光纤传感器-位移测量
光纤位移传感器测位移特性实验(精)

实验二十六 光纤位移传感器测位移特性实验一、实验目的:了解光纤位移传感器的工作原理和性能。
二、基本原理:光纤传感器是利用光纤的特性研制而成的传感器。
光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能,绝缘、无感应的电气性能,耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。
光纤传感器主要分为两类:功能型光纤传感器及非功能型光纤传感器(也称为物性型和结构型)。
功能型光纤传感器利用对外界信息具有敏感能力和检测功能的光纤,构成“传”和“感”合为一体的传感器。
这里光纤不仅起传光的作用,而且还起敏感作用。
工作时利用检测量去改变描述光束的一些基本参数,如光的强度、相位、偏振、频率等,它们的改变反映了被测量的变化。
由于对光信号的检测通常使用光电二极管等光电元件,所以光的那些参数的变化,最终都要被光接收器接收并被转换成光强度及相位的变化。
这些变化经信号处理后,就可得到被测的物理量。
应用光纤传感器的这种特性可以实现力,压力、温度等物理参数的测量。
非功能型光纤传感器主要是利用光纤对光的传输作用,由其他敏感元件与光纤信息传输回路组成测试系统,光纤在此仅起传输作用。
本实验采用的是传光型光纤位移传感器,它由两束光纤混合后,组成Y 形光纤,半园分布即双D 分布,一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。
两光束混合后的端部是工作端亦称探头,它与被测体相距d ,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,如图26—1所示。
发射光接收光(a)光纤测位移工作原理 (b)Y 形光纤图26—1 Y 形光纤测位移工作原理图传光型光纤传感器位移量测是根据传送光纤之光场与受讯光纤交叉地方视景做决定。
光纤位移传感器原理

光纤位移传感器原理
光纤位移传感器是一种基于光纤原理的测量设备,用于测量物体的位移或位移变化。
光纤位移传感器的原理是利用光纤的光传输特性来实现位移的测量。
光纤内部的光束在光纤中传输时会发生折射现象,当光纤受到外界力的作用使其发生位移时,光束的传输路径也会发生改变。
这种位移会导致光纤中的光信号产生相位变化或强度变化。
通过对光信号的相位或强度变化进行测量和分析,可以推断出光纤受到的位移大小。
通常,光纤位移传感器会利用干涉效应或散射效应来实现位移的测量。
在干涉式光纤位移传感器中,光纤会被分为两条光路,一条用作参考光路,另一条用于测量光路。
当物体位移引起光纤发生位移时,参考光路和测量光路中的光信号会发生干涉,产生干涉条纹。
通过测量干涉条纹的变化,可以推断出物体的位移大小。
在散射式光纤位移传感器中,光纤的位移会引起光信号的散射。
通过测量散射光的强度变化,可以推断出物体的位移大小。
光纤位移传感器具有灵敏度高、测量范围宽、精度高、抗干扰能力强等优点,在工业自动化、机械制造、航空航天等领域有广泛应用。
光纤位移传感器的工作原理

光纤位移传感器的工作原理光纤位移传感器通常由光源、光纤、探头、接收器和信号处理器等部分组成。
光源可以是激光器或LED,其产生的光信号经过调制后由光纤输入。
在光纤中,光信号按照全反射的原理在光纤内部不断传播,直到遇到位移作用或输出接收器。
在光纤中,光信号的强度和相位都会受到位移的影响。
在光纤位移传感器中,常用的测量原理包括干涉原理和光弹性原理两种。
干涉原理是通过光纤中的光信号与外界的相互作用来测量位移的方法。
光纤位移传感器中的干涉原理有两种类型:菲涅尔干涉和马赫-曾德尔干涉。
菲涅尔干涉是利用光信号在光纤中的传播过程中遇到的弯曲或位移而产生的干涉现象来测量位移。
马赫-曾德尔干涉是利用光信号在光纤中通过干涉仪件和物体表面反射产生干涉,通过测量干涉信号的特征参数来推导位移。
光弹性原理是利用光纤在位移作用下的光程变化来测量位移的方法。
光弹性原理利用了光纤的弹性性质,当光纤受到外力作用时会发生轴向形变,同时导致光纤长度发生变化,从而引起光程的变化。
通过测量光程的变化来推导位移。
光纤位移传感器的工作原理可以简单总结为以下几个步骤:首先,光信号从光源发出,经过光纤传输到接收器。
接收器测量光信号的特征参数,如干涉信号的相位差、光程差等。
然后,根据光信号的特征参数进行运算处理,得到位移测量结果。
最后,通过信号处理器进行信号的放大和滤波,将位移测量结果输出。
光纤位移传感器具有高精度、无干扰、抗高温等优点,在测量精度、测量范围、抗干扰能力等方面有着广阔的应用前景。
在航天、航空、汽车、机械制造等领域,光纤位移传感器被广泛应用于位移、振动、形变等参数的测量与监测。
光纤传感器的位移测量与及数值误差分析实验

