2)解:如图1,连结DE.∵S△ABD=AB·BD=,S△ODE=OD·OE=,∴S△AED=S正方形ABOC-2 S△ABD-S△ODE=64-2 -8=24,∴S菱形AEFD=2S△AED=48.(3)解:由图1,连结AF与DE相交于点K,易得△ADK的两直角边之比为1:3. 1)当AP为菱形一边时,点Q在x轴上方,有图2、图3两种情况:如图2,AG与PQ交于点H,∵菱形PAQG∽菱形ADFE,∴△APH的两直角边之比为1:3.过点H作HN⊥x轴于点N,交AC于点M,设AM=t.∵HN∥OQ,点H是PQ的中点,∴点N是OP中点,∴HN是△OPQ的中位线,∴ON=PN=8-t.又∵∠1=∠3=90°-∠2,∠PNH=∠AMH=90°,∴△HMA∽△PNH,∴AMHN =MHPN=,∴HN=3AM=3t,∴MH=MN-NH=8-3t.∵PN=3MH,∴8-t =3(8-3t),解得t=2.∴OP=2ON=2(8-t)=12,∴点P的坐标为(12,0).如图3,△APH的两直角边之比为1:3.过点H作HI⊥y轴于点I,过点P作PN⊥x轴交IH于点N,延长BA交IN于点M. ∵∠1=∠3=90°-∠2,∠AMH=∠PNH,∴△AMH∽△HNP,∴AMHN =MHPN=,设MH=t,∴PN=3MH=3t,∴AM=BM-AB=3t-8,∴HN=3AM=3(3t-8) =9t-24.又∵HI是△OPQ的中位线,∴OP=2IH,∴HI=HN,∴8+t=9t-24,解得t=4.∴OP=2HI=2(8+t)=24,∴点P的坐标为(24,0).2)当AP为菱形一边时,点Q在x轴下方,有图4、图5两种情况:如图4,△PQH的两直角边之比为1:3.过点H作HM⊥y轴于点M,过点P作PN⊥HM于点N. ∵MH是△QAC的中位线,∴HM=AC2=4.又∵∠1=∠3=90°-∠2,∠HMQ=∠N,∴△HPN∽△QHM,∴NPHM =HNMQ=,则PN==43,∴OM=43.设HN=t,则MQ=3t.∵MQ=MC,∴3t=8-43,解得t=.∴OP=MN=4+t=569,∴点P的坐标为( ,0).如图5,△PQH的两直角边之比为1:3.过点H作HM⊥x轴于点M,交AC于点I,过点Q作NQ⊥HM于点N. ∵IH是△ACQ的中位线,∴CQ=2HI,NQ=CI=4.∵∠1=∠3=90°-∠2,∠PMH=∠QNH,∴△PMH∽△HNQ,∴MHNQ =PMHN=PHHQ=,则MH=NQ=.设PM=t,则HN=3t,∵HN=HI,∴3t=8+ ,解得t=.∴OP=OM-PM=QN-PM=4-t=,∴点P的坐标为( ,0).3)当AP为菱形对角线时,有图6一种情况:知识像烛光,能照亮一个人,也能照亮无数的人。

【最新人教版初中数学精选】2020年浙江省金华市中考数学试卷.doc

【最新人教版初中数学精选】2020年浙江省金华市中考数学试卷.doc

2020年浙江省金华市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列各组数中,把两数相乘,积为1的是()A.2和﹣2 B.﹣2和 C.和D.和﹣2.(3分)一个几何体的三视图如图所示,这个几何体是()A.球B.圆柱C.圆锥D.立方体3.(3分)下列各组数中,不可能成为一个三角形三边长的是()A.2,3,4 B.5,7,7 C.5,6,12 D.6,8,104.(3分)在Rt△ABC中,∠C=90°,AB=5,BC=3,则tanA的值是()A.B.C.D.5.(3分)在下列的计算中,正确的是()A.m3+m2=m5B.m5÷m2=m3C.(2m)3=6m3 D.(m+1)2=m2+16.(3分)对于二次函数y=﹣(x﹣1)2+2的图象与性质,下列说法正确的是()A.对称轴是直线x=1,最小值是2B.对称轴是直线x=1,最大值是2C.对称轴是直线x=﹣1,最小值是2D.对称轴是直线x=﹣1,最大值是27.(3分)如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10cm B.16cm C.24cm D.26cm8.(3分)某校举行“激情五月,唱响青春”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是()A.B.C.D.9.(3分)若关于x的一元一次不等式组的解集是x<5,则m的取值范围是()A.m≥5 B.m>5 C.m≤5 D.m<510.(3分)如图,为了监控一不规则多边形艺术走廊内的活动情况,现已在A、B两处各安装了一个监控探头(走廊内所用探头的观测区域为圆心角最大可取到180°的扇形),图中的阴影部分是A处监控探头观测到的区域.要使整个艺术走廊都能被监控到,还需要安装一个监控探头,则安装的位置是()A.E处 B.F处 C.G处D.H处二、填空题(本题有6小题,每小题4分,共24分)11.(4分)分解因式:x2﹣4=.12.(4分)若,则=.13.