青岛市历年中考数学23题汇总
2023年山东省青岛市中考数学真题
2023年山东省青岛市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1. 生活中有许多对称美的图形,下列是中心对称图形但不是轴对称图形的是( )A. B. C. D.2. 17的相反数是( ) A.7B.7- C.17D. 17-3. 一个正方体截去四分之一,得到如图所示的几何体,其左视图是( )A. B. C. D.4. 中欧班列是共建“一带一路”的旗舰项目和明星品牌,是亚欧各国深化务实合作的重要载体.中欧班列“青岛号”自胶州开往哈萨克斯坦,全程7900公里.将7900用科学记数法表示为( ) A. 30.7910⨯B. 27.910⨯C.37.910⨯D. 27910⨯5. 如图,将线段A B 先向左平移,使点B 与原点O 重合,再将所得线段绕原点旋转180︒得到线段A B '',则点A 的对应点A '的坐标是( )A. ()2,3-B. ()2,3-C. ()3,2-D. ()3,2-6. 如图,直线a b ∥,163∠=︒,45B ∠=︒,则2∠的度数为( )A 105︒B. 108︒C. 117︒D. 135︒7. 下列计算正确的是( )A.=B. 2-=C.=D.32=8. 如图,四边形A B C D 是O 的内接四边形,58B ∠=︒,40A C D ∠=︒.若O 的半径为5,则D C的长为( )A. 133π B.109π C. π D.12π9. 如图,在正方形A B C D 中,点E ,F 分别是A B ,C D 的中点,A F ,D E 相交于点M ,G 为B C 上一点,N 为E G 的中点.若3B G =,1C G =,则线段M N 的长度为( )A.B.2C. 2D.210. 一个不透明小立方块的六个面上分别标有数字1,2,3,4,5,6,其展开图如图①所示.在一张不透明的桌子上,按图②方式将三个这样的小立方块搭成一个几何体,则该几何体能看得到的面上数字之和最小是( )A. 31B. 32C. 33D. 34二、填空题(本大题共6小题,每小题3分,共18分)11. 计算:()2382x y x ÷=______.12. 小颖参加“歌唱祖国”歌咏比赛,六位评委对小颖的打分(单位:分)如下:7,8,7,9,8,10.这六个分数的极差是______分.13. 反比例函数m y x=的图象经过点,8m A m ⎛⎫⎪⎝⎭,则反比例函数的表达式为______. 14. 某校组织学生进行劳动实践活动,用1000元购进甲种劳动工具,用2400元购进乙种劳动工具,乙种劳动工具购买数量是甲种的2倍,但单价贵了4元.设甲种劳动工具单价为x 元,则x 满足的分式方程为______.15. 如图,在平面直角坐标系中,已知点()1,0A ,()1,0P -,P 过原点O ,且与x 轴交于另一点D ,A B为P 的切线,B 为切点,B C 是P 的直径,则B C D ∠的度数为______︒.16. 如图,二次函数2y a x b x c =++的图象与正比例函数y k x =的图象相交于A ,B 两点,已知点A 的横坐标为3-,点B 的横坐标为2,二次函数图象的对称轴是直线=1x -.下列结论:①0a b c <;②320b c +>;③关于x 的方程2a x b x c k x ++=的两根为13x =-,22x =;④12k a =.其中正确的是______.(只填写序号)三、作图题(本大题满分4分)17 用直尺、圆规作图,不写作法,但要保留作图痕迹. 已知:A B C .求作:点P ,使P A P C =,且点P 在A B C 边A B 的高上.四、解答题(本大题共9小题,共68分)18. 解不等式组或计算 (1)215312x x x +⎧<⎪⎨⎪-≥⎩①②; (2)22112m m m m m m ⎛⎫-⋅ --⎪⎝+⎭. 19. 今年4月15日是我国第八个“全民国家安全教育日”.为增强学生国家安全意识,夯实国家安全教育基础、某市举行国家安全知识竞赛.竞赛结束后,发现所有参赛学生的成绩(满分100分)均不低于60分.小明将自己所在班级学生的成绩(用x 表示)分为四组:A 组(6070x ≤<),B 组(7080x ≤<),C组(8090x ≤<),D 组(90100x ≤≤),绘制了如图不完整的频数分布直方图和扇形统计图..根据以上信息,解答下列问题: (1)补全频数分布直方图;(2)扇形统计图中A 组所对应的圆心角的度数为______︒; (3)把每组中各个同学的成绩用这组数据的中间值(如A 组:6070x ≤<的中间值为65)来代替,试估计小明班级的平均成绩;(4)小明根据本班成绩,估计全市参加竞赛的所有8000名学生中会有800名学生成绩低于70分,实际只有446名学生的成绩低于70分.请你分析小明估计不准确的原因.20. 为了解我国的数学文化,小明和小红从《九章算术》《孙子算经》《海岛算经》(依次用A 、B 、C 表示)三本书中随机抽取一本进行阅读,小明先随机抽取一本,小红再从剩下的两本中随机抽取一本.请用列表或画树状图的方法表示所有可能出现的结果.并求抽取两本书中有《九章算术》的概率.21. 太阳能路灯的使用,既方便了人们夜间出行,又有利于节能减排.某校组织学生进行综合实践活动——测量太阳能路灯电池板的宽度.如图,太阳能电池板宽为A B ,点O 是A B 的中点,O C 是灯杆.地面上三点D ,E 与C 在一条直线上, 1.5m D E =,5m E C =.该校学生在D 处测得电池板边缘点B 的仰角为37︒,在E 处测得电池板边缘点B 的仰角为45︒.此时点A 、B 与E 在一条直线上.求太阳能电池板宽A B 的长度.(结果精确到0.1m .参考数据:3sin 375︒≈,4c o s 375≈︒,3ta n 374︒≈1.41≈)22. 如图①,正方形A B C D 面积为1.(1)如图②,延长A B 到1A ,使1A B B A =,延长B C 到1B ,使1B C C B =,则四边形11A A B D 面积为______;(2)如图③,延长A B 到2A ,使22A B B A =,延长B C 到2B ,使22B C C B =,则四边形22A A B D 的面积为______;(3)延长A B 到n A ,使n A B n B A =,延长B C 到n B ,使n B C n C B =,则四边形n n A A B D 的面积为______.23. 某服装店经销A ,B 两种T 恤衫,进价和售价如下表所示:(1)第一次进货时,服装店用6000元购进A ,B 两种T 恤衫共120件,全部售完获利多少元? (2)受市场因素影响,第二次进货时,A 种T 恤衫进价每件上涨了5元,B 种T 恤衫进价每件上涨了10元,但两种T 恤衫的售价不变.服装店计划购进A ,B 两种T 恤衫共150件,且B 种T 恤衫的购进量不超过A 种T 恤衫购进量的2倍.设此次购进A 种T 恤衫m 件,两种T 恤衫全部售完可获利W 元. ①请求出W 与m 的函数关系式;②服装店第二次获利能否超过第一次获利?请说明理由.24. 如图,在A B C D Y 中,B A D ∠的平分线交B C 于点E ,D C B ∠的平分线交A D 于点F ,点G ,H 分别是A E 和C F 的中点.(1)求证:A B E C D F △≌△;(2)连接E F .若E F A F =,请判断四边形G E H F 的形状,并证明你的结论.25. 许多数学问题源于生活.雨伞是生活中的常用物品,我们用数学的眼光观察撑开后的雨伞(如图①)、可以发现数学研究的对象——抛物线.在如图②所示的直角坐标系中,伞柄在y 轴上,坐标原点O 为伞骨O A ,O B 的交点.点C 为抛物线的顶点,点A ,B 在抛物线上,O A ,O B 关于y 轴对称.1O C =分米,点A 到x 轴的距离是0.6分米,A ,B 两点之间的距离是4分米.(1)求抛物线的表达式;(2)分别延长A O ,B O 交抛物线于点F ,E ,求E ,F 两点之间的距离;(3)以抛物线与坐标轴的三个交点为顶点的三角形面积为1S ,将抛物线向右平移()0m m >个单位,得到一条新抛物线,以新抛物线与坐标轴的三个交点为顶点的三角形面积为2S .若2135S S =,求m 的值.26. 如图,在菱形A B C D 中,对角线A C B D ,相交于点O ,10cm A B =,m B D =.动点P 从点A 出发,沿A B 方向匀速运动,速度为1cm /s ;同时,动点Q 从点A 出发,沿A D 方向匀速运动,速度为2c m /s .以A P A Q ,为邻边平行四边形A P M Q 的边P M 与A C 交于点E .设运动时间为()()s 05t t <≤,解答下列问题:(1)当点M 在B D 上时,求t 的值;(2)连接B E .设P E B △的面积为()2c mS ,求S 与t 的函数关系式和S 的最大值;(3)是否存在某一时刻t ,使点B 在P E C ∠的平分线上?若存在,求出t 的值;若不存在,请说明理由.2023年山东省青岛市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)【1题答案】【答案】D【2题答案】【答案】D【3题答案】【答案】D【4题答案】【答案】C【5题答案】【答案】A【6题答案】【答案】B【7题答案】【答案】C【8题答案】【答案】C【9题答案】【答案】B【10题答案】【答案】B二、填空题(本大题共6小题,每小题3分,共18分)【11题答案】【答案】2x y【12题答案】【答案】3【13题答案】【答案】8 yx【14题答案】【答案】2400100024x x=⨯+【15题答案】 【答案】60 【16题答案】 【答案】①③三、作图题(本大题满分4分)【17题答案】 【答案】见解析四、解答题(本大题共9小题,共68分)【18题答案】【答案】(1)13x ≤<; (2)1m + 【19题答案】【答案】(1)图见详解; (2)36;(3)小明班级的平均成绩为85.5分;(4)小明同学抽样的样本不具有随机性,不符合取样要求; 【20题答案】 【答案】23【21题答案】 【答案】1.4m 【22题答案】 【答案】(1)52(2)5 (3)()21222nn ++【23题答案】【答案】(1)2880元 (2)①43000(50150)Wm m =-+≤≤;②服装店第二次获利不能超过第一次获利,理由见解析【24题答案】【答案】(1)见解析 (2)矩形,证明见解析【25题答案】【答案】(1)20.11y x =-+; (2)10 (3)2或4;【26题答案】【答案】(1)103t = (2)224(0t 5)5S t t =-+<≤;S 的最大值为10(3)2t =。
青岛中考数学试题及答案
青岛中考数学试题及答案一、选择题(每题3分,共30分)1. 已知函数\( y = 2x + 3 \),当\( x = 1 \)时,\( y \)的值为多少?A. 5B. 4C. 3D. 22. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 83. 下列哪个不是二次根式?A. \( \sqrt{4} \)B. \( \sqrt{16} \)C. \( \sqrt{-9} \)D. \( \sqrt{25} \)4. 已知等腰三角形的底边长为5,两腰边长相等,求等腰三角形的周长。
A. 10B. 15C. 20D. 无法确定5. 一个圆的半径为3,求这个圆的面积。
A. 9πB. 18πC. 27πD. 36π6. 一个数的平方根是4,这个数是多少?A. 16B. -16C. 8D. -87. 一个长方体的长、宽、高分别是4、3和2,求这个长方体的体积。
A. 24B. 36C. 48D. 528. 一个数的绝对值是5,这个数可以是?A. -5B. 5C. -5或5D. 无法确定9. 一个数的立方根是2,这个数是多少?A. 8B. 6C. 4D. 210. 一个数的倒数是2,这个数是多少?A. 1/2B. 1C. 2D. -2二、填空题(每题2分,共20分)11. 一个数的相反数是-7,这个数是________。
12. 一个数的绝对值是它本身,这个数是非负数,即这个数是________。
13. 一个数的平方是25,这个数可以是________。
14. 一个数的立方是-8,这个数是________。
15. 如果一个数的平方根是2或-2,那么这个数是________。
16. 一个圆的直径是10,这个圆的半径是________。
17. 一个长方体的长、宽、高分别是5、4和3,这个长方体的表面积是________。
18. 一个直角三角形的两条直角边分别是6和8,这个直角三角形的面积是________。
山东省青岛市中考数学试卷含答案解析
山东省青岛市中考数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.(3分)(•青岛)﹣7的绝对值是()A.﹣7 B.7 C.﹣D.2.(3分)(•青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)(•青岛)据统计,我国全年完成造林面积约6090000公顷.6090000用科学记数法可表示为()A.6.09×106 B.6.09×104 C.609×104 D.60.9×1054.(3分)(•青岛)在一个有15万人的小镇,随机调查了3000人,其中有300人看电视台的早间新闻.据此,估计该镇看电视台早间新闻的约有()A.2.5万人 B.2万人C.1.5万人 D.1万人5.(3分)(•青岛)已知⊙O1与⊙O2的半径分别是2和4,O1O2=5,则⊙O1与⊙O2的位置关系是()A.内含 B.内切C.相交 D.外切6.(3分)(•青岛)某工程队准备修建一条长1200m的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路xm,则根据题意可列方程为()A.﹣=2 B.﹣=2C.﹣=2 D.﹣=27.(3分)(•青岛)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,则BF的长为()A.4 B.3C.4.5 D.58.(3分)(•青岛)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)(•青岛)计算:=__________.10.(3分)(•青岛)某茶厂用甲、乙两台分装机分装某种茶叶(每袋茶叶的标准质量为200g).为了监控分装质量,该厂从它们各自分装的茶叶中随机抽取了50袋,测得它们的实际质量分析如下:平均数(g)方差甲分装机200 16.23乙分装机200 5.84则这两台分装机中,分装的茶叶质量更稳定的是(填“甲”或“乙”).11.(3分)(•青岛)如图,△ABC的顶点都在方格线的交点(格点)上,如果将△ABC 绕C点按逆时针方向旋转90°,那么点B的对应点B/坐标是.12.(3分)(•青岛)如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是°.13.(3分)(•青岛)如图,在等腰梯形ABCD中,AD=2,∠BCD=60°,对角线AC平分∠BCD,E,F分别是底边AD,BC的中点,连接EF.点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为.14.(3分)(•青岛)如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要个小立方块.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.(4分)(•青岛)已知:线段a,∠α.求作:△ABC,使AB=AC=a,∠B=∠α.四、解答题(本题满分74分,共有9道小题)16.(8分)(•青岛)(1)计算:÷;(2)解不等式组:.17.(6分)(•青岛)空气质量状况已引起全社会的广泛关注,某市统计了每月空气质量达到良好以上的天数,整理后制成如下折线统计图和扇形统计图.根据以上信息解答下列问题:(1)该市每月空气质量达到良好以上天数的中位数是_________天,众数是_________天;(2)求扇形统计图中扇形A的圆心角的度数;(3)根据以上统计图提供的信息,请你简要分析该市的空气质量状况(字数不超过30字).18.(6分)(•青岛)某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?19.(6分)(•青岛)甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑.图中l1和l2分别表示甲、乙两人跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系,其中l1的关系式为y1=8x,问甲追上乙用了多长时间?20.(8分)(•青岛)如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE=39°.(1)求这座山的高度(小明的身高忽略不计);(2)求索道AC的长(结果精确到0.1m).(参考数据:tan31°≈,si n31°≈,tan39°≈,sin39°≈)21.(8分)(•青岛)已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=∠AEB=_________°时,四边形ACED是正方形?请说明理由.22.(10分)(•青岛)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)23.(10分)(•青岛)数学问题:计算+++…+(其中m,n都是正整数,且m≥2,n≥1).探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.探究一:计算+++…+.第1次分割,把正方形的面积二等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续二等分,…;…第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1﹣.探究二:计算+++…+.第1次分割,把正方形的面积三等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续三等分,…;…第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1﹣,两边同除以2,得+++…+=﹣.探究三:计算+++…+.(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)解决问题:计算+++…+.(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)根据第n次分割图可得等式:_________,所以,+++…+=_________.拓广应用:计算+++…+.24.(12分)(•青岛)已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t (s)(0<t<8).解答下列问题:(1)当t为何值时,四边形APFD是平行四边形?(2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形APFE:S菱形ABCD=17:40?若存在,求出t的值,并求出此时P,E两点间的距离;若不存在,请说明理由.山东省青岛市中考数学试卷参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.(3分)(•青岛)﹣7的绝对值是()A.﹣7 B.7 C.﹣D.考点:绝对值.分析:根据负数的绝对值是它的相反数,可得答案.解答:解:|﹣7|=7,故选:B.点评:本题考查了绝对值,负数的绝对值是它的相反数.2.(3分)(•青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.(3分)(•青岛)据统计,我国全年完成造林面积约6090000公顷.6090000用科学记数法可表示为()A.6.09×106 B.6.09×104 C.609×104 D.60.9×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将6090000用科学记数法表示为:6.09×106.故选:A.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(•青岛)在一个有15万人的小镇,随机调查了3000人,其中有300人看电视台的早间新闻.据此,估计该镇看电视台早间新闻的约有()A.2.5万人B.2万人 C.1.5万人 D.1万人考点:用样本估计总体.