光纤传感器的位移测量与及数值误差分析实验一、实验原理1.光纤传感器工作原理2.实验仪器和材料(1)光纤传感器:包括光源、探头和电子控制单元。
(2)被测物体:选择一个具有一定位移范围的物体,如斜坡或弹簧。
(3)信号处理器:用于采集和处理光纤传感器的输出信号。
3.实验步骤(1)将光纤传感器的探头安装在被测物体上,并将光源和电子控制单元连接好。
(2)调整光纤传感器的位置和方向,使其能够正确地检测到被测物体的位移。
(3)通过信号处理器采集光纤传感器的输出信号,并进行相应的数据处理。
(4)对被测物体进行一系列的位移变化,记录光纤传感器的输出信号,并计算位移值。
(5)分析和比较测量结果,评估光纤传感器的测量精度和可靠性。
二、数值误差分析1.线性度误差线性度误差是指光纤传感器在测量范围内的输出与被测物体实际位移之间的偏差。
通过在不同位移范围内进行测量,可以绘制出光纤传感器的输入输出曲线,并通过拟合得到线性度误差。
2.灵敏度误差灵敏度误差是指光纤传感器输出信号的增益与被测物体位移之间的偏差。
通过改变被测物体的位移步长,可以测量得到不同位移值下的输出信号,并计算灵敏度误差。
3.常数误差常数误差是指光纤传感器输出信号在零位移点上的固有偏移。
可以通过将被测物体置于零位移点附近,记录测量结果,并计算常数误差。
4.稳定性误差稳定性误差是指光纤传感器在长时间测量过程中输出信号的波动。
通过对输出信号进行连续测量,并统计其标准差,可以评估光纤传感器的稳定性。
5.总误差估计将上述各项误差进行合并,可以得到光纤传感器的总体误差估计。
同时,也可以根据具体的应用需求,确定误差允许范围,评估光纤传感器的适用性。
通过以上实验步骤和数值误差分析,可以深入了解光纤传感器的位移测量原理,并评估其测量精度和可靠性。
同时,针对实验结果中的误差,可以进一步优化光纤传感器的设计和应用。
实验07(光纤传感器的位移测量及数值误差分析实验)实验报告

实验报告:实验07(光纤传感器的位移测量及数值误差分析实验)实验一:光纤传感器位移特性实验一、实验目的:了解光纤位移传感器的工作原理和性能,测量其静态特性实验数据。
学会对实验测量数据进行误差分析。
二、基本原理:本实验采用的是传光型光纤,它由两束光纤混合后,组成Y 型光纤,半园分布即双D 分布,一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。
两光束混合后的端部是工作端亦称探头,它与被测体相距X,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,而光电转换器转换的电量大小与间距X 有关,因此可用于测量位移。
三、器件与单元:主机箱、光纤传感器、光纤传感器实验模板、测微头、反射面。
四、实验数据:实验数据记录如下所示:表1光纤位移传感器输出电压与位移数据实验二:随机误差的概率分布与数据处理1.利用Matlab语句(或C语言),计算算术平均值和标准差(用贝塞尔公式)clc; clear;l=[20.42 20.43 20.40 20.43 20.42 20.43 20.39 20.30 20.40 20.43 20.42 20.41 20.39 20.39 20.40];%例2-22数据v0=l-mean(l)%残差列M1=mean(l)%算术平均值M2=std(l)%标准差计算结果数据分布2.利用Matlab语句(或C语言),用残余误差校核法判断测量列是否存在线性和周期性系统误差%残余误差校核法校核线性系统误差N=length(l)%原数组长度if(mod(N,2))%求数组半长K=(N+1)/2elseK=(N)/2endA1=0;delta=0;%delta=A1-A2for i=1:K;%计算前半部分残差和A1=A1+v0(i);endA2=0;for j=K+1:N;%计算后半部分残差和A2=A2+v0(j);endA1;A2;fprintf('Delta校核结果\n');delta=A1-A2%校核结果%阿贝-赫梅特准则校核周期性系统误差u=0for i=1:N-1;u=u+v0(i)*v0(i+1);endu=abs(u)if((u-sqrt(N-1)*M30)>0)fprintf('存在周期性系统误差\n');elsefprintf('未发现周期性系统误差\n');end运行结果可见delta近似于0,由马利克夫准则可知,此案例中应用的残余误差校核法无法确定是否存在系统误差。
光纤位移传感器实验报告