(4分)2020年5月28日全国部分宜居城市最高温度的数据如下:则以上最高气温的中位数为℃.14.(4分)如图,已知l1∥l2,直线l与l1、l2相交于C、D两点,把一块含30°角的三角尺按如图位置摆放.若∠1=130°,则∠2=.15.(4分)如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则点C的坐标为.16.(4分)在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m,拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2)(1)如图1,若BC=4m,则S=m2.(2)如图2,现考虑在(1)中矩形ABCD小屋的右侧以CD为边拓展一正△CDE 区域,使之变成落地为五边形ABCED的小屋,其他条件不变,则在BC的变化过程中,当S取得最小值时,边BC的长为m.三、解答题(本题有8个小题,共66分,各小题都必须写出解答过程)17.(6分)计算:2cos60°+(﹣1)2020+|﹣3|﹣(﹣1)0.18.(6分)解分式方程:=.19.(6分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(﹣2,﹣2),B(﹣4,﹣1),C(﹣4,﹣4).(1)作出△ABC关于原点O成中心对称的△A1B1C1;(2)作出点A关于x轴的对称点A′,若把点A′向右平移a个单位长度后落在△A1B1C1的内部(不包括顶点和边界),求a的取值范围.20.(8分)某校为了解学生体质情况,从各年级随机抽取部分学生进行体能测试,每个学生的测试成绩按标准对应为优秀、良好、及格、不及格四个等级,统计员在将测试数据绘制成图表时发现,优秀漏统计4人,良好漏统计6人,于是及时更正,从而形成如下图表,请按正确数据解答下列各题:(1)填写统计表;(2)根据调整后数据,补全条形统计图;(3)若该校共有学生1500人,请你估算出该校体能测试等级为“优秀”的人数.21.(8分)甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x﹣4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=﹣时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到点O的水平距离为7m,离地面的高度为m 的Q处时,乙扣球成功,求a的值.22.(10分)如图,已知AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC、AC.(1)求证:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度数;②若⊙O的半径为2,求线段EF的长.23.(10分)如图1,将△ABC纸片沿中位线EH折叠,使点A对称点D落在BC 边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能合成一个无缝隙,无重叠的矩形,这样的矩形称为叠合矩形.(1)将▱ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕:S▱ABCD=.分别是线段,;S矩形AEFG(2)▱ABCD纸片还可以按图3方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长;(3)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并求出AD、BC的长.24.(12分)如图1,在平面直角坐标系中,四边形OABC各顶点的坐标分别为O(0,0),A(3,3)、B(9,5),C(14,0),动点P与Q同时从O点出发,运动时间为t秒,点P沿OC方向以1单位长度/秒的速度向点C运动,点Q 沿折线OA﹣AB﹣BC运动,在OA、AB、BC上运动的速度分别为3,,(单位长度/秒),当P、Q中的一点到达C点时,两点同时停止运动.(1)求AB所在直线的函数表达式;(2)如图2,当点Q在AB上运动时,求△CPQ的面积S关于t的函数表达式及S的最大值;(3)在P、Q的运动过程中,若线段PQ的垂直平分线经过四边形OABC的顶点,求相应的t值.2020年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2020•金华)下列各组数中,把两数相乘,积为1的是()A.2和﹣2 B.﹣2和 C.和D.和﹣【分析】直接利用两数相乘运算法则求出答案.【解答】解:A、2×(﹣2)=﹣4,故此选项不合题意;B、﹣2×=﹣1,故此选项不合题意;C、×=1,故此选项符合题意;D、×(﹣)=﹣3,故此选项不合题意;故选:C.【点评】此题主要考查了实数运算,正确掌握运算法则是解题关键.2.