生物质能源的开发利用与前景
生物质能源的发展与应用前景
生物质能源的发展与应用前景生物质能源是指利用植物、动物等生物质材料,通过生物化学、生物物理等技术手段,将其转化为可再生能源的一种方法。
随着能源危机的日益严峻和环境保护意识的增强,生物质能源作为一种绿色、可持续发展的能源形式,吸引了越来越多的关注和投资。
本文将就生物质能源的发展历程和应用前景进行探讨。
一、生物质能源的发展历程生物质能源的利用可以追溯到人类社会的早期,原始人类利用木材进行取暖和烹饪。
随着农业的发展,剩余的农作物和畜禽养殖废弃物逐渐被利用起来,形成了一种初步的生物质能源利用模式。
然而,由于技术水平和经济条件的限制,生物质能源的开发利用一直处于较低水平。
随着科学技术的进步、经济的发展和能源危机的加剧,人们开始重新关注生物质能源的开发利用。
20世纪70年代以来,生物质能源开始迎来了快速的发展期。
生物质能源的生产技术逐步提高,生物质燃料的生产成本逐渐下降,使得生物质能源逐渐成为可行的能源替代品。
此外,生物质能源的环境友好性和可再生性也成为其迅速发展的重要原因。
二、生物质能源的应用前景1. 生物质能源在能源供应领域的应用生物质能源可以广泛应用于能源供应领域,包括电力、热力和燃料等方面。
首先,生物质能源可以通过生物质发电技术发电,替代传统的化石燃料发电,减少温室气体的排放。
其次,利用生物质能源进行热力供应,可取代传统的煤炭和天然气等能源,降低能源消耗和环境污染。
再次,生物质燃料可以作为车用燃料来代替传统的汽油和柴油,实现交通领域的绿色转型。
2. 生物质能源在农业领域的应用生物质能源在农业领域的应用也具有巨大的潜力。
农作物秸秆、畜禽养殖废弃物等生物质资源可以利用生物质能源技术进行高效利用,在农业生产过程中减少废弃物的产生和污染。
此外,生物质能源可以作为农村地区的能源供应方式,替代传统的生物质燃烧方式,改善农村环境和居民生活条件。
3. 生物质能源在工业领域的应用生物质能源在工业领域的应用也具有广阔的前景。
生物质能源有什么发展前景和应用
生物质能源有什么发展前景和应用在当今全球能源需求不断增长,同时环境保护意识日益增强的背景下,生物质能源作为一种可再生、清洁的能源形式,正逐渐崭露头角,展现出广阔的发展前景和多样的应用领域。
生物质能源,简单来说,就是由生物质转化而来的能源。
生物质包括植物、动物及其排泄物、垃圾、有机废水等有机物质。
这些看似平常的物质,在经过适当的处理和转化后,能够成为宝贵的能源。
先来说说生物质能源的发展前景。
随着传统化石能源的逐渐枯竭以及其使用带来的环境污染问题愈发严重,寻找可替代的清洁能源已成为当务之急。
生物质能源具有可再生的特点,只要地球上有生命存在,生物质就能源源不断地产生。
这与有限的化石能源形成了鲜明对比。
从全球范围来看,各国政府对可再生能源的支持力度不断加大,出台了一系列鼓励政策和补贴措施,以推动生物质能源的发展。
这为生物质能源产业的快速发展提供了有力的政策保障。
在技术方面,生物质能源的转化技术也在不断进步。
例如,生物发酵技术、热化学转化技术等的不断优化,提高了生物质能源的转化效率和质量,降低了生产成本,使其在市场上更具竞争力。
生物质能源的应用领域十分广泛。
在能源生产方面,生物质可以通过直接燃烧发电,为工厂、学校、医院等提供电力。
这种方式简单直接,适用于大规模的生物质资源利用。
生物质气化也是一种常见的应用方式。
将生物质转化为可燃气体,如一氧化碳、氢气和甲烷等,然后用于发电、供热或作为燃料用于工业生产。
这种技术不仅提高了能源利用效率,还减少了污染物的排放。
生物柴油是生物质能源在交通运输领域的重要应用。
通过对植物油或动物脂肪进行化学处理,可以生产出与传统柴油性能相似的生物柴油。
使用生物柴油可以降低车辆尾气排放,对改善空气质量具有重要意义。
此外,生物质还可以用于生产乙醇燃料。
乙醇燃料可以与汽油混合使用,减少对传统汽油的依赖,降低温室气体排放。
在一些国家和地区,乙醇汽油已经得到了广泛的推广和应用。
在农村地区,生物质能源也发挥着重要作用。
生物质能源开发利用的现状与前景分析
生物质能源开发利用的现状与前景分析随着能源危机日益临近,环境问题日益突出,生物质能源作为一种新型的可再生能源成为了当前发展的热点之一。
生物质能源是指以农业、林业、畜牧业和生活废弃物等作为原料制成的可再生能源,包括生物质热能、生物质液体燃料和生物质气体燃料等。
在我国,生物质能源的开发利用虽然已经取得了一些进展,但是与发达国家相比还存在差距。
本文将对生物质能源开发利用的现状与前景进行分析,以期为进一步推动生物质能源开发利用工作提供参考。
一、生物质能源开发利用的现状1.生物质热能生物质热能是指利用生物质进行热能转换,使之成为可供人们使用的热能。
生物质热能的利用形式多种多样,主要包括薪柴燃烧、生物质热水、生物质蒸汽和生物质热电联产等。
目前,我国的生物质热能市场主要集中在农村地区,大多数是由传统农村能源替代项目引起的。
然而,这些项目在技术水平、产业规模和市场化程度等方面存在一定的问题,还需要进一步推进。
2.生物质液体燃料生物质液体燃料是指利用生物质技术手段将其中的有机化合物分离出来,制成可用于代替化石燃料的燃料形式。
生物质液体燃料主要包括生物柴油和生物乙醇等。
目前我国的生物质液体燃料主要以生物乙醇为主,而生物柴油的开发利用还处于起步阶段。
生物乙醇燃料在消费者市场上的推广和应用非常成功,但是由于墨西哥和巴西等国家对生物乙醇的贸易管制,我国的生物乙醇行业面临诸多挑战。
3.生物质气体燃料生物质气体燃料是指利用生物质技术手段将其中的可燃气体产生器化学反应后获得的气体化学成分,制成其可用于代替化石燃料的燃料形式。
生物质气体燃料主要包括生物甲烷、生物氢气、生物二氧化碳和生物合成气等。
我国的生物质气体燃料开发利用处于起步阶段,但是其发展前景十分广阔,目前正受到政府和企业的关注和大力支持。
二、生物质能源开发利用的前景展望1.市场前景广阔目前,我国的生物质能源市场主要集中在农村地区,但是随着人们对环保和节能的重视,在城市地区也渐渐出现了生物质能源的需求。
生物质能源的发展及应用前景
生物质能源的发展及应用前景近年来,随着环境保护意识的不断提高,人们对于可再生能源的需求也越来越高,其中生物质能源作为一种理想的替代能源受到越来越多的关注。
生物质能源是指利用生物质作为能源源头的一种能源,比如木材、农作物废弃物、城市垃圾等。
与传统能源相比,生物质能源具有环保、可再生、分布广泛等一系列优点,同时也存在一些挑战和限制,下面我们就从几个方面来探讨生物质能源的发展及应用前景。