光纤位移传感器实验报告光纤位移传感器实验报告引言光纤位移传感器是一种基于光纤传输原理的高精度测量设备,广泛应用于机械、航空航天、电子等领域。
本实验旨在通过搭建光纤位移传感器实验装置,探究其原理和性能,并对其进行实际应用测试。
一、实验装置搭建实验装置主要由光源、光纤传输线、光纤接收器和信号处理器组成。
首先,将光源连接到光纤传输线的一端,然后将另一端连接到光纤接收器。
在实验过程中,需要保证光纤传输线的稳定性和光源的亮度。
信号处理器用于接收光纤传输线传输过来的信号,并将其转化为位移数值。
二、原理分析光纤位移传感器的工作原理基于光的传输特性。
光纤传感器通过测量光纤中的光信号的强度变化来确定位移的大小。
当物体发生位移时,光纤中的光信号会受到干扰,从而导致光强度的变化。
通过测量光强度的变化,可以计算出位移的数值。
三、性能测试1. 精度测试为了测试光纤位移传感器的精度,我们将其与一个标准测量仪器进行对比。
首先,我们将标准测量仪器测量得到的位移数值作为参考值,然后使用光纤位移传感器进行测量。
通过对比两者的测量结果,可以评估光纤位移传感器的精度。
2. 灵敏度测试光纤位移传感器的灵敏度是指其对位移变化的响应能力。
我们可以通过改变物体的位移大小,然后观察光纤位移传感器的输出值来测试其灵敏度。
在实验中,我们可以逐渐增加物体的位移,然后记录下光纤位移传感器的输出值。
通过分析数据,可以得出光纤位移传感器的灵敏度。
3. 稳定性测试光纤位移传感器的稳定性是指其在长时间使用过程中的性能表现。
为了测试稳定性,我们可以将光纤位移传感器连接到一个振动平台上,然后进行长时间的振动测试。
通过观察光纤位移传感器的输出值,可以评估其在振动环境下的稳定性。
四、实际应用光纤位移传感器在实际应用中具有广泛的用途。
例如,在机械领域,光纤位移传感器可以用于测量机械零件的位移,以确保其工作正常。
在航空航天领域,光纤位移传感器可以用于测量飞机结构的变形,以确保飞机的安全性。
光纤传感器位移测量

光纤传感器位移测量[实验目的]1.熟悉反射式强度外调制光纤位移传感器的工作原理。
2.掌握光纤位移传感器测量位移的方法。
[实验单元]Y型多膜玻璃光纤,光电变换器,直流稳压源,数字电压/频率表,示波器,支架,反射片,测微头,低频振荡器,激振电路I。
[实验内容]先熟悉各部件配置,功能,使用方法,操作注意事项和附录等。
1.静态测量位移。
在工作台的固定支架上装上光纤传感器的光纤探头,使探头对准镀铬反射片中心,光纤传感器的另一端四芯插头与处理电路光电变换器中输入插座对准后插紧。
(光纤传感器中间的连接块要水平放置,以免损坏。
)在工作台的振动台两旁固定支架上(或是位移装置)装上测微头,使测微头能够带动反射片产生位移。
V端接数字电压表。
旋动测微头带动反射镜片,使光纤探头端开启电源,光电变换器V输出为最小(因为很难完全重合,所以总是有些许微小电压)。
面紧贴反射镜面,此时V电压填入下表,并作出V 然后旋动测微头,使反射镜面离开探头,每隔0.25mm取一2.动态测量振动。
将测微头移开,振动台处于自由状态,根据静态测量位移中作出的V—X曲线选取前沿中点位置装好光纤探头。
如图将低频振荡器输出接“激振I”,调节激振频率和幅度,使振动台保持适当幅度的振动(以不碰到光纤探头为宜)。
V端电压波形,并用电压/频率表读出振动频率。
用示波观察V端必须与信号整形电路的输入相连。
)(此前,光电变换器左图振荡器与激振连接[注意事项]V最大输出电压以2V左右为好,可通过调节增益电位器来控制。
1.光电变换器工作时2.实验时请保持反射镜片的洁净及与光纤端面的平行度。
3.工作时光纤端面不宜长时间直照强光,以免内部电路受损。
4.注意背景光对实验的影响。
5.光纤勿成锐角曲折。
[思考题]1.调制盘反光面的粗糙程度对反射光强是否有影响?为什么?2.反射式光纤位移传感器探头对测量的调制盘反光面倾斜、转动是否会有影响?各有什么影响?3.试用光纤传感器组成一个实用的电子称,简要说明分析其工作原理?。
光纤传感器的位移测量与及数值误差分析实验

实验报告:实验07(光纤传感器的位移测量与及数值误差分析实验)实验一:光纤传感器位移特性实验一、实验目的:了解光纤位移传感器的工作原理和性能,测量其静态特性实验数据。
学会对实验测量数据进行误差分析。
二、基本原理:本实验采用的是传光型光纤,它由两束光纤混合后,组成Y 型光纤,半园分布即双D 分布,一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。
两光束混合后的端部是工作端亦称探头,它与被测体相距X,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,而光电转换器转换的电量大小与间距X 有关,因此可用于测量位移。
三、器件与单元:主机箱、光纤传感器、光纤传感器实验模板、测微头、反射面。
四、实验数据:实验数据记录如下所示:表1光纤位移传感器输出电压与位移数据实验二:随机误差的概率分布与数据处理1.利用Matlab语句(或C语言),计算算术平均值和标准差(用贝塞尔公式)clc; clear;l=[20.42 20.43 20.40 20.43 20.42 20.43 20.39 20.30 20.40 20.43 20.42 20.41 20.39 20.39 20.40];%例2-22数据v0=l-mean(l)%残差列M1=mean(l)%算术平均值M2=std(l)%标准差计算结果数据分布2.利用Matlab语句(或C语言),用残余误差校核法判断测量列是否存在线性和周期性系统误差%残余误差校核法校核线性系统误差N=length(l)%原数组长度if(mod(N,2))%求数组半长K=(N+1)/2elseK=(N)/2endA1=0;delta=0;%delta=A1-A2for i=1:K;%计算前半部分残差和A1=A1+v0(i);endA2=0;for j=K+1:N;%计算后半部分残差和A2=A2+v0(j);endA1;A2;fprintf('Delta校核结果\n');delta=A1-A2%校核结果%阿贝-赫梅特准则校核周期性系统误差u=0for i=1:N-1;u=u+v0(i)*v0(i+1);endu=abs(u)if((u-sqrt(N-1)*M30)>0)fprintf('存在周期性系统误差\n');elsefprintf('未发现周期性系统误差\n');end运行结果可见delta近似于0,由马利克夫准则可知,此案例中应用的残余误差校核法无法确定是否存在系统误差。
光纤传感器在位移测量中的应用