(3分)(2020•金华)一个几何体的三视图如图所示,这个几何体是()A.球B.圆柱C.圆锥D.立方体【分析】根据三视图确定该几何体是圆柱体.【解答】解:根据主视图和左视图为矩形可判断出该几何体是柱体,根据俯视图是圆可判断出该几何体为圆柱.故选:B.【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及对立体图形的认识.3.(3分)(2020•金华)下列各组数中,不可能成为一个三角形三边长的是()A.2,3,4 B.5,7,7 C.5,6,12 D.6,8,10【分析】根据三角形三边关系定理判断即可.【解答】解:∵5+6<12,∴三角形三边长为5,6,12不可能成为一个三角形,故选:C.【点评】本题考查的是三角形的三边关系,掌握三角形三边关系定理:三角形两边之和大于第三边是解题的关键.4.(3分)(2020•金华)在Rt△ABC中,∠C=90°,AB=5,BC=3,则tanA的值是()A.B.C.D.【分析】根据勾股定理,可得AC的长,根据正切函数的定义,可得答案.【解答】解:由勾股定理,得AC==4,由正切函数的定义,得tanA==,故选:A.【点评】本题考查了锐角三角函数,利用正切函数的定义是解题关键.5.(3分)(2020•金华)在下列的计算中,正确的是()A.m3+m2=m5B.m5÷m2=m3C.(2m)3=6m3 D.(m+1)2=m2+1【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式不能合并,不符合题意;B、原式=m3,符合题意;C、原式=8m3,不符合题意;D、原式=m2+2m+1,不符合题意,故选B【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.6.(3分)(2020•金华)对于二次函数y=﹣(x﹣1)2+2的图象与性质,下列说法正确的是()A.对称轴是直线x=1,最小值是2B.对称轴是直线x=1,最大值是2C.对称轴是直线x=﹣1,最小值是2D.对称轴是直线x=﹣1,最大值是2【分析】根据抛物线的图象与性质即可判断.【解答】解:由抛物线的解析式:y=﹣(x﹣1)2+2,可知:对称轴x=1,开口方向向下,所以有最大值y=2,故选(B)【点评】本题考查二次函数的性质,解题的关键是正确理解抛物线的图象与性质,本题属于基础题型.7.(3分)(2020•金华)如图,在半径为13cm的圆形铁片上切下一块高为8cm 的弓形铁片,则弓形弦AB的长为()A.10cm B.16cm C.24cm D.26cm【分析】首先构造直角三角形,再利用勾股定理得出BC的长,进而根据垂径定理得出答案.【解答】解:如图,过O作OD⊥AB于C,交⊙O于D,∵CD=8,OD=13,∴OC=5,又∵OB=13,∴Rt△BCO中,BC==12,∴AB=2BC=24.故选:C.【点评】此题主要考查了垂径定理以及勾股定理,得出AC的长是解题关键.8.(3分)(2020•金华)某校举行“激情五月,唱响青春”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是()A.B.C.D.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式即可求出该事件的概率.【解答】解:画树状图得:∴一共有12种等可能的结果,甲、乙同学获得前两名的有2种情况,∴甲、乙同学获得前两名的概率是=;故选D.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.9.(3分)(2020•金华)若关于x的一元一次不等式组的解集是x<5,则m的取值范围是()A.m≥5 B.m>5 C.m≤5 D.m<5【分析】求出第一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了即可确定m的范围.【解答】解:解不等式2x﹣1>3(x﹣2),得:x<5,∵不等式组的解集为x<5,∴m≥5,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.(3分)(2020•金华)如图,为了监控一不规则多边形艺术走廊内的活动情况,现已在A、B两处各安装了一个监控探头(走廊内所用探头的观测区域为圆心角最大可取到180°的扇形),图中的阴影部分是A处监控探头观测到的区域.要使整个艺术走廊都能被监控到,还需要安装一个监控探头,则安装的位置是()A.E处 B.F处 C.G处D.H处【分析】根据各选项安装位置判断能否覆盖所有空白部分即可.【解答】解:如图,A、若安装在E处,仍有区域:四边形MGNS和△PFI监控不到,此选项错误;B、若安装在F处,仍有区域:△ERW监控不到,此选项错误;C、若安装在G处,仍有区域:四边形QEWK监控不到,此选项错误;D、若安装在H处,所有空白区域均能监控,此选项正确;故选:D.