北京邮电大学—物理实验—混沌现象附图
混沌实验
非线性电路振荡周期的分叉与混沌姓名:邵艳艳专业:材料物理91学号:09096001非线性电路振荡周期的分叉与混沌一.实验目的⒈了解非线性系统混沌现象的形成过程;⒉通过非线性电路振荡周期的分岔与混沌现象的观察,加深对混沌现象的认识和理解 ⒊理解“蝴蝶效应”。
二.实验原理⒈分岔与混沌理论⑴ 逻辑斯蒂映射 为了认识混沌(chaos )现象,我们首先介绍逻辑斯蒂映射,即一维线段的非线性映射,因为考虑一条单位长度的线段,线段上的一点用0和1之间的数x 表示。
逻辑斯蒂映射是)1(x kx x -→其中k 是0和4之间的常数。
迭代这映射,我们得离散动力学系统 )1(1n n n x kx x -=+ ,0=n ,1,2…我们发现:①当k 小于3时,无论初值是多少经过多次迭代,总能趋于一个稳定的不动点; ②当k 大于3时,随着k 的增大出现分岔,迭代结果在两个不同数值之间交替出现,称之为周期2循环;k 继续增大会出现4,8,16,32…周期倍化级联;③很快k 在58.3左右就结束了周期倍增,迭代结果出现混沌,从而无周期可言。
④在混沌状态下迭代结果对初值高度敏感,细微的初值差异会导致结果巨大区别,常把这种现象称之为“蝴蝶效应”。
⑤迭代结果不会超出0~1的范围称为奇怪吸引子。
以上这些特点可用图示法直观形象地给出。
逻辑斯蒂映射函数是一条抛物线,所以先画一条)1(x kx y -=的抛物线,再画一条x y =的辅助线,迭代过程如箭头线所示(图1)。
图 1—A 不动点 图1—B 分岔周期2 图1—C 混沌 图1—D 蝴蝶效应图1 ⑵逻辑斯蒂映射的分岔图以k 为横坐标,迭代200次以后的x 值为纵坐标,可得到著名的逻辑斯蒂映射分岔图。
0A B图2逻辑斯蒂映射的分岔图。
k 从2.8增大到4。
从图中可看出周期倍增导致混沌。
混沌区突然又出现周期3,5,7…奇数及其倍周期6,10,14…的循环,混沌产生有序,或秩序从混沌中来。
其实以上的这些特性适用于任何一个只有单峰的单位区间上的迭代,不是个别例子特有的,具有一定的普适性。
大物实验-混沌(PDF)
1非线性电路中的混沌现象(2011修订版)混沌(Chaos )研究是20世纪物理学的重大事件。
长期以来,物理学用两类体系描述物质世界:以经典力学为核心的完全确定论描述一幅完全确定的物质及其运动图象,过去、现在和未来都按照确定的方式稳定而有序地运行;统计物理和量子力学的创立,揭示了大量微观粒子运动的随机性,它们遵循统计规律,因为大多数的复杂系统是随机和无序的,只能用概率论方法得到某些统计结果。
确定论和随机性作为相互独立的两套体系,分别在各自领域里成功地描述世界。
混沌的研究表明,一个完全确定的系统,即使非常简单,但由于自身的非线性作用,同样具有内在随机性。
绝大多数非线性动力学系统,既有周期运动,又有混沌运动。
而混沌既不是具有周期性和对称性的有序,又不是绝对无序,而是可用奇怪吸引子等来描述的复杂有序——混沌呈现非周期有序性。
混沌研究最先起源于Lorenz 研究天气预报时用到的三个动力学方程。
后来的研究表明,无论是复杂系统,如气象系统、太阳系,还是简单系统,如钟摆、滴水龙头等,皆因存在着内在随机性而出现类似无规,但实际是非周期有序运动,即混沌现象。
现在混沌研究涉及的领域包括数学、物理学、生物学、化学、天文学、经济学及工程技术等众多学科,并对这些学科的发展产生了深远影响。
混沌包含的物理内容非常广泛,研究这些内容更需要比较深入的数学理论,如微分动力学理论、拓扑学、分形几何学等等。
目前混沌的研究重点已转向多维动力学系统中的混沌、量子及时空混沌、混沌的同步及控制等方面。
5.20.1实验目的本实验研究一个简单的非线性电路,分析其电路特性和产生周期与非周期振荡的条件,从而对电路中混沌现象的基本性质和混沌产生的方法有初步了解。
有兴趣的同学在实验后可从附录中选择进一步研究的课题做更深入的研究。
5.20.2实验原理 5.20.2.1非线性电路方程 一个简单而典型的非线性电路如图5.20.1,它又称蔡氏电路(Chua’s circuit ),即三阶互易非线性自治电路。
北航基础物理实验第二学期满分研究性报告 非线性电路混沌现象的模拟、探究及费根鲍姆常数的测量.
