新人教版高中数学必修一函数的概念
高中数学新教材必修一第三章 《函数的概念与性质》全套课件
然,其原因是没有关注到 t 的变化范圈。 下面用更精确的语言表示问题 1 中 S 与 t 的对应 关系。列车行进的路程 S 与运行时间 t 的对应关 系是列车行进的路程 S 与运行时间/的对应关系是 S=350t. ①,
4、若函数的定义域只有一个元素,则值域也只有一
个元素 √
5、对于不同的x , y的值也不同
×
6、f (a)表示当x = a时,函数f (x)的值,是一个常量 √
巩固练习
判断下列对应能否表示y是x的函数
(1) y=|x|
(2)|y|=x
(3) y=x 2
(4)y2 =x
(5) y2+x2=1 (6)y2-x2=1
2.函数的三要素
定义域 值域 对应法则f
定义域
决定
值域
对应法则
3.会求简单函数的定义域和函数值
4.理解区间是表示数集的一种方法,会把不等式转化为区间。
3.1.2函数的表示法
复习引入
函数的定义:设A、B是非空的实数集,如果
对于集合A中的任意一个数x,按照某种确定的对 应关系f,在集合B中都有唯一确定的数y和它对应, 那么就称f: A→B为从集合A到集合B的一个函数, 记作 y=f(x) , x∈A
x叫做自变量,x的取值范围A叫做函数的定 义域;与x的值相对应的y的值叫做函数值,函 数值的集合{f(x)|x∈A}叫做函数的值域。
显然值域是集合B的子集
复习引入
(1)如果y=f (x)是整式,则定义域是 实数集R (2)如果y=f (x)是分式,则定义域是
使分母不等于0的实数的集合
(3)如果y=f (x)是偶次根式,则定义域是
高中数学新教材必修第一册第三章 函数的概念与性质基础知识
第三章 函数的概念与性质1函数的概念:一般地,设B A ,是非空的实数集,如果对于集合A 中的 x ,按照某种 f ,在集合B 中都有 y 与它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作A x x f y ∈=),(,其中,x 叫做 ,x 的取值范围A 叫做函数的 ,与x 的值相对应的y 值叫做 ,函数值的集合}|)({A x x f ∈叫做函数的 ,值域是集合B 的子集.2函数的三要素: 、 、 . 求函数定义域的原则:(1)若()f x 为整式,则其定义域是 ;(2)若()f x 为分式,则其定义域是 ;(3)若()f x 是二次根式(偶次根式),则其定义域是 ;(4)若()0f x x =,则其定义域是 ;(5)若()()0,1x f x a a a =>≠,则其定义域是 ;(6)若()()log 0,1a f x x a a =>≠,则其定义域是 ;(7)若f (x )=sinx,g (x )=cosx ,则其定义域是 ;(8)若x x f tan )(=,则其定义域是 ;求函数值域的方法:配方法,换元法,图象法,单调性法等;求函数的解析式的方法:待定系数法,换元法,配凑法,方程组法等;3函数的表示方法:解析法(用函数表达式表示两个变量之间的对应关系)、图象法(用图象表达两个变量之间的对应关系)、列表法(列出表格表示两个变量之间的对应关系).4分段函数:在定义域内,对于自变量x 的不同取值区间,有不同对应关系的函数.6函数的单调性:(1)单调递增:设任意 ,当 时,有 .特别的,当函数在它的定义域上单调递增时,该函数称为增函数;(2)单调递减:设任意 ,当 时,有 特别的,当函数在它的定义域上单调递增时,该函数称为减函数.7单调区间:如果函数在区间上单调递增或单调递减,那么就说函数在这一区间有(严格的)单调性,区间就叫做函数的单调区间,单调区间分为单调增区间和单调减区间.8复合函数的单调性:同增异减.9函数的最大值、最小值:一般地,设函数)(x f y =的定义域为I ,如果存在实数M 满足: ,都有 ; 使得 ,那么称M 是函数的最大(小)值.10函数的奇偶性:偶函数:一般地,设函数)(x f y =的定义域为I ,如果 ,都有 ,且 ,那么函数叫做 ;偶函数的图象关于 对称;奇函数:一般地,设函数)(x f y =的定义域为I ,如果 ,都有 ,且 ,那么函数叫做 ;奇函数的图象关于 对称;若奇函数)(x f y =的定义域中有零,则其函数图象必过原点,即(0)0f =.11幂函数:一般地,函数 叫做幂函数,其中 是自变量, 是常数. 12幂函数()f x x α=的性质:①所有的幂函数在 都有定义,并且图象都通过点 ; ①如果0α>,则幂函数的图象过原点,并且在区间[)0,+∞上是 ; ①如果0α<,则幂函数的图象在区间()0,+∞上是 ,①幂函数图象不出现于第四象限.。