【点评】本题主要考查视点和盲区,掌握视点和盲区的基本定义是解题的关键.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)(2020•金华)分解因式:x2﹣4=(x+2)(x﹣2).【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.12.(4分)(2020•金华)若,则=.【分析】根据等式的性质1,等式两边都加上1,等式仍然成立可得出答案.【解答】解:根据等式的性质:两边都加1,,则=,故答案为:.【点评】本题主要考查等式的性质,观察要求的式子和已知的式子之间的关系,从而利用等式的性质进行计算.13.(4分)(2020•金华)2020年5月28日全国部分宜居城市最高温度的数据如下:则以上最高气温的中位数为29℃.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:题目中数据共有6个,按从小到大排列后为:25,26,28,30,32,35.故中位数是按从小到大排列后第3,第4两个数的平均数,故这组数据的中位数是×(28+30)=29.故答案为:29.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.14.(4分)(2020•金华)如图,已知l1∥l2,直线l与l1、l2相交于C、D两点,把一块含30°角的三角尺按如图位置摆放.若∠1=130°,则∠2=20°.【分析】先根据平行线的性质,得到∠BDC=50°,再根据∠ADB=30°,即可得出∠2=20°.【解答】解:∵∠1=130°,∴∠3=50°,又∵l1∥l2,∴∠BDC=50°,又∵∠ADB=30°,∴∠2=20°,故答案为:20°.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.15.(4分)(2020•金华)如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则点C的坐标为(﹣1,﹣6).【分析】解法1:将点A绕着点B顺时针旋转90°得到点D,连接AD,则△ABD 是等腰直角三角形,进而得到点D在射线AC上,根据点A(2,3)和点B(0,2),可得D(1,0),再根据待定系数法求得直线AC的解析式,最后解方程组即可得到点C的坐标;解法2:先过A作AE⊥x轴于E,以AE为边在AE的左侧作正方形AEFG,交AB 于P,根据直线AB的解析式为y=x+2,可得PF=,将△AGP绕点A逆时针旋转90°得△AEH,构造△ADP≌△ADH,再设DE=x,则DH=DP=x+,FD=1+2﹣x=3﹣x,在Rt△PDF中,根据PF2+DF2=PD2,可得方程()2+(3﹣x)2=(x+)2,进而得到D(1,0),即可得出直线AD的解析式为y=3x﹣3,最后解方程组即可得到D点坐标.【解答】解法1:如图所示,将点A绕着点B顺时针旋转90°得到点D,连接AD,则△ABD是等腰直角三角形,∴∠BAD=45°,由题可得,∠BAC=45°,∴点D在射线AC上,由点A(2,3)和点B(0,2),可得D(1,0),设AC的解析式为y=ax+b,把A(2,3),D(1,0)代入,可得,解得,∴直线AC的解析式为y=3x﹣3,解方程组,可得或,∴C(﹣1,﹣6),故答案为:(﹣1,﹣6).解法2:如图所示,过A作AE⊥x轴于E,以AE为边在AE的左侧作正方形AEFG,交AB于P,根据点A(2,3)和点B(0,2),可得直线AB的解析式为y=x+2,由A(2,3),可得OF=1,当x=﹣1时,y=﹣+2=,即P(﹣1,),∴PF=,将△AGP绕点A逆时针旋转90°得△AEH,则△ADP≌△ADH,∴PD=HD,PG=EH=,设DE=x,则DH=DP=x+,FD=1+2﹣x=3﹣x,Rt△PDF中,PF2+DF2=PD2,即()2+(3﹣x)2=(x+)2,解得x=1,∴OD=2﹣1=1,即D(1,0),根据点A(2,3)和点D(1,0),可得直线AD的解析式为y=3x﹣3,解方程组,可得或,∴C(﹣1,﹣6),故答案为:(﹣1,﹣6).【点评】本题主要考查了反比例函数与一次函数图象交点问题,旋转的性质以及反比例函数图象上点的坐标特征的运用,解决问题的关键是利用45°角,作辅助线构造等腰直角三角形或正方形,依据旋转的性质或勾股定理列方程进行求解.16.(4分)(2020•金华)在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m,拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2)(1)如图1,若BC=4m,则S=88πm2.(2)如图2,现考虑在(1)中矩形ABCD小屋的右侧以CD为边拓展一正△CDE 区域,使之变成落地为五边形ABCED的小屋,其他条件不变,则在BC的变化过程中,当S取得最小值时,边BC的长为m.