高中数学:2.2.2《直接证明与间接证明-反证法》课件(新人教版选修2-2)

合集下载

人教版选修1-2第二章2.2.2反证法课件

人教版选修1-2第二章2.2.2反证法课件
摆好香案,端坐弹琴,态度从容,琴声幽雅,
司马懿见此情景,心中疑虑:“诸葛亮
一生精明过人,谨慎有余,从不冒险,
今天如此这般,城内恐怕必有伏兵,有
意诱我入城,绝不能中计也。”
数学中常见实例分析:
1.a 0, b 0, a b 1, 求证:a, b中至少有
1
一个不大于 .
2
2.a, b, c不全为零,a b c 0, 求证:a, b, c
只有一个根.
点评:“有且只有”包含了“有根”和“只有这个
根”两层意思.由于a≠0,因此方程至少有一

个根= .从正面较难说明为什么只有这个

根.故我们采用反证法.
试一试
求证:在一个三角形中,
至少有一个内角小于或等
于60°.
A
B
C
证明:假设结论不成立,即:



∠A___ 60°, ∠B ___ 60°,
(1)a是实数。
(2)a大于2。
a小于或等于2
a不是实数
(3)a小于2。
(4)至少有2个
a大于或等于2
最多有1个
(5)最多有一个
(6)两条直线平行。
至少有两个
两直线不平行
巩固新知
2、用反证法证明“若a2≠ b2,则a ≠ b”
的第一步是 假设a=b 。
巩固新知
3、用反证法证明“如果一个三角形没有两个相
中至少有一个大于0.
定义
假设原命题 不成立 ,经过正确的推理,最后得出矛
假设错误
盾,因此说明________,从而证明了
这样的证明方法叫做反证法.
原命题成立,
反证法常见的矛盾类型

人教a版数学【选修2-2】2.2.2《反证法》ppt课件

人教a版数学【选修2-2】2.2.2《反证法》ppt课件
成才之路 · 数学
人教A版 · 选修2-2
路漫漫其修远兮 吾将上下而求索
第二章
推理与证明
第二章 2.2 直接证明与间接证明
2.2.2 反证法
1
自主预习学案
2
典例探究学案
3
巩固提高学案
4
备 选 练 习
自主预习学案
理解反证法的概念,掌握反证法的特点及证题的步骤.
重点:反证法概念的理解以及反证法的证题步骤. 难点:反证法的应用.
已知p3+q3=2,求证p+q≤2. [解析] 假设p+q>2,那么p>2-q,所以p3>(2-q)3=8-12q +6q2-q3,将p3+q3=2代入消去p,得6q2-12q+6<0,即 6(q-1)2<0.这与6(q-1)2≥0矛盾,故假设错误.所以p+q≤2. [点评] 本题已知条件为p、q的三次幂,而结论中只有p,q 的一次幂,若直接证明,应考虑到用立方根,同时用放缩法 ,但很难证,故考虑采用反证法.
[方法规律总结] 用反证法证明数学命题的步骤 第一步:审题,分清命题的条件和结论; 第二步:反设,做出与命题结论相矛盾的假设; 第三步:归谬,由假设出发,应用演绎推理方法,推出矛盾 的结果; 第四步:下结论,断定产生矛盾结果的原因,在于开始所做 的假设不真,于是原结论成立,从而间接地证明了命题为真 .
典例探究学案
用反证法证明直接证明不易入手的问题
求证:若两条平行直线 a、b 中的一条与平面 α 相交,则另一条也与平面 α 相交.
[分析] 直接证明直线与平面相交比较困难,故可考虑用反 证法,注意该命题的反面情形不止一种,需一一驳倒,才能 推出命题结论正确.
[解析] 不妨设直线a与平面α相交,b与a平行,从而要证b 也与平面α相交.假设b不与平面α相交,则必有下面两种情 况:(1)b在平面α内.由a∥b,a⊄平面α,得a∥平面α,与题 设矛盾. (2)b∥平面α. 则平面α内有直线b′,使b∥b′. 而a∥b,故a∥b′,因为a⊄平面α,所以a∥平面α,这也与 题设矛盾. 综上所述,b与平面α只能相交.