基础物理实验研究性报告非线性电路混沌现象的模拟、探究及费根鲍姆常数的测量Chaos in nonlinear circuit simulation, explorationandFeigenbaum ConstantsAuthor 作者姓名陈涵 ChenHanSchool number作者学号 39071210Institute所在院系机械工程及自动化学院SMEA Major攻读专业机械制造及自动化mechanical engineering2011年5月20日摘要 (3)Abstract (3)关键词 (3)一、引言——非线性科学介绍 (3)二、混沌电路简介及实验综述 (4)三、实验原理 (4)3.1 蔡氏电路及其动力学方程 (4)3.2通向混沌道路方式简述 (5)四、实验仪器 (6)4.1 有源非线性负阻元件: (6)4.2 NCE-1非线性混沌实验仪 (6)五、实验现象的观察及物理量测量 (7)5.1 倍周期分岔的观察 (7)5.2 非线性电阻 (8)六、实验数据的处理 (10)6.1 真实实验数据线性拟合 (10)6.2 matlab模拟分析: (12)七、混沌实验电路装置的另一种设想。
(18)八、费根鲍姆常数测量实验的设计 (19)九、结语 (20)9.1自学能力大大提升 (21)9.2培养实事求是的学风与态度 (21)9.3各项课程的互助提高 (21)十、参考文献 (21)2本文由传统非线性电路“蔡氏电路”的混沌现象着手,记录实验现象及数据,分析后用一元线性回归拟合了有源非线性负阻伏安特性曲线,同时使用matlab 进行四阶-库塔方法编程模拟混沌现象并得出一些拟合曲线。
而后提出了一种新的简单混沌电路的设想和实验方式,最终提出了以G和U为状态参数的费根鲍姆常数测量的方法,并推导了近似公式。
AbstractThis article from the traditional non-linear circuits, "Chua's circuit, "the chaos started, record experimental results and data analysis, linear regression with a nonlinear negative resistance of active volt-ampere characteristic curve, while the fourth order using matlab - Kutta methods programmed simulation of chaotic phenomena and draw some curve fitting. Then, a new vision of a simple chaotic circuit and experimental methods, and ultimately presented to G and U for the status parameters of the Feigenbaum constant measurement method, and deduced the approximate formula.关键词:混沌现象蔡氏电路四阶-库塔方法简单混沌电路费根鲍姆常数一、引言——非线性科学介绍非线性科学是一门新兴的科学,是研究和探索自然界和人类社会中种种复杂的非线性问题及其共同特征的一门综合性学科。
近代物理实验--混沌通信原理及其应用课件PPT
2021/3/10
21
注意事项
1.在拔出和插入模块前,一定要关闭实验仪电源。
2. 在调整混沌过程中,把W1(W2、W3)调到最大,再 慢慢调小,出现很小的图形时,按下示波器的自动 按键,使其自动选择合适显示档位。
3.系统地混沌区域较小,一定要仔细调节,一旦出 现混沌态,就不能再大幅度调节W1(W2)否则会失去 混沌态,需重新调节。
2021/3/10
8
实验仪器
信号发生器 示波器
2021/3/10
9
实验原理-非线性电阻的伏安特性
非线性电阻伏安特性
对欧姆定律不适用的导体和器件 ,即电流和电压不成 正比的电学元件叫做非线性元件。非线性元件表现出 混沌现象
2021/3/10
10
实验原理-混沌波形发生实验