分析:求得调查样本的看早间新闻的百分比,然后乘以该镇总人数即可.解答:解:该镇看电视台早间新闻的约有15×=1.5万,故选B.点评:本题考查了用样本估计总体的知识,解题的关键是求得样本中观看的百分比,难度不大.5.(3分)(•青岛)已知⊙O1与⊙O2的半径分别是2和4,O1O2=5,则⊙O1与⊙O2的位置关系是()A.内 B.内切C.相交 D.外切考点:圆与圆的位置关系.分析:由⊙O1、⊙O2的半径分别是2、4,O1O2=5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵⊙O1、⊙O2的半径分别是2、4,∴半径和为:2+4=6,半径差为:4﹣2=2,∵O1O2=5,2<6<6,∴⊙O1与⊙O2的位置关系是:相交.故选C.点评:此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r 的数量关系间的联系.6.(3分)(•青岛)某工程队准备修建一条长1200m的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路xm,则根据题意可列方程为()A.﹣=2 B.﹣=2C.﹣=2 D.﹣=2考点:由实际问题抽象出分式方程.分析:设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm,根据采用新的施工方式,提前2天完成任务,列出方程即可.解答:解:设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm,由题意得,﹣=2.故选D.点评:本题考查了由实际问题抽象出分式方程,关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.7.(3分)(•青岛)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,则BF的长为()A.4 B.3C.4.5 D.5考点:翻折变换(折叠问题).分析:先求出BC′,再由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在直角三角形C′BF 中,运用勾股定理BF2+BC′2=C′F2求解.解答:解:∵点C′是AB边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在直角三角形C′BF中,BF2+BC′2=C′F2,∴BF2+9=(9﹣BF)2,解得,BF=4,故选:A.点评:本题考查了折叠问题及勾股定理的应用,综合能力要求较高.同时也考查了列方程求解的能力.解题的关键是找出线段的关系.8.(3分)(•青岛)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A B.C.D.考点:二次函数的图象;反比例函数的图象.分析:本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.解答:解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,错误.故选:B.点评:本题主要考查了二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)(•青岛)计算:=2+1.考点:二次根式的混合运算.专题:计算题.分析:根据二次根式的除法法则运算.解答:解:原式=+=2+1.故答案为2+1.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.10.(3分)(•青岛)某茶厂用甲、乙两台分装机分装某种茶叶(每袋茶叶的标准质量为200g).为了监控分装质量,该厂从它们各自分装的茶叶中随机抽取了50袋,测得它们的实际质量分析如下:平均数(g)方差甲分装机200 16.23乙分装机200 5.84则这两台分装机中,分装的茶叶质量更稳定的是乙(填“甲”或“乙”).考点:方差.分析:根据方差的意义,方差越小数据越稳定,比较甲,乙两台包装机的方差可判断.解答:解:∵=16.23,=5.84,∴>,∴这两台分装机中,分装的茶叶质量更稳定的是乙.故答案为:乙.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.11.(3分)(•青岛)如图,△ABC的顶点都在方格线的交点(格点)上,如果将△ABC 绕C点按逆时针方向旋转90°,那么点B的对应点B/的坐标是(1,0).考点:坐标与图形变化-旋转.专题:数形结合.分析:先画出旋转后的图形,然后写出B′点的坐标.解答:解:如图,将△ABC绕C点按逆时针方向旋转90°,点B的对应点B′的坐标为(1,0).故答案为(1,0).点评:本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.12.(3分)(•青岛)如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是35°.考点:切线的性质.分析:首先连接OC,由BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°,可求得∠BOC的度数,又由圆周角定理,即可求得答案.解答:解:连接OC,∵BD,CD分别是过⊙O上点B,C的切线,∴OC⊥CD,OB⊥BD,∴∠OCD=∠OBD=90°,∵∠BDC=110°,∴∠BOC=360°﹣∠OCD﹣∠BDC﹣∠OBD=70°,∴∠A=∠BOC=35°.故答案为:35.点评:此题考查了切线的性质以及圆周角定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.13.(3分)(•青岛)如图,在等腰梯形ABCD中,AD=2,∠BCD=60°,对角线AC平分∠BCD,E,F分别是底边AD,BC的中点,连接EF.点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为2.考点:轴对称-最短路线问题;等腰梯形的性质.分析:要求PA+PB的最小值,PA、PB不能直接求,可考虑转化PA、PB的值,从而找出其最小值求解.解答:解:∵E,F分别是底边AD,BC的中点,四边形ABCD是等腰梯形,∴B点关于EF的对称点C点,∴AC即为PA+PB的最小值,∵∠BCD=60°,对角线AC平分∠BCD,∴∠ABC=60°,∠BCA=30°,∴∠BAC=90°,∵AD=2,∴PA+PB的最小值=AB•tan60°=.故答案为:2.点评:考查等腰梯形的性质和轴对称等知识的综合应用.综合运用这些知识是解决本题的关键.14.(3分)(•青岛)如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要54个小立方块.考点:由三视图判断几何体.分析:首先根据该几何体的三视图确定需要的小立方块的块数,然后确定搭成一个大正方体需要的块数.解答:解:由俯视图易得最底层有7个小立方体,第二层有2个小立方体,第三层有1个小立方体,那么共有7+2+1=10个几何体组成.若搭成一个大正方体,共需4×4×4=64个小立方体,所以还需64﹣10=54个小立方体,故答案为:54.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.(4分)(•青岛)已知:线段a,∠α.求作:△ABC,使AB=AC=a,∠B=∠α.考点:作图—复杂作图.分析:首先作∠ABC=α,进而以B为圆心a的长为半径画弧,再以A为圆心a为半径画弧即可得出C的位置.解答:解:如图所示:△ABC即为所求.点评:此题主要考查了复杂作图,得出正确的作图顺序是解题关键.四、解答题(本题满分74分,共有9道小题)16.(8分)(•青岛)(1)计算:÷;(2)解不等式组:.考点:解一元一次不等式组;分式的乘除法.分析:(1)首先转化为乘法运算,然后进行约分即可;(2)先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.解答:解:(1)原式===;(2)解不等式①,得x>.解不等式②,得x<3.所以原不等式组的解集是<x<3.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.17.(6分)(•青岛)空气质量状况已引起全社会的广泛关注,某市统计了每月空气质量达到良好以上的天数,整理后制成如下折线统计图和扇形统计图.根据以上信息解答下列问题:(1)该市每月空气质量达到良好以上天数的中位数是14天,众数是13天;(2)求扇形统计图中扇形A的圆心角的度数;(3)根据以上统计图提供的信息,请你简要分析该市的空气质量状况(字数不超过30字).考点:折线统计图;扇形统计图;中位数;众数.分析:(1)利用折线统计图得出各数据,进而求出中位数和众数;(2)利用(1)中数据得出空气为优的所占比例,进而得出扇形A的圆心角的度数;(3)结合空气质量进而得出答案.解答:解:(1)由题意可得,数据为:8,9,12,13,13,13,15,16,17,19,21,21,最中间的是:13,15,故该市每月空气质量达到良好以上天数的中位数是14天,众数是13天故答案为:14,13;(2)由题意可得:360°×=60°.答:扇形A的圆心角的度数是60°.(3)该市空气质量为优的月份太少,应对该市环境进一步治理,合理即可.点评:此题主要考查了折线统计图以及中位数和众数的概念,利用折线统计图分析数据是解题关键.18.(6分)(•青岛)某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?考点:概率公式.分析:(1)由转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,直接利用概率公式求解即可求得答案;(2)首先求得指针正好对准红色、黄色、绿色区域的概率,继而可求得转转盘的情况,继而求得答案.解答:解:(1)∵转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,∴P(转动一次转盘获得购物券)==.(2分)(2)∵P(红色)=,P(黄色)=,P(绿色)==,∴(元)∵40元>30元,∴选择转转盘对顾客更合算.(6分)点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.19.(6分)(•青岛)甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑.图中l1和l2分别表示甲、乙两人跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系,其中l1的关系式为y1=8x,问甲追上乙用了多长时间?考点:一次函数的应用.分析:设l2表示乙跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系为y2=kx+b,代入(0,10),(2,22)求得函数解析式,进一步与l1的关系式为y1=8x联立方程解决问题.解答:解:设y2=kx+b(k≠0),代入(0,10),(2,22)得解这个方程组,得所以y2=6x+10.当y1=y2时,8x=6x+10,解这个方程,得x=5.答:甲追上乙用了5s.点评:本题考查了一次函数的应用及一元一次方程的应用,解题的关键是根据题意结合图象说出其图象表示的实际意义,这样便于理解题意及正确的解题.20.(8分)(•青岛)如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE=39°.(1)求这座山的高度(小明的身高忽略不计);(2)求索道AC的长(结果精确到0.1m).(参考数据:tan31°≈,sin31°≈,tan39°≈,sin39°≈)考点:解直角三角形的应用-仰角俯角问题.分析:(1)过点A作AD⊥BE于D,设山AD的高度为xm,在Rt△ABD和Rt△ACD 中分别表示出BD和CD的长度,然后根据BD﹣CD=80m,列出方程,求出x的值;(2)在Rt△ACD中,利用sin∠ACD=,代入数值求出AC的长度.解答:解:(1)过点A作AD⊥BE于D,设山AD的高度为xm,在Rt△ABD中,∵∠ADB=90°,tan31°=,∴BD=≈=x,在Rt△ACD中,∵∠ADC=90°,tan39°=,∴CD=≈=x,∵BC=BD﹣CD,∴x﹣x=80,解得:x=180.即山的高度为180米;(2)在Rt△ACD中,∠ADC=90°,sin39°=,∴AC==≈282.9(m).答:索道AC长约为282.9米.点评:本题考查了解直角三角形的应用,解答本题关键是利用仰角构造直角三角形,利用三角函数的知识表示出相关线段的长度.21.(8分)(•青岛)已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=∠AEB=45°时,四边形ACED是正方形?请说明理由.考点:平行四边形的性质;全等三角形的判定与性质;正方形的判定.分析:(1)根据平行线的性质可得∠D=∠OCE,∠DAO=∠E,再根据中点定义可得DO=CO,然后可利用AAS证明△AOD≌△EOC;(2)当∠B=∠AEB=45°时,四边形ACED是正方形,首先证明四边形ACED是平行四边形,再证对角线互相垂直且相等可得四边形ACED是正方形.解答:证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC.∴∠D=∠OCE,∠DAO=∠E.∵O是CD的中点,∴OC=OD,在△ADO和△ECO中,,∴△AOD≌△EOC(AAS);(2)当∠B=∠AEB=45°时,四边形ACED是正方形.∵△AOD≌△EOC,∴OA=OE.又∵OC=OD,∴四边形ACED是平行四边形.∵∠B=∠AEB=45°,∴AB=AE,∠BAE=90°.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠COE=∠BAE=90°.∴▱ACED是菱形.∵AB=AE,AB=CD,∴AE=CD.∴菱形ACED是正方形.故答案为:45.点评:此题主要考查了全等三角形的判定与性质,以及正方形的判定,关键是掌握对角线互相垂直且相等的平行四边形是正方形.22.(10分)(•青岛)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)考点:二次函数的应用.分析:(1)根据“利润=(售价﹣成本)×销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答;(3)把y=4000代入函数解析式,求得相应的x值;然后由“每天的总成本不超过7000元”列出关于x的不等式50(﹣5x+550)≤7000,通过解不等式来求x的取值范围.解答:解:(1)y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500;(3)当y=4000时,﹣5(x﹣80)2+4500=4000,。
青岛中考数学试题及答案
青岛中考数学试题及答案题目 1:已知函数 f(x) = x^2 - 5x + 6,求解下列问题:问题 1: 求函数 f(x) 的零点。
问题 2: 求函数 f(x) 在 x = 2 处的函数值。
问题 3: 求函数 f(x) 的导数。
问题 4: 判断函数 f(x) 的增减性。
答案 1:问题 1的答案:要求函数 f(x) 的零点,即找到使 f(x) = 0 成立的 x 的值。
通过将 f(x) 设为 0,我们可以得到以下方程:x^2 - 5x + 6 = 0。
通过因式分解或使用二次方程公式,我们可以求解出零点为 x = 2 和 x = 3。
答案 2:问题 2的答案:要求函数 f(x) 在 x = 2 处的函数值。
将 x 带入函数 f(x) 中,我们可以计算得到 f(2) = 2^2 - 5*2 + 6 = 4 - 10 + 6 = 0。
答案 3:问题 3的答案:要求函数 f(x) 的导数。
对函数 f(x) = x^2 - 5x + 6 进行求导,可以得到 f'(x) = 2x - 5。
答案 4:问题 4的答案:要判断函数 f(x) 的增减性。
根据函数的导数可以判断函数的增减性。
当 f'(x) > 0 时,函数 f(x) 单调递增;当 f'(x) < 0 时,函数 f(x) 单调递减。
因此,我们计算导数 f'(x) = 2x - 5,当 x > 2.5 时,f'(x) > 0,所以函数 f(x) 在区间(2.5, +∞) 上单调递增;当 x < 2.5 时,f'(x) < 0,所以函数f(x) 在区间 (-∞, 2.5) 上单调递减。
题目 2:已知等差数列的通项公式为 a_n = a_1 + (n - 1)d,其中 a_n 表示第 n 项,a_1 表示首项,d 表示公差。
求解下列问题:问题 1: 在等差数列中,首项为 3,公差为 4,求第 10 项的值。
2014-2019年历年青岛中考数学真题压轴23、24题
2014-2019年历年青岛中考数学23、24题23.(2019年10分)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a ×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的 2 2×方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在a×2的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.探究四:把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a×3的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.……问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由4个棱长为1的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b,c(a≥2,b≥2,c≥2,且a,b,c是正整数)的长方体,被分成了a×b×c个棱长为1的小立方体.在图⑧的不同位置共可以找到个图⑦这样的几何体.24.(12分)已知:如图,在四边形ABCD中,AB∥CD,∠ACB=90°,AB=10cm,BC=8cm,OD垂直平分A C.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.过点P作PE⊥AB,交BC于点E,过点Q作QF∥AC,分别交AD,OD于点F,G.连接OP,EG.设运动时间为t(s)(0<t <5),解答下列问题:(1)当t为何值时,点E在∠BAC的平分线上?(2)设四边形PEGO的面积为S(cm2),求S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出t的值;若不存在,请说明理由;(4)连接OE,OQ,在运动过程中,是否存在某一时刻t,使OE⊥OQ?若存在,求出t的值;若不存在,请说明理由.23.(2018年--10分)问题提出:用若干相同的一个单位长度的细直木棒,按照如图1方式搭建一个长方体框架,探究所用木棒条数的规律.问题探究:我们先从简单的问题开始探究,从中找出解决问题的方法.探究一用若干木棒来搭建横长是m,纵长是n的矩形框架(m、n是正整数),需要木棒的条数.如图①,当m=1,n=1时,横放木棒为1×(1+1)条,纵放木棒为(1+1)×1条,共需4条;如图②,当m=2,n=1时,横放木棒为2×(1+1)条,纵放木棒为(2+1)×1条,共需7条;如图③,当m=2,n=2时,横放木棒为2×(2+1)条,纵放木棒为(2+1)×2条,共需12条;如图④,当m=3,n=1时,横放木棒为3×(1+1)条,纵放木棒为(3+1)×1条,共需10条;如图⑤,当m=3,n=2时,横放木棒为3×(2+1)条,纵放木棒为(3+1)×2条,共需17条.问题(一):当m=4,n=2时,共需木棒条.问题(二):当矩形框架横长是m,纵长是n时,横放的木棒为条,纵放的木棒为条.探究二用若干木棒来搭建横长是m,纵长是n,高是s的长方体框架(m、n、s是正整数),需要木棒的条数.如图⑥,当m=3,n=2,s=1时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(1+1)=34条,竖放木棒为(3+1)×(2+1)×1=12条,共需46条;如图⑦,当m=3,n=2,s=2时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(2+1)=51条,竖放木棒为(3+1)×(2+1)×2=24条,共需75条;如图⑧,当m=3,n=2,s=3时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(3+1)=68条,竖放木棒为(3+1)×(2+1)×3=36条,共需104条.