2014-2015学年高中数学(人教版选修2-2)配套课件第二章 2.2 2.2.2 反 证 法

2014-2015学年高中数学(人教版选修2-2)配套课件第二章 2.2 2.2.2 反 证 法
栏 目 链 接
自 测 自 评
上述步骤的正确顺序为________(填序号).
解析:由反证法的一般步骤可知,正确的顺序 应为③①②. 答案:③①②
栏 目 链 接
自 测 自 评
3.“实数 a,b,c 不全大于 0”等价于( A.a,b,c 均不大于 0 B.a,b,c 中至少有一个大于 0 C.a,b,c 中至多有一个大于 0 D.a,b,c 中至少有一个不大于 0
栏 目 链 接
题型3
用反证法证明唯一性命题
例3 用反证法证明:过已知直线a外一点A只有一条直 线b与已知直线a平行.
栏 目 链 接
证明:假设过点 A 还有一条直线 b′与已知直 线 a 平行,即 b∩b′=A,b′∥a.因为 b∥a,由平 行公理知 b′∥b.这与假设 b∩b′=A 矛盾,所以 假设错误,故原命题成立.
栏 目 链 接
跟 踪 训 练
1.已知三个正数 a,b,c 成等比数列,但不成等差数 列,求证: a, b, c不成等差数列.
解析: 假设 a, b, c成等差数列, 则 a+ c=2 b, 即 a+c+2 ac=4b, 而 b2=ac,即 b= ac,所以 a+c+2 ac=4 ac, 所以( a- c)2=0.即 a= c, 从而 a=b=c,与 a,b,c 不成等差数列矛盾, 故 a, b, c不成等差数列.
证明:假设方程 f(x)=0 在区间[a,b]上至少有两个实 根,设 α、β 为其中的两个实根.因为 α≠β,不妨设 α <β,又因为函数 f(x)在[a,b]上是单调递减函数,所以 f(α)>f(β).这与假设 f(α)=0=f(β)矛盾,所以方程 f(x) =0 在区间[a,b]上至多有一个实根.
2
栏 目 链 接

数学:2.2.1《直接证明与间接证明-综合法和分析法》PPT课件(新人教选修2-2)

数学:2.2.1《直接证明与间接证明-综合法和分析法》PPT课件(新人教选修2-2)
Q P1
P1 P2
P2 P3

得到一个明显 成立的结论
例:设a,b,c为一个三角形的三
边,且s2=2ab,s 试证s<2a
1 = (a + b + c), 2
例:如图,SA⊥平面ABC,AB⊥BC,过A作SB 的垂线,垂足为E,过E作SC的垂线,垂足 S 为F,求证 AF⊥SC
证明:要证AF⊥SC 只需证:SC⊥平面AEF 只需证:AE⊥SC 只需证:AE⊥平面SBC 只需证:AE⊥BC 只需证:BC⊥平面SAB 只需证:BC⊥SA 只需证:SA⊥平面ABC
F E
A
B
C
因为:SA⊥平面ABC成立 所以. AF⊥SC成立
π 例. 已知α, β≠ kπ+ (k Z),且 2 sinθ+ cosθ= 2sinα sinθcosθ= sin β 1 - tan α 1 - tan β 证: 求 = . 2 2 1 + tan α 2(1 + tan β)
新课标人教版课件系列
《高中数学》
选修2-2
2.2.1《直接证明与间接证 明-综合法和分析法》
教学目标
结合已经学过的数学实例,了解直接证明的两 种基本方法:分析法和综合法;了解分析法和 综合法的思考过程、特点. 教学重点:会用综合法证明问题;了解综合法 的思考过程. 教学难点:根据问题的特点,结合综合法的思 考过程、特点,选择适当的证明方法.
Q P1
P1 P2
2 2 2
P2 P3

得到一个明显 成立的结论
也可以是经过 证明的结论
例:已知数列{an}的通项an>0,(n∈N*),它 的前n项的和记为sn,数列{s2n}是首项为3, 公差为1的等差数列. (1)求an与sn的解析式; (2)试比较sn与3nan(n∈N*),的大小.

高中数学选修1-2直接证明与间接证明--反证法(ppt)

高中数学选修1-2直接证明与间接证明--反证法(ppt)

2
例5 求证:
是无理数。 2
证明:假设 2不是无理数,则 2是有理数 m 则存在互质的整数m,n使得 2 = , n 2 2 ∴ m = 2n ∴ m = 2n
∴m 2 是偶数,从而m必是偶数,故设m = 2k(k∈N)
从而有4k = 2n ,即n = 2k ∴n2也是偶数, 这与m,n互质矛盾!
直接证明与间接证明
反证法
复习
直接证明是从命题的条件或结论出发,根据已知的定义、 公理、定理,直接推理证明结论的真实性。 常用的直接证明方法有综合法与分析法。
综合法的思路是由因导果;分析法的思路是执果索因。 在解决有关问题时,常常把分析法和综合法结合起来使用。 先用分析法寻求解题思路,再用综合法解答或证明;有时要 分析法和综合法结合起来交替使用。 间接证明不是从正面证明命题的真实性,而是证明命题的反 面为假,或改证它的等价命题为真,间接地达到证明的目的。 反证法就是一种常用的间接证明方法。
假设不成立, 2是无理数。
2
2
2
2
例4: 如图在⊙O中,弦AB、CD相交于P,且AB、CD不全是直径 求证:AB、CD不能互相平分。 A
证明: 假设AB、CD互相平分
则四边形ACBD是平行四边形
C O
P
D B
∠ACB=∠ADB, ∠CAD =∠CBD
因为四边形ACBD是圆内接四边形 ∠ACB+∠ADB=180°, ∠CAD +∠CBD=180°, 所以∠ACB=90°, ∠CAD =90°
补充作业:求证: lg 2是无理数
证明:假设lg 2不是无理数(即 lg 2是有理数)
m m n 设 lg 2= ( m、n N ) 10 2 10 2 n 10m能被5整除,但2n 不能被5整除,这与 10m 2n 矛盾。