一、生物质能源的来源首先,生物质能源的来源非常广泛,包括但不限于以下几个方面:1.森林资源:木材、枝干、木屑、枝叶等。
2.农作物废弃物:包括稻草、棉秆、花生壳、玉米秸秆等。
3.家庭、商业、工业废弃物:包括厨余垃圾、纸张、衣服等。
4.生活垃圾:包括生活垃圾、污泥、畜禽粪便等。
由于生物质能源的来源广泛,因此其碳排放量也较低,而且在大量使用的情况下不会对环境产生日益严重的影响,因此生物质能源在环境保护方面具有很大的潜力。
二、生物质能源的优势生物质能源相比传统能源具有多个优势:1. 环保:生物质能源的主要源头生物质本身就是自然环境中的一部分,由于其碳排放量较低,因此生物质能源的应用对于降低温室气体产生的影响具有显著的效果。
2. 可再生:生物质能源可以通过种植和种植后淘汰生物质的迭代循环来实现能源的可持续性。
因此,在长期的应用中,其自然循环能力可以保持良好,不会因为大量使用而日益减少。
3. 分布广泛:生物质资源分布极广,可以在整个地球范围内产生所需的能量。
这意味着生物质能源的使用可以解决能源不足和能源转移扰动等问题。
4. 多元化:生物质能源来源广泛,种类丰富。
可以通过多种途径获取,如田间农作物、林地木材等。
三、生物质能源的应用前景随着可再生能源技术的不断发展,生物质能源的应用前景变得日益广阔。
从三个方面来分析生物质能源的应用前景:1. 生物质能源的发电应用生物质能源已成为一个很好的替代性发电能源。
除了传统零排放的生物质热电站外,还可以将生物质燃料转换成气体或液体来燃烧。
生物质能源的利用与发展前景
生物质能源的利用与发展前景随着全球能源消耗量的不断增加以及对环境的影响日益严重,生物质能源作为一种可再生能源受到了越来越多的关注。
生物质能源指的是利用生物质(如森林、农作物、畜禽粪便等)进行转换和利用的能源,可以用于发电、热水供应、燃料等多种用途。
生物质能源具有很多优点,也面临着一些挑战,但是它的发展前景仍然非常广阔。
生物质能源的优点首先,生物质能源具有可再生性。
相比于化石燃料等非可再生能源,生物质能源可以通过再生资源来进行生产和利用,因此不会像化石燃料一样会随着时间的推移而枯竭。
其次,生物质能源是一种清洁的能源。
在生物质的燃烧、气化等过程中,几乎不会产生二氧化碳等对环境有害物质,因此对空气质量的影响较小。
而且,生物质能源中的碳元素来自于大气中的二氧化碳,因此它不会使全球温室气体排放增加。
再者,生物质能源的生产和利用可以促进农业、林业、畜牧业等产业的发展。
在农业、林业、畜牧业等生产过程中产生的生物质废弃物,如果不能及时处理或回收利用,会对环境造成污染,影响生态系统的平衡。
而通过将这些废弃物转化成生物质能源,不仅可以减少环境污染,还可以促进产业发展、增加经济收益。
生物质能源面临的挑战尽管生物质能源具有很多优点,但是它的发展仍然面临着一些挑战。
首先,生物质能源的生产成本较高。
相比于燃煤发电等传统能源,生物质能源的生产所需的设备和技术都比较先进,因此生产成本也比较高。
这对于生物质能源的商业化运营造成了一定的制约。
其次,生物质能源的利用效率比较低。
由于生物质本身的能量密度较低,在转化成生物质能源的过程中会有一定的能量损失。
而且,不同种类的生物质质量和能量含量也有所差异,因此在生物质的选择和利用方面也需要做出一定的调整和改进。
另外,生物质能源产生的废弃物也需要妥善处理,不然还会对环境造成一定的污染。
虽然生物质能源的生产过程中所产生的废弃物可以通过再次利用等方式减少,但是如果不能及时妥善处理,依然会对水、土、空气等环境造成一定的影响。
生物质能的利用技术研究与发展前景
生物质能的利用技术研究与发展前景生物质能作为一种非常环保、可再生、且广泛存在的能源来源,近年来备受关注。
伴随着环保、节能意识的逐渐加强以及化石能源的日益枯竭,生物质能技术研究和发展的前景变得愈发光明。
本文将从技术角度入手,简述生物质能的来源及利用方式,并重点介绍当前生物质能的应用与发展方向。
一、生物质能及来源生物质能是指从植物、动物和生物废弃物等生物原料中提取的能量,包括木材、秸秆、沼气、生物燃料、生物质颗粒、生物柴油和酒精等多种形式。
生物质能是一种绿色能源,其来源广泛,如森林、农业、废物、污泥等。
在充分利用生物质能的同时,还可以减少大量的固体废弃物、废水和废气排放,保护环境。
二、生物质能的利用方式生物质能利用主要有以下几种方式:1. 生物质直接燃烧发电:生物质燃烧发电是目前最常见的生物质发电方式。
其通过将生物质物料直接燃烧产生的高温热能,使水转化为蒸汽带动发电机发电。
2. 生物质气化发电:生物质气化发电技术是将生物质转移到高温高压环境下进行气化反应,合成气后驱动燃气轮机发电。
3. 生物质液化发电:生物质液化发电主要是通过生物质转化成液态或气态的燃料,产生高温高压气体传递给内燃机,然后驱动发电机生成电能。
4. 生物质焚化发电:生物质焚化技术是指将生物质物料转化成热能,通过直接燃烧来驱动蒸汽涡轮机以生成电能。
三、生物质能技术研究与发展目前,生物质能技术正面临着许多难题。
由于生物质原料的多样性和特殊性,生物质能的提纯和加工技术、转化技术、储存技术、运输技术等方面亟需开发和完善。
因此,目前生物质能的技术研究和发展主要集中在以下几个方面:1. 生物质预处理技术。
预处理技术可以使生物质物料更易于转化成高品质的生物质能,如生物质颗粒化、热压和溶胶液化等技术。
2. 生物质能高效利用技术。
主要包括生物质气化、合成气发电、抗磨损涂层技术、高效低排放燃烧技术、再生技术等。
3. 生物质能储存技术。
由于生物质能来源的波动性和不稳定性,如何充分利用以及储存生物质能显得尤为重要。
生物质能源的发展现状与前景如何
生物质能源的发展现状与前景如何在当今全球能源需求不断增长,同时对环境保护的要求日益严格的背景下,生物质能源作为一种可再生、清洁的能源形式,正逐渐引起人们的广泛关注。
那么,生物质能源的发展现状究竟如何?未来又有着怎样的前景呢?生物质能源,简单来说,就是来源于生物质的能源。
生物质包括各种植物、动物和微生物,以及由这些生命体排泄和代谢产生的有机物质。
常见的生物质能源有生物质发电、生物柴油、生物乙醇、生物质成型燃料等等。
目前,生物质能源的发展取得了一定的成果。
在生物质发电领域,许多国家和地区都建立了基于生物质燃烧的发电厂。
这些发电厂通常利用农业废弃物、林业剩余物、生活垃圾等作为燃料,既实现了废弃物的资源化利用,又产生了清洁的电力。
例如,在北欧一些国家,生物质发电已经成为电力供应的重要组成部分。