问题(三):当长方体框架的横长是m,纵长是n,高是s时,横放与纵放木棒条数之和为条,竖放木棒条数为条.实际应用:现在按探究二的搭建方式搭建一个纵长是2、高是4的长方体框架,总共使用了170条木棒,则这个长方体框架的横长是.拓展应用:若按照如图2方式搭建一个底面边长是10,高是5的正三棱柱框架,需要木棒条.24.(12分)已知:如图,四边形ABCD,AB∥DC,CB⊥AB,AB=16cm,BC=6cm,CD=8cm,动点P从点D开始沿DA边匀速运动,动点Q从点A开始沿AB边匀速运动,它们的运动速度均为2cm/s.点P和点Q同时出发,以QA、QP为边作平行四边形AQPE,设运动的时间为t(s),0<t<5.根据题意解答下列问题:(1)用含t的代数式表示AP;(2)设四边形CPQB的面积为S(cm2),求S与t的函数关系式;(3)当QP⊥BD时,求t的值;(4)在运动过程中,是否存在某一时刻t,使点E在∠ABD的平分线上?若存在,求出t的值;若不存在,请说明理由.23.(2017年--10分)数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题.下面我们来探究“由数思形,以形助数”的方法在解决代数问题中的应用.探究一:求不等式|x﹣1|<2的解集(1)探究|x﹣1|的几何意义如图①,在以O为原点的数轴上,设点A′对应的数是x﹣1,由绝对值的定义可知,点A′与点O的距离为|x﹣1|,可记为A′O=|x﹣1|.将线段A′O向右平移1个单位得到线段AB,此时点A对应的数是x,点B对应的数是1.因为AB=A′O,所以AB=|x﹣1|.因此,|x﹣1|的几何意义可以理解为数轴上x所对应的点A与1所对应的点B之间的距离AB.(2)求方程|x﹣1|=2的解因为数轴上3和﹣1所对应的点与1所对应的点之间的距离都为2,所以方程的解为3,﹣1.(3)求不等式|x﹣1|<2的解集因为|x﹣1|表示数轴上x所对应的点与1所对应的点之间的距离,所以求不等式解集就转化为求这个距离小于2的点对应的数x的范围.请在图②的数轴上表示|x﹣1|<2的解集,并写出这个解集.探究二:探究√(x−a)2+(y−b)2的几何意义(1)探究√x2+y2的几何意义如图③,在直角坐标系中,设点M的坐标为(x,y),过M作MP⊥x轴于P,作MQ⊥y轴于Q,则P点坐标为(x,0),Q点坐标为(0,y),OP=|x|,OQ=|y|,在Rt△OPM中,PM=OQ=|y|,则MO=√OP2+PM2=√|x|2+|y|2=√x2+y2,因此,√x2+y2的几何意义可以理解为点M(x,y)与点O(0,0)之间的距离MO.(2)探究√(x−1)2+(y−5)2的几何意义如图④,在直角坐标系中,设点A′的坐标为(x﹣1,y﹣5),由探究二(1)可知,A′O=√(x−1)2+(y−5)2,将线段A′O先向右平移1个单位,再向上平移5个单位,得到线段AB,此时点A的坐标为(x,y),点B的坐标为(1,5),因为AB=A′O,所以AB=√(x−1)2+(y−5)2,因此√(x−1)2+(y−5)2的几何意义可以理解为点A(x,y)与点B(1,5)之间的距离AB.(3)探究√(x+3)2+(y−4)2的几何意义请仿照探究二(2)的方法,在图⑤中画出图形,并写出探究过程.(4)√(x−a)2+(y−b)2的几何意义可以理解为:.拓展应用:(1)√(x−2)2+(y+1)2+√(x+1)2+(y+5)2的几何意义可以理解为:点A (x,y)与点E(2,﹣1)的距离和点A(x,y)与点F(填写坐标)的距离之和.(2)√(x−2)2+(y+1)2+√(x+1)2+(y+5)2的最小值为(直接写出结果)24.(12分)已知:Rt△EFP和矩形ABCD如图①摆放(点P与点B重合),点F,B(P),C在同一直线上,AB=EF=6cm,BC=FP=8cm,∠EFP=90°.如图②,△EFP从图①的位置出发,沿BC方向匀速运动,速度为1cm/s,EP 与AB交于点G;同时,点Q从点C出发,沿CD方向匀速运动,速度为1cm/s.过点Q作QM⊥BD,垂足为H,交AD于点M,连接AF,PQ,当点Q停止运动时,△EFP也停止运动.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,PQ∥BD?(2)设五边形AFPQM的面积为y(cm2),求y与t之间的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形AFPQM:S矩形ABCD=9:8?若存在,求出t的值;若不存在,请说明理由.(4)在运动过程中,是否存在某一时刻t,使点M在线段PG的垂直平分线上?若存在,求出t的值;若不存在,请说明理由.23.(2016年--10分)问题提出:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1x5或2×3的矩形(axb 的矩形指边长分别为a,b的矩形)?问题探究:我们先从简单的问题开始研究解决,再把复杂问题转化为已解决的问题.探究一:如图①,当n=5时,可将正方形分割为五个1×5的矩形.如图②,当n=6时,可将正方形分割为六个2×3的矩形.如图③,当n=7时,可将正方形分割为五个1×5的矩形和四个2×3的矩形如图④,当n=8时,可将正方形分割为八个1×5的矩形和四个2×3的矩形如图⑤,当n=9时,可将正方形分割为九个1×5的矩形和六个2×3的矩形探究二:当n=10,11,12,13,14时,分别将正方形按下列方式分割:所以,当n=10,11,12,13,14时,均可将正方形分割为一个5×5的正方形、一个(n﹣5 )×( n﹣5 )的正方形和两个5×(n﹣5)的矩形.显然,5×5的正方形和5×(n﹣5)的矩形均可分割为1×5的矩形,而(n﹣5)×(n﹣5)的正方形是边长分别为5,6,7,8,9 的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.探究三:当n=15,16,17,18,19时,分别将正方形按下列方式分割:请按照上面的方法,分别画出边长为18,19的正方形分割示意图.所以,当n=15,16,17,18,19时,均可将正方形分割为一个10×10的正方形、一个(n﹣10 )×(n﹣10)的正方形和两个10×(n﹣10)的矩形.显然,10×10的正方形和10×(n﹣10)的矩形均可分割为1x5的矩形,而(n﹣10)×(n﹣10)的正方形又是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.问题解决:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1×5或2×3的矩形?请按照上面的方法画出分割示意图,并加以说明.实际应用:如何将边长为61的正方形分割为一些1×5或2×3的矩形?(只需按照探究三的方法画出分割示意图即可)24.(12分)已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点O.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t 的值;若不存在,请说明理由.23.(2015年--10分)【问题提出】用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?【问题探究】不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以先从特殊入手,通过试验、观察、类比、最后归纳、猜测得出结论.【探究一】(1)用3根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1.(2)用4根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形.所以,当n=4时,m=0.(3)用5根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形.所以,当n=5时,m=1.(4)用6根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形.所以,当n=6时,m=1.综上所述,可得:表①n3456m1011【探究二】(1)用7根相同的木棒搭一个三角形,能搭成多少种不同的三角形?(仿照上述探究方法,写出解答过程,并将结果填在表②中)(2)用8根、9根、10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表②中)表②n78910m你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…【问题解决】:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n分别等于4k﹣1,4k,4k+1,4k+2,其中k是正整数,把结果填在表③中)表③n4k﹣14k4k+14k+2m【问题应用】:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(写出解答过程),其中面积最大的等腰三角形每腰用了根木棒.(只填结果)24.(12分)已知,如图①,在▱ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C 出发,沿CB方向匀速移动,速度为1cm/s,当△PNM停止平移时,点Q也停止移动,如图②,设移动时间为t(s)(0<t<4),连接PQ,MQ,MC,解答下列问题:(1)当t为何值时,PQ∥MN?(2)设△QMC的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S△QMC:S四边形ABQP=1:4?若存在,求出t的值;若不存在,请说明理由.(4)是否存在某一时刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.23.(2014年-10分)数学问题:计算1m +1m 2+1m 3+…+1m n (其中m ,n 都是正整数,且m ≥2,n ≥1).探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.探究一:计算12+122+123+…+12n . 第1次分割,把正方形的面积二等分,其中阴影部分的面积为12; 第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为12+122; 第3次分割,把上次分割图中空白部分的面积继续二等分,…;…第n 次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为12+122+123+…+12n ,最后空白部分的面积是12n . 根据第n 次分割图可得等式:12+122+123+…+12n =1﹣12n .探究二:计算13+132+133+…+13n . 第1次分割,把正方形的面积三等分,其中阴影部分的面积为23;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为23+232; 第3次分割,把上次分割图中空白部分的面积继续三等分,…;…第n 次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为23+232+233+…+23n ,最后空白部分的面积是13n . 根据第n 次分割图可得等式:23+232+233+…+23n =1﹣13n , 两边同除以2,得13+132+133+…+13n =12﹣12×3n.探究三:计算14+142+143+…+14n . (仿照上述方法,只画出第n 次分割图,在图上标注阴影部分面积,并写出探究过程)解决问题:计算1m +1m 2+1m 3+…+1m n .(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)根据第n次分割图可得等式:,所以,1m +1m2+1m3+…+1m n=.拓广应用:计算5−15+52−152+53−153+…+5n−15n.24.(12分)已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t(s)(0<t<8).解答下列问题:(1)当t为何值时,四边形APFD是平行四边形?(2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形APFE:S菱形ABCD=17:40?若存在,求出t的值,并求出此时P,E两点间的距离;若不存在,请说明理由.。
青岛中考数学试卷2023真题
青岛中考数学试卷2023真题2023年青岛中考数学试卷考试时间:120分钟总分:120分题目一:选择题(共40小题,每小题2分,共80分)1. 下列计算结果中,正确的是()。
A. 3 ÷ 5 = 2/5B. 0.2 × 0.5 = 1/2C. 0.375 - 0.25 = 0.125D. 0.6 + 0.6 = 1/22. 若a:b = 3:4且a = 12,则b的值为()。
A. 16B. 15C. 14D. 133. 下列四个图形中,与给定的图形相同的是()。
(图形略)4. 下列四个数中,不能被3整除的是()。
B. 21C. 24D. 275. 若A、B、C、D四个数的平均数是18,且C的值是20,则A、B、D三个数的平均数为()。
A. 16B. 18C. 20D. 22......39. 某车间的工人,其中有20%是女工。
女工人数再增加10%,则女工人数与男工人数之比为3:7,那么这个车间的工人总数为()。
A. 100B. 200C. 300D. 40040. 夏令营共有35人参加,其中男生占总人数的60%,女生占男生的1/5,那么女生人数是()。
B. 8C. 9D. 10题目二:填空题(共5小题,每小题4分,共20分)1. 若m:n = 2:3,且m = 8,则n的值为_____。
2. 已知a:b = 4:7,若a = 12,则b的值为_____。
3. 若3/5 = 9/15,这个等式成立,那么这个等式的两边可以同时乘以______。
4. 甲、乙两人合作种菜,甲一天种一亩地需要5小时,甲、乙一天种3亩地需要______小时。
5. 分数1/2和1/3比较大小,可以通过将1/3与______相比较来判断。
题目三:解答题(共4小题,每小题10分,共40分)1. 等腰梯形ABCD的底边AB的长为8cm,顶边CD的长为18cm,两腰边AD和BC的长分别为10cm和14cm。
求这个等腰梯形的面积和周长。
山东省青岛市中考数学试题含答案
山东省青岛市初级中学学业水平考试数 学 试 题一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.请将1—8各小题所选答案的标号填写在第8小题后面给出表格的相应位置上. (10山东青岛)1.下列各数中,相反数等于5的数是( ).A .-5B .5C .-15D .15(10山东青岛)2.如图所示的几何体的俯视图是( ). A .B .C .D . (10山东青岛)3.由四舍五入法得到的近似数8.8×103,下列说法中正确的是( ). A .精确到十分位,有2个有效数字 B .精确到个位,有2个有效数字 C .精确到百位,有2个有效数字 D .精确到千位,有4个有效数字(10山东青岛)4.下列图形中,中心对称图形有( ).A .1个B .2个C .3个D .4个(10山东青岛)5.某外贸公司要出口一批规格为150g 的苹果,现有两个厂家提供货源,它们的价格相同,苹果的品质也相近. 质检员分别从甲、乙两厂的产品中随机抽取了50个苹果称重,并将所得数据处理后,制成如下表格. 根据表中信息判断,下列说法错误的是( ).A .本次的调查方式是抽样调查B .甲、乙两厂被抽取苹果的平均质量相同C .被抽取的这100个苹果的质量是本次调查的样本D .甲厂苹果的质量比乙厂苹果的质量波动大(10山东青岛)6.如图,在Rt△ABC 中,∠C = 90°,∠B = 30°,BC = 4 cm ,以点C 为圆心,以2 cm 的长为半径作圆,则⊙C 与AB 的位置关系是( ). A .相离 B .相切 C .相交 D .相切或相交个数 平均 质量(g )质量的方差 甲厂 50 150 2.6 乙厂 50 150 3.1 第2题图7O-2 -4 -3 -5 y C-1 6 A2 1345 12 Bx3 4 5 第7题图BCA第6题图(10山东青岛)7.如图,△ABC 的顶点坐标分别为A (4,6)、B (5,2)、C (2,1),如果将△ABC 绕点C 按逆时针方向旋转90°,得到△''A B C ,那么点A 的对应点'A 的坐标是( ). A .(-3,3) B .(3,-3) C .(-2,4) D .(1,4)(10山东青岛)8.函数y ax a =-与ay x=(a ≠0)在同一直角坐标系中的图象可能是( ).A .B .C .D .二、填空题(本题满分18分,共有6道小题,每小题3分)请将9—14各小题的答案填写在第14小题后面给出表格的相应位置上.(10山东青岛)9-= .(10山东青岛)10.如图,点A 、B 、C 在⊙O 上,若∠BAC = 24°,则∠BOC = °. (10山东青岛)11.某市为治理污水,需要铺设一段全长为300 m 的污水排放管道.铺设120 m 后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.如果设原计划每天铺设m x 管道,那么根据题意,可得方程 .(10山东青岛)12.一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有 个黄球.(10山东青岛)13.把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB =3 cm ,BC = 5 cm ,则重叠部分△DEF 的面积是 cm 2.(10山东青岛)14.如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要 枚棋子,摆第n 个图案需要 枚棋子.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹. (10山东青岛)15.如图,有一块三角形材料(△ABC ),请你画出一个圆,使其与△ABC 的各边都相切.解:结论:x OABC第10题图· …第14题图A BCFE 'A 第13题图('B ) D ABC四、解答题(本题满分74分,共有9道小题) (10山东青岛)16.(本小题满分8分,每题4分)(1)解方程组:34194x y x y +=⎧⎨-=⎩; (2)化简:22142a a a +--. 解: 解:原式=(10山东青岛)17.(本小题满分6分)配餐公司为某学校提供A 、B 、C 三类午餐供师生选择,三类午餐每份的价格分别是:A 餐5元,B 餐6元,C 餐8元.为做好下阶段的营销工作,配餐公司根据该校上周A 、B 、C 三类午餐购买情况,将所得的数据处理后,制成统计表(如下左图);根据以往销售量与平均每份利润之间的关系,制成统计图(如下右图).请根据以上信息,解答下列问题:(1)该校师生上周购买午餐费用的众数是 元;(2)配餐公司上周在该校销售B 餐每份的利润大约是 元; (3)请你计算配餐公司上周在该校销售午餐约盈利多少元? 解:(3)(10山东青岛)18.(本小题满分6分)“五·一”期间,某书城为了吸引读者,设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),并规定:读者每购买100元的书,就可获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么读者就可以分别获得45元、30元、25元的购书券,凭购书券可以在书城继续购书.如果读者不愿意转转盘,那么可以直接获得10元的购书券.(1)写出转动一次转盘获得45元购书券的概率;(2)转转盘和直接获得购书券,你认为哪种方式对读者更合算?请说明理由. 解:(1)(2)以往销售量与平均每份利润之间的关系统计图一周销售量(份) 300~800 (不含800) 800~1200(不含1200)1200及 1200以上该校上周购买情况统计表 第18题图(10山东青岛)19.(本小题满分6分)小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:o o o o337sin37tan37sin 48tan485410≈≈≈≈,,,解:(10山东青岛)20.