高中数学选修2-2课件2.2.2《反证法》课件

高中数学选修2-2课件2.2.2《反证法》课件
反证法的思维方法:
正难则反
反证法的基本步骤:
(1)假设命题结论不成立,即假设结论的反面成------立;
(2)从这个假设出发,经过推理论证,得出矛盾;
(3)从矛盾判定假设不正确,从而肯定命题的结 -----论正确 归缪矛盾:
(1)与已知条件矛盾;
(2)与已有公理、定理、定义矛盾;
(3)自相矛盾。
应用反证法的情形:
(1)直接证明困难; (2)需分成很多类进行讨论. (3)结论为“至少”、“至多”、“有无穷 多个” ---类命题; (4)结论为 “唯一”类命题;
例1:用反证法证明: 如果a>b>0,那么 a > b 证:假设 a > b不成立,则 a ≤ b
若 a = b,则a = b,与已知a > b矛盾,
例4 如图2.2 2,AB,CD为圆
的两条相交弦,且不全为直径. A
D
求证 AB,CD不能互相平分.
动画演示.
C
B
证明 假设AB,CD互相平分,
图2.2 2
则ACBD为平行四边形,故ACB ADB,
CAD CBD. 因为ABCD为圆内接四边形,所以
ACB ADB 180 0,CAD CBD 180 0.
指有面额的那面.
上述现 象可以用直 接证明的方 法解释, 但是, 我们这 里采用反证法.
假设经过若干次翻转可以使硬币全部反面向上. 由于每枚硬币从正面朝上变为反面朝上,都需要 翻转奇数次,所以3枚硬币全部反面朝上时,需要
翻转3个奇数之和次,即要翻转奇数次.
但由于每次用双手同时翻转2枚硬币,3枚硬币被
翻转的次数只能是2 的倍数,即偶数次.这个矛盾
说明假设错误,原结论正确,即无论怎样翻转都不

人教A选修2-211-12学年高二数学:2.2.2 反证法 课件(人教A版选修2-2)

人教A选修2-211-12学年高二数学:2.2.2 反证法 课件(人教A版选修2-2)



[例3] 已知:一点A和平面α. 求证:经过点A只能有一条直线和平面α垂直. [分析]
[解析] 根据点A和平面α的位置关系,分 两种情况证明. (1)如图1,点A在平面α内,假设经过点A 至少有平面α的两条垂线AB、AC,那么AB、 AC是两条相交直线,它们确定一个平面β, 平面β和平面α相交于经过点A的一条直线a.

[点评] 1.本题的解答依赖于等差和等比 数列的概念和性质,体现了特殊化思想、 分类讨论思想和正难则反的思维策略.对 代数的推理能力要求较高. 2.结论中含有“不”、“不是”、“不 可能”、“不存在”等词语的命题,此类 问题的反面比较具体,适于应用反证法.


3.反证法属逻辑方法范畴,它的严谨体 现在它的原理上,即“否定之否定等于肯 定”,其中:第一个否定是指“否定结论 (假设)”;第二个否定是指“逻辑推理结 果否定了假设”.反证法属“间接解题方 法”,书写格式易错之处是“假设”易错 写成“设”.
2.命题“三角形中最多只有一个内角是 直角”的结论的否定是 ( ) A.两个内角是直角 B.有三个内角是直角 C.至少有两个内角是直角 D.没有一个内角是直角 [答案] C [解析] “最多只有一个”即为“至多一 个”,反设应为“至少有两个”,故应选 C.

3.如果两个实数之和为正数,则这两个 数( ) A.一个是正数,一个是负数 B.两个都是正数 C.至少有一个正数 D.两个都是负数 [答案] C [解析] 假设两个数都是负数,则两个数 之和为负数,与两个数之和为正数矛盾, 所以两个实数至少有一个正数,故应选C.

[分析] 本题中,含有“至少存在一个” 词,可考虑使用反证法.
[证明]
1 假设不存在 x∈[-1,1]上一个 x 满足|f(x)|≥2.