生物柴油和生物乙醇的生产也在逐步扩大。
生物柴油通常由植物油或动物脂肪经过化学处理制成,可以直接用于柴油发动机。
生物乙醇则主要由粮食作物(如玉米、小麦)或非粮食作物(如甜高粱、木薯)发酵而来,可与汽油混合使用。
然而,这两种能源的发展也面临一些挑战。
例如,大规模使用粮食作物生产生物燃料可能会对粮食安全产生一定影响,因此,开发非粮食来源的原料成为了当前的研究重点。
生物质成型燃料在供暖和工业用能方面发挥了一定作用。
通过将生物质压缩成颗粒或块状,提高了其能量密度和燃烧效率,方便了储存和运输。
在技术方面,生物质能源的转化技术不断进步。
例如,生物质气化技术可以将生物质转化为可燃气体,用于发电或供热;生物质热解技术能够生产生物油和生物炭,具有较高的能源利用价值。
不过,生物质能源的发展也存在一些问题和限制。
首先,生物质资源的收集和运输成本较高。
由于生物质通常分布较为分散,收集和运输需要耗费大量的人力和物力。
其次,生物质能源的转化效率还有待提高。
虽然技术在不断进步,但与传统的化石能源相比,在能量转换效率方面仍有差距。
再者,生物质能源的生产可能会带来一定的环境影响。
生物质能源产业发展现状与前景分析
生物质能源产业发展现状与前景分析近年来,全球能源需求的不断增长以及对环境友好型能源的需求推动了生物质能源产业的快速发展。
生物质能源是指以植物、动物等有机物质为原料,通过转化和利用技术生产的可再生能源,如生物质电力、生物质燃料和生物质热能。
本文将对生物质能源产业的现状和前景进行分析。
一、生物质能源产业发展现状1.政策支持:许多国家纷纷出台支持生物质能源发展的政策措施,包括财政补贴、税收优惠和能源法规等。
这些政策措施为生物质能源产业的发展提供了有力支持。
2.技术进步:生物质能源领域的技术不断创新和进步,固体废弃物、农作物秸秆、木材废料等可以有效利用,生物质能源的生产效率不断提高,生物质能源设备也越来越先进。
3.能源需求增长:全球能源需求的不断增长是推动生物质能源产业发展的重要因素之一。
随着全球人口的增加和经济的发展,对能源的需求不断上升,生物质能源作为可再生能源的一种,具有较高的替代能力。
4.环境友好型:生物质能源是一种清洁能源,其利用过程中产生的二氧化碳等温室气体相对较低,对环境污染较小。
在应对气候变化和保护生态环境的背景下,生物质能源的发展逐渐受到重视。
二、生物质能源产业发展前景1.市场潜力巨大:生物质能源是可再生能源的重要组成部分,其供给受到地域、季节和气候等因素的制约较少。
未来随着技术的进一步发展和突破,生物质能源供给能力将继续增强,市场潜力巨大。
2.产业链完善:随着生物质能源产业的发展,产业链不断完善。
从原料种植、采集、加工到生物质能源生产和利用,构建了完整的产业链。
这将带动相关行业的发展,形成产业协同效应。
3.经济效益显著:在过去的几年里,生物质能源产业在各国经济中的地位逐渐提升。
生物质能源的生产和利用能够创造就业机会,提高经济效益,对于农村经济发展和增加农民收入具有积极作用。
4.可持续发展:生物质能源是一种可持续发展的能源形式。
相对于石化能源,生物质能源具有更好的环境效益和可再生性。
在实现经济发展的同时,生物质能源也能够保护生态环境,推动经济可持续发展。
生物质能源技术的发展现状及未来趋势
生物质能源技术的发展现状及未来趋势随着全球能源危机日益突显,生物质能源成为近年来备受关注的能源领域之一。
生物质能源技术作为一种新型的清洁能源,其总体优势显著,符合可持续发展的绿色经济类需求,备受人们青睐。
随着科技的发展,生物质能源技术的研究取得了不少的进展,其未来发展前景值得关注。
一、生物质能源技术的发展现状生物质能源技术是利用可再生生物质资源进行能源转换的过程,其形成的主要原因是能源环境的负担和环境污染的减少。
生物质能得以大规模开发和利用,主要因为能够弥补传统能源的不足,逐渐成为新兴的可再生能源。
目前,生物质能源技术的发展形态多样,包括生物质燃料、生物质电力、生物质液体燃料和生物质气体燃料等,以及生物质能和新能源复合利用等。
其中,生物质电力技术的应用十分广泛,其装机容量和电量不断增加。
生物质能源技术的发展主要受以下因素的影响:早期的技术投资、技术成本、生物质供应成本、生物质能源市场化等。
在能源产业链中,生物质资源往往被视为燃料和生产原料的替代品,我国也大力推行生物质资源开发,鼓励技术创新,发掘生物质资源的潜力。
二、未来生物质能源技术的趋势未来的生物质能源技术发展将体现出以下趋势:1. 生物质供给链的改善生物质资源供应是生物质能源链中非常重要的环节,如果不能保障现有的生物质来源或者生物质来源无法持续,生物质能源未来的发展将面临巨大的挑战。
因此,在保障生物质供应可持续的前提下,制定合理的生物质供应计划,调整机制和价格政策,保障全球生物质供应链的稳定性,实现生态和经济双重效益。
2. 技术创新与产业化技术创新是生物质能源技术发展的核心,包括能源利用办法、生产技术和综合利用技术。
生物质能源技术的产业化是重要的技术创新成果之一,在产业化进程中,将生物质能源技术的具体实施与市场需求结合起来,促进生物质能源技术的发展,推动生物质能源技术逐步进入市场。
3. 协同创新和分享协同创新和分享是未来生物质能源技术发展的重要走向,各国在生物质能源技术研发中应加强协同创新和分享全球技术资源和专业人才,推动生物质能源技术的共同发展。
生物能源的开发和利用
生物能源的开发和利用随着科技的不断发展和人们对环保的重视,生物能源的开发和利用越来越受到人们的关注。
生物能源指的是来自植物、动物等生物体的能源,例如生物质能、生物油等。
这些能源具有绿色环保、可再生、开发利用成本低等诸多优点,正在成为未来能源发展的重要方向。
一、生物质能的开发和利用生物质能指的是来自植物、动物等有机物的能源,例如木材、农作物秸秆、城市生活垃圾等。
生物质能具有广泛的来源和可再生性,可以替代煤、油和天然气等化石能源,成为代替化石燃料的重要能源形式。
目前,生物质能主要通过生物质发电、生物质燃料等方式开发和利用。
生物质发电是一种利用生物质能源发电的技术。
该技术通过将生物质燃烧产生的热能转换为电能,实现可再生能源的利用。
生物质发电具有低碳环保、可再生和能够促进农业和林业发展等多种优点。
例如我国的南方地区,水稻等农作物的稻壳可以作为生物质发电的重要原料。
生物质燃料,顾名思义,就是利用生物质能源制造的燃料。
生物质燃料主要包括生物柴油、生物乙醇等。
生物柴油是一种通过将甘油等生物质转化为液体燃料的技术来生产的燃料,其具有良好的环保性能和较高的能量密度,比传统柴油更加环保。