(本小题满分8分)某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金.解:(1)(2) (10山东青岛)21.(本小题满分8分)已知:如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE = AF .(1)求证:BE = DF ;(2)连接AC 交EF 于点O ,延长OC 至点M ,使OM = OA ,连接EM 、FM .判断四边形AEMF 是什么特殊四边形?并证明你的结论.证明:(1)(2)(10山东青岛)22.(本小题满分10分)某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似的看作一次函数:10500y x =-+.(1)设李明每月获得利润为w (元),当销售单价定为多少元时,每月可获得最大利润? (2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于A DB E FO CM第21题图 第19题图2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量) 解:(1)(2)(3)(10山东青岛)23.(本小题满分10分)问题再现现实生活中,镶嵌图案在地面、墙面乃至于服装面料设计中随处可见.在八年级课题学习“平面图形的镶嵌”中,对于单种多边形的镶嵌,主要研究了三角形、四边形、正六边形的镶嵌问题.今天我们把正多边形....的镶嵌作为研究问题的切入点,提出其中几个问题,共同来探究.我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面.如右图中,用正方形镶嵌平面,可以发现在一个顶点O 周围围绕着4个正方形的内角.试想:如果用正六边形来镶嵌平面,在一个顶点周围应该围绕着 个 正六边形的内角.问题提出如果我们要同时用两种不同的正多边形镶嵌平面,可能设计出几种不同的组合方案? 问题解决猜想1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?分析:我们可以将此问题转化为数学问题来解决.从平面图形的镶嵌中可以发现,解决问题的关键在于分析能同时用于完整镶嵌平面的两种正多边形的内角特点.具体地说,就是在镶嵌平面时,一个顶点周围围绕的各个正多边形的内角恰好拼成一个周角.验证1:在镶嵌平面时,设围绕某一点有x 个正方形和y 个正八边形的内角可以拼成一个周角.根据题意,可得方程:()82180903608x y -⨯+ =,整理得:238x y +=,我们可以找到惟一一组适合方程的正整数解为12x y =⎧⎨=⎩ .结论1:镶嵌平面时,在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.验证2:结论2: .O上面,我们探究了同时用两种不同的正多边形组合镶嵌平面的部分情况,仅仅得到了一部分组合方案,相信同学们用同样的方法,一定会找到其它可能的组合方案.问题拓广请你仿照上面的研究方式,探索出一个同时用三种不同的正多边形组合进行平面镶嵌的方案,并写出验证过程.猜想3: .验证3:结论3: .(10山东青岛)24.(本小题满分12分)已知:把Rt△ABC 和Rt△DEF 按如图(1)摆放(点C 与点E 重合),点B 、C (E )、F 在同一条直线上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC = 8 cm ,BC = 6 cm ,EF = 9 cm .如图(2),△DEF 从图(1)的位置出发,以1 cm/s 的速度沿CB 向△ABC 匀速移动,在△DEF 移动的同时,点P 从△ABC 的顶点B 出发,以2 cm/s 的速度沿BA 向点A 匀速移动.当△DEF 的顶点D 移动到AC 边上时,△DEF 停止移动,点P 也随之停止移动.DE 与AC 相交于点Q ,连接PQ ,设移动时间为t (s )(0<t <4.5).解答下列问题:(1)当t 为何值时,点A 在线段PQ 的垂直平分线上?(2)连接PE ,设四边形APEC 的面积为y (cm 2),求y 与t 之间的函数关系式;是否存在某一时刻t ,使面积y 最小?若存在,求出y 的最小值;若不存在,说明理由.(3)是否存在某一时刻t ,使P 、Q 、F 三点在同一条直线上?若存在,求出此时t 的值;若不存在,说明理由.(图(3)供同学们做题使用)解:(1)(2)(3)二○一○年山东省青岛市初级中学学业水平考试A D BF E ) 图(1) 图(2) A B C 图(3) (用圆珠笔或钢笔画图)数学试题参考答案及评分标准说明:1.如果考生的解法与本解法不同,可参照本评分标准制定相应评分细则.2.当考生的解答在某一步出现错误,影响了后继部分时,如果这一步以后的解答未改变这道题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.为阅卷方便,本解答中的推算步骤写得较为详细,但允许考生在解答过程中,合理省略非关键性的推算步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 一、选择题(本题满分24分,共有8道小题,每小题3分)二、填空题(本题满分18分,共有6道小题,每小题3分)三、作图题(本题满分4分)15.正确画出两条角平分线,确定圆心; ······· 2分确定半径; ······· 3分 正确画出圆并写出结论. ······· 4分四、解答题(本题满分74分,共有9道小题) 16.(本小题满分8分) (1)34194x y x y +=⎧⎨-=⎩解:②×4得:4416x y -=,③①+③得:7x = 35, 解得:x = 5.把x = 5代入②得,y = 1.② ①∴原方程组的解为51x y =⎧⎨=⎩.········ 4分(2)解:原式 =()()21222a a a a -+-- ()()()()222222a a a a a a +=-+-+- ()()()()()2222222a a a a a a a -+=+--=+-12a =+. ······· 4分17.(本小题满分6分)解:(1)6元; ······· 2分 (2)3元;······· 4分 (3)1.5×1000+3×1700+3×400 = 1500+5100+1200 = 7800(元).答:配餐公司上周在该校销售午餐约盈利7800元. ······· 6分18.(本小题满分6分)解:(1)P (获得45元购书券) = 112; ······· 2分(2)12345302515121212⨯+⨯+⨯=(元). ∵15元>10元,∴转转盘对读者更合算.······· 6分19.(本小题满分6分) 解:设CD = x . 在Rt △ACD 中,tan37ADCD ︒=, 则34AD x =, ∴34AD x =.在Rt△BCD 中,tan48° = BDCD, 则1110BD x=, ∴1110BD x =. ……………………4分∵AD +BD = AB , ∴31180410x x +=.第19题图解得:x ≈43.答:小明家所在居民楼与大厦的距离CD 大约是43米. ………………… 6分 20.(本小题满分8分)解:(1)设单独租用35座客车需x 辆,由题意得:3555(1)45x x =--,解得:5x =.∴35355175x =⨯=(人).答:该校八年级参加社会实践活动的人数为175人. ········ 3分 (2)设租35座客车y 辆,则租55座客车(4y -)辆,由题意得:3555(4)175320400(4)1500y y y y +-⎧⎨+-⎩≥≤, ······· 6分 解这个不等式组,得111244y ≤≤.∵y 取正整数, ∴y = 2.∴4-y = 4-2 = 2.∴320×2+400×2 = 1440(元).所以本次社会实践活动所需车辆的租金为1440元. ······· 8分21.(本小题满分8分)证明:(1)∵四边形ABCD 是正方形,∴AB =AD ,∠B = ∠D = 90°. ∵AE = AF ,∴Rt Rt ABE ADF △≌△. ∴BE =DF . ······· 4分 (2)四边形AEMF 是菱形.∵四边形ABCD 是正方形,∴∠BCA = ∠DCA = 45°,BC = DC .∵BE =DF ,∴BC -BE = DC -DF . 即CE CF =.∴OE OF =.∵OM = OA ,∴四边形AEMF 是平行四边形. ∵AE = AF ,∴平行四边形AEMF 是菱形. ······· 8分22.(本小题满分10分)解:(1)由题意,得:w = (x -20)·y=(x -20)·(10500x -+) 21070010000x x =-+-352b x a=-=.答:当销售单价定为35元时,每月可获得最大利润. ······· 3分(2)由题意,得:210700100002000x x -+-=解这个方程得:x 1 = 30,x 2 = 40.答:李明想要每月获得2000元的利润,销售单价应定为30元或40元. ····· 6分(3)法一:∵10a =-<0,A DB E F O CM 第21题图 法二:∵10a =-<0, ∴抛物线开口向下.∴当30≤x ≤40时,w ≥2000. ∵x ≤32,∴30≤x ≤32时,w ≥2000.∴抛物线开口向下.∴当30≤x≤40时,w≥2000.∵x≤32,∴当30≤x≤32时,w≥2000.设成本为P(元),由题意,得:20(10500)P x=-+20010000x=-+∵200k=-<0,∴P随x的增大而减小.∴当x = 32时,P最小=3600.答:想要每月获得的利润不低于2000元,每月的成本最少为3600元.··········10分23.(本小题满分10分)解:3个;·······1分验证2:在镶嵌平面时,设围绕某一点有a个正三角形和b个正六边形的内角可以拼成一个周角.根据题意,可得方程:60120360a b+=.整理得:26a b+=,可以找到两组适合方程的正整数解为22ab=⎧⎨=⎩和41ab=⎧⎨=⎩.······3分结论2:镶嵌平面时,在一个顶点周围围绕着2个正三角形和2个正六边形的内角或者围绕着4个正三角形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形和正六边形两种正多边形组合可以进行平面镶嵌.···5分猜想3:是否可以同时用正三角形、正方形和正六边形三种正多边形组合进行平面镶嵌?·······6分验证3:在镶嵌平面时,设围绕某一点有m个正三角形、n个正方形和c个正六边形的内角可以拼成一个周角. 根据题意,可得方程:6090120360m n c++=,整理得:23412m n c++=,可以找到惟一一组适合方程的正整数解为121mnc=⎧⎪=⎨⎪=⎩. ·······8分结论3:镶嵌平面时,在一个顶点周围围绕着1个正三角形、2个正方形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形、正方形和正六边形三种正多边形组合可以进行平面镶嵌. (说明:本题答案不惟一,符合要求即可.)······· 10分24.(本小题满分12分)解:(1)∵点A在线段PQ的垂直平分线上,∴AP = AQ.∵∠DEF = 45°,∠ACB = 90°,∠DEF+∠ACB+∠EQC = 180°,∴∠EQC = 45°.∴∠DEF =∠EQC.∴CE = CQ.由题意知:CE = t,BP =2 t,∴CQ = t.∴AQ = 8-t.在Rt△ABC中,由勾股定理得:AB = 10 cm .则AP = 10-2 t .∴10-2 t = 8-t .解得:t = 2.答:当t = 2 s 时,点A 在线段PQ 的垂直平分线上. ····· 4分(2)过P 作PM BE ⊥,交BE 于M ,∴90BMP ∠=︒.在Rt△ABC 和Rt△BPM 中,sin AC PM B AB BP==, ∴8210PM t = . ∴PM = 85t . ∵BC = 6 cm ,CE = t , ∴ BE = 6-t . ∴y = S △ABC -S △BPE =12BC AC ⋅-12BE PM ⋅= 1682⨯⨯-()186t t 25⨯-⨯ =24242455t t -+ = ()2484355t -+. ∵405a =>,∴抛物线开口向上. ∴当t = 3时,y 最小=845. 答:当t = 3s 时,四边形APEC 的面积最小,最小面积为845cm 2. ··· 8分 (3)假设存在某一时刻t ,使点P 、Q 、F 三点在同一条直线上.过P 作PN AC ⊥,交AC 于N ,∴90ANP ACB PNQ ∠=∠=∠=︒.∵PAN BAC ∠=∠,∴△PAN ∽△BAC . ∴PN AP AN BC AB AC==. ∴1026108PN t AN -==. ∴665PN t =-,885AN t =-. ∵NQ = AQ -AN ,∴NQ = 8-t -(885t -) = 35t . ∵∠ACB = 90°,B 、C (E )、F 在同一条直线上,∴∠QCF = 90°,∠QCF = ∠PNQ .∵∠FQC = ∠PQN ,∴△QCF ∽△QNP . ∴PN NQ FC CQ= . ∴636559t t t t -=- . ∵0t <<4.5 ∴663595t t -=- 解得:t = 1.答:当t = 1s ,点P 、Q 、F 三点在同一条直线上. 12分图(2)图(3)。
往年山东省青岛市中考数学真题及答案
往年山东省青岛市中考数学真题及答案一. 选择题(本题满分24分,共有8小题,每小题3分)1.( 3分)(往年•青岛)﹣2的绝对值是()B.﹣2 C.D.2A.﹣2.( 3分)(往年•青岛)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.( 3分)(往年•青岛)如图,正方体表面上画有一圈黑色线条,则它的左视图是()A.B.C.D.4.( 3分)(往年•青岛)已知,⊙O1与⊙O2的半径分别是4和6,O1O2=2,则⊙O1与⊙O2的位置关系是()A.内切B.相交C.外切D.外离5.( 3分)(往年•青岛)某次知识竞赛中,10名学生的成绩统计如下:分数(分)60 70 80 90 100人数(人) 1 1 5 2 1则下列说法正确的是()A.学生成绩的极差是4 B.学生成绩的众数是5C.学生成绩的中位数是80分D.学生成绩的平均数是80分6.( 3分)(往年•青岛)如图,将四边形ABCD先向左平移3个单位,再向上平移2个单位,那么点A的对应点A′的坐标是()A.( 6,1)B.( 0,1)C.( 0,﹣3)D.( 6,﹣3)7.( 3分)(往年•青岛)用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是()A.B.C.D.8.( 3分)(往年•青岛)点A( x1,y1),B( x2,y2),C( x3,y3)都是反比例函数的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y3二. 填空题(本题满分18分,共有6道小题,每小题3分)9.( 3分)(往年•青岛)计算:(﹣3)0+= _________ .10.( 3分)(往年•青岛)为改善学生的营养状况,中央财政从2011年秋季学期起,为试点地区在校生提供营养膳食补助,一年所需资金约为160亿元,用科学记数法表示为_ 元.11.( 3分)(往年•青岛)如图,点A. B. C在⊙O上,∠AOC=60°,则∠ABC的度数是_________ .12.( 3分)(往年•青岛)如图,在一块长为22米. 宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x米,则根据题意可列出方程为_________ .13.( 3分)(往年•青岛)如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,将△ABC绕点C逆时针旋转至△A′B′C′,使得点A′恰好落在AB上,连接BB′,则BB′的长度为_________ .14.( 3分)(往年•青岛)如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底3cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为_________ cm.三. 作图题(本题满分4分)用圆规. 直尺作图,不写作法,但要保留作图痕迹.15.( 4分)(往年•青岛)已知:线段a,c,∠α.求作:△ABC.使BC=a,AB=c,∠ABC=∠α.结论:四. 解答题(本题满分74分,共有9道小题)16.( 8分)(往年•青岛)( 1)化简:( 2)解不等式组:.17.( 6分)(往年•青岛)某校为开展每天一小时阳光体育活动,准备组建篮球. 排球. 足球. 乒乓球四个兴趣小组,并规定每名学生至少参加1个小组,也可兼报多个小组.该校对八年级全体学生报名情况进行了抽样调查,并将所得数据制成如下两幅统计图:根据图中的信息解答下列问题:( 1)补全条形统计图;( 2)若该校八年级共有400名学生,估计报名参加2个兴趣小组的人数;( 3)综合上述信息,谈谈你对该校即将开展的兴趣小组活动的意见和建议.(字数不超过30字)18.( 6分)(往年•青岛)某商场为了吸引顾客,举行抽奖活动,并规定:顾客每购买100元的商品,就可随机抽取一张奖券,抽得奖券“紫气东来”. “花开富贵”. “吉星高照”,就可以分别获得100元. 50元. 20元的购物券,抽得“谢谢惠顾”不赠购物券;如果顾客不愿意抽奖,可以直接获得购物券10元.小明购买了100元的商品,他看到商场公布的前10000张奖券的抽奖结果如下:奖券种类紫气东来花开富贵吉星高照谢谢惠顾出现张数(张) 500 1000 2000 6500( 1)求“紫气东来”奖券出现的频率;( 2)请你帮助小明判断,抽奖和直接获得购物卷,哪种方式更合算?并说明理由.19.( 6分)(往年•青岛)小丽乘坐汽车从青岛到黄岛奶奶家,她去时经过环湾高速公路,全程约84千米,返回时经过跨海大桥,全程约45千米.小丽所乘汽车去时的平均速度是返回时的1.2倍,所用时间却比返回时多20分钟.求小丽所乘汽车返回时的平均速度.20.( 8分)(往年•青岛)如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高2米的影子CE;而当光线与地面夹角是45°时,教学楼顶A在地面上的影子F与墙角C有13米的距离( B. F. C在一条直线上)( 1)求教学楼AB的高度;( 2)学校要在A. E之间挂一些彩旗,请你求出A. E之间的距离(结果保留整数).(参考数据:sin22°≈,cos22°≈,tan22°≈)21.( 8分)(往年•青岛)已知:如图,四边形ABCD的对角线AC. BD交于点O,BE⊥AC于E,DF⊥AC于F,点O既是AC的中点,又是EF的中点.( 1)求证:△BOE≌△DOF;( 2)若OA=BD,则四边形ABCD是什么特殊四边形?说明理由.22.( 10分)(往年•青岛)在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)与销售单价x(元/个)之间的对应关系如图所示:( 1)试判断y与x之间的函数关系,并求出函数关系式;( 2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w(元)与销售单价x(元/个)之间的函数关系式;( 3)若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.23.( 10分)(往年•青岛)问题提出:以n边形的n个顶点和它内部的m个点,共( m+n)个点作为顶点,可把原n边形分割成多少个互不重叠的小三角形?问题探究:为了解决上面的问题,我们将采取一般问题特殊性的策略,先从简单和具体的情形入手:探究一:以△ABC的三个顶点和它内部的1个点P,共4个点为顶点,可把△ABC分割成多少个互不重叠的小三角形?如图①,显然,此时可把△ABC分割成3个互不重叠的小三角形.探究二:以△ABC的三个顶点和它内部的2个点P. Q,共5个点为顶点,可把△ABC分割成多少个互不重叠的小三角形?在探究一的基础上,我们可看作在图①△ABC的内部,再添加1个点Q,那么点Q的位置会有两种情况:一种情况,点Q在图①分割成的某个小三角形内部.不妨假设点Q在△PAC内部,如图②;另一种情况,点Q在图①分割成的小三角形的某条公共边上.不妨假设点Q在PA上,如图③.显然,不管哪种情况,都可把△ABC分割成5个不重叠的小三角形.