蔡氏电路混沌发生实验
L-C振荡电路
从科学的角度来看,“蝴蝶效应”反映了混沌运
动的一个重要特征:系统的长期行为对初始条件的
2021/3/10
28
2021/3/1024 几种混沌的照片2021/3/10
25
拓展研究内容: 1.简述混沌理论在通讯中的应用
2021/3/10
26
拓展研究内容--混沌与蝴蝶效应:
❖ 1960年,美国麻省理工学院教授洛伦兹研究“长期天气预 报”问题时,在计算机上用一组简化模型模拟天气的演变。 他原本的意图是利用计算机的高速运算来提高技期天气预报 的准确性。但是,事与愿违,多次计算表明,初始条件的极 微小差异,均会导致计算结果的很大不同。
近代物理实验 --混沌通信原理及其应用
2021/3/10
1
研究混沌的意义
❖ 混沌的发现和混沌学的建立,同相对论和 量子论一样,是对牛顿确定性经典理论的重 大突破,为人类观察物质世界打开了一个新 的窗口。
北京航空航天大学物理化学第七章界面现象
§7-1 表面吉布斯函数和表面张力
一、(比)表面吉布斯函数
考查一个与蒸气平衡的纯液体,其内部及表面分子的受力情况:
由于有:ρ g << ρ l,则表面分子受到指向液体内部的拉力。 表面功:克服内部引力形成新表面所做的功。为非体积功。
显然 W : ' dA S
对于定温定压、可逆过程:
dG T,pW r' dA S
lnppr*R 2M T1 r2R Vm T1 r (6-3-2)
液滴或凸液面,r > 0,pr > p*
气泡或凹液面,r < 0,pr < p*
二、亚稳状态与新相生成
亚稳状态(介安状态、介稳状态) p
Gm,rGm * RTlnppr*
pe
p凸 p* p凹
过饱和蒸气现象: pr (液滴)> p* G(微液滴)>G(大液滴)
p g p e p 或 p p g p e
dV
pe
推动活塞对气泡做压缩 -dV:δW1 pgdV 气泡膨胀dV: δW2pedV
pg Δp Δp r
净功:δ W δ W 1 δ W 2 (p g p e ) d V d A S
d V d 4 3r ( 3 ) 4r 2 d r ;d A S d 4 r ( 2 ) 8 r d r dV
lnpr2 2M(1 1) pr1 RT r2 r1
Kelvin方程 (7-3-1)
对于确定的液体,一定温度下,液滴的饱和蒸汽压是r 的函数。
一、分散度对液体饱和蒸汽压的影响
对lnpr2 2M(11)的讨论: pr1 RT r2 r1
当r1 →∞时,即为平面液体,则pr1 →p*
非线性电路中的混沌现象实验理解与思考_研究性实验报告
第5页
北航基础物理实验研究性报告
观察双吸引子的时候,注意它是丌断变化不跳跃的。这正是丌稳定不稳定的共存体,是混沌 现象存在的体现不意丿。 2.测量有源非线性电阷的伏安特性幵画出伏安特性图
北航基础物理实验研究性报告
非线性电路中的混沌现象实验理解与思考
摘要
本实验共分为 4 部分 第一部分为实验原理的阐述,基于对于实验原理的理解和讨论,介绍了混沌 现象的发现与完善,及本小组对于混沌现象的深入体会和理解。 第二部分为实验操作过程介绍,介绍了实验过程中详细的操作流程,和本 小组在做实验过程中的经验与总结。 第三部分为实验原始数据的处理,是在原有数据处理上的加深与全面分析。 第四部分即对于本实验的理论层面深入讨论与分析,是小组成员深入思考与 讨论的结果。
3.50E-03
3.00E-03
2.50E-03
2.00E-03
1.50E-03
1.00E-03
5.00E-04
0.00E+00
-2
0
将曲线关于原点对称可得到非线性负阷在 U>0 区间的 I-U 曲线:
I-V图(线性回归)
5.00E-03
I/A
4.00E-03
3.00E-03
2.00E-03
1.00E-03
(1)一倍周期:
一倍周期 (2)两倍周期:
Vc1-t
两倍周期 (3)四倍周期:
Vc1-t
四倍周期 (4)单吸引子:
Vc1-t
第 11 页
北航基础物理实验研究性报告
当代物理前沿专题之 混沌现象
这些都是我们在大学物理中学过的知识,后面还会再推导一次.象式(7.1)这样的方 程,它的解是完全确定的,可以写成
φ(t)=Asin(ωt)+Bcos(ωt)
(7.3).