2.2.2反证法(优秀课件)

2.2.2反证法(优秀课件)

反证法的证明步骤:
①假设——假设命题的结论不成立,即假设命题结论的否定成立;
②找矛盾——从假设出发,经过一系列正确的逻辑推理,推出矛 盾(与已知矛盾,与已知定义,公理,定理事实等矛 盾,与出现的临时假设矛盾,在证明过程中出现自相矛 盾等等),从而否定假设; ③下结论——由矛盾结果,断定假设不成立,从而肯定原命题的 结论成立。
注:结论中含“至多、至少”形式出现;直接证明难以下
手的命题,改变其思维方向,从进行反面思考。
四、例题选讲
例2.已知a≠0,证明x的方程ax=b有且只有一个根。 证:由于a ≠0,因此方程至少有一个根x=b/a, ```如果方程不只一个根,不妨设x1,x2 (x1 ≠x2 )是 方程的两个根. 则ax1 = b,ax2 = b ∴ax1 = ax2 ∴ax1 - ax2 = 0 ∴a(x1 - x2) =0
(1)直接证明有困难的一些命题(如有些基本定理的 证明如平行线的传递性的证明)
(2)关于唯一性结论的命题 (即结论中有有且只有,有且仅有等关键字眼) (3)以否定性判断作为结论的命题 (4)以至多,至少,不多于等形式陈述的命题 (5)一些不等量命题的证明 即正难则反!
2.常用的正面叙述词语及其否定:
1、求证: 2, 3, 5 不可能成等差数列

2 3 2 5 , 这显然不成立
所以假设不成立,
2, 3, 5
不可能成等差数列
五.课堂练习:
2、证明:在△ABC中,若∠C是直角,则∠B一定是
锐角。 证明:假设∠B不是锐角,则∠B≧90°, 又因为∠A>0°,∠C=90°
2.2 直接证明与间接证明
2.2.2 反 证 法
一、复习回顾 1.直接证明的两种基本证法: 综合法和分析法 2.这两种基本证法的推证过程和特点:

《反证法》人教版高中数学选修1-2PPT课件(第2.2.2课时)

《反证法》人教版高中数学选修1-2PPT课件(第2.2.2课时)

知识要点
反证法主要适用于以下两种情形: (1)要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰. (2)如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很 少的几种情形.
知识要点
用反证法证题时,应注意的事项 : (1)周密考察原命题结论的否定事项, 防止否定不当或有所遗漏; (2)推理过程必须完整,否则不能说明命题的真伪性; (3)在推理过程中,要充分使用已知条 件,否则推不出矛盾,或者不能断定推出的结果是错误的.
矛盾
所以 _假__设__不__成__立 ,即求证的命题正确. 命题成立
l3
P
l1
l2
知识要点
反证法的步骤 一、提出假设 假设待证命题不成立,或是命题的反面成立. 二、推理论证 以假设为条件,结合已知条件推理,得出与已知条件或是正确命题相矛盾的结论. 三、得出矛盾 这与“......”相矛盾. 四、结论成立 所以假设不成立,所求证的命题成立.
∴ ∠ 1 =∠ 2 =∠3(两直线平行,同位角相等) ∴ l 3∥ l2(同位角相等,两直线平行 ) 归纳
l1
l1
l2
P 2
l1
3
请同学们自己比较两种证明方法的各自特点,从中体验反证法的思考过程和特点.
新知探究
结合我们讲过的例子,我们可以得到什么?
思考
由上面的例子可以看出,反证法的关键是在正确的推理下得出矛盾,这个矛盾可以是与已知条件 矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等.
知识要点
宜用反证法证明的题型
(1)以否定性判断作为结论的命题; (2)某些定理的逆命题; (3)以“至多”、“至少”或“不多于”等形式陈述的命题; (4)关于“唯一性”结论的命题; (5)解决整除性问题; (6)一些不等量命题的证明; (7)有些基本定理或某一知识体系的初始阶段; (8)涉及各种“无限”结论的命题等等.

(人教A版)数学【选修2-2】2-2-2《反证法》ppt课件

(人教A版)数学【选修2-2】2-2-2《反证法》ppt课件

规律技巧 用反证法证明“至多”“至少”型命题,可减 少讨论情况,目标明确.否定结论时需弄清楚结论的否定是什 么,避免出现错误.需仔细体会“至多有一个”“至少有一 个”的含义.
三 用反证法证明否定性命题 【例3】 求证抛物线上任取四点所组成的四边形不可能
是平行四边形.
已知:如图所示,A,B,C,D是抛物线y2=2px(p>0)上的 任意四点,其坐标分别是(x1,y1),(x2,y2),(x3,y3),(x4, y4).连接AB,BC,CD,DA.
答案 D
3.求证:如果a>b>0,那么n
n a>
b(n∈N,且n>1).
证明 假设n a不大于n b,则n a=n b,或n a<n b.
当n a=n b时,则有a=b. 这与a>b>0相矛盾.
当n
n a<
b时,则有a<b,
这也与a>b相矛盾.
所以n
a>
b.
4.若a,b,c均为实数,且a=x2-2y+
求证:四边形ABCD不可能是平行四边形. 【分析】 解答本题的关键在于通过假设,根据平行四边 形对边所在直线的斜率相等,推出结论与已知条件相矛盾,从 而肯定原命题正确.
【证明】 由题意得,直线AB的斜率为 kAB=xy22--xy11=y12+py2,同理kBC=y32+py2, kCD=y42+py3,kDA=y12+py4. 假设四边形ABCD为平行四边形,则有kAB=kCD,kBC=kDA. 即有yy23+ +yy12= =yy31+ +yy44, ,① ② 由①-②,得y1-y3=y3-y1,
π 2
,b=y2-2z+
π3,c=z2-2x+6π.