探究三:以△ABC的三个顶点和它内部的3个点P. Q. R,共6个点为顶点可把△ABC分割成_________ 个互不重叠的小三角形,并在图④中画出一种分割示意图.探究四:以△ABC的三个顶点和它内部的m个点,共( m+3)个顶点可把△ABC分割成_________ 个互不重叠的小三角形.探究拓展:以四边形的4个顶点和它内部的m个点,共( m+4)个顶点可把四边形分割成_________ 个互不重叠的小三角形.问题解决:以n边形的n个顶点和它内部的m个点,共( m+n)个顶点可把△ABC分割成_________ 个互不重叠的小三角形.实际应用:以八边形的8个顶点和它内部的往年个点,共2020个顶点,可把八边形分割成多少个互不重叠的小三角形?(要求列式计算)24.( 12分)(往年•青岛)已知:如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,D. E分别是AC. AB的中点,连接DE,点P从点D出发,沿DE方向匀速运动,速度为1cm/s;同时,点Q从点B出发,沿BA方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t( s)( 0<t<4).解答下列问题:( 1)当t为何值时,PQ⊥AB?( 2)当点Q在BE之间运动时,设五边形PQBCD的面积为y( cm2),求y与t之间的函数关系式;( 3)在( 2)的情况下,是否存在某一时刻t,使PQ分四边形BCDE两部分的面积之比为S △PQE:S四边形PQBCD=1:29?若存在,求出此时t的值以及点E到PQ的距离h;若不存在,请说明理由.往年年山东省青岛市中考数学试卷参考答案与试题解析一. 选择题1.D 2.C 3.B 4.A 5.C 6.B 7. D 8. A二. 填空题(本题满分18分,共有6道小题,每小题3分)请将9--14各小题的答案填写在第14小题后面给出的表格相应位置上.9.7.10.1.6×1010.11.150°.12.( 22﹣x)( 17﹣x)=300.13..14.5.四. 解答题(本题满分74分,共有9道小题)16.解:( 1)原式==…4分解:( 2)解不等式①,x>,解不等式②,x≤4,∴原式不等式组的解集为<x≤4.17.解:( 1)∵从统计图知报名参加丙小组的有15人,占总数的30%∴总人数有15÷30%=50人,∴报名参加丁小组的有50﹣10﹣20﹣15=5人,统计图为:( 2)报名参加2个兴趣小组的有400×=160人( 3)合理即可:如:利用课余时间多参加几个兴趣小组.18.解:( 1)或5%;( 2)平均每张奖券获得的购物券金额为+0×=14(元)∵14>10∴选择抽奖更合算.19.解:设小丽所乘汽车返回时的平均速度是x千米/时,根据题意得:,解这个方程,得x=75,经检验,x=75是原方程的解.答:小丽所乘汽车返回时的速度是75千米/时.20.解:( 1)过点E作EM⊥AB,垂足为M.设AB为x.Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+13,在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2, tan22°=,则=,解得:x=12.即教学楼的高12m.( 2)由( 1)可得ME=BC=x+13=12+13=25.在Rt△AME中,cos22°=.∴AE=,即A. E之间的距离约为27m.21.( 1)证明:∵BE⊥AC.DF⊥AC,∴∠BEO=∠DFO=90°,∵点O是EF的中点,∴OE=OF,又∵∠DOF=∠BOE,∴△BOE≌△DOF( ASA);( 2)解:四边形ABCD是矩形.理由如下:∵△BOE≌△DOF,∴OB=OD,又∵OA=OC,∴四边形ABCD是平行四边形,∵OA=BD,OA=AC,∴BD=AC,∴▱ABCD是矩形.22.解:( 1)y是x的一次函数,设y=kx+b,图象过点( 10,300),( 12,240),,解得,∴y=﹣30x+600,当x=14时,y=180;当x=16时,y=120,即点( 14,180),( 16,120)均在函数y=﹣30x+600图象上.∴y与x之间的函数关系式为y=﹣30x+600;( 2)w=( x﹣6)(﹣30x+600)=﹣30x2+780x﹣3600,即w与x之间的函数关系式为w=﹣30x2+780x﹣3600;( 3)由题意得:6(﹣30x+600)≤900,解得x≥15.w=﹣30x2+780x﹣3600图象对称轴为:x=﹣=13.∵a=﹣30<0,∴抛物线开口向下,当x≥15时,w随x增大而减小,∴当x=15时,w最大=1350,即以15元/个的价格销售这批许愿瓶可获得最大利润1350元.23.解:探究三:如图,三角形内部的三点共线与不共线时都分成了7部分, 故答案为:7;分割示意图(答案不唯一)探究四:三角形内部1个点时,共分割成3部分,3=3+2( 1﹣1),三角形内部2个点时,共分割成5部分,5=3+2( 2﹣1),三角形内部3个点时,共分割成7部分,7=3+2( 3﹣1),…,所以,三角形内部有m个点时,3+2( m﹣1)或2m+1;…4分探究拓展:四边形的4个顶点和它内部的m个点,则分割成的不重叠的三角形的个数为:4+2( m﹣1)或2m+2;…6分问题解决:n+2( m﹣1)或2m+n﹣2;…8分实际应用:把n=8,m=往年代入上述代数式,得2m+n﹣2,=2×往年+8﹣2,=4024+8﹣2,=4030.…10分24.解:( 1)如图①,在Rt△ABC中,AC=6,BC=8∴AB=.∵D. E分别是AC. AB的中点.AD=DC=3,AE=EB=5,DE∥BC且DE=BC=4∵PQ⊥AB,∴∠PQB=∠C=90°又∵DE∥BC∴∠AED=∠B∴△PQE∽△ACB由题意得:PE=4﹣t,QE=2t﹣5,即,解得t=.( 2)如图②,过点P作PM⊥AB于M,由△PME∽△ABC,得,∴,得PM=( 4﹣t).S△PQE=EQ•PM=( 5﹣2t)•( 4﹣t)=t2﹣t+6, S梯形DCBE=×( 4+8)×3=18,∴y=18﹣(t2﹣t+6)=t2+t+12.( 3)假设存在时刻t,使S△PQE:S四边形PQBCD=1:29, 则此时S△PQE=S梯形DCBE,∴t2﹣t+6=×18,即2t2﹣13t+18=0,解得t1=2,t2=(舍去).当t=2时,PM=×( 4﹣2)=,ME=×( 4﹣2)=,EQ=5﹣2×2=1,MQ=ME+EQ=+1=,∴PQ===.∵PQ•h=,∴h=•=(或).。
青岛中考数学试题及答案
青岛中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^2 + bxC. y = ax + bD. y = ax + bx + c答案:A2. 计算下列哪个表达式的结果是正数?A. (-2)^3B. (-3)^2C. (-1)^4D. (-5)^5答案:B3. 已知一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是多少?A. 11B. 13C. 16D. 无法确定答案:B4. 以下哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:A5. 如果一个圆的直径是10厘米,那么它的面积是多少平方厘米?A. 25πB. 50πC. 100πD. 200π答案:C6. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 无法确定答案:A7. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 以上都不是答案:C8. 计算下列哪个表达式的结果是负数?A. 3 + 2B. -3 + 2C. 3 - 2D. -3 - 2答案:D9. 一个直角三角形的两个直角边长分别是3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A10. 一个数的平方根是2,那么这个数是多少?A. 4B. -4C. 2D. -2答案:A二、填空题(每题3分,共15分)11. 一个数的立方根是2,那么这个数是______。
答案:812. 一个数的平方是9,那么这个数可能是______或______。
答案:3或-313. 一个数的倒数是1/4,那么这个数是______。
答案:414. 一个数的绝对值是3,那么这个数可能是______或______。
答案:3或-315. 一个圆的半径是5厘米,那么它的周长是______厘米。
答案:10π三、解答题(每题5分,共55分)16. 已知一个二次函数的顶点坐标是(2, -3),且经过点(0, 1),请写出这个二次函数的解析式。
青岛中考数学试题与答案(初中数学)
青岛市中考数学真题一、选择题(本题共12个小题,每小题4分,满分48分)每小题给出标号为A ,B ,C ,D 四个备选答案,其中有且只有一个是正确的. 1.|3|-的相反数是( ) A .3B .3-C .13D .13-2.视力表对我们来说并不陌生.如图是视力表的一部分, 其中开口向上的两个“E ”之间的变换是( ) A .平移 B .旋转 C .对称 D .位似 3.学完分式运算后,老师出了一道题“化简:23224x xx x +-++-” 小明的做法是:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----;小亮的做法是:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法是:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( )A .小明B .小亮C .小芳D .没有正确的4.设a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为( ) A .2006B .2007C .2008D .20095.一个长方体的左视图、俯视图及相关数据如图所示, 则其主视图的面积为( ) A .6 B .8 C .12 D .24 6.如图,数轴上A B ,两点表示的数分别为1-和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( ) A .23-- B .13--C .23-+D .13+7.某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )A .全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B .将六个平均成绩之和除以6,就得到全年级学生的平均成绩C .这六个平均成绩的中位数就是全年级学生的平均成绩32左视图4俯视图(第5题图)CA O B(第6题图)标准对数视力表0.1 4.0 0.12 4.1 0.154.2(第2题图)D .这六个平均成绩的众数不可能是全年级学生的平均成绩 8.如图,直线y kx b =+经过点(12)A --,和点(20)B -,, 直线2y x =过点A ,则不等式20x kx b <+<的解集为( ) A .2x <- B .21x -<<-C .20x -<<D .10x -<<9.现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有( )A .2种B .3种C .4种D .5种 10.如图,等边ABC △的边长为3,P 为BC 上一点,且1BP =,D 为AC 上一点,若60APD ∠=°,则 CD 的长为( ) A .32B .23C .12D .3411.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )12.利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是() A .73cmB .74cmC .75cmD .76cm第Ⅱ卷二、填空题(本题共6个小题,每小题4分,满分24分) 13.若523m xy +与3n x y 的和是单项式,则m n = .①②(第12题图)A DCPB(第10题图)60°x x x x x14.设0a b >>,2260a b ab +-=,则a bb a+-的值等于 . 15.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是 .16.如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .17.观察下表,回答问题:第 个图形中“△”的个数是“○”的个数的5倍.18.如图,ABC △与AEF △中,AB AE BC EF B E AB ==∠=∠,,,交EF 于D .给出下列结论: ①AFC C ∠=∠;②DF CF =;③ADE FDB △∽△;④BFD CAF ∠=∠.其中正确的结论是 (填写所有正确结论的序号). 三、解答题(本大题共8个小题,满分78分)19.(本题满分6分)化简:0293618(32)(12)23+--+-+-.20.(本题满分8分)将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上. (1)从中随机抽出一张牌,牌面数字是偶数的概率是 ;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是 ;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.序号 1 2 3 …图形…(第15题图)A E DB FC (第18题图) (第20题图)21.(本题满分8分)某市教育行政部门为了了解初一学生每学期参加综合实践活动的情况,随机抽样调查了某校初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中a 的值,并求出该校初一学生总数;(2)分别求出活动时间为5天、7天的学生人数,并补全频数分布直方图; (3)求出扇形统计图中“活动时间为4天”的扇形所对圆心角的度数; (4)在这次抽样调查中,众数和中位数分别是多少?(5)如果该市共有初一学生6000人,请你估计“活动时间不少于4天”的大约有多少人?22.(本题满分8分)腾飞中学在教学楼前新建了一座“腾飞”雕塑(如图①).为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图②).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.1米,参考数据3173. ).4天 3天 2天 7天 6天 5天 30% 15% 10% 5%15% a 60 50 4030 20 102天 3天 4天 5天 6天 7天 (第21题图)时间人数DCB A②①(第22题图)23.(本题满分10分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?24.(本题满分10分)如图,AB ,BC 分别是O ⊙的直径和弦,点D 为BC 上一点,弦DE 交O ⊙于点E ,交AB 于点F ,交BC 于点G ,过点C 的切线交ED 的延长线于H ,且HC HG =,连接BH ,交O ⊙于点M ,连接MD ME ,.求证:(1)DE AB ⊥;(2)HMD MHE MEH ∠=∠+∠.25.(本题满分14分)如图,直角梯形ABCD 中,BC AD ∥,90BCD ∠=°,且2tan 2CD AD ABC =∠=,,过点D 作AB DE ∥,交BCD ∠的平分线于点E ,连接BE .(1)求证:BC CD =;(2)将BCE △绕点C ,顺时针旋转90°得到DCG △,连接EG.. 求证:CD 垂直平分EG .(3)延长BE 交CD 于点P . 求证:P 是CD 的中点.(第24题图) A D GE C B (第25题图)26.(本题满分14分)如图,抛物线23y ax bx =+-与x 轴交于A B ,两点,与y 轴交于C 点,且经过点(23)a -,,对称轴是直线1x =,顶点是M .(1) 求抛物线对应的函数表达式;(2) 经过C,M 两点作直线与x 轴交于点N ,在抛物线上是否存在这样的点P ,使以点P A C N ,,,为顶点的四边形为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;(3) 设直线3y x =-+与y 轴的交点是D ,在线段BD 上任取一点E (不与B D ,重合),经过A B E ,,三点的圆交直线BC 于点F ,试判断AEF △的形状,并说明理由;(4) 当E 是直线3y x =-+上任意一点时,(3)中的结论是否成立?(请直接写出结论).数学试题参考答案及评分意见本试题答案及评分意见,供阅卷评分使用.考生若写出其它正确答案,可参照评分意见相应评分.一、选择题(本题共12个小题,每小题4分,满分48分)二、填空题(本题共6个小题,每小题4分,满分24分)13.1414.15.1716.1 17.20 18.①,③,④三、解答题(本题共8个小题,满分78分)19.(本题满分6分)2)+(11|1=++. ····························································2分111 =.·································································4分1 =····································································································6分20.(本题满分8分)解:(1)12···································································································1分(2)13········································································································3分(3)根据题意,画树状图: ·············································································6分(第20题图)由树状图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44.其中恰好是4的倍数的共有4种:12,24,32,44.所以,P(4的倍数)41164==.·····································································8分或根据题意,画表格: ····················································································6分1 2 3 41第一次第二次 1 2 3 421 2 3 431 2 3 44开始P (4的倍数)41164==. ·············································································· 8分 21.(本题满分8分)解:(1)1(10%15%30%15%5%)25%a =-++++=. ···································· 1分 初一学生总数:2010%200÷=(人). ····························································· 2分 (2)活动时间为5天的学生数:20025%50⨯=(人). 活动时间为7天的学生数:2005%10⨯=(人). ················································ 3分 频数分布直方图(如图)···················· 4分 (3)活动时间为4天的扇形所对的圆心角是36030%108⨯=°°. ··························· 5分 (4)众数是4天,中位数是4天. ···································································· 7分 (5)该市活动时间不少于4天的人数约是6000(30%25%15%5%)4500⨯+++=(人). ················································· 8分 22.