两个常数A和B可以由初始条件,即t=0时的角位移φ(0)和角速
的系统,只要给定了初始条件,它今后的运动就完全确定了,任何时刻t的角位移和角速 度都可以精确地预言.如果初始条件发生小小的变化,摆的行为也变化不大,同样可以精确 预言.换句话说,摆的运动状态对于初始条件的细微变化并不敏感.
我们取静止点A的势能为0,因为势能总是相对于某个状态来测量的.式(7.13)中的g
是重力加速度,φ是前面已经提到过的角位移.质点m只能沿着半径为l的大圆运动,它的位 移是x=lφ(按弧度算),因此
写出牛顿方程
即
这里圆频率ω由摆长l决定,即
由于正弦函数可以展开成无穷级数
所以式(7.15)是一个非线性的微分方程.当角位移很小时,sin(φ)可以近似地换成 φ,得到前面的方程(7.1).
我们首先解释一下线性运动模式这个概念.出现在单摆方程(7.1)的解(7.3)中的sin (ωt)和cos(ωt)是两种基本的运动模式,它们线性地叠加起来,组成摆的运动φ(t). 同样的,sin(2ωt)或cos(6ωt),是另外一些基本模式,而cos2(ωt)不是基本的模式, 因为根据三角函数关系
它可以分解成1(这是ω=0的模式)和cos(2ωt)两种模式的线性组合. 对于一个遵从欧姆定律的线性电路,电压V,电流I和电阻R的关系是
这是一个参量驱动的阻尼摆,Ω是外驱动力的频率.现在它的运动不再达到静止状态(除非 初始状态是静止在原点).在参量A的某些区域里,可以出现各种不同的振动或转动,或者两
非线性电路中的混沌现象11011079
非线性电路中的混沌现象实验指导及操作说明书北航实验物理中心2013-03-09教师提示:混沌实验简单,模块化操作,但内容较多,需要课前认真预习。
5.2 非线性电路中的混沌现象二十多年来混沌一直是举世瞩目的前沿课题和研究热点,它揭示了自然界及人类社会中普遍存在的复杂性,有序与无序的统一,确定性与随机性的统一,大大拓宽了人们的视野,加深了对客观世界的认识。
许多人认为混沌的发现是继上世纪相对论与量子力学以来的第三次物理学革命。
目前混沌控制与同步的研究成果已被用来解决秘密通讯、改善和提高激光器性能以及控制人类心律不齐等问题。
混沌(chaos)作为一个科学概念,是指一个确定性系统中出现的类似随机的过程。
理论和实验都证实,即使是最简单的非线性系统也能产生十分复杂的行为特性,可以概括一大类非线性系统的演化特性。
混沌现象出现在非线性电路中是极为普遍的现象,本实验设计一种简单的非线性电路,通过改变电路中的参数可以观察到倍周期分岔、阵发混沌和奇导吸引子等现象。
实验要求对非线性电路的电阻进行伏安特性的测量,以此研究混沌现象产生的原因,并通过对出现倍周期分岔时实验电路中参数的测定,实现对费根鲍姆常数的测量,认识倍周期分岔及该现象的普适常数 费根鲍姆(Feigenbaum)常数、奇异吸引子、阵发混沌等非线性系统的共同形态和特征。
此外,通过电感的测量和混沌现象的观察,还可以巩固对串联谐振电路的认识和示波器的使用。
5.2.1 实验要求1.实验重点①了解和认识混沌现象及其产生的机理;初步了解倍周期分岔、阵发混沌和奇异吸引子等现象。
②掌握用串联谐振电路测量电感的方法。
③了解非线性电阻的特性,并掌握一种测量非线性电阻伏安特性的方法。
熟悉基本热学仪器的使用,认识热波、加强对波动理论的理解。
④通过粗测费根鲍姆常数,加深对非线性系统步入混沌的通有特性的认识。
了解用计算机实现实验系统控制和数据记录处理的特点。