生物乙醇是一种使用生物质发酵产生的乙醇制造的燃料,可以替代石油化学制品制成的燃料,具有较低的温室气体排放和节约非可再生资源等多重优点。
二、生物油的开发和利用生物油是利用植物和动物等有机物生产的液体燃料,具有广泛的来源和可再生性,可以替代传统的化石能源。
生物油主要包括生物柴油、生物煤油等,其开发和利用的技术主要有生物油脂转化和生物质直接液化两种。
生物油脂转化指的是将油脂等生物质转化为燃料的技术,目前主要使用的是生物柴油和生物煤油。
该技术的优点在于生产成本低,且原料来源广泛,同时,生物柴油和生物煤油具有良好的环保性和能源资源的可持续利用性。
生物质直接液化是将生物质直接转化为液态燃料的技术,主要包括生物煤和生物油两种。
该技术可以在较低温度下将生物质转化为液态燃料,具有高效、低成本、低碳排放等多重优点。
生物质能源的利用方法及发展趋势
生物质能源的利用方法及发展趋势随着我国经济的快速发展,我国的能源消耗与日俱增。
现在,我国能源年消耗量占世界能总消耗量的20%以上,而且呈现上升的态势。
我国生物多样性丰富,据调查,我国有油料植物为151科697属1554种,其中种子含油量大于40%的植物有154种。
且我国的可开发生物质资源总量为7t左右标准煤,其中农作物秸秆约3.5亿t,占50%以上。
因此,加大生物质能源的开发利用,进行农业生物质能源发掘利用,不仅可解决农民的增收和“三农”问题,还可解决目前中国面临的能源短缺、环境污染、食品安全等重大社会经济问题。
一、生物质能源的利用现状1、直接燃烧直接燃烧主要包括炉灶燃烧、焚烧垃圾、锅炉燃烧压缩成型燃料、联合燃烧。
炉灶燃烧是传统的用能方式,因其效率低而在逐渐被淘汰。
焚烧垃圾是锅炉在800℃-1000℃高温下燃烧垃圾可燃组分,将释放的热量来供热或发电。
压缩成型燃料燃烧是先将生物质压缩成密度大的性能接近煤的物质,再将其燃烧发电,因其排放的污染尾气小而发展前景良好。
联合燃烧是将生物质掺入燃煤中燃烧发电,此法可减少SO2、NO2等污染气体的排放。
2、物化转化物化转化主要包括干馏技术、生物质气化技术及热裂解技术等。
干馏是把生物质转变成热值较高的可燃气、固定碳、木焦油及木醋液等物质。
可燃气含甲烷、乙烷、氢气、一氧化碳、二氧化碳等,可做生活燃气或工业用气,木焦油是国际紧俏产品,木醋液可形成多种化工产品。
生物质气化是在高温条件下,利用部分氧化法,使有机物转化成可燃气体的过程。
产生的气体可直接作为燃料,用于发动机、锅炉、民用炉灶等场合。
3、生化转化生化转化主要包括厌氧消化技术和酶技术。
厌氧消化是利用厌氧微生物在缺氧的情况下将生物质转化为CH4、CO等可燃气体。
同时得到效果很好的可用作农田的肥料的厌氧发酵残留物。
酶技术是利用微生物体内的酶分解生物质,生产液体燃料,如乙醇、甲醇等。
二、生物质能源的利用技术1、沼气发酵技术沼气发酵是有机物质在一定温度、湿度、酸碱度和厌氧条件下,经过沼气菌群消化的过程。
中国生物质能源开发利用现状及发展政策与未来趋势
中国生物质能源开发利用现状及发展政策与未来趋势
随着能源需求的增加和环境问题的日益严重,生物质能源作为一种可再生、清洁的能源形式,受到了越来越多的关注和重视。
中国拥有丰富的生物质资源,如农作物秸秆、林木废弃物、生活垃圾等。
因此,生物质能源在中国的开发利用潜力巨大。
目前,中国的生物质能源开发利用已经取得了一定的成果,主要表现在以下几个方面:
一、生物质能源生产能力逐年提高。
2019年,中国生物质能源的总装机容量达到了18.5GW,其中生物质发电容量为16.5GW,生物质热能容量为2GW。
二、政府对生物质能源的支持力度逐渐增强。
政府加大对生物质能源的投资力度,制定相关政策,加强对该领域的规划和管理。
三、生物质能源的市场化程度不断提高。
生物质能源秸秆、废弃物、木屑等资源的价格不断上涨,市场竞争力也逐步增强。
未来,中国生物质能源开发利用的趋势和政策主要体现在以下几个方面:
一、政府将加大对生物质能源的支持力度。
政府将继续加强对生物质能源的扶持政策,加大投入力度,加快生物质能源发展步伐。
二、生物质能源的市场化程度将不断提高。
随着生物质能源技术的不断发展和成熟,生物质能源的市场化程度将不断提高,生物质能源将成为未来主要的替代能源。
三、生物质能源将向多元化方向发展。
未来,生物质能源的开发
利用将向多元化方向发展,不仅包括生物质发电、生物质热能,还包括生物质液体燃料等。
总之,中国生物质能源开发利用的前景非常广阔,政府将继续加大对该领域的投入和支持,同时生物质能源的市场化程度和多元化方向也将不断提高。
生物质能源的利用及其前景分析
生物质能源的利用及其前景分析生物质能源指的是通过生物质的直接或间接转化而得到的能源。
生物质包括各种植物、树木、农作物秸秆、畜禽粪便等可生物降解物质,其能源利用方式包括热能、电能和生物燃料等,可以广泛应用于工农业生产、生活热水、电力供应等方面。
本文将从生物质能源的利用形式和发展前景两个方向展开分析。
一、生物质能源的利用形式1. 燃烧发电。
生物质经过焚烧,释放的热能可以用于发电,其原理类似于传统的火电厂,但燃料来源更为广泛。
生物质燃烧发电是目前较为成熟的生物质能利用方式之一,不仅可以减少排放污染物,而且可以节省非再生能源的使用。
2. 生物燃料。
生物质能源转化为生物燃料后,可以广泛应用于交通运输、工业生产等领域。
生物燃料可以通过生物质发酵、生物质升级等方式得到,其中生物质发酵可以得到生物发酵能源(如沼气、生物酒精等),生物质升级后可以得到生物柴油、生物液态燃料等。
3. 生物质气化。
生物质气化是一种将生物质转化为气态燃料的能源利用方式。
具体来说,将生物质设备放入具备高温高压的气化炉中,通过控制氧气进口,使得生物质在高温情况下转化为可燃气体。
生物质气化技术可以利用废弃的农林废物和城市固体废弃物等生物质资源。
生物质气化不仅可以提高生物质的利用效率,同时还可以减少环境污染。
二、生物质能源的发展前景生物质能源可以替代传统能源,实现能源的多元化,有利于保护环境和节约能源。
以下是生物质能源的发展前景:1. 生物质能源作为清洁能源的代表,在环境保护和碳排放方面具有独特的价值。
生物质能源的利用不仅可以降低温室气体的排放,同时还可以减少化石燃料的使用对环境造成的污染。
2. 生物质能源的资源丰富,具有较高的开发潜力。
中国广阔的农田、森林、畜牧业和城市生活废弃物等生物质资源丰富,最新的能源白皮书预计2017年我国可利用生物质能源总量约为4.5亿吨标准煤。