【全程复习方略】2014-2015学年高中数学 2.2.2 反证法课件 新人教A版选修2-2

【全程复习方略】2014-2015学年高中数学 2.2.2 反证法课件 新人教A版选修2-2

(2)用反证法证题时,一定要用到“反设”进行推理,否则就不 是反证法.用反证法证题时,如果欲证明命题的反面情况只有 一种,那么只要将这种情况驳倒了就可以;若结论的反面情况 有多种,则必须将所有的反面情况一一驳倒,才能推断结论成
立.
(3)证明“有且只有一个”的问题,需要证明两个命题,即存在
性和唯一性.
类型二
用反证法证明存在性命题
【典例2】 (1)(2014·西安高二检测)“任何三角形的外角都至少有两 个钝角”的否定是 .
(2)(2014·石家庄高二检测)已知a,b,c均为实数,且a= x2-2y+ ,b=y2-2z+ ,c=z2-2x+ ,求证:a,b,c中至少有一个大
2 3 6
于0.
【微思考】
(1)用反证法证明命题“若p,则q”时,为什么 q假,q就真?
提示:在证明数学命题时,要证明的结论要么正确,要么错误,
二者必居其一,所以命题结论q的反面 q错误时,q就一定正确.
(2)反证法原理与利用等价命题即互为逆否命题的证明思路有
关吗?
提示:有关.反证法的原理为“互为逆否命题的两个命题真假
(2)已知三个正整数a,b,c成等比数列,但不成等差数列, 求证: a, b, c 不成等差数列.
【解题探究】1.题(1)中所要证明的命题的结论是什么?
2.题(2)中
a, b, c 不成等差数列的反设是什么?
【探究提示】1.所要证明的命题的结论是“方程没有整数根”.
2.假设 a, b, c 成等差数列.
2.2.2 反 证 法
问题 1.反证法的定义是什么?有什么特点? 引航 2.利用反证法证题的关键是什么?步骤是什么?
反证法的定义及证题的关键

高中数学第二章推理与证明22直接证明与间接证明222反证法课件新人教版选修12

高中数学第二章推理与证明22直接证明与间接证明222反证法课件新人教版选修12

5.用反证法证明命题“如果 a>b,则3 a>3 b时,
假设的内容是________.”
3
3
3
33
3
解析: a与 b的关系有三种情况: a> b, a= b,
3
3
3
3
a< b.所以假设的内容应为 a≤ b.
3
3
答案: a≤ b
类型 1 用反证法证明否(肯)定性命题(自主研析) [典例 1] 设函数 f(x)=ax2+bx+c(a≠0)中,a,b, c 均为整数,且 f(0),f(1)均为奇数.求证:f(x)=0 无整 数根. [自主解答]假设 f(x)=0 有整数根 n,则 an2+bn+c =0 又 f(0),f(1)均为奇数,
解得-2<a<-1,则要使两方程至少有一个方程有
实数,则 a 的取值范围应为 a≤-2 或 a≥-1.
答案:A
归纳升华
1.用反证法证明“至少”“至多”型命题,可减少讨
论情况,目标明确.否定结论时需弄清楚结论的否定是什
么,避免出现错误.
2.用反证法证明“至多、至少”问题时常见的“结
论词”与“反设词”如下:
1.思考判断(正确的打“√”,错误的打“×”) (1)反证法属于间接证明问题的方法.( ) (2)反证法的证明过程既可以是合情推理也可以是一 种演绎推理.( ) (3)反证法的实质是否定结论导出矛盾.( ) 解析:(1)对,反证法是间接证明问题的方法. (2)错,反证法是演绎推理,不是合情推理. (3)对,根据反证法的概念知说法正确. 答案:(1)√ (2)× (3)√
所以(1-2a)+b≥ (1-a)b> 14=12. 同理(1-2b)+c>12,(1-2c)+a>12. 三式相加得 (1-2a)+b+(1-2b)+c+(1-2c)+a>32. 则32>32,矛盾,故假设不成立. 所以(1-a)b,(1-b)c,(1-c)a 不能都大于14.