【分析】(1)小狗活动的区域面积为以B为圆心、10为半径的圆,以C为圆心、6为半径的圆和以A为圆心、4为半径的圆的面积和,据此列式求解可得;(2)此时小狗活动的区域面积为以B为圆心、10为半径的圆,以A为圆心、x为半径的圆、以C为圆心、10﹣x为半径的圆的面积和,列出函数解析式,由二次函数的性质解答即可.【解答】解:(1)如图1,拴住小狗的10m长的绳子一端固定在B点处,小狗可以活动的区域如图所示:由图可知,小狗活动的区域面积为以B为圆心、10为半径的圆,以C为圆心、6为半径的圆和以A为圆心、4为半径的圆的面积和,∴S=×π•102+•π•62+•π•42=88π,故答案为:88π;(2)如图2,设BC=x,则AB=10﹣x,∴S=•π•102+•π•x2+•π•(10﹣x)2=(x2﹣5x+250)=(x﹣)2+,当x=时,S取得最小值,∴BC=,故答案为:.【点评】本题主要考查二次函数的应用,解题的关键是根据绳子的长度结合图形得出其活动区域及利用扇形的面积公式表示出活动区域面积.三、解答题(本题有8个小题,共66分,各小题都必须写出解答过程)17.(6分)(2020•金华)计算:2cos60°+(﹣1)2020+|﹣3|﹣(﹣1)0.【分析】本题涉及特殊角的三角函数值、乘方、零指数幂、绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:2cos60°+(﹣1)2020+|﹣3|﹣(﹣1)0=2×﹣1+3﹣1=1﹣1+3﹣1=2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握特殊角的三角函数值、乘方、零指数幂、绝对值等考点的运算.18.(6分)(2020•金华)解分式方程:=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2(x﹣1)=x+1,解得:x=3,经检验x=3是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.(6分)(2020•金华)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(﹣2,﹣2),B(﹣4,﹣1),C(﹣4,﹣4).(1)作出△ABC关于原点O成中心对称的△A1B1C1;(2)作出点A关于x轴的对称点A′,若把点A′向右平移a个单位长度后落在△A1B1C1的内部(不包括顶点和边界),求a的取值范围.【分析】(1)分别作出点A、B、C关于原点O成中心对称的对应点,顺次连接即可得;(2)由点A′坐标为(﹣2,2)可知要使向右平移后的A′落在△A1B1C1的内部,最少平移4个单位,最多平移6个单位,据此可得.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)∵点A′坐标为(﹣2,2),∴若要使向右平移后的A′落在△A1B1C1的内部,最少平移4个单位,最多平移6个单位,即4<a<6.【点评】本题主要考查作图﹣中心对称和轴对称、平移,熟练掌握中心对称和轴对称、平移变换的性质是解题的关键.20.(8分)(2020•金华)某校为了解学生体质情况,从各年级随机抽取部分学生进行体能测试,每个学生的测试成绩按标准对应为优秀、良好、及格、不及格四个等级,统计员在将测试数据绘制成图表时发现,优秀漏统计4人,良好漏统计6人,于是及时更正,从而形成如下图表,请按正确数据解答下列各题:(1)填写统计表;(2)根据调整后数据,补全条形统计图;(3)若该校共有学生1500人,请你估算出该校体能测试等级为“优秀”的人数.【分析】(1)求出各自的人数,补全表格即可;(2)根据调整后的数据,补全条形统计图即可;(3)根据“优秀”人数占的百分比,乘以1500即可得到结果.【解答】解:(1)填表如下:故答案为:12;22;12;4;50;(2)补全条形统计图,如图所示:(3)抽取的学生中体能测试的优秀率为24%,则该校体能测试为“优秀”的人数为1500×24%=360(人).【点评】此题考查了条形统计图,用样本估计总体,以及统计表,弄清题中的数据是解本题的关键.21.(8分)(2020•金华)甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x﹣4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=﹣时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到点O的水平距离为7m,离地面的高度为m 的Q处时,乙扣球成功,求a的值.【分析】(1)①将点P(0,1)代入y=﹣(x﹣4)2+h即可求得h;②求出x=5时,y的值,与1.55比较即可得出判断;(2)将(0,1)、(7,)代入y=a(x﹣4)2+h代入即可求得a、h.