高中数学 函数概念及其性质知识总结 新人教版必修1
高中数学函数(hánshù)概念及其性质知识总结新人教版必修1高中数学函数(hánshù)概念及其性质知识总结新人教版必修1数学必修(bìxiū)1函数概念及性质〔知识点总结(zǒngjié)〕〔一〕函数的有关(yǒuguān)概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数某,在集合B中都有唯一确定的数f(某)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(某),某∈A.其中,某叫做自变量,某的取值范围A叫做函数的定义域;与某的值相对应的y值叫做函数值,函数值的集合{f(某)|某∈A}叫做函数的值域.2如果只给出解析式y=f(某),而没有指明它的定义域,那么函数的定义域即是指能使这个式注意:○子有意义的实数的集合;○3函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数某的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(4)指数、对数式的底必须大于零且不等于1.(5)而成的.那么,它的定义域是使各局部都有意义的某零(6)实际问题中的函数的定义域还要保证实际问题有意义(又注意:求出不等式组的解集即为函数的定义域。
2.构成函数的三要素:定义域、对应关系和值域再注意:〔1〕构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等〔或为同一函数〕〔2〕两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
相同函数的判断方法:①表达式相同;②定义域一致(见课本21页相关例2)值域补充(1)、函数的值域取决于定义域和对应法那么,不管采取什么方法求函数的值域都应先考虑其定义域(2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的根底.(3).求函数值域的常用方法有:直接法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等.3.函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(某),点P(某,y)的集合C,叫做函数y=f(某),(某∈A)的图象.C上每一点的坐标(某,y)均满足函数关系y=f(某),反过来,y为坐标的点(某,y),均在C上.即记为C={P(某,y)|y=f(某),某图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与交点的假设干条曲线或离散点组成.(2)画法A、描点法:根据函数解析式和定义域,求出某,y的一些对应值并列表,以内描出相应的点P(某,y),最后用平滑的曲线将这些点连接起来B、图象变换法〔请参考必修4三角函数〕常用变换方法有三种,即平移变换、伸缩变换和对称变换(3)作用:1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。
人教版高中数学必修一第一章函数的概念课件PPT
解 对于集合A中任意一个实数x,按照对应关系f:x→y=0在集合B中 都有唯一一个确定的数0和它对应,故是集合A到集合B的函数.
反思与感悟
解析答案
跟踪训练1 下列对应是从集合A到集合B的函数的是( C ) A.A=R,B={x∈R|x>0},f:x→|1x| B.A=N,B=N*,f:x→|x-1| C.A={x∈R|x>0},B=R,f:x→x2
答案
(5) x 1 2 3 ; y12
答案 不是.x=3没有相应的y与之对应.
答案
知识点二 函数相等
思考 函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?
答案 两个函数都是描述的同一集合R中任一元素,按同一对应关系 “平方”对应B中唯一确定的元素,故是同一个函数.
一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数
答案
(5) x 1 2 3 ; y12
答案 不是.x=3没有相应的y与之对应.
答案
知识点二 函数相等
思考 函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?
答案 两个函数都是描述的同一集合R中任一元素,按同一对应关系 “平方”对应B中唯一确定的元素,故是同一个函数.