3. 生物质能源具有可再生、可持续等特点,可以实现合理的循环利用。
生物质能源的再生性和可持续性是其在能源领域中的最大优势之一,同时生物质能源可以促进循环经济的发展。
生物能源技术的发展趋势及应用前景
生物能源技术的发展趋势及应用前景随着环保风潮的不断升温,生物能源技术作为一种绿色能源已经成为各国政府和社会关注的热门话题。
生物能源技术将农作物、林木、种子、水藻、昆虫等生物转化为能源,在替代化石能源和促进能源结构转型方面具有重要意义。
那么,现在来一起了解一下生物能源技术的发展趋势及其应用前景吧。
一、发展趋势1. 生物质能利用技术进一步完善生物质能利用技术不仅仅包括了秸秆、木材等生物质废弃物的转化利用,还涵盖了生物燃料电池、微生物燃料电池等前沿技术。
生物质能过去主要被利用于传统的火力发电和热能供应,但是随着技术的不断成熟,生物质能利用的范围将会更加广泛,生物质燃料的提纯、微观生物群落调整、酶催化过程等都将成为新发展方向。
2. 生物燃料技术的发展方向生物燃料技术的发展方向将主要在两个方面:一方面是化石燃料的替代。
在现代化工、交通、农业等领域,如果完全采用化石燃料将会产生大量的二氧化碳等有害气体排放,而生物燃料则不仅可以替代化石燃料,还能有效减少有害气体的排放,达到环保和经济效益的双赢目的。
另一方面是向高能效、高含量方向发展,即提高生物燃料产量和质量,减少能耗二、应用前景1. 生物质燃料生物质燃料在能源领域逐渐受到重视,生物质燃料简单易得,同时也更加环保。
通过生物质燃料技术,可以将林木、农作物、木材、秸秆等可再生资源转化为高效、可持续的清洁能源。
将生物质能转化为燃料,能够在电力、热能、燃气等领域得到广泛应用。
2. 生物质液化生物质液化技术能够将生物质转换为液态燃料,效率更高,使用范围更广。
随着技术的不断进步,生物质液化技术将逐渐进入更多领域。
将生物质液化后制成的生物燃料可以应用于交通运输、医药医疗等领域,这不仅降低了传统化石燃料的使用量,还实现了资源的可持续利用。
3. 生物气化技术生物气化技术可以将生物质经气化处理后得到的合成气转化为发电等能源,这些气体不仅具备燃料的能量,还可以用于化工生产等多个领域。
生物质能源利用现状及前景
生物质能源利用现状及前景随着全球能源需求的不断增长和对传统能源的限制,利用生物质能源已成为一种重要的选择。
生物质能源利用不仅符合可持续发展的原则,而且对大气环境和气候变化具有显著的减排效果。
本文将介绍生物质能源的利用现状以及未来的发展前景。
一、生物质能源的利用现状生物质能源是指利用植物、动物和微生物等有机物质转化而得到的可再生能源。
目前,生物质能源的利用已经涵盖了多个领域,包括能源生产、农业生产和废弃物处理等。
1. 能源生产生物质能源被广泛用于能源生产,特别是燃烧领域。
生物质燃料如木质颗粒、秸秆等成为了许多国家的重要能源补充,用于发电和供暖。
此外,生物质燃料还可以替代传统石油、天然气和煤炭,减少对化石燃料的依赖。
2. 农业生产生物质能源在农业生产中发挥了重要作用。
农业废弃物、剩余物和能源作物等可以被用作生物质能源的原料。
例如,废弃的农作物秸秆可以通过生物质发电厂进行燃烧,产生电力和热能。
此外,能源作物的种植也可以为生物质能源的生产提供更多的原料。
3. 废弃物处理生物质能源的利用还解决了废弃物处理的问题。
例如,城市生活垃圾可以通过生物质气化技术转化为生物质能源。
这种方法不仅可以减少废弃物的排放,还能够产生可再生能源。
二、生物质能源利用的前景生物质能源利用的前景非常广阔,具有以下几个方面的发展趋势:1. 技术创新生物质能源利用的前景在于不断的技术创新。
随着技术的进步,生物质能源的生产效率将会得到提高,生产成本也会降低。
同时,新型的生物质能源技术将会不断涌现,为生物质能源的利用带来更多的可能性。
2. 跨界合作随着全球对可再生能源的需求增加,各国之间的合作将变得更加重要。
跨界合作能够促进生物质能源的研究和开发,推动行业的进一步发展。
国际合作还可以促进技术和经验的共享,加速生物质能源利用的推广。
3. 政策支持政府的政策支持对于生物质能源的发展至关重要。
各国政府应该出台相关的政策,鼓励生物质能源的利用和开发。
生物质能的未来发展趋势与挑战
生物质能的未来发展趋势与挑战在当今全球能源格局的演变中,生物质能作为一种可再生能源,正逐渐崭露头角。
它来源广泛,包括农业废弃物、林业剩余物、生活垃圾以及能源作物等。
生物质能的利用不仅有助于减少对传统化石能源的依赖,还能在一定程度上减轻环境污染,对于实现可持续发展具有重要意义。
那么,生物质能未来的发展趋势如何?又面临着哪些挑战呢?一、生物质能的未来发展趋势(一)技术创新推动生物质能高效转化随着科技的不断进步,生物质能的转化技术日益成熟。
例如,生物质气化技术可以将生物质转化为合成气,进而用于发电、生产化学品和燃料;生物质液化技术能够将生物质转化为生物油,可作为替代石油的燃料;生物发酵技术则可以将生物质转化为生物乙醇、生物丁醇等液体燃料。
未来,这些技术将不断创新和优化,提高能源转化效率,降低生产成本,使生物质能在能源市场中更具竞争力。
(二)生物质能与其他可再生能源融合发展为了实现更稳定、可靠的能源供应,生物质能有望与太阳能、风能等其他可再生能源融合发展。
在能源存储方面,生物质能可以与电池储能技术相结合,将多余的电能转化为化学能储存起来,在需要时再释放出来。
此外,生物质能还可以作为备用能源,在太阳能和风能供应不足时补充电力,提高能源系统的整体稳定性和可靠性。
(三)生物质能在分布式能源系统中的应用增加分布式能源系统是指在用户现场或靠近用户现场配置较小的发电机组,以满足特定用户的需求。
生物质能由于其来源广泛、分布分散的特点,非常适合在分布式能源系统中应用。
例如,在农村地区,可以利用农作物秸秆和畜禽粪便等生物质资源建设小型生物质发电站,为当地居民提供电力和热能;在工业园区,可以建设生物质热电联产项目,满足企业的用能需求。
未来,随着分布式能源技术的不断发展,生物质能在这一领域的应用将越来越广泛。
(四)生物质能在交通运输领域的应用拓展除了在电力和热能领域的应用,生物质能在交通运输领域也有着广阔的发展前景。
生物柴油和生物乙醇作为替代传统燃油的清洁能源,其市场需求将不断增加。
生物能源技术的发展与未来前景
生物能源技术的发展与未来前景随着气候变化和环境污染问题的日益严重,人类对于清洁、可再生能源的需求越发迫切。
生物能源技术作为其中一种补充能源,已经受到越来越多的关注和投资。
本文将探讨生物能源技术的发展历程、现状以及未来前景。