【解答】解:(1)①当a=﹣时,y=﹣(x﹣4)2+h,将点P(0,1)代入,得:﹣×16+h=1,解得:h=;②把x=5代入y=﹣(x﹣4)2+,得:y=﹣×(5﹣4)2+=1.625,∵1.625>1.55,∴此球能过网;(2)把(0,1)、(7,)代入y=a(x﹣4)2+h,得:,解得:,∴a=﹣.【点评】本题主要考查二次函数的应用,熟练掌握待定系数法求函数解析式是解题的关键.22.(10分)(2020•金华)如图,已知AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC、AC.(1)求证:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度数;②若⊙O的半径为2,求线段EF的长.【分析】(1)由切线性质知OC⊥CD,结合AD⊥CD得AD∥OC,即可知∠DAC=∠OCA=∠OAC,从而得证;(2)①由AD∥OC知∠EOC=∠DAO=105°,结合∠E=30°可得答案;②作OG⊥CE,根据垂径定理及等腰直角三角形性质知CG=FG=OG,由OC=2得出CG=FG=OG=2,在Rt△OGE中,由∠E=30°可得答案.【解答】解:(1)∵CD是⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴AD∥OC,∴∠DAC=∠OCA,∵OC=OA,∴∠OCA=∠OAC,∴∠OAC=∠DAC,∴AC平分∠DAO;(2)①∵AD∥OC,∴∠EOC=∠DAO=105°,∵∠E=30°,∴∠OCE=45°;②作OG⊥CE于点G,则CG=FG=OG,∵OC=2,∠OCE=45°,∴CG=OG=2,∴FG=2,在Rt△OGE中,∠E=30°,∴GE=2,∴.【点评】本题主要考查圆的切线的性质、平行线的判定与性质、垂径定理及等腰直角三角形性质,熟练掌握切线的性质、平行线的判定与性质、垂径定理及等腰直角三角形性质是解题的关键.23.(10分)(2020•金华)如图1,将△ABC纸片沿中位线EH折叠,使点A对称点D落在BC边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能合成一个无缝隙,无重叠的矩形,这样的矩形称为叠合矩形.(1)将▱ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕:S▱ABCD=1:2.分别是线段AE,GF;S矩形AEFG(2)▱ABCD纸片还可以按图3方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长;(3)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并求出AD、BC的长.【分析】(1)根据题意得出操作形成的折痕分别是线段AE、GF;由折叠的性质得出△ABE的面积=△AHE的面积,四边形AHFG的面积=四边形DCFG的面积,得出S=S▱ABCD,即可得出答案;矩形AEFG(2)由矩形的性质和勾股定理求出FH,即可得出答案;(3)折法1中,由折叠的性质得:AD=BG,AE=BE=AB=4,CF=DF=CD=5,GM=CM,∠FMC=90°,由叠合正方形的性质得出BM=FM=4,由勾股定理得出GM=CM==3,得出AD=BG=BM﹣GM=1,BC=BM+CM=7;折法2中,由折叠的性质得:四边形EMHG的面积=梯形ABCD的面积,AE=BE=AB=4,DG=NG,NH=CH,BM=FM,MC=CN,求出GH=CD=5,由叠合正方形的性质得出EM=GH=5,正方形EMHG的面积=52=25,由勾股定理求出FM=BM==3,设AD=x,则MN=FM+FN=3+x,由梯形ABCD的面积得出BC=﹣x,求出MC=BC﹣BM=﹣x﹣3,由MN=MC得出方程,解方程求出AD=,BC=;折法3中,由折叠的性质、正方形的性质、勾股定理即可求出BC、AD的长.【解答】解:(1)根据题意得:操作形成的折痕分别是线段AE、GF;由折叠的性质得:△ABE≌△AHE,四边形AHFG≌四边形DCFG,∴△ABE的面积=△AHE的面积,四边形AHFG的面积=四边形DCFG的面积,=S▱ABCD,∴S矩形AEFG:S▱ABCD=1:2;∴S矩形AEFG故答案为:AE,GF,1:2;(2)∵四边形EFGH是矩形,∴∠HEF=90°,∴FH==13,由折叠的性质得:AD=FH=13;(3)有3种折法,如图4、图5、图6所示:①折法1中,如图4所示:由折叠的性质得:AD=BG,AE=BE=AB=4,CF=DF=CD=5,GM=CM,∠FMC=90°,∵四边形EFMB是叠合正方形,∴BM=FM=4,∴GM=CM===3,∴AD=BG=BM﹣GM=1,BC=BM+CM=7;②折法2中,如图5所示:由折叠的性质得:四边形EMHG的面积=梯形ABCD的面积,AE=BE=AB=4,DG=NG,NH=CH,BM=FM,MN=MC,∴GH=CD=5,∵四边形EMHG是叠合正方形,∴EM=GH=5,正方形EMHG的面积=52=25,∵∠B=90°,∴FM=BM==3,设AD=x,则MN=FM+FN=3+x,∵梯形ABCD的面积=(AD+BC)×8=2×25,∴AD+BC=,∴BC=﹣x,∴MC=BC﹣BM=﹣x﹣3,∵MN=MC,∴3+x=﹣x﹣3,解得:x=,∴AD=,BC=﹣=;③折法3中,如图6所示,作GM⊥BC于M,则E、G分别为AB、CD的中点,则AH=AE=BE=BF=4,CG=CD=5,正方形的边长EF=GF=4,GM=FM=4,CM==3,∴BC=BF+FM+CM=11,FN=CF=7,DH=NH=8﹣7=1,∴AD=5.