(本题满分8分)解:过点C 作CE AB ⊥于E .906030903060D ACD ∠=-︒=∠=-=°°,°°°, 90CAD ∴∠=°.11052CD AC CD =∴==,. ························· 3分 在Rt ACE △中,5sin 5sin 302AE AC ACE =∠==°, ··············· 4分5cos 5cos3032CE AC ACE =∠==° ·············5分在Rt BCE △中,545tan 4532BCE BE CE ∠=∴==°,°, ···················································· 6分DB BA(第22题图)C(第21题图)551) 6.822AB AE BE ∴=+=+=≈(米). 所以,雕塑AB 的高度约为6.8米. ··································································· 8分23.(本题满分10分) 解:(1)根据题意,得(24002000)8450x y x ⎛⎫=--+⨯ ⎪⎝⎭, 即2224320025y x x =-++. ·········································································· 2分 (2)由题意,得22243200480025x x -++=.整理,得2300200000x x -+=.····································································· 4分 解这个方程,得12100200x x ==,. ································································ 5分 要使百姓得到实惠,取200x =.所以,每台冰箱应降价200元. ···························· 6分 (3)对于2224320025y x x =-++, 当241502225x =-=⎛⎫⨯- ⎪⎝⎭时, ·········································································· 8分150(24002000150)8425020500050y ⎛⎫=--+⨯=⨯= ⎪⎝⎭最大值.所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元.········· 10分24.(本题满分10分)(1)证明:连接OC ,HC HG HCG HGC =∴∠=∠,. ························· 1分 HC 切O ⊙于C 点,190HCG ∴∠+∠=°, ··········· 2分 12OB OC =∴∠=∠,, ······································ 3分 3HGC ∠=∠,2390∴∠+∠=°.······················· 4分 90BFG ∴∠=°,即DE AB ⊥. ···························· 5分 (2)连接BE .由(1)知DE AB ⊥.AB 是O ⊙的直径, ∴BD BE =. ······························································································· 6分BED BME ∴∠=∠. ····················································································· 7分 四边形BMDE 内接于O ⊙,HMD BED ∴∠=∠. ··········································· 8分 HMD BME ∴∠=∠.BME ∠是HEM △的外角,BME MHE MEH ∴∠=∠+∠. ······························ 9分 HMD MHE MEH ∴∠=∠+∠. ···································································· 10分 25.(本题满分14分)证明:(1)延长DE 交BC 于F .(第24题图)AD BC ∥,AB DF ∥,AD BF ABC DFC ∴=∠=∠,. ···························· 1分 在Rt DCF △中,tan tan 2DFC ABC ∠=∠=,2CD CF∴=,即2CD CF =. 22CD AD BF ==,BF CF ∴=. ······················ 3分 1122BC BF CF CD CD CD ∴=+=+=, 即BC CD =. ······························································································· 4分 (2)CE 平分BCD ∠,∴BCE DCE ∠=∠. 由(1)知BC CD CE CE ==,,BCE DCE ∴△≌△,BE DE ∴=. ················· 6分 由图形旋转的性质知CE CG BE DG DE DG ==∴=,,. ····································· 8分 C D ∴,都在EG 的垂直平分线上,CD ∴垂直平分EG . ····································· 9分 (3)连接BD .由(2)知BE DE =,12∴∠=∠.AB DE ∥.32∴∠=∠.13∴∠=∠. ······················································· 11分 AD BC ∥,4DBC ∴∠=∠.由(1)知BC CD =.DBC BDC ∴∠=∠,4BDP ∴∠=∠. ···························· 12分 又BD BD =,BAD BPD ∴△≌△,DP AD ∴=. ······································· 13分 12AD CD =,12DP CD ∴=.P ∴是CD 的中点. ········································ 14分 28.(本题满分14分)解:(1)根据题意,得34231.2a a b b a-=+-⎧⎪⎨-=⎪⎩,··············2分解得12.a b =⎧⎨=-⎩,∴抛物线对应的函数表达式为223y x x =--. ········3分(2)存在.在223y x x =--中,令0x =,得3y =-.令0y =,得2230x x --=,1213x x ∴=-=,.(10)A ∴-,,(30)B ,,(03)C -,.又2(1)4y x =--,∴顶点(14)M -,. ······························································ 5分容易求得直线CM 的表达式是3y x =--. 在3y x =--中,令0y =,得3x =-.(30)N ∴-,,2AN ∴=. ··············································································· 6分 A D G E C B (第25题图)FP(第26题图)第 11 页 共 11 页 在223y x x =--中,令3y =-,得1202x x ==,. 2CP AN CP ∴=∴=,.AN CP ∥,∴四边形ANCP 为平行四边形,此时(23)P -,. ····························· 8分 (3)AEF △是等腰直角三角形.理由:在3y x =-+中,令0x =,得3y =,令0y =,得3x =.∴直线3y x =-+与坐标轴的交点是(03)D ,,(30)B ,.OD OB ∴=,45OBD ∴∠=°. ······································································ 9分 又点(03)C -,,OB OC ∴=.45OBC ∴∠=°. ··········································· 10分 由图知45AEF ABF ∠=∠=°,45AFE ABE ∠=∠=°. ··································· 11分90EAF ∴∠=°,且AE AF =.AEF ∴△是等腰直角三角形. ···························· 12分 (4)当点E 是直线3y x =-+上任意一点时,(3)中的结论成立. ······················· 14分。
2024年山东省青岛市中考数学试题
2024年山东省青岛市中考数学试题一、单选题1.“海葵一号”是完全由我国自主设计建造的深水油气田“大国重器”,集原油生产、存储、外输等功能于一体,储油量达60000立方米.将60000用科学记数法表示为()A.30.610⨯D.4610⨯⨯C.5610⨯B.360102.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.实数a,b,c,d在数轴上对应点的位置如图所示,这四个实数中绝对值最小的是()A.a B.b C.c D.d4.如图所示的正六棱柱,其俯视图是()A.B.C.D.5.下列计算正确的是()A.2+=B.523a a a23÷=a a aC.235-⋅=-D.()236()a a a=22a a6.如图,将正方形ABCD先向右平移,使点B与原点O重合,再将所得正方形绕原点O顺'''',则点A的对应点A'的坐标是()时针方向旋转90︒,得到四边形A B C DA .()1,2--B .()2,1--C . 2,1D .()1,27.为筹备运动会,小松制作了如图所示的宣传牌,在正五边形ABCDE 和正方形CDFG 中,CF ,DG 的延长线分别交AE ,AB 于点M ,N ,则FME ∠的度数是( )A .90︒B .99︒C .108︒D .135︒8.如图,A B C D ,,,是O e 上的点,半径3OA =,»»AB CD=,25DBC ∠=︒,连接AD ,则扇形AOB 的面积为( )A .5π4B .5π8C .5π2D .5π129.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =-,则过点(),2M c a b -和点()24,N b ac a b c --+的直线一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题10112sin 453-⎛⎫-= ⎪⎝︒⎭. 11.图①和图②中的两组数据,分别是甲、乙两地2024年5月27日至31日每天的最高气温,设这两组数据的方差分别为2甲s ,2乙s ,则2甲s 2乙s .(填“>”,“=”,“<”)12.如图,菱形ABCD 中,10BC =,面积为60,对角线AC 与BD 相交于点O ,过点A 作AE BC ⊥,交边BC 于点E ,连接EO ,则EO =.13.如图,某小区要在长为16m ,宽为12m 的矩形空地上建造一个花坛,使花坛四周小路的宽度相等,且花坛所占面积为空地面积的一半,则小路宽为m .14.如图,ABC V 中,BA BC =,以BC 为直径的半圆O 分别交AB AC ,于点D ,E ,过点E 作半圆O 的切线,交AB 于点M ,交BC 的延长线于点N .若10ON =,3cos 5ABC ∠=,则半径OC 的长为.15.如图①,将边长为2的正方形纸板沿虚线剪掉边长为1的小正方形,得到如图②的“纸板卡”,若用这样完全相同的“纸板卡”拼成正方形,最少需要块;如图③,将长、宽、高分别为422,,的长方体砖块,切割掉长、宽、高分别为411,,的长方体,得到如图④的“直角砖块”,若用这样完全相同的“直角砖块”拼成正方体,最少需要块.三、解答题16.已知:如图,四边形ABCD ,E 为DC 边上一点.求作:四边形内一点P ,使EP BC P ,且点P 到,AB AD 的距离相等.17.(1)解不等式组:()11232x x x -⎧≤⎪⎨⎪<+⎩;(2)先化简22112a a a a ⎛⎫+--÷ ⎪⎝⎭,再从2-,0,3中选一个合适..的数作为a 的值代入求值. 18.某校准备开展“行走的课堂,生动的教育”研学活动,并计划从博物馆、动物园、植物园、海洋馆(依次用字母A ,B ,C ,D表示)中选择一处作为研学地点.为了解学生的选择意向,学校随机抽取部分学生进行调查,整理绘制了如下不完整的条形统计图和扇形统计图.根据以上信息,解答下列问题:(1)补全条形统计图;扇形统计图中A所对应的圆心角的度数为______°;(2)该校共有1600名学生,请你估计该校有多少名学生想去海洋馆;(3)根据以上数据,学校最终将海洋馆作为研学地点,研学后,学校从八年级各班分别随机抽取10名学生开展海洋知识竞赛.甲班10名学生的成绩(单位:分)分别是:75,80,80,82,83,85,90,90,90,95;乙班10名学生的成绩.(单位:分)的平均数、中位数、众数分别是:84,83,88.根据以上数据判断______班的竞赛成绩更好.(填“甲”或“乙”)19.学校拟举办庆祝“建国75周年”文艺汇演,每班选派一名志愿者,九年级一班的小明和小红都想参加,于是两人决定一起做“摸牌”游戏,获胜者参加.规则如下:将牌面数字分别为1,2,3的三张纸牌(除牌面数字外,其余都相同)背面朝上,洗匀后放在桌面上,小明先从中随机摸出一张,记下数字后放回并洗匀,小红再从中随机摸出一张.若两次摸到的数字之和大于4,则小明胜;若和小于4,则小红胜;若和等于4,则重复上述过程.(1)小明从三张纸牌中随机摸出一张,摸到“1”的概率是______;(2)请用列表或画树状图的方法,说明这个游戏对双方是否公平.20.“滑滑梯”是同学们小时候经常玩的游戏,滑梯的坡角越小,安全性越高.从安全性及适用性出发,小亮同学对所在小区的一处滑梯进行调研,制定了如下改造方案,请你帮小亮解决方案中的问题.方案设计如图,将滑梯顶端BC 拓宽为BE ,使1m CE =,并将原来的滑梯CF 改为EG ,(图中所有点均在同一平面内,点,,B C E 在同一直线上,点,,,A D F G 在同一直线上)(参考数据:171752739sin32,cos32,tan32,sin 42,cos42,tan 423220840410︒≈︒≈︒≈︒≈︒≈︒≈) 21.为培养学生的创新意识,提高学生的动手能力,某校计划购买一批航空、航海模型.已知商场某品牌航空模型的单价比航海模型的单价多35元,用2000元购买航空模型的数量是用1800元购买航海模型数量的45. (1)求航空和航海模型的单价;(2)学校采购时恰逢该商场“六一儿童节”促销:航空模型八折优惠.若购买航空、航海模型共120个,且航空模型数量不少于航海模型数量的12,请问分别购买多少个航空和航海模型,学校花费最少?22.如图,点1231,,,,,n n A A A A A +L 为反比例函数()0k y k x =>图象上的点,其横坐标依次为1,2,3,,,1n n +L .过点123,,,,n A A A A L 作x 轴的垂线,垂足分别为点123,,,,n H H H H L ;过点2A 作2111A B A H ⊥于点1B ,过点3A 作3222A B A H ⊥于点2B ,…,过点1n A +作1n n n n A B A H +⊥于点n B .记112A B A △的面积为1223,S A B A △的面积为21,,n n n S A B A +⋅⋅⋅△的面积为n S .(1)当2k =时,点1B 的坐标为______,12S S +=______,123S S S ++=______,123n S S S S ++++=L ______(用含n 的代数式表示);(2)当3k =时,123n S S S S ++++=L ______(用含n 的代数式表示).23.如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,ABD CDB ∠=∠,BE AC ⊥于点E ,DF AC ⊥于点F ,且BE DF =.(1)求证:四边形ABCD 是平行四边形;(2)若AB BO =,当ABE ∠等于多少度时,四边形ABCD 是矩形?请说明理由,并直接写出此时BC AB的值. 24.5月中旬,樱桃相继成熟,果农们迎来了繁忙的采摘销售季.为了解樱桃的收益情况,从第1天销售开始,小明对自己家的两处樱桃园连续15天的销售情况进行了统计与分析:(1)A 樱桃园第x 天的单价是______元/盒(用含x 的代数式表示);(2)求A 樱桃园第x 天的利润1y (元)与x 的函数关系式;(利润=单价⨯销售量-固定成本)(3)①2y 与x 的函数关系式是______;②求第几天两处樱桃园的利润之和(即12y y +)最大,最大是多少元?(4)这15天中,共有______天B 樱桃园的利润2y 比A 樱桃园的利润1y 大.25.如图①,Rt ABC △中,90,8cm,6cm,Rt ACB AC BC EDF ∠=︒==△中,90,6cm EDF DE DF ∠=︒==,边BC 与FD 重合,且顶点E 与AC 边上的定点N 重合,如图②,EDF V 从图①所示位置出发,沿射线NC 方向匀速运动,速度为1cm/s ;同时,动点O 从点A 出发,沿AB 方向匀速运动,速度为2/cm s ,EF 与BC 交于点P ,连接OP OE ,,设运动时间为()16s 05t t ⎛⎫<≤ ⎪⎝⎭.解答下列问题:(1)当t 为何值时,点A 在线段OE 的垂直平分线上?(2)设四边形PCEO 的面积为S ,求S 与t 的函数关系式;(3)如图③,过点O 作OQ AB ⊥,交AC 于点Q ,AOH △与AOQ △关于直线AB 对称,连接HB .是否存在某一时刻t ,使PO BH ∥?若存在,求出t 的值;若不存在,请说明理由.。
青岛市中考数学试题及答案
xx年青岛市中考数学试题及答案对于即将面临的学生们,历年的中卷一定要做一遍。