一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数
返回
第一章 1.2 函数及其表示
1.2.1 函数的概念
新人教版高一数学必修一目录
新人教版高一数学必修一目录
一、第一章函数
1. 基本概念
2. 函数的表示法
3. 函数的图象
4. 函数的性质
二、第二章曲线
1. 曲线的表示法
2. 曲线的切线
3. 兰联形曲线
4. 椭圆曲线
5. 双曲线
三、第三章相关与回归
1. 相关系数
2. 线性回归与回归直线
四、第四章初等函数
1. 指定法求方程的根
2. 二次函数及加减乘除法
3. 牛顿迭代法求方程的根
五、第五章指数函数
1. 指数函数的基本性质
2. 常用指数函数
3. 对数函数及其应用
六、第六章对数函数及其应用
1. 对数函数的基本性质
2. 对数函数及其应用
七、第七章几何极限
1. 无穷小分析法
2. 无穷量极限
3. 二元函数极限
4. 级数的极限
八、第八章函数的微分
1. 导数的概念
2. 定义型微分
3. 导数的性质及应用
九、第九章函数的积分
1. 定积分及其应用问题
2. 微积分的应用ii
3. 曲线的积分性质。
新人教A版高中数学必修1 函数的概念
集合函数及其表示1.2.1函数的概念[新知初探]1.函数的概念(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数,记作y=f(x),x∈A.(2)函数的定义域与值域:函数y=f(x)中,x叫做自变量,x的取值范围叫做函数的定义域,与x的值相对应的y 值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.[点睛]对函数概念的3点说明(1)当A,B为非空数集时,符号“f:A→B”表示A到B的一个函数.(2)集合A中的数具有任意性,集合B中的数具有唯一性.(3)符号“f”它表示对应关系,在不同的函数中f的具体含义不一样.2.区间概念(a,b为实数,且a<b)3.其它区间的表示[点睛]关于无穷大的2点说明(1)“∞”是一个符号,而不是一个数.(2)以“-∞”或“+∞”为端点时,区间这一端必须是小括号.[小试身手]1.判断(正确的打“√”,错误的打“×”) (1)区间表示数集,数集一定能用区间表示.( ) (2)数集{x |x ≥2}可用区间表示为[2,+∞].( )(3)函数的定义域和对应关系确定后,函数的值域也就确定了.( ) (4)函数值域中每一个数在定义域中一定只有一个数与之对应.( ) (5)函数的定义域和值域一定是无限集合.( ) 答案:(1)× (2)× (3)√ (4)× (5)× 2.函数y =1x +1的定义域是( ) A .[-1,+∞) B .[-1,0) C .(-1,+∞) D .(-1,0)答案:C3.已知f (x )=x 2+1,则f ( f (-1))=( ) A .2 B .3 C .4 D .5 答案:D4.用区间表示下列集合:(1){x |10≤x ≤100}用区间表示为________. (2){x |x >1}用区间表示为________.答案:(1)[10,100] (2)(1,+∞)[例1] (1)设M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出下列四个图形:其中,能表示从集合M 到集合N 的函数关系的个数是( ) A .0 B .1 C .2D .3(2)下列各题的对应关系是否给出了实数集R 上的一个函数?为什么? ① f :把x 对应到3x +1; ② g :把x 对应到|x |+1; ③ h :把x 对应到1x ; ④ r :把x 对应到x .(1)[解析] ①中,因为在集合M 中当1<x ≤2时,在N 中无元素与之对应,所以①不是;②中,对于集合M 中的任意一个数x ,在N 中都有唯一的数与之对应,所以②是;③中,x函数的判断=2对应元素y =3∉N ,所以③不是;④中,当x =1时,在N 中有两个元素与之对应,所以④不是.因此只有②是,故选B.[答案] B(2)[解] ①是实数集R 上的一个函数.它的对应关系f 是:把x 乘3再加1,对于任一x ∈R,3x +1都有唯一确定的值与之对应,如x =-1,则3x +1=-2与之对应.