2.预习要点(1)用振幅法和相位法测电感①按已知的数据信息(L~20mh,r~10Ω,C0见现场测试盒提供的数据)估算电路的共振频率f。
非线性电路研究混沌现象
一、实验目的1.了解混沌的一些基本概念;2.测量有源非线性电阻的伏安特性;3.通过研究一个简单的非线性电路,了解混沌现象和产生混沌的原因。
二、实验原理实验所用电路原理图如图3.7-1所示。
电路中电感L 和电容C 1、C 2并联构成一个振荡电路。
R 是一有源非线性负阻元件,电感L 和电容器C 2组成一损耗可以忽略的谐振回路;可变电阻R 和电容器C 1串联将振荡器产生的正弦信号移相输出。
电路的非线性动力学方程如式(3.7-1)所示2121212d d )(d d )(d d 112C L C C C C L C C C U ti L gU U U G tU C i U U G tU C -=--=+-= (3.7-1)RL图3.7-1 电路原理图 图3.7-2 非线性元件R 的U - I 特性 这里,U C1、U C2是电容C 1、C 2上的电压,i L 是电感L 上的电流,G = 1/R 0是电导,g 为R 的伏安特性函数。
如果R 是线性的,g 是常数,电路就是一般的振荡电路,得到的解是正弦函数。
电阻R 0的作用是调节C 1 和C 2的位相差,把C 1 和C 2两端的电压分别输入到示波器的x ,y 轴,则显示的图形是椭圆。
如果R 是非线性的,它的伏安特性如图3.7-2所示,由于加在此元件上的电压增加时,通过它的电流却减小,因而此元件称为非线性负阻元件。
本实验所用的非线性元件R 是一个三段分段线性元件。
若用计算机编程进行数值计算,当取适当电路参数时,可在显示屏上观察到模拟实验的混沌现象。
除了计算机数学模拟方法之外,更直接的方法是用示波器来观察混沌现象,实验电路如图3.7-3所示。
图中,非线性电阻是电路的关键,它是通过一个双运算放大器和六个电阻组合来实现的。
电路中,LC 并联构成振荡电路,R 0的作用是分相,使A ,B 两处输入示波器的信号产生位相差,可得到x ,y 两个信号的合成图形。
双运放TL082的前级和后级正、负反馈同时存在,正反馈的强弱与比值R 3 /R 0,R 6/R 0有关,负反馈的强弱与比值R 2/R 1,R 5 /R 4有关.当正反馈大于负反馈时,振荡电路才能维持振荡。
实验十六混沌现象的实验研究
实验十六混沌现象的实验研究【实验目的】1、观察非线性电路振荡周期混沌现象, 从而对非线性电路及混沌理论有一个深刻了解。
2、了解有源非线性单元电路的特性。
【实验仪器】1、非线性电路混沌实验仪2、示波器3、电感4、电位器5、测试用表棒和连接导线非线性电路混沌实验仪【实验原理】目前,科学家给混沌下的定义是:混沌是指发生在确定性系统中的貌似随机的不规则运动,一个确定性理论描述的系统,其行为却表现为不确定性一不可重复、不可预测,这就是混沌现象。
进一步研究表明,混沌是非线性动力系统的固有特性,是非线性系统普遍存在的现象。
牛顿确定性理论能够完美处理的多为线性系统,而线性系统大多是由非线性系统简化来的。
因此,在现实生活和实际工程技术问题中,混沌是无处不在的。
混沌的发现和混沌学的建立,同相对论和量子论一样,是对牛顿确定性经典理论的重大突破,为人类观察物质世界打开了一个新的窗口。
所以,许多科学家认为,20世纪物理学永放光芒的三件事是:相对论、量子论和混沌学的创立。
非线性动力学及分岔与混沌现象的研究是近二十多年来科学界研究的热门课题,已有大量论文对此学科进行了深入的研究。