2.2.2 反证法

2.2.2  反证法
2 2 证明: 假设结论不成立,即: a a 2且b b 2
2 a 1且 2 b 1 0 a 1且0 b 1
1 1 ab 而 由a b a b ab
a 0, b 0
0 ab 1 ab 1
矛盾!
三个步骤:反设—归谬—存真
反设——假设命题的结论不成立;
归谬——从假设出发,经过一系列正确的推理, ````````得出矛盾;
存真——由矛盾结果,断定反设不成立,从而
肯定原结论成立。
例题 例1、已知:一个整数的平方能被2整除, 求证:这个整数是偶数。
证明:假设a不是偶数, 则a是奇数,不妨设a=2n+1(n是整数)
“不能表示为……”,“不是……”,“不存 在……” ,“不等于……”,“不具有某种性质” 等) 常用反证法.
练习、已知x>0,y>0,x+y>2,
1 x 1 y 求证: , 中至少有一个小于 2. y x
1 x 1 y 证明: 2. 假设结论不成立,即: 2且 y x
1 x 2 y且1 y 2 x.
∴a2=(2n+1)2=4n2+ห้องสมุดไป่ตู้n+1=4n(n+1)+1
∴a2是奇数,与已知矛盾。 ∴假设不成立,所以a是偶数。 从反面进行思考,问题就可能迎刃而解。
注:直接证明难以下手的命题,改变其思维方向,
1 1 例2、(2015,湖南,理)已知a>0,b>0, 且a b . a b
求证: (2)a 2 a 2 , b2 b 2不可能同时成立 .
假设不成立,原结论成 立,即证 .

2020最新人教版高二数学选修2-2全册课件【完整版】

2020最新人教版高二数学选修2-2全册课件【完整版】
2020最新人教版高二数学选修2-2 全册课件【完整版】
2020最新人教版高二数学选修2 -2全册课件【完整版】目录
0002页 0090页 0166页 0168页 0223页 0251页 0306页 0320页 0548页 0629页 0677页
第一章 导数及其应用 1.2 导数的计算 1.4 生活中的优化问题举例 1.6 微积分基本定理 小结 第二章 推理与证明 2.2 直接证明与间接证明 小结 第三章 数系的扩充与复数的引入 3.2 复数代数形式的四则运算 复习参考题
2020最新人教版高二数学选修2-2 全册课件【完整版】
1.3 导数在研究函数中的应用
2020最新人教版高二数学选修2-2 全册课件【完整版】
1.4 生活中的优化问题举例
第一章 导数及其应用
2020最新人教版高二数学选0最新人教版高二数学选修2-2 全册课件【完整版】
1.2 导数的计算

2020学年高中数学第2章推理与证明2.2直接证明与间接证明2.2.2反证法课件新人教A版选修2_2

2020学年高中数学第2章推理与证明2.2直接证明与间接证明2.2.2反证法课件新人教A版选修2_2

∴b,c 为方程 x2+ax+1a=0 的两根, ∴Δ=a2-4a≥0,即 a3≥4. ∴a≥3 4> 3 287=32,这与 a≤32矛盾, ∴a,b,c 中至少有一个大于32.
短板补救案·素养培优
规范解答(九) 反证法在证明问题中的应用
典题示例
【典例】 (12 分)已知 a,b,c∈(0,1) . 求证: (1-a)b,(1-b)c,(1-c)a不能都大于14 .
∵a2n=an-1·an+1,b2n=bn-1·bn+1, ∴2anbn=an-1bn+1+bn-1an+1 =apn·bn·q+bqn·an·p, ∴2=qp+pq. ∵当 p≠q 时,qp+pq>2 或qp+pq≤-2 与qp+pq=2 矛盾. ∴假设不成立,即{cn}不是等比数列.
题型二 用反证法证明唯一性命题 【例2】 若函数f(x)在区间[a,b]上的图像连续,且 f(a)<0,f(b)>0,且f(x)在[a,b]上单调递增,求证:f(x) 在(a,b)内有且只有一个零点.
变式训练
1.设{an},{bn}是公比不相等的两个等比数列,cn= an+bn,证明数列{cn}不是等比数列.
证明 假设{cn}是等比数列. 则当 n≥2 时,(an+bn)2=(an-1+bn-1)·(an+1+bn+1) ∴a2n+2anbn+b2n =an-1an+1+an-1bn+1+bn-1an+1+bn-1bn+1. 设{an},{bn}的公比分别为 p,q(p≠q).
变式训练
2.求证:过直线外一点有且只有一条直线与这条直 线平行.
解析 已知:点P在直线a外. 求证:过点P与直线a平行的直线有且只有一条. 证明:∵点P在直线a外, ∴点P和直线a确定一个平面, 设该平面为α,在平面α内,过点P作直线b, 使得b∥a,则过点P有一条直线与a平行.