同理,②也是实数集R 上的一个函数.③不是实数集R 上的函数.因为当x =0时,1x 的值不存在.④不是实数集R 上的函数.因为当x <0时,x 的值不存在.[活学活用]1.下列对应或关系式中是A 到B 的函数的是( ) A .A =R ,B =R ,x 2+y 2=1B .A ={1,2,3,4},B ={0,1},对应关系如图:C .A =R ,B =R ,f :x →y =1x -2D .A =Z ,B =Z ,f :x →y =2x -1解析:选B A 错误,x 2+y 2=1可化为y =±1-x 2,显然对任意x ∈A ,y 值不唯一.B 正确,符合函数的定义.C 错误,2∈A ,在B 中找不到与之相对应的数.D 错误,-1∈A ,在B 中找不到与之相对应的数.相等函数[例2]下列各组函数中是相等函数的是()A.y=x+1与y=x2-1 x-1B.y=x2+1与s=t2+1C.y=2x与y=2x(x≥0)D.y=(x+1)2与y=x2[解析]对于选项A,前者定义域为R,后者定义域为{x|x≠1},不是相等函数;对于选项B,虽然变量不同,但定义域和对应关系均相同,是相等函数;对于选项C,虽然对应关系相同,但定义域不同,不是相等函数;对于选项D,虽然定义域相同,但对应关系不同,不是相等函数.[答案] B[活学活用]2.下列各组式子是否表示同一函数?为什么?(1)f(x)=|x|,φ(t)=t2;(2)y=x2,y=(x)2;(3)y=1+x·1-x,y=1-x2;(4)y=(3-x)2,y=x-3.解:(1)f(x)与φ(t)的定义域相同,又φ(t)=t2=|t|,即f(x)与φ(t)的对应关系也相同,∴f(x)与φ(t)是同一函数.(2)y=x2的定义域为R,y=(x)2的定义域为{x|x≥0},两者定义域不同,故y=x2与y=(x)2不是同一函数.(3)y=1+x·1-x的定义域为{x|-1≤x≤1},y=1-x2的定义域为{x|-1≤x≤1},即两者定义域相同.又∵y=1+x·1-x=1-x2,∴两函数的对应关系也相同.故y=1+x·1-x与y=1-x2是同一函数.(4)∵y=(3-x)2=|x-3|与y=x-3的定义域相同,但对应关系不同,∴y=(3-x)2与y=x-3不是同一函数.求函数的定义域[例3] 求下列函数的定义域: (1)y =(x +1)2x +1-1-x ;(2)y =5-x |x |-3.[解] (1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠0,1-x ≥0.解得x ≤1,且x ≠-1,即函数定义域为{x |x ≤1,且x ≠-1}.(2)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧5-x ≥0,|x |-3≠0,解得x ≤5,且x ≠±3,即函数定义域为{x |x ≤5,且x ≠±3}.[活学活用]3.求下列函数的定义域: (1)y =2+3x -2;(2)y =3-x ·x -1; (3)y =(x -1)0+2x +1. 解:(1)当且仅当x -2≠0,即x ≠2时,函数y =2+3x -2有意义,所以这个函数的定义域为{x |x ≠2}.(2)函数有意义,当且仅当⎩⎪⎨⎪⎧3-x ≥0,x -1≥0.解得1≤x ≤3,所以这个函数的定义域为{x |1≤x ≤3}.(3)函数有意义,当且仅当⎩⎪⎨⎪⎧x -1≠0,2x +1≥0,x +1≠0.解得x >-1,且x ≠1,所以这个函数的定义域为{x |x >-1,且x ≠1}.[例4] (1)已知f (x )=11+x(x ∈R ,且x ≠-1),g (x )=x 2+2(x ∈R),则f (2)=________,f (g (2))=________.(2)求下列函数的值域: ①y =x +1;②y =x 2-2x +3,x ∈[0,3); ③y =3x -1x +1; ④y =2x -x -1. (1)[解析] ∵f (x )=11+x, ∴f (2)=11+2=13. 又∵g (x )=x 2+2, ∴g (2)=22+2=6, ∴f ( g (2))=f (6)=11+6=17. [答案] 13 17(2)[解] ①(观察法)因为x ∈R ,所以x +1∈R ,即函数值域是R.