光纤传感器在位移测量中的应用一、实验目的:了解光纤传感器在位移测量中的应用。
二、实验内容:光纤传感器是利用光纤对光的传播作用,即由光纤信息传输回路与光检测元件组成测量系统的CSY系列传感器系统综合实验仪,该仪器光纤采用Y型结构,如图4所示。
图4 光纤位移传感器工作原理图5 光纤位移传感器X-V关系曲线通过光源光纤的传输,光射到被测物体时,由于入射光的散射作用被反射体反射进入接收光纤的光强减弱了,输出的光强与反射体(即被测物体)与光纤探头的距离ΔX有关,光电转换器将接收到的光能转换为电压信号在一定范围内,其输出电压与位移是线性关系,曲线如图5所示(ΔX<2时)。
这种传感器已被用于非接触式微小位移量和表面粗糙度测量等方面。
三、实验要求:1.光纤传感器接线要牢靠。
2.光纤勿折成锐角曲折。
3.光纤不可互换,光纤传感器与综合试验仪相互对号配合使用。
四、实验装置:同实验一。
五、实验步骤:1.取下原来安装在传感器支架上的电涡流激励线圈,在该支架上装好光纤探头,探头对准镀铬反射片(即电涡流传感器试验中使用过的圆形金属片)。
2.建立振动台与测微头的磁性联结,光电变换器Vo与电压表IN相接,开启电源。
转动测微头,使光纤探头端面紧贴反射镜面,此时Vo输出为最小(由于仪器精度问题不一定为零)。
然后旋动测微头,使光纤探头向离开反射镜面的方向移动,每移动0.25mm读取光电变换器的输出Vo电压值填入表内。
六、实验数据及处理:1.使用实验仪实时采集实验数据并绘制光纤位移传感器的X-V关系曲线2.分析光纤位移测量系统的X—V曲线,选择该曲线的适宜区域作为位移检测的工作曲线,并计算出本光纤位移测量系统的灵敏度解:在区间(0,1)内线性度较好,适合作为位移检测工作曲线在区间(0,1)内,灵敏度S=0.630V/mmV=0.63X+2.2873.给出本光纤位移测量系统的推荐量程解:因为曲线在区间(0,1)内线性度较好,且灵敏度高所以推荐量成为(0,1)单位:mm七、思考题:该位移测量系统中使用的光纤传感器属于功能型光纤传感器吗?为什么?答:不是,因为功能型光纤传感器是利用光纤本身的特性把光纤作为敏感元件, 被测量对光纤内传输的光进行调制, 使传输的光的强度、相位、频率或偏振态等特性发生变化, 再通过对被调制过的信号进行解调, 从而得出被测信号。
传感器的位移测量实验

位移测量实验报告专业班级姓名实验仪器编号实验日期一、实验目的掌握常用的位移传感器的测量原理、特点及使用,并进行静态标定。
二、实验仪器CSY10B型传感器系统实验仪。
三、实验内容(一)电涡流传感器测位移实验·1、测量原理扁平线圈中通以交变电流,与其平行的金属片中产生电涡流。
电涡流的大小影响线圈的阻抗Z。
Z = f(ρ,μ,ω,x)。
不同的金属材料有不同的ρ、μ,线圈接入相应的电路中,用铁、铝两种不同的金属材料片分别标定出测量电路的输出电压U与距离x的关系曲线。
2、测试系统组建电涡流线圈、电涡流变换器(包括振荡器、测量电路及低通滤波输出电路)、测微头、电压表、金属片。
3、试验步骤4、数据分析与讨论画出输入输出关系曲线,确定量程,非线性误差,在测量范围内计算灵敏度,进行误差分析。
(二)光纤传感器测位移实验1、测量原理反射式光纤传感器属于结构型, 工作原理如图。
反射式位移传感器原理当发光二极管发射红外光线经光纤照射至反射体,被反射的光经接收光纤至光电元件。
经光电元件转换为电信号。
经相应的测量电路测出照射至光电元件的光强的变化。
2、组建测试系统光纤、光电元件、发光二级管、光电变换测量电路、数字电压表、反射体(片)、测微头。
3、实验步骤4、数据分析与讨论画出输入输出关系曲线,确定量程,非线性误差,在测量范围内计算灵敏度,进行误差分析。
(三)电容式传感器测位移实验1、测量原理电容式传感器是将被测物理量转换成电容量的变化来实现测量的。
本实验采用的电容式传感器为二组固定极片与一组动极片组成二个差动变化的变面积型平行极板电容式传感器。
电容式位移传感器测量系统方框图:2、组建测试系统需用器件与单元:机头中的振动台、测微头、电容传感器;显示面板中的电压表;调理电路面板传感器输出单元中的电容;调理电路单元中的电容变换器(包括了振荡电路、测量电路和低通滤波电路在内)、差动放大器。
3、实验步骤1)、接线。
调节测微头的微分筒使测微头的测杆端部与振动台吸合,再逆时针调节测微头的微分筒(振动台带动电容传感器的动片阻上升),直到电容传感器的动片组与静片组上沿基本平齐为止(测微头的读数大约为20mm左右)作为位移的起始点。
光纤传感器的位移特性实验报告