下面为大家带来一份xx年青岛市中考的及答案,欢送大家阅读参考,更多内容请关注!1.﹣的绝对值是( )A.﹣B.﹣C.D.52.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000 000kg用科学记数法可表示为( )A.13×107kgB.0.13×108kgC.1.3×107kgD.1.3×108kg3.以下四个图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.4.计算a?a5﹣(2a3)2的结果为( )A.a6﹣2a5B.﹣a6C.a6﹣4a5D.﹣3a65.如图,线段AB经过平移得到线段A1B1,其中点A,B的对应点分别为点A1,B1,这四个点都在格点上.假设线段AB上有一个点P( a,b),那么点户在A1B1上的对应点P的坐标为( )A.(a﹣2,b+3)B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)6.A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.假设设原来的平均车速为xkm/h,那么根据题意可列方程为( )A. ﹣ =1B. ﹣ =1C. ﹣ =1D. ﹣ =17.如图,一扇形纸扇完全翻开后,外侧两竹条和AC的夹角为120°,长为25cm,贴纸局部的宽BD为15cm,假设纸扇两面贴纸,那么贴纸的面积为( )A.175πcm2B.350πcm2C. πcm2D.150πcm28.输入一组数据,按以下程序进展计算,输出结果如表:x 20.5 20.6 20.7 20.8 20.9输出﹣13.75 ﹣8.04 ﹣2.31 3.44 9.21分析表格中的数据,估计方程(x+8)2﹣826=0的一个正数解x 的大致范围为( )A.20.59.计算: = .10.“万人马拉松”活动组委会方案制作运动衫分发给参与者,为此,调查了局部参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如下图的扇形统计图.假设本次活动共有12000名参与者,那么估计其中选择红色运动衫的约有名.11.如图,AB是⊙O的直径,C,D是⊙O上的两点,假设∠BCD=28°,那么∠ABD=°.12.二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,那么c的值为.13.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.假设△CEF的周长为18,那么OF 的长为.14.如图,以边长为20cm的正三角形纸板的各顶点为端点,在各边上分别截取4cm长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,那么它的容积为cm3.15.:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.16.(1)化简:﹣(2)解不等式组,并写出它的整数解.17.小明和小亮用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形.转动两个转盘各一次,假设两次数字之积大于2,那么小明胜,否那么小亮胜.这个游戏对双方公平吗?请说明理由.18.如图,AB是长为10m,倾斜角为37°的自动扶梯,平台BD 与大楼CE垂直,且与扶梯AB的长度相等,在B处测得大楼顶部C 的仰角为65°,求大楼CE的高度(结果保存整数).(参考数据:sin37°≈ ,tan37°≈ ,sin65°≈ ,tan65°≈ )19.甲、乙两名队员参加射击训练,成绩分别被制成以下两个统计图:根据以上信息,分析数据如下:平均成绩/环中位数/环众数/环方差甲 a 7 7 1.2乙 7 b 8 c(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.假设选派其中一名参赛,你认为应选哪名队员?20.如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y=ax2+bx(a≠0)表示.抛物线上B,C两点到地面的间隔均为 m,到墙边似的间隔分别为 m,m.(1)求该拋物线的函数关系式,并求图案最高点到地面的间隔;(2)假设该墙的长度为10m,那么最多可以连续绘制几个这样的拋物线型图案?21.:如图,在?ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD 于点0.(1)求证:△ABE≌△CDF;(2)连接DG,假设DG=BG,那么四边形BEDF是什幺特殊四边形?请说明理由.22.某玩具厂生产一种玩具,本着控制固定本钱,降价促销的原那么,使生产的玩具能够全部售出.据市场调查,假设按每个玩具280元销售时,每月可销售300个.假设销售单价每降低1元,每月可多售出2个.据统计,每个玩具的固定本钱Q(元)与月产销量y(个)满足如下关系:月产销量y(个) … 160 200 240 300 …每个玩具的固定本钱Q(元) … 60 48 40 32 …(1)写出月产销量y(个)与销售单价x (元)之间的函数关系式;(2)求每个玩具的固定本钱Q(元)与月产销量y(个)之间的函数关系式;(3)假设每个玩具的固定本钱为30元,那么它占销售单价的几分之几?(4)假设该厂这种玩具的月产销量不超过400个,那么每个玩具的固定本钱至少为多少元?销售单价最低为多少元?23.问题提出:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1x5或2×3的矩形(axb 的矩形指边长分别为a,b的矩形)?问题探究:我们先从简单的问题开始研究解决,再把复杂问题转化为已解决的问题.探究一:如图①,当n=5时,可将正方形分割为五个1×5的矩形.如图②,当n=6时,可将正方形分割为六个2×3的矩形.如图③,当n=7时,可将正方形分割为五个1×5的矩形和四个2×3的矩形如图④,当n=8时,可将正方形分割为八个1×5的矩形和四个2×3的矩形如图⑤,当n=9时,可将正方形分割为九个1×5的矩形和六个2×3的矩形探究二:当n=10,11,12,13,14时,分别将正方形按以下方式分割:所以,当n=10,11,12,13,14时,均可将正方形分割为一个5×5的正方形、一个(n﹣5 )×( n﹣5 )的正方形和两个5×(n﹣5)的矩形.显然,5×5的正方形和5×(n﹣5)的矩形均可分割为1×5的矩形,而(n﹣5)×(n﹣5)的正方形是边长分别为5,6,7,8,9 的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.探究三:当n=15,16,17,18,19时,分别将正方形按以下方式分割:请按照上面的方法,分别画出边长为18,19的正方形分割示意图.所以,当n=15,16,17,18,19时,均可将正方形分割为一个10×10的正方形、一个(n﹣10 )×(n﹣10)的正方形和两个10×(n ﹣10)的矩形.显然,10×10的正方形和10×(n﹣10)的矩形均可分割为1x5的矩形,而(n﹣10)×(n﹣10)的正方形又是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.问题解决:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1×5或2×3的矩形?请按照上面的方法画出分割示意图,并加以说明.实际应用:如何将边长为61的正方形分割为一些1×5或2×3的矩形?(只需按照探究三的方法画出分割示意图即可)24.:如图,在矩形ABCD中,Ab=6cm,BC=8cm,对角线AC,BD 交于点0.点P从点A出发,沿方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停顿运动时,另一个点也停顿运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF:S△ACD=9:16?假设存在,求出t的值;假设不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?假设存在,求出t的值;假设不存在,请说明理由.一、选择题(此题总分值24分,共有8道小题,每题3分)以下每题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每题选对得分;不选、选错或选出的标号超过一个的不得分.1.﹣的绝对值是( )A.﹣B.﹣C.D.5【考点】实数的性质.【分析】直接利用绝对值的定义分析得出答案.【解答】解:|﹣ |= .应选:C.2.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000 000kg用科学记数法可表示为( )A.13×107kgB.0.13×108kgC.1.3×107kgD.1.3×108kg【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:130 000 000kg=1.3×108kg.应选:D.3.以下四个图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形.是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,不是中心对称图形,故此选项错误.应选:B.。
(完整版)青岛市历年中考数学23题汇总.docx
青岛市中考数学23 题汇编1.(07 年中考 )提出问题:如图①,在四边形 ABCD 中, P 是 AD 边上任意一点, PBC 与 ABC 和 DBC 的面积之间有什么关系? 探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手 :⑴当 AP1AD 时 (如图② ):2Q AP 1 AD, ABP 和 ABD 的高相等,2SABP1 S ABD .2Q PD AD AP1AD , CDP 和 图①CDA 的高相等,2S CDP 1 S CDA2图②S PBC S 四边形ABCDS ABPSCDPS 四边形ABCD1S ABD1S CDA22⑵ 当 AP1AD 时 , 探 求 S PBC 与 S ABC和S 四边形ABCD1S四边形 ABCDSDBC1 S 四边形 ABCD S ABC3221S DBC 1 S ABC22S DBC 之间的关系,写出求解过程;⑶当 AP 1AD 时, S PBC 与 S ABC 和 S DBC 之间的关系式为:__________________________ ;6⑷一般的,当 AP1AD (n 表示正整数 )时,探求 S PBC 与 SABC和S DBC之间的关系,写出求解过程;n问题解决:当 APmAD ( 0m1)时, S PBC 与 S ABC 和 S DBC 之间的关系式为 :__________________.nn2. (08 年中考 ):某学校共有18 个教学班,每班的学生数都是40 人 .了解学生余上网情况,学校打算做一次抽,如果要确保全校抽取出来的学生中至少有10 人在同一班,那么全校最少需要抽取多少名学生?建立模型:解决上面的“ ”,我先建立并研究下面从口袋中摸球的数学模型.在不透明的口袋中装有、黄、白三种色的小球各20 个 (除色外完全相同),要确保从口袋中随机摸出的小球至少有 10 个是同色的,最少需要摸出多少个小球?了找到解决的法,我可以把上述化,⑴我首先考最的情况:即要确保从口袋中摸出的小球至少有 2 个是同色的,最少需摸出多少个小球?假若从袋中随机摸出 3 个小球,它的色可能会出多种情况,其中最不利的情况就是它的色各不相同,那么只需再从袋中摸出 1 个小球就可确保至少有 2 个小球同色,即最少需摸出的小球的个数是: 1 3 4 (如①);⑵若要确保从口袋中摸出的小球至少有 3 个是同色的呢?我只需在⑴的基上,再从袋中摸出 3 个小球,就可确保至少有 3 个小球同色,即最少需摸出小球的个数是:13 2 7 (如②);⑶若要确保从口袋中摸出的小球至少有 4 个是同色的呢?我只需在⑵的基上,再从袋中摸出 3 个小球,就可以确保至少有 4 个小球同色,即最少需摸出小球的个数是:1 3 3 10(如③);⋯⋯⑽若要确保从口袋中摸出的小球至少有10 个是同色的呢?我只需在⑼的基上,再从袋中摸出 3 个小球,就可以确保至少有10 个小球同色,即最少需摸出小球的个数是:1 310 128 (如⑩).黄9 个黄黄9 个黄黄黄⋯黄黄黄黄白白白白白白白白白白或黄或白或黄或白或黄或白或黄或白①②③⑩模型拓展一:在不透明的口袋中装有、黄、白、、五种色的小球各20 个 ( 除色外完全相同) ,从袋中随机摸球:⑴若要确保摸出的小球至少有 2 个同色,最少需摸出小球的个数是___________________ ;⑵若要确保摸出的小球至少有10 个同色,最少需摸出小球的个数是___________________;⑶若要确保摸出的小球至少有n 个同色 (n<20) ,最少需摸出小球的个数是___________________.模型拓展二:在不透明的口袋中装有m 种色的小球各20 个 ( 除色外完全相同) ,从袋中随机摸球:⑴若要确保摸出的小球至少有 2 个同色,最少需摸出小球的个数是___________________ ;⑵若要确保摸出的小球至少有n 个同色 (n<20) ,最少需摸出小球的个数是___________________.解决:⑴ 把本中的“ ” 化一个从口袋中摸球的数学模型;⑵根据⑴中建立的数学模型,求出全校最少需要抽取多少名学生.3.(09 年中考 )我们在解决数学问题时,经常采用“转化”(或“化归” )的思想方法,把待解决的问题,通过某种转化过程,归结到一类已解决或比较容易解决的问题.譬如在学习一元一次方程的解法以后,进一步研究二元一次方程组的解法时,我们通常采用“消元”的方法,把二元一次方程组转化为一元一次方程;再譬如,在学习了三角形内角和定理以后,进一步研究多边形的内角和问题时,我们通常借助添加辅助线,把多边形转化为三角形,从而解决问题.问题提出:如何把一个正方形分割成n( n9 )个小正方形?为解决上面问题,我们先来研究两种简单的“基本分割法”.基本分割法1:如图①,把一个正方形分割成 4 个小正方形,即在原来 1 个正方形的基础上增加了 3 个正方形 .基本分割法2:如图②,把一个正方形分割成 6 个小正方形,即在原来 1 个正方形的基础上增加了 5 个正方形 .图①图②图③图④图⑤图⑥问题解决:有了上述两种“基本分割法”后,我们就可以把一个正方形分割成n( n9 )个小正方形.⑴把一个正方形分割成9 个小正方形 .一种方法:如图③,把图①中的任意 1 个小正方形按“基本分割法2”进行分割,就可增加 5 个小正方形,从而分割成4+5=9( 个 )小正方形 .另一种方法:如图④,把图②中的任意 1 个小正方形按“基本分割法1”进行分割,就可增加 3 个小正方形,从而分割成 6+3=9( 个 )小正方形 .⑵把一个正方形分割成10 个小正方形 .方法:如图⑤,把图①中的任意 2 个小正方形按“基本分割法1”进行分割,就可增加3× 2 个小正方形,从而分割成 4+3× 2=10( 个 )小正方形 .⑶请你参照上述分割方法,把图⑥给出的正方形分割成11 个小正方形 ( 用钢笔或圆珠笔画出草图即可,不用说明分割方法 ).⑷把一个正方形分割成 n( n 9 )个小正方形 .方法:通过“基本分割法 1”“基本分割法 2”或其组合把一个正方形分割成9 个、 10 个、 11 个小正方形,再在此基础上每使用 1 次“基本分割法 1”,就可增加 3 个小正方形,从而把一个正方形分割成12 个、 13 个、 14 个小正方形,以此类推,即可把一个正方形分割成n( n 9)个小正方形 .从上面的方法可以看出,解决问题的关键就是找到两种基本分割法,然后通过这两种基本分割法或其组合把正方形分割成 n( n 9 )个小正方形 .n( n 9 )个小正三角形 .类比应用:仿照上面的方法,我们可以把一个正三角形分割成⑴基本分割法 1:把一个正三角形分割成 4 个小正三角形(请你在图 a 中画出草图 ).⑵基本分割法 2:把一个正三角形分割成 6 个小正三角形(请你在图 b 中画出草图 ).⑶分别把图 c、图 d 和图 e 种的正三角形分割成9 个、 10个和 11 个小正三角形 (用钢笔或圆珠笔画出草图即可,不用说明分割方法 ).图 a图b⑷请你写出把一个正三角形分割成答:图 c图dn( n9 )个小正三角形的分割方法图 e(只写出分割方法,不用画图).4.(10 年中考 )问题再现现实生活中,镶嵌图案在地面、墙面乃至于服装面料设计中随处可见.在八年级课题学习“平面图形的镶嵌”中,对于单种多边形的镶嵌,主要研究了三角形、四边形、正六边形的镶嵌问题.今天我们把正多边形的镶嵌作为研究问题的切....入点,提出其中几个问题,共同来探究.我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面.如右图中,用正方形镶嵌平面,可以发现在一个顶点O 周围围绕着 4 个正方形的内角.试想:如果用正六边形来镶嵌平面,在一个顶点周围应该围绕着_______ 个正六边形的内角.问题提出如果我们要同时用两种不同的正多边形镶嵌平面,可能设计出几种不同的组合方案?问题解决猜想 1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?分析:我们可以将此问题转化为数学问题来解决.从平面图形的镶嵌中可以发现,解决问题的关键在于分析能同时用于完整镶嵌平面的两种正多边形内角特点.具体地说,就是在镶嵌平面时,一个顶点周围围绕的各个正多边形的内角恰好拼成一个周角 .验证 1:在镶嵌平面时,设围绕某一点有x 个正方形和y 个正八边形的内角可以拼成一个周角.根据题意,可得方程:8218090x8y 360 ,整理得:2x+3 y=8,我们可以找到唯一一组适合方程的正整数解为x 1. y 2结论 1:镶嵌平面时,在一个顶点周围围绕这 1 个正方形和 2 个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.猜想 2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.验证 2:结论 2: ________________________________________________________________________________________________________________________________________________________________________.上面,我们探究了同时用两种不同的正多边形组合镶嵌平面的部分情况,仅仅得到了一部分组合方案,相信同学们用同样的方法,一定会找到其他可能的组合方案.问题拓广请你仿照上面的研究方式,探索出一个同时用三种不同的正多边形组合进行平面镶嵌的方案,并写出验证过程.猜想 3: _________________________________________________________________________________.验证 3:结论 3: ________________________________________________________________________________________________________________________________________________________________________. 5.(11 年中考 )问题提出我们在分析解决数学问题时,经常要比较两个数或代数式的大小 .解决问题的策略一般要进行一定的转化,其中“作差法”就是常用方法之一,所谓“作差法” :就是通过作差变形,利用差的符号来确定它们的大小,即要比较代数式 M 、N 的大小,只要作出它们的差 M N ,若 M N0,则 M N ;若 M N 0 ,则 MN ;若 M N 0 ,则 MN .问题解决如图①, 把边长为 a+b 的大正方形 (a ≠b )分割成两个边长分别是 a ,b 的小正方形以及两个矩形, 试比较两个小正方形的面积之和 M 与两个矩形面积之和 N 的大小 .由图可知, Ma2b 2, N 2ab ,abM N a 2 b 2 2abaaa 2b .Qa b ,bb2a 0 ,b a图①bM N .类比应用⑴已知小明和小亮购买同一种商品的平均价格分别为a b元 /千克,2ab元/ 千克,试比较小明和小亮所购商品的平均2a b价格的高低 (a , b 是正数,且 a ≠b ).解:类比应用⑵试比较图②、图③两个矩形的周长M 1 、N 1(b>c )的大小 .a+bb+3 cb+ca-c图②图③解:拓展应用小刚在超市里买了一些物品,用一个长方体的箱子“打包”,箱子的尺寸如图④ (0<c<a<b ),售货员分别按图⑤、图⑥、图⑦三种方法进行捆绑,问哪种方法用绳最短?哪种方法用绳最长?请说明理由.cba 图④图⑤ 图⑥ 图⑦解:。
2013-2019年山东省青岛市中考数学试题汇编(含参考答案与解析)
【中考数学试题汇编】2013—2019年山东省青岛市中考数学试题汇编(含参考答案与解析)1、2013年山东省青岛市中考数学试题及参考答案与解析 (2)2、2014年山东省青岛市中考数学试题及参考答案与解析 (26)3、2015年山东省青岛市中考数学试题及参考答案与解析 (51)4、2016年山东省青岛市中考数学试题及参考答案与解析 (75)5、2017年山东省青岛市中考数学试题及参考答案与解析 (98)6、2018年山东省青岛市中考数学试题及参考答案与解析 (121)7、2019年山东省青岛市中考数学试题及参考答案与解析 (146)2013年山东省青岛市中考数学试题及参考答案与解析一、选择题(本题满分24分,共有8道小题,每小题3分)1.﹣6的相反数是()A.﹣6 B.6 C.16D.162.下列四个图形中,是中心对称图形的是()A.B.C.D.3.如图所示的几何体的俯视图是()A.B.C.D.4.“十二五”以来,我国积极推进国家创新体系建设.国家统计局《2012年国民经济和社会发展统计公报》指出:截止2012年底,国内有效专利达8750000件,将8750000件用科学记数法表示为()件.A.8.75×104B.8.75×105C.8.75×106D.8.75×1075.一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:现将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有()个.A.45 B.48 C.50 D.556.已知矩形的面积为36cm2,相邻的两条边长分别为xcm和ycm,则y与x之间的函数图象大致是()A.B.C.D.7.直线l与半径为r的⊙O相交,且点O到直线l的距离为6,则r的取值范围是()A.r<6 B.r=6 C.r>6 D.r≥68.如图,△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′点A、B、A′、B′均在图中在格点上.若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为()A .,2m n ⎛⎫ ⎪⎝⎭B .(m ,n )C .,2n m ⎛⎫ ⎪⎝⎭D .,22m n ⎛⎫ ⎪⎝⎭ 二、填空题(本题满分18分共有6道题,每小题3分)9.计算:12-+= .10.某校对甲、乙两名跳高运动员的近期调高成绩进行统计分析,结果如下:=1.69m ,=1.69m ,S 2甲=0.0006,S 2乙=0.00315,则这两名运动员中 的成绩更稳定.11.某企业2010年底缴税40万元,2012年底缴税48.4万元.设这两年该企业交税的年平均增长率为x ,根据题意,可得方程 .12.如图,一个正比例函数图象与一次函数y=﹣x+1的图象相交于点P ,则这个正比例函数的表达式是 .13.如图,AB 是⊙O 的直径,弦AC=2,∠ABC=30°,则图中阴影部分的面积是 .14.要把一个正方体分割成8个小正方体,至少需要切3刀,因为这8个小正方体都只有三个面是现成的.其他三个面必须用三刀切3次才能切出来.那么,要把一个正方体分割成27个小正方体,至少需用刀切 次;分割成64个小正方体,至少需要用刀切 次.三、作图题(本题满分4分)用圆规、直尺作图,不写做法,但要保留作图痕迹。