一、生物能源技术发展历程生物能源技术是指利用生物质(包括林木、农作物、废弃物、污泥等)进行能源转换和利用的技术。
早在古代,人们就利用生物质作为燃料来生火、做饭,但是真正意义上的生物能源技术的起源可以追溯到19世纪初。
当时,人们开始利用木材和农作物废弃物生产液体燃料,例如木炭、酒精和醋酸等。
20世纪初,生物燃料开始大规模生产和应用。
例如,第一次世界大战期间,德国开始利用生物质生产木炭和合成油以应对能源短缺。
而在20世纪50年代和60年代,随着石油和天然气供应的激增,生物能源技术逐渐退出了主流能源市场。
直到21世纪初,生物能源技术再度受到关注。
一方面,环保意识的兴起和对化石燃料的限制,促使人们重新审视生物能源技术的潜力。
另一方面,科技的进步使得制取生物燃料的成本和效率有所提高。
现在,生物能源已经成为全球各国推广的清洁、可再生能源之一。
二、生物能源技术现状当前,生物能源技术主要包括生物柴油、生物乙醇和生物气体三种。
生物柴油:生物柴油是从植物油、动物油或废弃物油中提炼的液态燃料,可以用作更环保的汽车或发电厂燃料。
其中,以植物油和废弃物油为原料的生物柴油应用最为广泛。
生物乙醇:生物乙醇是一种由生物质通过发酵和蒸馏制得的酒精,可以用作汽油的替代品。
在全球范围内,生物乙醇已经成为第一代生物能源的代表。
生物气体:生物气体是由有机物质在厌氧条件下微生物的作用下所产生的。
目前,生物气体主要用于工业生产、家庭供暖和发电等方面。
三、生物能源技术前景展望未来,生物能源技术将会面临发展机遇和挑战。
其中,以下三个方面是最值得关注的:1. 技术创新:尽管生物能源技术已经取得了很大进展,但是依然存在许多技术挑战,如生产成本高、能源密度低等问题。
生物质能源在新能源中的应用及其发展前景
生物质能源在新能源中的应用及其发展前景随着能源消耗量的不断增加和环保意识的逐渐加强,寻找新的能源替代品已成为世界各国面临的共同难题。
生物质能源以其丰富的资源和环保经济的特点,成为了未来新能源的重要方向之一。
本文将从生物质能源的定义、应用、发展前景等方面对其进行探讨。
一、生物质能源的定义及来源生物质能源是指以植物、微生物等生物为原料,经过化学反应或生物转化作用,制成的能源产品。
生物质能源的来源非常广泛,包括农林废弃物、食品加工废弃物、畜禽粪便等生物大量存在的废弃物,也包括潜在的生物质资源,如能加工成木质颗粒的林木、金属含量低的农作物和沼气、酒精发酵等方法处理的生物质。
二、生物质能源的应用1. 生物质能源的热利用生物质能源在热利用方面有着广泛的应用,如用于发电和供热。
生物质能源转化为热能时,能够提供大量的热量,能够满足家庭、企业等需要。
同时,生物质能源热利用的过程中产生的灰渣和废气都可以再次利用,达到环保的效果。
2. 生物质能源的液态燃料应用生物质能源也可以通过化学反应的方式制成液态燃料,如生物柴油、乙醇等,这些液态燃料在交通运输领域中有广泛的应用。
尤其是在中国,一部分地区的农民依靠自己家里的生活垃圾来发酵成为生物柴油,大大节省了燃料开销。
3. 生物质能源的气态化应用生物质能源在气态化的过程中生成的可燃气体,如沼气、合成气等,可以用于发电、供热、供气等方面。
特别是沼气的应用,前景十分广阔,有利于农村的发展和农民的生活。
三、生物质能源的发展前景在全球范围内,生物质能源的潜力巨大,其开发利用前景非常广阔。
由于生物质能源从源头到终端消耗相对较少,因此其环保性经济性都具有极高的优势,日益受到更多政府和企业的关注。
1.生物质能源适用面广生物质能源不仅可以用于城市的发展和环保,还可以用于农村地区的改善,解决农民的生活用热、发电、燃料等问题。
在缺少非洲国籍的国家,生物质能源可用于支持当地社区的发展并改善当地居民的生活。
生物质能源发展现状及前景
生物质能源发展现状及前景一、引言生物质能源是指从天然生物体中得到的能源,如植物油、动物油、木材、秸秆等可再生的有机物质。
随着能源问题日益凸显,生物质能源作为新兴绿色能源备受关注。
本文将从现状和前景两个方面进行探讨。
二、生物质能源发展现状1.国内外生物质能源发展现状在全球范围内,生物质能源得到了广泛应用。
欧洲国家已经制定了生物质能源发展计划,且成为全球生物质能源消费的最大市场,其中以德国、英国、瑞典、奥地利等国为代表。
美国也将生物质能源列为能源战略重点发展领域之一,大力发展市场。
国内生物质能源行业也发展迅猛,如利用农林废弃物制成的生物质颗粒,已经成为重要的生物质能源品种之一,可以广泛应用于家居暖气、热水供应等领域。
2.生物质颗粒在发展现状生物质颗粒是由薪柴、秸秆和木质废料经过打碎、压缩等工艺处理而成的颗粒状物质,具有环保、经济、高效的特点。
目前,全球生物质颗粒市场有三个重要市场,即欧洲、美国和加拿大,市场占有率分别为48%、38%和5%。
生物质颗粒在国内市场上的应用也日趋广泛,可以 applied在能源领域、农业领域、工业领域等各个领域,具有巨大的开发和应用潜力。
三、生物质能源未来发展前景1.政策和补贴支持全球范围内,生物质能源发展都得到了良好的政策和补贴支持,国际上已有多个国家制定了生物质能源补贴政策,为生物质能源的发展创造了良好的环境。
国内目前也在积极推动相关政策和措施,如制定生物质能源补贴政策、推广生物质颗粒等,为生物质能源的未来发展奠定了坚实基础。
2.应用领域广泛生物质能源的应用领域非常广泛,不仅可以用于环保、清洁能源领域,也可以应用于农业、工业、家居等领域。
随着技术的进步和生产成本的下降,生物质能源将在更广泛的领域中有所应用,且用途也将越来越丰富。
3.开发潜力被认可生物质能源的开发潜力正在逐步被认可,未来已经成为清洁能源的重要补充。
与其它可再生能源相比,生物质能源代表着当前可持续性发展的最大希望之一,并可以为全球的能源供应和环境保护做出贡献。
生物质能源的利用与发展
生物质能源的利用与发展随着人口的不断增加和能源需求的日益紧迫,传统的化石能源资源正面临着耗竭和环境污染的风险。
在这种背景下,生物质能源作为一种可再生能源备受关注。
本文旨在探讨生物质能源的利用与发展,并分析其在可持续能源体系中的重要性。
一、生物质能源的定义与特点生物质能源是指利用植物和动物的有机物质储存的能量,通过物理、化学或生物转化过程产生的能源。
它主要包括木材、秸秆、农作物残渣以及动植物废弃物等。
生物质能源的特点在于其可再生性、广泛性和清洁性。
相比化石能源,生物质能源不仅能够周期性地通过植物生长进行再生,而且利用过程中产生的废弃物可以作为肥料回归自然循环。
此外,生物质能源的燃烧排放较少的二氧化碳,对于减缓全球气候变化具有积极意义。