光纤传感器的位移特性实验报告
本文将分析光纤传感器的位移特性实验,介绍器件本身的特性、参数设置、实验方法,测试数据以及实验结果。
光纤传感器是一种新兴的技术,它主要利用光纤的光学特性和检测技术来检测运动物体的物理位移,以及其他物理变化。
它具有小尺寸、低功耗、设备安装方便、非接触式等优点,可用于检测、控制和监视过程中的各种参数,在机器人技术、航空航天技术、发动机控制系统、安全监测、绿色能源等领域中有广泛的应用。
本实验使用的特定型号的光纤传感器器件是由XXX公司生产的,采用高精度表面贴装工艺,结构小巧,反应迅速,适合作为精密机械设备中的传感器使用。
此款器件采用单模光纤非接触式测量,最大位移量可达到±100mm,分辨率为1m以下,误差低于1%。
为了测试光纤传感器的位移特性,设计了一个由钢丝和支架组成的测试装置,将光纤传感器的光路安装在测试装置的两个固定点上,模拟了实际工作环境中的物理位移,测试装置还具有一定的可调性,可以满足不同的测试要求。
根据实验设计,将光纤传感器安装在协调测试装置上,通过实验室校验系统调节设备参数,如增益和温度,以保证测量结果的准确性,将器件设置为双轴平行模式,然后选择不同增益,模拟不同物理位移。
在每组测试中,模拟的位移值为10mm,20mm,30mm,40mm,50mm,60mm,70mm,80mm,90mm,100mm;每组测试都重复进行了三次,以获得有效的测量结果。
根据测量结果,绘制出光纤传感器的位移特性
图,将量测到的位移值与模拟的位移值进行比较,以确定光纤传感器的准确度。
实验结果表明,在测量范围内,光纤传感器的实测位移与模拟位移之间的误差在1μm以内,无论是在纵轴还是横轴方向,测量精度均达到了预期的要求。
光纤传感器位移特性实验.doc

光纤传感器位移特性实验.doc
实验目的:
1.了解光纤传感器的工作原理
2.学习光纤传感器在位移测量中的应用
实验原理:
光纤传感器是利用光的特性来实现测量的一种传感器。
它利用光纤中光的传输特性,通过改变光路长度来测量被测量体的位移,具有高灵敏度、线性范围宽等优点。
在位移测量中,光纤传感器通过测量出光纤的长度变化来实现位移的测量。
由于光纤的长度变化与被测量体的位移量成正比,因此可以通过测量光纤的长度变化来得出被测量体的位移量。
实验器材:
2.控制器
3.被测物体
实验步骤:
1.将光纤传感器连接至控制器
2.将被测物体固定在平面上
3.通过手动移动被测物体,记录下不同位置时传感器的输出值
4.根据记录数据,计算出被测物体的位移量
实验注意事项:
1.实验过程中,应按照说明书正确使用光纤传感器
2.实验中应注意安全,避免触电等事故的发生
3.在记录数据时,应注意保证数据精确性
实验结果:
通过实验,我们得到了不同位置下光纤传感器的输出数据,根据数据计算得出被测物体的位移量。
实验结果表明,光纤传感器可以准确地测量物体的位移量,并且具有高灵敏度、线性范围宽等优点。
结论:
光纤传感器是一种高精度、高灵敏度的传感器,在位移测量中有着广泛的应用。
通过本次实验,我们了解了光纤传感器的工作原理,学习了其在位移测量中的应用,并且掌握了其在位移测量中的特性。
光纤位移传感器实验报告