青岛市中考数学试题及答案
青岛市中考数学试题及答案一、选择题1. 已知函数f(x) = 2x + 3,若f(a) = 9,求a的值。
A) 2B) 3C) 4D) 5答案: C) 42. 在平面直角坐标系中,A(1, 2)和B(5, 6)为两个点,那么∣AB∣的值为多少?A) √2B) √5C) 2√5D) 10答案:B) √53. 某球场的观众人数上升指数为5%,若某年观众人数为400人,那么到达初始人数的前一年观众人数为多少?A) 380B) 384C) 395D) 420答案: A) 3804. 若∣a-2∣=5,求a的值。
A) -3或7B) -7或3C) -3或3D) 7或-7答案: A) -3或75. 在一个正方形草坪中,小明在正方形的对角上任选两个点A和B,那么小明会发现,连线AB割开的两个部分与小明开始的位置形成的三角形面积之和等于多少?A) 1/4B) 1/3C) 1/2D) 3/4答案: C) 1/2二、填空题1. 已知一组数据为:6, 8, 11, 15, 20,计算这组数据的方差。
答案: 19.22. 若直角三角形的一条直角边长为3,斜边长度为5,求另一条直角边长。
答案: 43. 某书架上有20本书,其中12本是小说,其余为非小说类图书,小说类图书所占的百分比为多少?答案: 60%三、解答题1. 某班级男生人数是女生人数的4倍,班级总人数为500人,那么男生人数和女生人数分别是多少?答案:男生人数:400,女生人数:100解题思路:设女生人数为x,则男生人数为4x,根据题意,有x + 4x = 500,解得x = 100,男生人数为4 * 100 = 400。
2. 某商品原价是120元,现进行打折活动,打五折后售价为多少?答案: 60元解题思路:打五折相当于原价乘以0.5,所以售价为120 * 0.5 = 60元。
3. 现有一堆石头,每次从中取走一半,并再加1个石头,若一共取了5次后石头被取完,最初有多少个石头?答案: 31个石头解题思路:设最初有x个石头,根据题意,有x * (1/2)^5 = 1,解得x = 31。
全国181套中考数学试题分类汇编23二次函数的应用(实际问题)
23:二次函数的应用(实际问题)一、选择题1.(山东济南3分)竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h =a t 2+b t ,其图象如图所示.若小球在发射后第2s 与第6s 时 的高度相等,则下列时刻中小球的高度最高的是第A .3sB .3.5sC .4.2sD .6.5s 【答案】C 。
【考点】二次函数的图象和性质。
【分析】∵小球在发射后第2s 与第6s 时的高度相等,∴小球在发射后第4s 时的高度最高。
∴看所给时刻中小球的高度最高的只要看那个时刻离4s 最近,而4.2s 离4s 最近,故4.2s 是所给时刻中小球的高度最高的。
故选C 。
2.(河北省3分)一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下面函数关系式:h=﹣5(t ﹣1)2+6,则小球距离地面的最大高度是A 、1米B 、5米C 、6米D 、7米【答案】C 。
【考点】二次函数的应用,二次函数的最值。
【分析】∵高度h 和飞行时间t 满足函数关系式:h=﹣5(t ﹣1)2+6,∴当t=1时,小球距离地面高度最大,h=6米。
故选C 。
3.(广西梧州3分)2011年5月22日—29日在美丽的青岛市举行了苏迪曼 杯羽毛球混合团体锦标赛.在比赛中,某次羽毛球的运动路线可以看作是抛 物线y=-14x 2+bx+c 的一部分(如图),其中出球点B 离地面O 点的距离是1m ,球落地点A 到O 点的距离是4m ,那么这条抛物线的解析式是(A )y=-14x 2+34x+1 (B )y=-14x 2+34x -1 (C )y=-14x 2-34x+1 (D )y=-14x 2-34x -1 【答案】A 。
【考点】二次函数的应用,点的坐标与方程的关系。
【分析】由已知知,点A 和B 的坐标分别为(4,0),(0,1)。
根据点在抛物线上,点的坐标满足方程的关系将它们分别代入抛物线y=-14x 2+bx+c 可求出b =34,c =1。
青岛中考历届数学试卷真题
青岛中考历届数学试卷真题近年来,青岛中考的数学试卷一直备受关注。
历届数学试卷的真题不仅展现了题目类型和难度的变化,也给考生提供了宝贵的复习资料和备考经验。
本文将对青岛中考历届数学试卷真题进行分析和总结。
一、选择题部分在青岛中考历届数学试卷中,选择题部分占据了相当大的比重。
这部分题型涵盖了数学的各个知识点,并注重考查学生的分析、推理和解题能力。
以下是一道典型的选择题:1. 已知 a + b = 5,a - b = 3,求 a 和 b 的值。
A) a = 4, b = 1B) a = 3, b = 2C) a = 2, b = 3D) a = 1, b = 4这道题考查了学生对线性方程组的理解和解题能力。
正确答案为 A)a = 4,b = 1,通过解方程组可以得出答案。
二、填空题部分填空题是青岛中考数学试卷中的另一大题型,它要求学生填写一个或多个具体的数值或表达式,完成给定的数学问题。
这种题型不仅考察了学生的计算能力,还能锻炼他们的推理和逻辑思维能力。
以下是一道典型的填空题:2. 在平面直角坐标系中,已知点 A(3,4),点 B 随 x 的变化在直线y = x + 1 上运动,则 AB 的斜率是 ______。
答案:1这道题考查了学生对斜率的理解和计算能力。
根据斜率的定义,可以计算出 AB 的斜率为 1。
三、解答题部分解答题是青岛中考数学试卷中较为复杂的题型,它要求学生通过推理和计算,对给定的问题进行分析并给出详细的解答过程。
这种题型要求学生综合运用数学知识和解题技巧,培养他们的问题解决能力。
以下是一道典型的解答题:3. 如图,在平面直角坐标系中,点 A(1, 5)、B(4, 4)、C(2, 2)和 D(x, y) 构成平行四边形 ABCD,且已知 AB = BC。
求点 D 的坐标。
解答:由平行四边形的性质可知,AB // CD,BC // AD。
又已知AB = BC,所以 AD = CD。
由此可得点 D 的坐标为 (4, 6)。
2023青岛中考数学试卷真题
2023青岛中考数学试卷真题1. 选择题(共60分)A. 单项选择题(每小题2分,共30小题)1. 已知函数$f(x) = 3x^2 + 2x - 1$,则$f(-2) = $A. -13B. 17C. 11D. -112. 若$\frac{a}{2}=\frac{b}{3}=\frac{c}{5}$,且$a+b+c=60$,则$a$的值为A. 10B. 15C. 20D. 30...(省略29个选择题)B. 判断题(每小题2分,共15小题)31. 下列哪个数是2的倍数?A. 3B. 5C. 6D. 932. 平行四边形的对角线相等A. 正确B. 错误...(省略13个判断题)2. 解答题(共40分)A. 计算题(每小题4分,共8小题)39. 计算:$24\div3\times(1+8)$40. 已知圆的半径为7cm,求其周长和面积。
...(省略6道计算题)B. 应用题(共32分)三、某公司购买了某品牌的电视机,甲组采购员购买了300台55寸的电视机,乙组采购员购买了500台65寸的电视机。
已知55寸电视机每台成本为3000元,65寸电视机每台成本为5000元。
现要求:41. 若销售价格为55寸电视机每台3200元,65寸电视机每台5500元,求该公司购买这些电视机的总成本。
42. 若销售时,55寸电视机每台利润为400元,65寸电视机每台利润为800元,求该公司销售这些电视机的总利润。
...(省略6道应用题)以上为2023青岛中考数学试卷的真题部分。
请同学们认真审题,仔细解答每个题目。
祝各位考生取得优异成绩!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青岛市中考数学23题汇编1.(07年中考)提出问题:如图①,在四边形ABCD 中,P 是AD 边上任意一点,PBC ∆与ABC ∆和DBC ∆的面积之间有什么关系?探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手: ⑴当12AP AD =时(如图②):1,2AP AD ABP =∆和ABD ∆的高相等,12ABP ABD S S ∆∆∴=.1,2PD AD AP AD CDP =-=∆和CDA ∆的高相等,12CDP CDA S S ∆∆∴=()()11 2211 2211 22PBC ABP CDPABCD ABD CDAABCD DBC ABC ABCD ABCD ABCD DBC ABCS S S S S S S S S S S S S S ∆∆∆∆∆∆∆∆∆∴=--=--=----=+四边形四边形四边形四边形四边形⑵当13AP AD =时,探求PBC S ∆与ABC S ∆和DBC S ∆之间的关系,写出求解过程;⑶当16AP AD=时,PBC S ∆与ABC S ∆和DBC S ∆之间的关系式为:__________________________; ⑷一般的,当1AP ADn=(n 表示正整数)时,探求PBC S ∆与ABC S ∆和DBC S ∆之间的关系,写出求解过程; 问题解决:当m AP AD n =(01m n≤≤)时,PBC S ∆与ABC S ∆和DBC S ∆之间的关系式为:__________________.图①图②2. (08年中考)实际问题:某学校共有18个教学班,每班的学生数都是40人.为了解学生课余时间上网情况,学校打算做一次抽样调查,如果要确保全校抽取出来的学生中至少有10人在同一班级,那么全校最少需要抽取多少名学生? 建立模型:为解决上面的“实际问题”,我们先建立并研究下面从口袋中摸球的数学模型.在不透明的口袋中装有红、黄、白三种颜色的小球各20个(除颜色外完全相同),现要确保从口袋中随机摸出的小球至少有10个是同色的,则最少需要摸出多少个小球?为了找到解决问题的办法,我们可以把上述问题简单化,⑴我们首先考虑最简单的情况:即要确保从口袋中摸出的小球至少有2个是同色的,则最少需摸出多少个小球?假若从袋中随机摸出3个小球,它们的颜色可能会出现多种情况,其中最不利的情况就是它们的颜色各不相同,那么只需再从袋中摸出1个小球就可确保至少有2个小球同色,即最少需摸出的小球的个数是:134+=(如图①); ⑵若要确保从口袋中摸出的小球至少有3个是同色的呢?我们只需在⑴的基础上,再从袋中摸出3个小球,就可确保至少有3个小球同色,即最少需摸出小球的个数是:1327+⨯=(如图②);⑶若要确保从口袋中摸出的小球至少有4个是同色的呢?我们只需在⑵的基础上,再从袋中摸出3个小球,就可以确保至少有4个小球同色,即最少需摸出小球的个数是:13310+⨯=(如图③); ……⑽若要确保从口袋中摸出的小球至少有10个是同色的呢?我们只需在⑼的基础上,再从袋中摸出3个小球,就可以确保至少有10个小球同色,即最少需摸出小球的个数是:()1310128+⨯-=(如图⑩).模型拓展一:在不透明的口袋中装有红、黄、白、蓝、绿五种颜色的小球各20个(除颜色外完全相同),现从袋中随机摸球:⑴若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是___________________; ⑵若要确保摸出的小球至少有10个同色,则最少需摸出小球的个数是___________________; ⑶若要确保摸出的小球至少有n 个同色(n <20),则最少需摸出小球的个数是___________________.模型拓展二:在不透明的口袋中装有m 种颜色的小球各20个(除颜色外完全相同),现从袋中随机摸球: ⑴若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是___________________; ⑵若要确保摸出的小球至少有n 个同色(n <20),则最少需摸出小球的个数是___________________. 问题解决:⑴请把本题中的“实际问题”转化为一个从口袋中摸球的数学模型;⑵根据⑴中建立的数学模型,求出全校最少需要抽取多少名学生.图①图②…图③9图⑩3. (09年中考)我们在解决数学问题时,经常采用“转化”(或“化归”)的思想方法,把待解决的问题,通过某种转化过程,归结到一类已解决或比较容易解决的问题.譬如在学习一元一次方程的解法以后,进一步研究二元一次方程组的解法时,我们通常采用“消元”的方法,把二元一次方程组转化为一元一次方程;再譬如,在学习了三角形内角和定理以后,进一步研究多边形的内角和问题时,我们通常借助添加辅助线,把多边形转化为三角形,从而解决问题. 问题提出:如何把一个正方形分割成n (9n ≥)个小正方形? 为解决上面问题,我们先来研究两种简单的“基本分割法”.基本分割法1:如图①,把一个正方形分割成4个小正方形,即在原来1个正方形的基础上增加了3个正方形. 基本分割法2:如图②,把一个正方形分割成6个小正方形,即在原来1个正方形的基础上增加了5个正方形.问题解决:有了上述两种“基本分割法”后,我们就可以把一个正方形分割成n (9n ≥)个小正方形. ⑴把一个正方形分割成9个小正方形.一种方法:如图③,把图①中的任意1个小正方形按“基本分割法2”进行分割,就可增加5个小正方形,从而分割成4+5=9(个)小正方形.另一种方法:如图④,把图②中的任意1个小正方形按“基本分割法1”进行分割,就可增加3个小正方形,从而分割成6+3=9(个)小正方形.⑵把一个正方形分割成10个小正方形.方法:如图⑤,把图①中的任意2个小正方形按“基本分割法1”进行分割,就可增加3×2个小正方形,从而分割成4+3×2=10(个)小正方形.⑶请你参照上述分割方法,把图⑥给出的正方形分割成11个小正方形(用钢笔或圆珠笔画出草图即可,不用说明分割方法).⑷把一个正方形分割成n (9n ≥)个小正方形. 方法:通过“基本分割法1”“基本分割法2”或其组合把一个正方形分割成9个、10个、11个小正方形,再在此基础上每使用1次“基本分割法1”,就可增加3个小正方形,从而把一个正方形分割成12个、13个、14个小正方形,以此类推,即可把一个正方形分割成n (9n ≥)个小正方形.从上面的方法可以看出,解决问题的关键就是找到两种基本分割法,然后通过这两种基本分割法或其组合把正方形分割成n (9n ≥)个小正方形.类比应用:仿照上面的方法,我们可以把一个正三角形分割成n (9n ≥)个小正三角形. ⑴基本分割法1:把一个正三角形分割成4个小正三角形(请你在图a 中画出草图). ⑵基本分割法2:把一个正三角形分割成6个小正三角形(请你在图b 中画出草图).⑶分别把图c 、图d 和图e 种的正三角形分割成9个、10个和11个小正三角形(用钢笔或圆珠笔画出草图即可,不用说明分割方法).⑷请你写出把一个正三角形分割成n (9n ≥)个小正三角形的分割方法(只写出分割方法,不用画图). 答:图⑥ 图① 图② 图④ 图⑤ 图③ 图a 图b 图c 图e图d4.(10年中考)问题再现现实生活中,镶嵌图案在地面、墙面乃至于服装面料设计中随处可见.在八年级课题学习“平面图形的镶嵌”中,对于单种多边形的镶嵌,主要研究了三角形、四边形、正六边形的镶嵌问题.今天我们把正多边形....的镶嵌作为研究问题的切入点,提出其中几个问题,共同来探究.我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面.如右图中,用正方形镶嵌平面,可以发现在一个顶点O 周围围绕着4个正方形的内角.试想:如果用正六边形来镶嵌平面,在一个顶点周围应该围绕着_______个正六边形的内角. 问题提出如果我们要同时用两种不同的正多边形镶嵌平面,可能设计出几种不同的组合方案? 问题解决猜想1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?分析:我们可以将此问题转化为数学问题来解决.从平面图形的镶嵌中可以发现,解决问题的关键在于分析能同时用于完整镶嵌平面的两种正多边形内角特点.具体地说,就是在镶嵌平面时,一个顶点周围围绕的各个正多边形的内角恰好拼成一个周角.验证1:在镶嵌平面时,设围绕某一点有x 个正方形和y 个正八边形的内角可以拼成一个周角.根据题意,可得方程:()82180903608x y -⨯+⋅=,整理得:2x +3y =8,我们可以找到唯一一组适合方程的正整数解为12x y =⎧⎨=⎩. 结论1:镶嵌平面时,在一个顶点周围围绕这1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由. 验证2:结论2:_________________________________________________________________________________ _______________________________________________________________________________________.上面,我们探究了同时用两种不同的正多边形组合镶嵌平面的部分情况,仅仅得到了一部分组合方案,相信同学们用同样的方法,一定会找到其他可能的组合方案. 问题拓广请你仿照上面的研究方式,探索出一个同时用三种不同的正多边形组合进行平面镶嵌的方案,并写出验证过程. 猜想3:_________________________________________________________________________________. 验证3:结论3:________________________________________________________________________________________________________________________________________________________________________. 5.(11年中考)问题提出我们在分析解决数学问题时,经常要比较两个数或代数式的大小.解决问题的策略一般要进行一定的转化,其中“作差法”就是常用方法之一,所谓“作差法”:就是通过作差变形,利用差的符号来确定它们的大小,即要比较代数式M 、N 的大小,只要作出它们的差M N -,若0M N ->,则M N >;若0M N -=,则M N =;若0M N -<,则M N <. 问题解决如图①,把边长为a +b 的大正方形(a≠b )分割成两个边长分别是a ,b 的小正方形以及两个矩形,试比较两个小正方形的面积之和M 与两个矩形面积之和N 的大小.由图可知,22M a b =+,2N ab =,()2222 .M N a b aba b ∴-=+-=- a b ≠, ()20a b ∴->,M N ∴>.类比应用⑴已知小明和小亮购买同一种商品的平均价格分别为2a b +元/千克,2aba b+元/千克,试比较小明和小亮所购商品的平均价格的高低(a ,b 是正数,且a≠b ).解:类比应用⑵试比较图②、图③两个矩形的周长M 1、N 1(b>c )的大小.解:拓展应用小刚在超市里买了一些物品,用一个长方体的箱子“打包”,箱子的尺寸如图④(0<c<a<b ),售货员分别按图⑤、图⑥、图⑦三种方法进行捆绑,问哪种方法用绳最短?哪种方法用绳最长?请说明理由.解:图②图③b +a-c图④图⑤ 图⑥ 图⑦a b图①。