②(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).③(分离常数法)y =3x -1x +1=3x +3-4x +1=3-4x +1. 求函数值和值域∵4x +1≠0,∴y ≠3, ∴y =3x -1x +1的值域为{y |y ∈R 且y ≠3}. ④(换元法)设t =x -1,则t ≥0且x =t 2+1,所以y =2(t 2+1)-t =2 ⎝⎛⎭⎫t -142+158,由t ≥0,再结合函数的图象(如图),可得函数的值域为⎣⎡⎭⎫158,+∞.[活学活用]4.求下列函数的值域: (1)y =2x +1+1;(2)y =1-x 21+x 2.解:(1)因为2x +1≥0,所以2x +1+1≥1,即所求函数的值域为[1,+∞). (2)因为y =1-x 21+x 2=-1+21+x 2,又函数的定义域为R ,所以x 2+1≥1, 所以0<21+x 2≤2,则y ∈(-1,1].所以所求函数的值域为(-1,1].层级一 学业水平达标1.函数y =1-x +x 的定义域为( ) A .{x |x ≤1} B .{x |x ≥0} C .{x |x ≥1或x ≤0}D .{x |0≤x ≤1}解析:选D 由题意可知⎩⎪⎨⎪⎧1-x ≥0,x ≥0,解得0≤x ≤1.2.若函数y =f (x )的定义域M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )解析:选B A 中定义域是{x |-2≤x ≤0},不是M ={x |-2≤x ≤2},C 中图象不表示函数关系,D 中值域不是N ={y |0≤y ≤2}.3.下列各组函数中,表示同一个函数的是( ) A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=(x -1)2和g (x )=(x +1)2D .f (x )=(x )2x 和g (x )=x(x )2解析:选D A 中的函数定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同,故选D.4.设f (x )=x 2-1x 2+1,则f (2)f ⎝⎛⎭⎫12=( )A .1B .-1 C.35D .-35解析:选B f ( 2 )f ⎝⎛⎭⎫1 2 =22-122+1⎝⎛⎭⎫122-1⎝⎛⎭⎫122+1=35-3454=35×⎝⎛⎭⎫-53=-1.5.下列函数中,值域为(0,+∞)的是( ) A .y =x B .y =1xC .y =1xD .y =x 2+1解析:选B y =x 的值域为[0,+∞),y =1x 的值域为(-∞,0)∪(0,+∞),y =x 2+1的值域为[1,+∞).6.若[a,3a -1]为一确定区间,则a 的取值范围是________. 解析:由题意知3a -1>a ,则a >12.答案:⎝⎛⎭⎫12,+∞ 7.已知函数f (x )=2x -3,x ∈{x ∈N|1≤x ≤5},则函数f (x )的值域为________. 解析:∵x =1,2,3,4,5, ∴f (x )=2x -3=-1,1,3,5,7. ∴f (x )的值域为{-1,1,3,5,7}. 答案:{-1,1,3,5,7}8.设f (x )=11-x ,则f ( f ( x ))=________.解析:f ( f (x ))=11-11-x =11-x -11-x =x -1x . 答案:x -1x (x ≠0,且x ≠1) 9.已知f (x )=x 2-4x +5. (1)求f (2)的值.(2)若f (a )=10,求a 的值. 解:(1)由f (x )=x 2-4x +5, 所以f (2)=22-4×2+5=1. (2)由f (a )=10,得a 2-4a +5=10, 即a 2-4a -5=0,解得a =5或a =-1. 10.求函数y =x +26-2x -1的定义域,并用区间表示.解:要使函数解析式有意义,需满足:⎩⎪⎨⎪⎧ x +2≥0,6-2x ≥0,6-2x ≠1,即⎩⎪⎨⎪⎧ x ≥-2,x ≤3,x ≠52,所以-2≤x ≤3且x ≠52. 