一、实验目的1. 理解光纤位移传感器的工作原理和结构。
2. 掌握光纤位移传感器的测量方法及其在位移检测中的应用。
3. 验证光纤位移传感器的准确性和可靠性。
二、实验原理光纤位移传感器是利用光纤的传输特性,通过测量光纤内传输光的变化来检测位移的一种传感器。
反射式光纤位移传感器是其中一种常见类型,其工作原理如下:1. 光源发射的光经光纤探头照射到被测物体表面。
2. 被测物体反射的光经接收光纤传输至光电转换元件。
3. 光电转换元件将光信号转换为电信号输出。
4. 根据电信号的强弱变化,计算被测物体的位移。
三、实验仪器与设备1. 光纤位移传感器2. 激光光源3. 光功率检测器4. 测微头5. 反射面6. 差动放大器7. 电压放大器8. 数显电压表9. 实验台四、实验步骤1. 搭建实验装置:将激光光源、光路系统、待测物体、光功率检测器等连接好。
2. 调节激光光源的位置和光路系统,使激光能够正常发出。
3. 将光纤位移传感器连接到光功率检测器,并调整其位置,使其与待测物体表面保持一定距离。
4. 旋转测微头,使光纤探头与待测物体表面接触,记录初始位移值。
5. 逐渐增加待测物体的位移,记录每个位移值对应的输出光功率。
6. 分析实验数据,绘制位移-光功率曲线,计算位移与光功率之间的关系。
五、实验结果与分析1. 通过实验,验证了光纤位移传感器在位移检测中的应用。
2. 实验结果表明,光纤位移传感器具有以下特点:- 高灵敏度:位移变化对光功率的影响较大,可以精确测量微小位移。
- 高稳定性:光纤传感器受外界环境干扰较小,具有较好的稳定性。
- 抗干扰能力强:光纤传感器对电磁干扰、温度变化等具有较强的抗干扰能力。
3. 实验数据表明,光纤位移传感器的输出光功率与位移之间存在线性关系,可以用于精确测量位移。
六、实验总结1. 通过本次实验,我们了解了光纤位移传感器的工作原理和结构。
2. 掌握了光纤位移传感器的测量方法及其在位移检测中的应用。
光纤位移传感器

光纤位移传感器
GS-TM-WY-Ⅰ光纤位移传感器 主要应用于土木工程领域位移监
测。它承受了全密封防水设计,耐 腐蚀,可以安装在混凝土外表,也 可以埋入岩土内部,具有温度自补 偿功能。
光纤位移传感器FOD 光纤位移传感器FOD因其不受
温度、电子干扰,具有超精确等 特性,可运用于地质勘查,工业 监测等广泛领域。
光纤位移传感器
报告主要内容
13 研究意义 32 研究现状 33 工作原理 34 系统结构 35 应用领域
光纤位移传感器
简洁检测
位移
简洁获得高精 度的检测量
将位移转换成其它 被测量来检测
光纤位移传感器
光纤位移传感器
技术发展较晚 可靠性稳定性差 精度不高 可测量范围小
开发具有自主知识 产权的先进的技术 以及产品,提高我 国光纤传感器测量 位移技术在国际市 场中的竞争力,在 我国科技创新和经 济发展都有十分重 要的意义。
测量原理
光纤位移传感器〔反射式〕
输出曲线
光纤位移传感器〔反射式〕
测量原理
L
光纤位移传感器
系统构成
半圆型传感器
放大器
采样保持器
A/D转换
单
显
片
示
机
器
随机型传感器
Hale Waihona Puke 放大器采样保持器A/D转换
当光源发出的光经放射光纤照射到反射体上后,反射的光经接
收光纤输出,被光敏器件接收;通过对接收到的光强度的检测得到 位移量;放大器将感应信号进展放大,以便后续操作;采样保持器 将所得的信号数据进展二次处理;并将结果通过A/D转换器转换为 数字信号;再通过单片机的输入接口进入处理器进展运算处理;最 终将结果显示在显示器上。
光纤传感器的位移特性实验

实验二十五光纤传感器的位移特性实验一、实验目的了解光纤位移传感器的工作原理和性能。
二、实验内容用传光型光纤测位移。
三、实验仪器光纤传感器、光纤传感器实验模板、数显单元、测微头、直流源、反射面(用电涡流传感器的铁测片做反射面)。
四、实验原理本实验采用的是传光型光纤,它由两束光纤混合后,组成Y型光纤,半园分布即双D 型一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。
两光束混合后的端部是工作端亦称探头,它与被测体相距X,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,而光电转换器转换的电量大小与间距X有关,因此可用于测量位移。
五、实验注意事项1、实验时注意光纤探头与反射面保持平行,调整光纤探头使其位于反射面的圆心上。
2、实验前应用纸巾擦拭反射面,以保证反射效果。
六、实验步骤1、根据图9-1安装光纤位移传感器,二束光纤插入实验板上的座孔上。
其内部已和发光管D及光电转换管T 相接。
图9-1 光纤传感器安装示意图2、将光纤实验模板输出端VO1与数显单元相连,见图9-2。
图9-2光纤传感器位移实验接线图3、调节测微头,使探头与反射面圆平板接触。
4、实验模板接入±15V电源,合上主控台电源开关,调RW使数显表显示值最小,然后微调测微头使数显表显示为0.000(电压选择置2V档)。
5、旋转测微头,被测体离开探头,每隔0.05mm读出数显表值,将其填入下表:(实验结论:1、本实验每隔0.05mm是相对位置,起始值看做0.05mm即可,无需从测微头上读绝对位置值。
每旋转0.05mm,输出的电压的增量应该大致相等。
2、由于学生做实验可能不能正确的找到起始点,导致采集的数据不在线性范围内,从而影响数据采集的线性度,可以让学生从选取的起始点开始计数,多计几组数据,然后选取线性度较好的十组数据,填入下表。
3、如果只看本实验的线性情况,可选取十组较好的数据填入下表,若要看到光纤传感器的整个变化趋势,则至少应该记录25组数据,其V—X曲线见思考题答案)6、根据上表数据,作光纤位移传感器的位移——输出曲线图。
如何进行物体位移监测