【点评】本题是四边形综合题目,考查了折叠的性质、正方形的性质、勾股定理、梯形面积的计算、解方程等知识;本题综合性强,有一定难度.24.(12分)(2020•金华)如图1,在平面直角坐标系中,四边形OABC各顶点的坐标分别为O(0,0),A(3,3)、B(9,5),C(14,0),动点P与Q 同时从O点出发,运动时间为t秒,点P沿OC方向以1单位长度/秒的速度向点C运动,点Q沿折线OA﹣AB﹣BC运动,在OA、AB、BC上运动的速度分别为3,,(单位长度/秒),当P、Q中的一点到达C点时,两点同时停止运动.(1)求AB所在直线的函数表达式;(2)如图2,当点Q在AB上运动时,求△CPQ的面积S关于t的函数表达式及S的最大值;(3)在P、Q的运动过程中,若线段PQ的垂直平分线经过四边形OABC的顶点,求相应的t值.【分析】(1)利用待定系数法求AB所在直线的函数表达式;(2)由题意得:OP=t,PC=14﹣t,求出PC边上的高为t+2,代入面积公式计算,并根据二次函数的最值公式求出最大值即可;(3)分别以Q在OA、AB、BC上运动时讨论:①当0<t≤2时,线段PQ的中垂线经过点C(如图2),②当2<t≤6时,线段PQ的中垂线经过点A(如图3),③当6<t≤10时,i)线段PQ的中垂线经过点C(如图4),ii)线段PQ的中垂线经过点B(如图5),只要能画出图形,根据中垂线的性质和勾股定理列方程可得结论.【解答】解:(1)设AB所在直线的函数表达式为y=kx+b,把A(3,3)、B(9,5)代入得:,解得:,∴AB所在直线的函数表达式为y=x+2;(2)如图1,由题意得:OP=t,则PC=14﹣t,过A作AD⊥x轴于D,过B作BF⊥x轴于F,过Q作QH⊥x轴于H,过A作AE⊥BF于E,交QH于G,∵A(3,3),∴OD=3,AD=3,由勾股定理得:OA=6,∵B(9,5),∴AE=9﹣3=6,BE=5﹣3=2,Rt△AEB中,AB==4,tan∠BAE===,∴∠BAE=30°,点Q过OA的时间:t==2(秒),∴AQ=(t﹣2),∴QG=AQ=,∴QH=+3=t+2,在△PQC中,PC=14﹣t,PC边上的高为t+2,t==4(秒),∴S=(14﹣t)(t+2)=﹣+t+14(2≤t≤6),∴当t=5时,S有最大值为;(3)①当0<t≤2时,线段PQ的中垂线经过点C(如图2),过Q作QG⊥x轴于G,由题意得:OQ=3t,OP=t,∠AOG=60°,∴∠OQG=30°,∴OG=t,∴CG=14﹣t,sin60°=,∴QG=×3t=t,在Rt△QGC中,由勾股定理得:QG2+CG2=QC2=PC2,可得方程()2+(14﹣t)2=(14﹣t)2,解得:t1=,t2=0(舍),此时t=,②当2<t≤6时,线段PQ的中垂线经过点A(如图3),∴AQ=AP,过A作AG⊥x轴于G,由题意得:OP=t,AQ=(t﹣2),则PG=t﹣3,AP=(t﹣2),在Rt△AGP中,由勾股定理得:AP2=AG2+PG2,可得方程:(3)2+(t﹣3)2=[(t﹣2)]2,解得:t1=,t2=(舍去),此时t=;③当6<t≤10时,i)线段PQ的中垂线经过点C(如图4),∴PC=CQ,由(2)知:OA=6,AB=4,BC=10,t=+=6,∴BQ=(t﹣6),∴CQ=BC﹣BQ=10﹣(t﹣6)=25﹣t,可得方程为:14﹣t=25﹣t,解得:t=;ii)线段PQ的中垂线经过点B(如图5),∴BP=BQ,过B作BG⊥x轴于G,则BG=5,PG=t﹣9,BQ=(t﹣6),由勾股定理得:BP2=BG2+PG2,可得方程为:(5)2+(t﹣9)2=[(t﹣6)]2,解得:t1=,t2=(舍去),此时t=,综上所述,t的值为或或或.【点评】本题是四边形的综合题,考查了利用待定系数法求直线的解析式、动点运动问题、组成的三角形的面积问题、二次函数的最值问题、线段垂直平分线的性质以及勾股定理,计算量大,第三问有难度,容易丢解,注意运用数形结合的思想,且第三问主要运用了线段垂直平分线的性质.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年浙江省金华市中考数学试卷
一、选择题(本题有10小题,每小题3分,共30分)
1.(3分)实数3的相反数是()
A.﹣3B.3C.﹣D.