二、生物质能源的利用方式1. 燃烧利用生物质能源最常见的利用方式之一是通过燃烧将其转化为热能。
燃烧利用可以用于供暖、工业生产和发电等领域。
与化石燃料相比,生物质能源在燃烧释放的二氧化碳总量大致等于其吸收的二氧化碳量,保持了碳排放的平衡。
2. 生物质液体燃料生物质也可以转化为液体燃料,如生物柴油和生物乙醇。
生物柴油是一种从动植物油脂中制取的可替代燃料,它可以与传统柴油混合使用。
生物乙醇是通过发酵和蒸馏将生物质中的糖类转化而成,可用作汽车燃料或添加剂。
3. 生物质气体燃料利用生物质气化技术,将生物质转化为可燃气体,如生物质气体和生物质合成气。
生物质气体是通过高温分解生物质产生的,可以直接用作燃料,也可以经过净化、升压和储存后用于替代天然气。
生物质合成气是一种将生物质气化产生的气体与水蒸汽和空气混合后再经过催化反应,制得合成气体,可用于发电、热供应和合成化学品等领域。
三、生物质能源的发展前景与挑战1. 发展前景生物质能源在全球范围内具有广阔的发展前景。
首先,生物质资源广泛且分布广泛,几乎所有地区都可以利用本地的生物质资源来发展能源。
其次,生物质能源在农业、林业和农作物加工等领域为农民提供了新的经济收入来源,具有促进农村发展的潜力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第24卷第2期 唐山师范学院学报 2002年3月 Vol. 24 No.2 Journal of Tangshan Teachers College Mar. 2002────────── 收稿日期:2001-12-01作者简介:李炳焕(1958-),男,河北遵化人,唐山师范学院化学系副教授。
- 36 -生物质能源的开发利用与前景李炳焕(唐山师范学院 化学系,河北 唐山 063000)摘 要:运用绿色化学原理,论述了化石能源的环境影响和开发利用可再生能源的重要性。
生物质能是最有潜力的可再生能源。
着重论述了生物质能源转换技术及其应用的广阔前景。
关键词:可再生能源;化石能源;环境影响;生物质能中图分类号:O642.3 文献标识码:A 文章编号:1009-9115(2002)02-0036-03能源是人类社会进步最为重要的基础,能源结构的重大变革导致了人类社会的巨大进步,从经济社会走可持续发展之路和保护人类赖以生存的地球生态环境的高度来看,发展可再生资源具有重大战略意义。
1 化石能源将失去世界能源主体地位化石能源一直是人类社会发展的主要动力,人类所需初级能量的80%以上来自化石能源。
随着工业化发展和人口的增长,人类对能源的巨大需求和对化石能源的大规模的开采、消耗已导致资源基础在逐渐削弱、退化,并在化石能源开采利用过程中造成了严重的环境污染与不可逆的环境破坏。
这样,不可再生的化石能源的开发利用所包含的耗竭性和不可逆性,便形成一种内在的危险性机理,威胁着经济社会发展的可持续性。
开发替代的可再生能源是非常必要和迫切的。
2 生物质能源将获得快速发展基于上述原因,迫使人们寻找一种有效途径,使化石能源的发展对环境的不良影响降到最低限度并开发利用可再生能源。
这种途径来自两个方面,一是设计合理、科学的环境政策,进行环境防治和环境重建,二是使社会经济转向可再生能源体系。
提高能源利用效率和开发利用可再生能源,已成为世界能源可持续发展战略的重要组成部分。
可再生能源主要是指生物质能、风能、地热能、太阳能和水能等能源。
它们具有资源丰富、无环境污染、清洁安全、资源不枯竭等优点,是实施可持续发展战略的重要组成部分。
3 生物质能的开发利用生物质资源主要包括农作物、林业作物、水生植物及城市垃圾等。
生物质作为能源资源,具有古老、悠久的历史,也是最有发展潜力的能源品种之一。
即使在当今的现代社会中,世界上将生物质作为能源使用的数量也很大。
目前,全球生物质能源的消费量,仅排在煤、油、气之后,居第四位。
生物质能转化技术途径如图1所示。
各种生物质能在利用时均需转化,由于不同生物质资源在物理化学方面的差异,转化途径各不相同,除人畜粪便的厌氧处理以及油料与含糖作物的直接提取外,多数生物质能要经过热化学转化。
其中生物质气化是热化学转化中最主要的一种方式。
生物质能技术的发展有两个明显的特点:一是发展生物质能资源进行深层转化技术,二是其它先进技术向生物质能技术融合。
3.1 生物质液化将能量密度较低的生物质转化成密度高、品位高的液体燃料是合理利用生物质能的有效途径,也是本世纪最有发展潜力的技术之一。
由生物质制成的液体燃料叫生物燃料。
生物燃料主要包括:生物酒精、生物甲醇、生物柴油和生物油。
应用生物燃料的优点主要包括:首先,它是清洁能源,具有温室气体的零排放,以及较低的NOx 和SOx 等优点,随着人类对环境问题的日益关注,这一优点就越发显得重要;其次,它是可再生能源,可减少人类对储量有限的化石燃料的依赖;第三,可应用废弃物生产燃料油,变废为宝;第四,生物李炳焕:生物质能源的开发利用与前景- 37 -质是本土资源,可减少对外进口化石燃料的依赖,同时促进乡村经济的发展。
图1 生物质能转化技术途径3.1.1 生物酒精目前,生物酒精是应用最广泛的生物燃料,也是较为理想的汽油替代品,具有辛烷值高、抗暴性好等优点。
生物酒精的传统制作过程是水解发酵法。
首先是生物质在催化剂的存在下发生水解反应,转化成五碳糖或六碳糖,然后糖类经过发酵转化成酒精,最后通过蒸馏形成最终的酒精。
生物酒精原料可以是纤维类原料,几乎包括所有的农林废弃物、城市生活有机垃圾和工业有机废弃物等,原料更广泛,成本更低廉。
3.1.2 生物柴油生物柴油是一种酯,它是由大豆或其它油类植物、动物油脂等通过酯化过程合成的。
有机油类植物与醇在催化剂的存在下,发生酯化反应,形成硬脂(甲酯或乙酯),即生物柴油。
目前美国、法国等发达国家生产生物柴油的原料主要是大豆油或菜籽油,但以食用油为原料制取生物柴油不符合我国国情,因此,有人提出用一种野生木本植物——光皮树作为生产生物柴油的原料,以降低生产成本。
大约20%~30%的生物柴油和传统的石油柴油混合,除具有与石油相当的燃料燃烧性能外,还具有更好的防发动机磨损和清洁性能。
3.1.3 生物甲醇生物质制得的甲醇,燃烧释放的二氧化碳量与生物质通过光合作用吸收的二氧化碳量相等,因此它具有二氧化碳零排放的优点。
生物质制甲醇主要是气化法。
首先将原料进行加氢气化反应,产生富含甲烷的气体,经热解生产含一氧化碳和氢的合成气,在催化剂的条件下生成甲醇。
3.1.4 生物油快速裂解生产生物油被认为是最经济的生物质生产液体燃料的路径。
