简单的三角恒等变换练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2 简单的三角恒等变换
一、填空题
1.若
25π<α<411π,sin2α=-54,求tan 2α________________
2.已知sin θ=-
53,3π<θ<2π7,则tan 2θ的值为___________.
4.已知α为钝角、β为锐角且sin α=
54,sin β=1312,则cos 2-βα的值为____________.
5. 设5π<θ<6π,cos
2θ=a ,则sin 4θ的值等于________________
二、解答题
6.化简
θθθθ2cos 2sin 12cos 2sin 1++-+.
7.求证:2sin (
4π-x )·sin (4π+x )=cos2x .
8.求证:
α
ααααtan 1tan 1sin cos cos sin 2122+-=-⋅-a .
9.在△ABC 中,已知cos A =B b a b B a cos cos ⋅--⋅,求证:b a b a B A
-+=2tan 2tan 2
2
.
10. 求sin15°,cos15°,tan15°的值.
11. 设-3π<α<-
2π5,化简2)πcos(1--α.
12. 求证:1+2cos 2θ-cos2θ=2.
13.
求证:4sin θ·cos 22θ=2sin θ+sin2θ.
14. 设25sin 2x +sin x -24=0,x 是第二象限角,求cos
2x 的值.
15. 已知sin α=
1312,sin (α+β)=54,α与β均为锐角,求cos 2
β.
参考答案
一、填空题
1. 2
15+. 2.-3 4. 65657 5.-21a - 二、解答题
6.解:原式=θ
θθθ2cos 2sin 12cos 2sin 1++-+ =1)
-(+⋅+)-(-⋅+θθθθθθ22cos 2cos sin 21sin 21cos sin 21 =θ
θθθθθ22cos 2cos sin 2sin cos sin 2+⋅2+⋅ =)
cos (sin cos 2sin cos sin 2θθθθθθ+⋅)+(⋅ =tan θ.
7.证明:左边=2sin (
4π-x )·sin (4π+x ) =2sin (
4π-x )·cos (4π-x ) =sin (2
π-2x ) =cos2x
=右边,原题得证.
8.证明:左边=α
ααα22sin cos cos sin 21-⋅- =)
sin (cos )sin (cos cos sin 2sin cos 22αααααααα+⋅-⋅-+ =)
sin )(cos sin (cos )sin (cos 2
αααααα+-- =
ααααsin cos sin cos +- =α
αtan 1tan 1+- =右边,原题得证.
9.证明:∵cos A =
B b a b B a cos cos ⋅--⋅, ∴1-cos A =
B b a B b a cos )cos 1()(⋅--⋅+, 1+cos A =
B b a B b a cos )cos 1()(⋅-+⋅-. ∴)
cos 1()()cos 1()(cos 1cos 1B b a B b a A A +⋅--⋅+=+-. 而2
tan 2
cos 22sin 2cos 1cos 1222A B A
A A ==+-, 2
tan cos 1cos 12B B B =+-, ∴tan 2)()(2b a b a A -+=·tan 22B ,即b a b a B A -+=2tan 2tan 2
2
.
10.解:因为15°是第一象限的角,所以
sin15°=4264)26(434823222312
30cos 12-=-=-=-=-=︒-, cos15°=
4264)26(43482322231230cos 12+=+=+=+=+=︒+, tan15°=︒
+︒-30cos 130cos 1=2-3. 11.解:∵-3π<α<-2π5,∴-2π3<2α<-4π5,cos 2α<0. 又由诱导公式得cos (α-π)=-cos α, ∴2+=--ααcos 12)πcos(1=-cos 2
α. 12.证明:左边=1+2cos 2θ-cos2θ=1+2·2
2cos 1θ+-cos2θ=2=右边. 13.证明:左边=4sin θ·cos 22θ=2sin θ·
2cos 22θ=2sin θ·(1+cos θ) =2sin θ+2sin θcos θ=2sin θ+sin2θ=右边.
14.解:因为25sin 2x +sin x -24=0,
所以sin x =25
24或sin x =-1. 又因为x 是第二象限角, 所以sin x =
2524,cos x =-257. 又2
x 是第一或第三象限角, 从而cos
2x =±225712cos 1-±=+x =±53. 15.解:∵0<α<
2π,∴cos α=135sin 12=-α. 又∵0<α<2π,0<β<2
π, ∴0<α+β<π.若0<α+β<
2π, ∵sin (α+β)<sin α,∴α+β<α不可能. 故2
π<α+β<π.∴cos (α+β)=-53. ∴cos β=cos [(α+β)-α] =cos (α+β)cos α+sin (α+β)sin α=-
53·54135+·65331312=, ∵0<β<
2π, ∴0<2β<4
π. 故cos
656572cos 1=+=2ββ
.