混沌现象涉及物理学、计算机科学、数学、生物学、电子学和经济学等领域,应用极其广泛。
1、非线性电路与非线性动力学实验电路如图1所示,图1中只有一个非线性元件R,它是一个有源非线性负阻器件,电感器L和电容器C2组成一个损耗可以忽略振荡回路:可变电阻Rv1+Rv2和电容器C1串联将振荡器产生的正弦信号移相输出,较理想的非线性元件R是一个三段分段线性元件。
图2所示的是该电阻的伏安特性曲线,从特性曲线显示加在此非线性元件上电压与通过它的电流极性是相反的,由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。
图(1) 图(2)图1 电路的非线性动力学方程为:()11211Vc g Vc Vc G dt dVc C ⨯--⨯= ()L i Vc Vc G dtdVc C +-⨯=21222Vc dtdiL L -= 式中,导纳G=1/(Rv1+Rv2),Vc1和Vc2分别表示加在C1和C2上的电压,iL 表示流过电感器L 的电流,g 表示非线性电阻的导纳。
混沌现象
研究性实验报告——非线性电路中混沌现象的研究 非线性电路中混沌现象的研究一、 摘要本文介绍了混沌现象的起源、产生混沌现象的原因以及非线性电路中的混沌现象 本文介绍了混沌现象的起源 产生混沌现象的原因以及非线性电路中的混沌现象, 最后用一元线性回归方法对有源非线性负阻元件的测量数据做了分段拟合。
最后用一元线性回归方法对有源非线性负阻元件的测量数据做了分段拟合二、 背景1.混沌的起源 混沌理论是一门对复杂系统现象进行整体性研究的科学。
混沌理论是一门对复杂系统现象进行整体性研究的科学 我国科学家钱学森称混沌是宏 观无序、微观有序的现象。
混沌理论的创立 将非线性系统表现的随机性和系统内部的决定 混沌理论的创立,将非线性系统表现的随机性和系统内部的决定 性机制巧妙地结合起来。
20 世纪 60 年代,麻省理工学院的气象学家洛伦兹在计算机上进行天气模拟演算。
他当时 理工学院的气象学家洛伦兹在计算机上进行天气模拟演算 用的计算机,储存数据的容量是小数点后六位数字 储存数据的容量是小数点后六位数字,但是在打印输出数据时, ,为了节省纸张, 只输出小数点后三位数字。
而洛伦兹在给第二次计算输入初始条件的时候 只输入了小数点后 而洛伦兹在给第二次计算输入初始条件的时候,只输入了小数点后 的三位,与精确的数据有不到 0.1%的误差。
就是这个原本应该忽略不计的误差 与精确的数据有不到 就是这个原本应该忽略不计的误差,使最终的结果 大相径庭,如图 1 所示。
1963 年,洛伦兹在美国《气象学报》上发表了题为“ 1963 “确定性的非周期 流”的论文,提出了在确定性系统中的非周期现象 提出了在确定性系统中的非周期现象。
第 2 年,他发表了另外一篇论文 他发表了另外一篇论文,指出对 于模式中参数的微小改变将导致完全不一样的结果,使有规律的、周期性的行为 于模式中参数的微小改变将导致完全不一样的结果 周期性的行为,变成完全混 乱的状态。
北航基础物理实验之【非线性电路中的混沌现象】
非线性电路中的混沌现象一:数据处理:1.计算电感L本实验采用相位测量。
根据RLC 谐振规律,当输入激励的频率LCf π21=时,RLC 串联电路将达到谐振,L 和C 的电压反相,在示波器上显示的是一条过二四象限的45度斜线。