高中数学第二章推理与证明2.2直接证明与间接证明2.2.2反证法课件新人教B版选修2_2

高中数学第二章推理与证明2.2直接证明与间接证明2.2.2反证法课件新人教B版选修2_2
2.2.2 反证法
1.掌握间接证明的常见方法(反证法)的推理特点. 2.学会写出命题的否定,并以此作条件推出矛盾结论,即学习用反 证法证明简单题目.
反证法 一般地,由证明p⇒q转向证明:¬ q⇒r⇒…⇒t,t与假设矛盾,或与某 个真命题矛盾.从而判定¬ q为假,推出q为真的方法,叫做反证法.
名师点拨1.反证法适宜证明“存在性,唯一性,带有„至少有一个‟或 „至多有一个‟等字样”的一些数学问题. 2.应用反证法证明数学命题的一般步骤: (1)分清命题的条件和结论; (2)做出与命题结论相矛盾的假设; (3)由假设出发,应用演绎推理方法,推出矛盾的结果; (4)断定产生矛盾结果的原因,在于开始所做的假定不真,于是原 结论成立,从而间接地证明命题为真. 常见的主要矛盾有:①与数学公理、定理、公式、定义或已证明 了的结论相矛盾; ②与临时假设矛盾; ③与公认的事实矛盾或自相矛盾等.
【做一做1】 应用反证法推出矛盾的推导过程中可以把下列哪 些作为条件使用( ) ①结论的相反判断,即假设;②原命题的条件;③公理、定理、定 义等;④原结论. A.①② B.①②④ C.①②③ D.②③ 答案:C
【做一做2】 用反证法证明命题“三角形的内角中至多有一个钝 角”时,假设正确的是( ) A.假设三角形的内角中至少有一个钝角 B.假设三角形的内角中至少有两个钝角 C.假设三角形的内角中没有一个钝角 D.假设三角形的内角中没有一个钝角或至少有两个钝角 解析:“至多有一个”的反面为“至少有两个”. 答案:B
0
������ -2
∴0<− ������ 0+1 < 1, 即 2 < ������0 < 2, 与假设x0<0 矛盾,故方程 f(x)=0
0
������ -2

高中数学选修1-2直接证明与间接证明--反证法(ppt)

高中数学选修1-2直接证明与间接证明--反证法(ppt)

补充作业:求证: lg 2是无理数
证明:假设lg 2不是无理数(即 lg 2是有理数)
m m n 设 lg 2= ( m、n N ) 10 2 10 2 n 10m能被5整除,但2n 不能被5整除,这与 10m 2n 矛盾。
m n
假设不成立, lg 2是无理数
2
例5 求证:
是无理数。 2
证明:假设 2不是无理数,则 2是有理数 m 则存在互质的整数m,n使得 2 = , n 2 2 ∴ m = 2n ∴ m = 2n
∴m 2 是偶数,从而m必是偶数,故设m = 2k(k∈N)
从而有4k = 2n ,即n = 2k ∴n2也是偶数, 这与m,n互质矛盾!
所以对角线AB、CD均为直径,与已知条件矛盾。 所以假设不成立,因此AB、CD不能互相平分
练习
1.证明:在ABC中,若C是直角,则 B一定是锐角。
2.求证:2,3,5不可能成等差数列。
思考?
A、B、C三个人,A说B撒谎,B说C撒谎, C说A、B都撒谎。则C必定是在撒谎, 为什么?
分析:假设C没有撒谎, 则C话为真. -- -那么A话为假且B话为假; 由A话为假, 知B话为真. 这与B话为假矛盾. 那么假设C没有撒谎不成立; 则C必定是在撒谎.
(1)与已知条件矛盾;(2)与公理、定理、定义矛盾;(3)自相矛盾。
注意:反证法引出矛盾没有固定的模式,需要认真观察、分析, 洞察矛盾。
应用反证法的情形:
⑴直接证明困难; ⑵需分成很多类进行讨论. ⑶结论为“至少”、“至多”、“有无穷多个” 题; ⑷结论为 “唯一”类命题; ---类命
反证法的思维方法:正难则反
已知a是整数,a 是偶数,求证: a也是偶数。 例 1: 证明:假设 a不是偶数,则是 a奇数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思考? 思考?
三个人, 撒谎, A、B、C三个人,A说B撒谎,B说 撒谎, 都撒谎。 C撒谎,C说A、B都撒谎。则C必定 是在撒谎,为什么? 是在撒谎,为什么?
分析:假设 没有撒谎 则C真. 分析 假设C没有撒谎 假设 没有撒谎, 真 - - -- -那么 假且 假; 那么A假且 那么 假且B假 由 A假 , 知 B真 . 这与B假矛盾. 这与B假矛盾. 那么假设C没有撒谎不成立; 那么假设C没有撒谎不成立; 必定是在撒谎. 则C必定是在撒谎.
反证法: 反证法: 假设命题结论的反面成立, 假设命题结论的反面成立,经过正确的 推理,引出矛盾,因此说明假设错误, 推理,引出矛盾,因此说明假设错误,从而 证明原命题成立, 证明原命题成立,这样的的证明方法叫反 证法。 证法。
反证法的思维方法: 反证法的思维方法:
正难则反
反证法的基本步骤: 反证法的基本步骤: 假设命题结论不成立,即假设结论的反面成-(1)假设命题结论不成立,即假设结论的反面成------立 -----立; 从这个假设出发 经过推理论证,得出矛盾 假设出发, 矛盾; (2)从这个假设出发,经过推理论证,得出矛盾; 从矛盾判定假设不正确, (3)从矛盾判定假设不正确,从而肯定命题的结 -----论正确 -----论正确 归缪矛盾: 归缪矛盾: 与已知条件矛盾; (1)与已知条件矛盾; 与已有公理、定理、定义矛盾; (2)与已有公理、定理、定义矛盾; 自相矛盾。 (3)自相矛盾。
已知a≠0 证明x的方程ax=b a≠0, ax=b有且只有 例2 已知a≠0,证明x的方程ax=b有且只有 一个根。 一个根。 假设方程ax 至少存在两个根, 证:假设方程ax + b = 0(a ≠ 0)至少存在两个根,
不妨设其中的两根分别为x 不妨设其中的两根分别为x1,x 2 且x1 ≠ x 2
则ax1 = b,ax 2 = b ∴ ax1 = ax 2 ∴ ax1 - ax 2 = 0 a( ∴ a(x1 - x 2) 0 = ∵ x1 ≠ x 2,x1 - x 2 ≠ 0 ∴ a = 0 与已知a ≠ 0矛盾, 与已知a 矛盾, 故假设不成立,结论成立。 故假设不成立,结论成立。
例3:证明:圆的两条不全是直径的相交 证明: 弦不能互相平分. 弦不能互相平分. 已知: AB、CD相交于 相交于P 已知:在⊙O中,弦AB、CD相交于P,且 AB、CD不全是直径 AB、CD不全是直径 求证:AB、CD不能互相平分 不能互相平分。 求证:AB、CD不能互相平分。
2.2直接证明与间接证明 2.2.2
反证法
一般地,从要证明的结论出发, 一般地,从要证明的结论出发,逐步 寻求推证过程中, 寻求推证过程中,使每一步结论成立的充 分条件,直至最后, 分条件,直至最后,把要证明的结论归结 为判定一个明显成立的条件(已知条件、 为判定一个明显成立的条件(已知条件、 定理、定义、公理等)为止, 定理、定义、公理等)为止,这种证明的 方法叫做分析法.
应用反证法的情形: 应用反证法的情形:
直接证明困难; (1)直接证明困难; 需分成很多类进行讨论. (2)需分成很多类进行讨论. 结论为“至少” 至多” (3)结论为“至少”、“至多”、“有无穷 多个” ---类命题; 类命题; 多个” ---类命题 唯一”类命题; (4)结论为 “唯一”类命题;
例1:用反证法证明: 用反证法证明: 如果a>b>0, 如果a>b>0,那么 a> b a>b>0
不成立, 证:假设 a > b不成立,则 a ≤ b
与已知a 矛盾, 若 a = b,则a = b, 与已知a > b矛盾,
若 a < b,则a < b, 与已知a > b矛盾, 与已知a 矛盾,
故假设不成立, 成立。 故假设不成立,结论 a > b成立。
特点:执果索因. 特点:执果索因.
用框图表示分析法
Q ⇐ P1 P1 ⇐ P2 P2 ⇐ P3