如何进行物体位移监测简介:物体位移监测是一项应用广泛的技术,被广泛用于建筑、工程、航空航天等领域。
通过监测物体的位移情况,可以及时发现并解决问题,确保工程的安全和稳定。
本文将介绍几种常见的物体位移监测方法及其应用。
一、传统测量方法1. 激光测距仪激光测距仪是一种常见的物体位移监测工具。
它通过发射激光束,通过测量激光束的返回时间来计算出物体的距离。
这种方法适用于小范围位移的监测,具有精度高、响应速度快的优点。
2. 光纤测量技术光纤测量技术是一种用光纤传感器进行位移监测的方法。
它通过测量光纤受力引起的光纤长度变化,来计算出物体的位移。
这种方法具有高灵敏度、反应迅速的特点,适用于长距离位移的监测。
3. 全站仪全站仪是一种常用的测量仪器,可以用于物体位移监测。
它通过测量物体上特定点的水平和垂直角度变化,计算出物体的位移。
全站仪适用于大范围的位移监测,具有高精度和可靠性。
二、无线传感网络技术随着无线传感网络技术的发展,物体位移监测也逐渐采用了无线传感器网络来实现。
无线传感网络技术可以实现实时监测、远程数据传输和自动化报警等功能,大大提高了位移监测的效率和可靠性。
无线传感网络技术的核心是无线传感器。
这些传感器可以分布在需要监测的物体上,通过无线通信与监测系统进行数据传输。
传感器可以通过测量物体的加速度、振动、变形等参数,来计算出物体的位移。
无线传感网络技术的应用范围非常广泛。
例如,在建筑工程中,可以利用无线传感器网络监测楼房的变形情况,及时发现并解决安全隐患。
在桥梁工程中,可以通过监测桥梁的位移来评估其结构稳定性。
在航空航天领域,可以利用无线传感器网络监测航天器的姿态和位移,确保其正常运行。
三、图像处理技术除了传统的测量方法和无线传感网络技术,图像处理技术也可以用于物体位移监测。
这种方法通过摄像机拍摄物体图像,利用图像处理算法来识别物体的位移。
图像处理技术的优势在于不依赖具体的测量仪器,适用于各种类型的物体位移监测。
光纤位移实验实验报告

光纤位移实验实验报告实验报告:光纤位移实验一、实验目的:1. 掌握光纤位移测量原理和方法。
2. 熟悉光纤位移测量仪器的使用。
3. 观察并分析光纤位移实验现象。
4. 进一步了解光纤在位移测量中的应用。
二、实验原理:光纤位移测量是利用光纤的光学特性实现的一种非接触式位移测量方法。
光纤位移传感器由光纤传感头、光纤连接线、光纤光源和光纤检测器等组成。
当被测物体发生位移时,传感器通过测量光纤传感头上表面的光强变化来计算物体的位移。
实验中通常使用的原理是利用微小的位移引起光纤端面的反射光强变化。
光纤传感头的端面经过特殊处理,可以使光纤端面处于全反射状态。
当物体位移时,光纤端面受到微小的变形,导致反射光的入射角发生改变,进而改变了反射光的强度。
通过测量光纤端面反射光的强度变化,可以计算出被测物体的位移。
三、实验步骤:1. 将光纤位移传感器连接到光纤测量仪器上。
2. 将光纤传感头固定在实验台上,确保其对准待测物体。
3. 调整光纤传感头的位置,使其与待测物体接触。
4. 通过光纤测量仪器进行校准,调整其工作参数使其适应当前实验环境。
5. 在光纤测量仪器上设置起始位移值。
6. 手动移动待测物体,观察光纤测量仪器显示的位移数值。
7. 记录测量结果,并计算位移的精度和稳定性。
四、实验结果与分析:在实验进行中,我们观察到光纤测量仪器能够实时显示被测物体的位移数值,并且具有较高的精度和稳定性。
在实验过程中,我们改变了待测物体的位移范围和速度,发现光纤测量仪器都能够准确地测量出位移数值,并且与实际值基本一致。
通过对实验结果的分析,我们发现光纤位移测量具有以下特点:1. 非接触式测量:由于光纤传感头与被测物体不直接接触,因此不会对被测物体产生影响。
2. 高精度:光纤测量仪器能够实时测量微小的位移,并且具有较高的测量精度。
3. 快速响应:光纤位移传感器能够实时监测位移的变化,并且反应速度较快。
4. 长距离传输:光纤传感器可以通过光纤连接线与光纤测量仪器进行远距离传输,适用于一些需要远程监测位移的场合。
光纤位移传感器原理