测量得:f=32.8kHz ;实验仪器标示:C=1.095nF 由此可得:mH C f L 50.21)108.32(10095.114.34141239222=⨯⨯⨯⨯⨯==-π估算不确定度: 估计u(C)=0.005nF ,u(f)=0.1kHz 则:32222106.7)()(4)(-⨯=+=C C u f f u L L u 即mH L u 16.0)(=最终结果:mH L u L )2.05.21()(±=+2.用一元线性回归方法对有源非线性负阻元件的测量数据进行处理: (1)原始数据:(2)数据处理:根据RU I RR=可以得出流过电阻箱的电流,由回路KCL 方程和KVL 方程可知:RR R R U U I I =-=11由此可得对应的1R I 值。
对非线性负阻R1,将实验测得的每个(I ,U )实验点均标注在坐标平面上,可得:图中可以发现,(0.0046336,-9.8)和(0.0013899,-1.8)两个实验点是折线的拐点。
故我们在V U 8.912≤≤-、8V .1U 9.8-≤<-、0V U 1.8≤<-这三个区间分别使用线性回归的方法来求相应的I-U 曲线。
使用Excel 的Linest 函数可以求出这三段的线性回归方程:⎪⎩⎪⎨⎧≤≤≤≤+-≤≤= 0U 1.72- 0.00079U - -1.72U 9.78- 30.000651950.00041U - 9.78U 12- 20.02453093-0.002032U I经计算可得,三段线性回归的相关系数均非常接近1(r=0.99997),证明在区间内I-V 线性符合得较好。
实验48 非线性电路中混沌现象的研究
第4章基础实验25 实验4.8 非线性电路中混沌现象的研究现代科学技术研究发现,非线性是真实世界的普遍特性,非线性问题大量出现在自然科学、社会科学和工程科学中,并起着重要的作用。
混沌的研究是20世纪物理学的重大事件,在现代非线性理论中,混沌是泛指在确定体系中出现的貌似无规律的、随机的运动。
混沌运动的基本特征是确定性中包含的非周期性和不可预测性,以及对初值的敏感性等。
混沌的研究表明,一个完全确定的系统,即使非常简单,由于自身的非线性作用,同样具有内在的随机性。
绝大多数非线性动力学系统,既有周期运动,又有混沌运动,而混沌既不是具有周期性和对称性的有序,又不是绝对的无序,而是可用奇怪吸引子来描述的复杂的有序,混沌是非周期的有序性。
以下我们用级联倍周期分岔的方式接近混沌,从一个简单的实验中去观察非线性的现象,并尝试着得到一些重要结论。
【实验目的及要求】1.学习有源非线性电阻的伏安特性。
2.通过研究一个简单的非线性电路,了解混沌现象和产生混沌的原因。
3.学会自己设计和制作一个实用电感器以及测量非线性器件伏安特性的方法。
【提供的主要器材】NCE-Ⅱ型非线性电路混沌实验仪、双踪示波器、铁氧介质电感、自备器件。
【实验预备知识】1.了解混沌起源混沌理论是一门对复杂系统现象进行整体性研究的科学。
我国科学家钱学森称混沌是宏观无序、微观有序的现象。
混沌理论的创立,将非线性系统表现的随机性和系统内部的决定性机制巧妙地结合起来。
20世纪60年代,麻省理工学院的气象学家洛伦兹在计算机上进行天气模拟演算。
他当时用的计算机,储存数据的容量是小数点后六位数字,但是在打印输出数据时,为了节省纸张,只输出小数点后三位数字。
而洛伦兹在给第二次计算输入初始条件的时候,只输入了小数点后的三位,与精确的数据有不到0.1%的误差。
就是这个原本应该忽略不计的误差,使最终的结果大相径庭,如图4-20所示。
1963年,洛伦兹在美国《气象学报》上发表了题为“确定性的非周期流”的论文,提出了在确定性系统中的非周期现象。