所以函数的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪-2≤x ≤3且x ≠52. 用区间表示为⎣⎡⎭⎫-2,52 ∪⎝⎛⎦⎤52,3. 层级二 应试能力达标1.下列式子中不能表示函数y =f (x )的是( )A .x =y 2+1B .y =2x 2+1C .x -2y =6D .x =y解析:选A 对于A ,由x =y 2+1得y 2=x -1.当x =5时,y =±2,故y 不是x 的函数;对于B ,y =2x 2+1是二次函数;对于C ,x -2y =6⇒y =12x -3是一次函数;对于D ,由x =y 得y =x 2(x ≥0)是二次函数.故选A.2.若集合A ={x |y =x -1},B ={y |y =x 2+2},则A ∩B =( )A .[1,+∞)B .(1,+∞)C .[2,+∞)D .(0,+∞)解析:选C 集合A 表示函数y =x -1的定义域,则A ={x |x ≥1},集合B 表示函数y =x 2+2的值域,则B ={y |y ≥2},故A ∩B ={x |x ≥2}.3.若函数f (x )=ax 2-1,a 为一个正数,且f ( f (-1))=-1,那么a 的值是( )A .1B .0C .-1D .2解析:选A ∵f (x )=ax 2-1,∴f (-1)=a -1,f (f (-1))=f (a -1)=a ·(a -1)2-1=-1.∴a (a -1)2=0.又∵a 为正数,∴a =1.4.函数y =1-x 22x 2-3x -2的定义域为( ) A .(-∞,1]B .[-1,1]C .[1,2)∪(2,+∞)D.⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1 解析:选D 由题意得⎩⎪⎨⎪⎧1-x 2≥0,2x 2-3x -2≠0, 解得⎩⎪⎨⎪⎧-1≤x ≤1,x ≠2且x ≠-12,即-1≤x ≤1且x ≠-12, 所以函数的定义域为⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1.故选D. 5.函数y =1x -2的定义域是A ,函数y =2x +6 的值域是B ,则A ∩B =________(用区间表示).解析:要使函数式y =1x -2有意义,只需x ≠2,即A ={x |x ≠2};函数y =2x +6 ≥0,即B ={y |y ≥0},则A ∩B ={x |0≤x <2,或x >2}.答案:[0,2)∪(2,+∞)6.函数y =6-x |x |-4的定义域用区间表示为________. 解析:要使函数有意义,需满足⎩⎪⎨⎪⎧ 6-x ≥0,|x |-4≠0,即⎩⎪⎨⎪⎧x ≤6,x ≠±4, ∴定义域为(-∞,-4)∪(-4,4)∪(4,6].答案:(-∞,-4)∪(-4,4)∪(4,6]7.试求下列函数的定义域与值域:(1)f (x )=(x -1)2+1,x ∈{-1,0,1,2,3};(2)f (x )=(x -1)2+1;(3)f (x )=5x +4x -1; (4)f (x )=x -x +1.解:(1)函数的定义域为{-1,0,1,2,3},则f (-1)=[(-1)-1]2+1=5,同理可得f (0)=2,f (1)=1,f (2)=2,f (3)=5,所以函数的值域为{1,2,5}.(2)函数的定义域为R ,因为(x -1)2+1≥1,所以函数的值域为{y |y ≥1}.(3)函数的定义域是{x |x ≠1},y =5x +4x -1=5+9x -1,所以函数的值域为{y |y ≠5}. (4)要使函数式有意义,需x +1≥0,即x ≥-1,故函数的定义域是{x |x ≥-1}.设t =x +1,则x =t 2-1(t ≥0),于是f (t )=t 2-1-t =⎝⎛⎭⎫t -122-54.又t ≥0,故f (t )≥-54.所以函数的值域是⎩⎨⎧⎭⎬⎫y ⎪⎪y ≥-54.8.已知函数f (x )=x 21+x 2. (1)求f (2)+f ⎝⎛⎭⎫12,f (3)+f ⎝⎛⎭⎫13的值; (2)求证:f (x )+f ⎝⎛⎭⎫1x 是定值;(3)求f (2)+f ⎝⎛⎭⎫12+f (3)+f ⎝⎛⎭⎫13+…+f (2 018)+f ⎝⎛⎭⎫12 018的值. 