快速裂解是在中等温度(500~600℃),高加热速率(104~105℃/s )及极短的停留时间(<1s ),将生物质直接热解,再经快速冷却得到液体生物油。
生物油是一种液体含氧混合物,氧含量高达40%左右,主要包括羧酸、酚和醛酮等含氧化合物。
生物油包括20~25%水,25~30%水溶性裂解木质素,5~12%有机酸,5~10%非挥发性碳氢化合物酐糖和10~25%的其它含氧化合物。
总之,由生物质制取液体燃料,可以减少人类对石油的依赖,而且可以改善城市污染和酸雨问题。
3.2 生物质固化生物质能在可再生能源中是能量密度较高、可储运、可转化和较少受自然因素制约、兼有矿物燃料属性的能源资源。
其突出的特点是可以年复一年的再生、取之不尽、用之不竭,无污染,可广泛生产,开发前景非常广阔。
生物质致密成型是将秸秆、稻壳、锯末、木屑等生物质废弃物,用机械加压的方法,使原来松散、无定形的原料压缩成具有一定形状、密度较大的固体成型燃料。
生物质致密成型工艺从广义上,可划分为常温压缩成型、热压成型和碳化成型三种主要形式。
热压成型的工艺流程为:原料粉碎→干燥→混合→挤压成型→冷却→包装。
碳化成型的工艺流程为:原料→粉碎除杂→碳化→混合粘结剂→挤压成型→产品干燥→包装。
由于碳化产品的用途广泛,产品适用性强,在冶金、化工、环保、建筑等方面需求量相当大,所以第24卷第2期 唐山师范学院学报 2002年第2期 - 38 -它的国际市场非常广阔,加快生物质致密成型技术和炭化技术的研究与开发,利用农村丰富的生物质资源和丰富的劳动力资源,开拓国际市场,积极参与国际竞争,必将取得可观的经济、生态、环保、社会效益。
3.3 生物质发电工业发达国家在这方面已有先进的技术,并形成一定的规模。
3.4 生物质气化气化技术发展较快,在国内外应用也很广泛,主要有厌氧发酵生产沼气技术、热解气化技术等。
热解气化技术在国外大都采用压力和燃烧气化技术,用以驱动燃气轮机,也有发生炉煤气甲烷化、流化床或固定床热解气化等,我国主要研究开发了流化床、固定床和小型的气化炉热解气化技术。
可分别处理秸杆、木屑、稻壳、树枝、废木块等生物质,将其转换成气体燃料。
我国的沼气技术无论是生活领域还是生产领域,其开发利用技术与规模在国际上都享有盛誉。
另外,湖南省还研制出C100-1型生物质转换成气、油、炭综合利用的生产设备,百公斤稻壳产出木炭48kg ,焦油11kg ,木质气32m 3,投入产出比为14.9:31。
4 生物质能未来前景广阔地球上的生物量的潜力决定着开发利用可再生能源——生物质能的可靠程度。
目前,每年通过植物所固定的太阳能产生的有机物达1 800亿t ,相当于3 000亿GW 的能量,为现实能源消费的10倍左右。
在理想状况下,地球上的生物质潜力可达到现实能源消费的180~200倍。
因此开发利用这一能源是可以依赖和信任的。
国际应用系统分析研究所认为,在21世纪,以化石燃料为主体的世界能源系统将转换成以生物质能、风能、地热能和太阳能等可再生能源为主体的新的世界能源系统。
到2050年,以太阳能和生物质能为主体的可再生能源将占世界能源构成的30%以上。
参考文献:[1] 梁宝芬,等.美国生物质等可再生能源发电考察报告[J].新能源,1994,16(10):1-7.[2] 孙立.生物质原料热解气化技术及用作农户燃料的经济评价[R].山东省科学院能源研究所研究报告.1994. [3] 中国新能源和可再生能源技术和产品[Z].中国科技信息研究所重庆分所,1995. [4] 仲崇立.绿色化学导论[M].北京:化学工业出版社,2000.[5] 李宪法,张湘桥.当前农业发展面临的困境[J].生态农业研究,1993(1):39-43. [6] 张无敌,刘士清,何彩云.生物质潜力及其能源转换[J].自然资源,1996(4):22-25.[7] 张无敌,刘士清,周斌,等.我国农村有机废气物资源及沼气潜力[J].自然资源,1997(1):67-71.[8] 刘克鑫.我国有机垃圾资源及其能源回收技术[A].中国生物质能技术研究与开发[C].北京:中国科技出版社,1992. [9] 张无敌,刘士清,刘志华,等.我国城市固体废气物资源及其能源潜力[J].云南环境科学,1996(3):22-23. [10] 张无敌,宋洪川,何彩云.城市垃圾处理的能源利用前景广阔[J].能源研究与利用,1997(1):18-22. [11] 佟树声.西欧三国生物质能技术考察情况[J].农村能源,1997(5):18-20.[12] 张无敌,周长平.生物质能——未来能源的希望[J].能源研究与利用,1995(4):3-6. [13] 哈密尔顿,等.里约后五年——环境政策的创新[M].北京:中国环境科学出版社,1998. [14] 清华大学核能技术研究所.能源规划与系统模型[M].北京:清华大学出版社,1986. [15] 潘家华.持续发展途径的经济学分析[M].北京:中国人民大学出版社,1997. [16] 阎长乐主编.中国能源发展报告[M].北京:经济管理出版社,1994.Exploiting and Using and Foreground of Biology Qulity EnergyLI Bing-huan(Chemistry Department, Tangshan Teachers College, Hebei Tangshan 063000)Abstract: With the principles of green chemistry, the article discusses the importance of environment effects of fossil energy sources and exploits and uses regeneration energy sources. Biology quality energy is the most potential regeneration energy source. The article discusses stressfully the vast foreground of the conversion technology and application of biology energy.Key Words: regeneration energy sources; fossil energy sources; environment effect; biology qulity energy责任编辑、校对:孙海祥。