得到一个明显 成立的结论
复习
经过证明 的结论
思考题:甲、乙、丙三箱共有小球384个,先 思考题: 丙三箱共有小球384个 384 由甲箱取出若干放进乙、丙两箱内, 由甲箱取出若干放进乙、丙两箱内,所放个 数分别为乙、丙箱内原有个数, 数分别为乙、丙箱内原有个数,继而由乙箱 取出若干个球放进甲、丙两箱内, 取出若干个球放进甲、丙两箱内,最后由丙 箱取出若干个球放进甲、乙两箱内, 箱取出若干个球放进甲、乙两箱内,方法同 前.结果三箱内的小球数恰好相等.求甲、 结果三箱内的小球数恰好相等.求甲、 乙、丙三箱原有小球数 :208个 :112个 :64个 甲:208个,乙:112个,丙:64个
2 2
从而有4 从而有4k = 2n ,即n = 2k 互质矛盾! 也是偶数, 这与m ∴ n 2 也是偶数, 这与m,n互质矛盾!
所以假设不成立, 是有理数成立。 所以假设不成立,于x 1: 若p1 ip2 = 2(q1 + q 2 ),证明: 关于x的方程 x + p1x + q1 = 0与x + p2 x + q 2 = 0中至少有一 个有实根. 个有实根.
C A O P B D
求证: 是无理数。 例4 求证: 2 是无理数。
是有理数, 证:假设 2 是有理数,
m 则 存 在 互 质 的 整 数 m, n使 得 2 = , n 2 2
是偶数,从而m必是偶数,故设m ∴m 是偶数,从而m必是偶数,故设m = 2k(k∈N∗)
∴ m = 2n 2
2
∴ m = 2n
2 2
均为实数, 2 : 若 a ,b ,c 均为实数 ,且 a = x - 2 y + b = y - 2z +
2
2
π
2
,
π
3 6 中至少有一个大于0 求证 : a ,b ,c 中至少有一个大于 0 .
,c = z - 2x +
2
π
,
相关文档
最新文档