光纤位移传感器原理光纤位移传感器是一种基于光学原理设计的测量设备,适用于多种行业和领域,例如化学、医学、航空、汽车等,并且在科学研究和工业生产中都有着广泛的应用。
本文将详细介绍光纤位移传感器的原理。
一、光纤位移传感器的构成和原理光纤位移传感器由两个主要的组件构成:光纤和传感器。
在传统的光纤传感器中,光信号直接通过光纤传输,但是光纤传输会受到各种干扰,影响传输效率和带宽。
为了提高传输效率和减少干扰,光纤位移传感器内部的光纤一般是几何结构规则的光纤,例如Mach-Zehnder光纤干涉仪或Fiber Bragg Grating(FBG)光纤。
光纤位移传感器的原理是利用光纤材料具有高折射率和低损耗的特点,将光线通过光纤传输到接收器上,通过测量光纤中光强的变化来判断被测量的物体的位移情况。
二、光纤位移传感器的基本工作原理光纤位移传感器的基本工作原理是将被测量的物体与传感器相连接,传感器将物体位移的信息转化为光强变化的信号,再通过计算机或其他的数据传输系统进行数据采集和分析。
光纤位移传感器的工作原理主要分为以下两种:1.利用菲涅尔透镜原理的光纤位移传感器菲涅尔透镜是由法国物理学家奥古斯丁·菲涅尔于19世纪发明的,用于光学成像。
光纤位移传感器利用这个原理来测量物体在相对位移时的光路差。
物体移动时,会改变菲涅尔透镜的焦距,而当光线经过菲涅尔透镜时,光线的弯曲程度和物体的位移成正比。
因此,可以根据光线发生的弯曲程度来测量物体的位移。
2.利用FBG的光纤位移传感器Fiber Bragg Grating是光子学领域中的一种技术,是将周期性调制的折射率变化封入光纤中,形成的一种光波反射器,称为光栅反射器。
光纤位移传感器利用FBG的原理来测量物体的位移。
当物体移动时,光线在光纤中传输时的相位会发生变化,进而引起FBG的反射波的频率或波长的变化。
这种明显的变化可以用来测量光栅在光纤中的位移程度。
这种技术有很高的灵敏度和分辨率,可以用于许多微小位移的测量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四光纤传感器————位移测量
实验目的
1、光纤位移传感器的结构与工作原理。
2、光纤传感器的输出特性曲线。
实验原理
反射式光纤位移传感器是一种传输型光纤传感器。
其原理如图1所示:光纤采用Y型结构,两束光纤一端合并在一起组成光纤探头,另一端分为两支,分别作为光源光纤和接收光纤。
光从光源耦合到光源光纤,通过光纤传输,射向反射片,再被反射到接收光纤,最后由光电转换器接收,转换器接受到的光源与反射体表面性质、反射体到光纤探头距离有关。
当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。
显然,当光纤探头紧贴反射片时,接收器接收到的光强为零。
随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。
图2所示就是反射式光纤位移传感器的输出特性曲线,利用这条特性曲线可以通过对光强的检测得到位移量。
反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。
图1 反射式位移传感器原理
图2 反射式光纤位移传感器的输出特性
实验所需部件:
光纤(光电转换器)、光电传感器模块、{光纤光电传感器实验模块}、支架、电压表示波器、螺旋测微仪、反射镜片
实验步骤:
1、观察光纤结构:本实验仪所配的光纤探头为半圆型结构,由数百根导光纤维组成,一半为光源光纤,一半为接收光纤。
2、连接主机与实验模块电源线及光纤变换器探头接口,光纤探头装上通用支架(原装电涡流探头),{探头支架},探头垂直对准反射片中央(镀铬圆铁片),螺旋测微仪装上支架,以带动反射镜片位移。
端接电压表,首先旋动测微仪使探头紧贴反射镜片(如
3、开启主机电源,光电变换器V
输出≈0,然后旋动测微仪,两表面不平行可稍许扳动光纤探头角度使两平面吻合),此时V
使反射镜片离开探头,每隔0.2mm记录一数值并记入下表:
位移距离如再加大,就可观察到光纤传感器输出特性曲线的前坡与后坡波形,作出V-X 曲线,通常测量用的是线性较好的前坡范围。
注意事项:
1、光纤请勿成锐角曲折,以免造成内部断裂,端面尤要注意保护,否则会光通量衰耗加大造成灵敏度下降。
2、实验时注意增益调节,输出最大信号以3V左右为宜,避免过强的背景光照射。
3、双支光纤三端面均经过精密光学抛光,其端面的光洁度直接会影响光源损耗的大小,需仔细保护。
禁止使用硬物、尖锐物体碰触,遇脏可用镜头纸擦拭。
如非必要,最好不要自行拆卸,观察光纤结构一定要在实验老师的指导下进行。
思考题
1.如何利用光纤传感器位移测试的原理,设计一个光纤传感器压力测试单元?(提示:压力致使物体产生形变)。
2. 能否根据光纤传感器位移测试的原理做一个光纤测温实验装置?(提示:将器件在温度场中感受到的温度变化量转化为光纤探头反射面间距变化)。
光纤位移传感器的应用
近年来由于低损耗光导纤维的问世以及检测用特殊光纤的开发,在光纤应用领域继光纤通信技术之后又出现了一门崭新的光纤传感器工程技术。
光纤传感器有功能型和传输型两大类。
反射式光纤位移传感器是一种传输型光纤传感器。