2.(3分)分式的值是零,则x的值为()
A.2B.5C.﹣2D.﹣5
3.(3分)下列多项式中,能运用平方差公式分解因式的是()
A.a2+b2B.2a﹣b2C.a2﹣b2D.﹣a2﹣b2
4.(3分)下列四个图形中,是中心对称图形的是()
A.B.
C.D.
5.(3分)如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是()
A.B.C.D.
6.(3分)如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b.理由是()
A.连结直线外一点与直线上各点的所有线段中,垂线段最短
B.在同一平面内,垂直于同一条直线的两条直线互相平行
C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线
D.经过直线外一点,有且只有一条直线与这条直线平行
7.(3分)已知点(﹣2,a)(2,b)(3,c)在函数y=(k>0)的图象上,则下列判断正确的是()
A.a<b<c B.b<a<c C.a<c<b D.c<b<a
8.(3分)如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是上一点,则∠EPF的度数是()
A.65°B.60°C.58°D.50°
9.(3分)如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是()
A.3×2x+5=2x B.3×20x+5=10x×2
C.3×20+x+5=20x D.3×(20+x)+5=10x+2
10.(3分)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则
的值是()
A.1+B.2+C.5﹣D.
二、填空题(本题有6小题,每小题4分,共24分)
11.(4分)点P(m,2)在第二象限内,则m的值可以是(写出一个即可).12.(4分)数据1,2,4,5,3的中位数是.
13.(4分)如图为一个长方体,则该几何体主视图的面积为cm2.
14.(4分)如图,平移图形M,与图形N可以拼成一个平行四边形,则图中α的度数是°.
15.(4分)如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A,B,C均为正六边形的顶点,AB与地面BC所成的锐角为β.则tanβ的值是.
16.(4分)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD (点A与点B重合),点O是夹子转轴位置,OE⊥AC于点E,OF⊥BD于点F,OE=OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.
(1)当E,F两点的距离最大时,以点A,B,C,D为顶点的四边形的周长是cm.(2)当夹子的开口最大(即点C与点D重合)时,A,B两点的距离为cm.
三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)
17.(6分)计算:(﹣2020)0+﹣tan45°+|﹣3|.
18.(6分)解不等式:5x﹣5<2(2+x).
19.(6分)某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:
抽取的学生最喜爱体育锻炼项目的统计表
类别项目人数(人)
A跳绳59
B健身操▲
C俯卧撑31
D开合跳▲
E其它22
(1)求参与问卷调查的学生总人数.
(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?
(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.
20.(8分)如图,的半径OA=2,OC⊥AB于点C,∠AOC=60°.(1)求弦AB的长.
(2)求的长.
21.(8分)某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h (百米)的函数关系如图所示.
请根据图象解决下列问题:
(1)求高度为5百米时的气温;
(2)求T关于h的函数表达式;
(3)测得山顶的气温为6℃,求该山峰的高度.
22.(10分)如图,在△ABC中,AB=4,∠B=45°,∠C=60°.
(1)求BC边上的高线长.
(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.
①如图2,当点P落在BC上时,求∠AEP的度数.
②如图3,连结AP,当PF⊥AC时,求AP的长.
23.(10分)如图,在平面直角坐标系中,已知二次函数y=﹣(x﹣m)2+4图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.
(1)当m=5时,求n的值.
(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.
24.(12分)如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.(1)求证:四边形AEFD为菱形.
(2)求四边形AEFD的面积.
(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.。

相关文档
最新文档