解:(1)∵f (x )=x 21+x 2, ∴f (2)+f ⎝⎛⎭⎫12=221+22+⎝⎛⎭⎫1221+⎝⎛⎭⎫122=1, f (3)+f ⎝⎛⎭⎫13=321+32+⎝⎛⎭⎫1321+⎝⎛⎭⎫132=1. (2)证明:f (x )+f ⎝⎛⎭⎫1x =x 21+x 2+⎝⎛⎭⎫1x 21+⎝⎛⎭⎫1x 2=x 21+x 2+1x 2+1=x 2+1x 2+1=1. (3)由(2)知f (x )+f ⎝⎛⎭⎫1x =1,∴f (2)+f ⎝⎛⎭⎫12=1,f (3)+f ⎝⎛⎭⎫13=1,f (4)+f ⎝⎛⎭⎫14=1,…,f (2 018)+f ⎝⎛⎭⎫12 018=1. ∴f (2)+f ⎝⎛⎭⎫12+f (3)+f ⎝⎛⎭⎫13+…+f (2 018)+f ⎝⎛⎭⎫12 018=2 017.。
高中数学必修一-第三章-3.1 函数的概念及其表示
第三章函数3.1 函数的概念及其表示知识点一:函数的概念1.函数的有关概念2.函数的三要素一个函数的构成要素:定义域、对应关系和值域.因为值域是由定义域和对应关系决定的,所以两个函数的定义域和对应关系相同时,它们是同一个函数.3.区间的概念:设a,b∈R,a<b.实数集R可以用区间表示为(-∞,+∞).知识点二:函数的表示法1.函数的三种表示法2.分段函数已知函数y=f(x),x∈A,如果自变量x在不同的取值范围内,函数有着不同的对应关系,那么我们称这样的函数为分段函数.【思考】1.函数的定义域和值域是否一定是无限集?2.区间是数集的另一种表示方法,是否任何数集都能用区间表示?3.根据函数的定义,任何一个自变量x是否都有唯一的函数值y与之对应?任何一个函数值y 是否都有唯一的自变量x与之对应?4.如何确定分段函数的定义域和值域?【解析】1.不一定.函数的定义域和值域也可能是有限集,如f(x)=1,x∈{1,2,3}.2.不是.如集合{0,1}就不能用区间表示.3.任何一个自变量x都有唯一的函数值y与之对应,但是函数值y不一定有唯一的自变量x 与之对应。
如f(x)=x2中,函数值4有两个自变量2、-2与之对应。
函数中x,y的对应关系是“一对一”或“多对一”,不能“一对多”.4.分段函数的定义域是每一段自变量取值范围的并集,值域也是每一段函数值取值范围的并集.3.1.1 函数的概念基础练一函数的概念1.(多选题)下面选项中,变量y是变量x的函数的是()A.x表示某一天中的时刻,y表示对应的某地区的气温B.x表示年份,y表示对应的某地区的GDP(国内生产总值)C.x表示某地区学生的某次数学考试成绩,y表示该地区学生对应的考试号D.x表示某人的月收入,y表示对应的个税2.下列四组函数中,表示同一个函数的是()3A.y=|x|与y=√x3B.y=√x2与s=(√t)2C.y=2t+1与y=2u+1D.y=1与y=x03.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面的4个图形中,能表示以集合M为定义域,集合N为值域的函数关系的有()A.①②③④B.①②③C.②③D.②④二函数的定义域4.函数f(x)=√x−1的定义域为() x−2A.[1,+∞)B.[1,2)C.[1,2)∪(2,+∞)D.(1,2)∪(2,+∞)5.已知某矩形的周长为定值a,若该矩形的面积S是这个矩形的一边长x的函数,则这个函数的定义域是.6.已知函数y=f(x)的定义域为[-2,3],则函数y=f(2x+1)的定义域为.x+1三函数值及函数的值域7.已知集合P={x|y=√x−1},集合Q={y|y=√x−1},则()A.P=QB.P⫋QC.Q⫋PD.P∩Q=⌀8.函数y=√x2−2x+3的值域为.,则f(x)的值域为.9.已知函数f(x)=1x2−2x10.已知函数f(x)的定义域是[0,1],值域是[1,2],则这样的函数可以是f(x)=.11.已知函数f(x)=x2+x-1.);(1)求f(2), f(1x(2)若f(x)=5,求x的值.3.1.2 函数的表示法基础练一 函数的表示法及其应用 1.函数y =x x+1的图象大致是 ( )A B C D2.某同学从家里到学校,为了不迟到,先匀速跑一段时间,跑累了再匀速走余下的路,设在途中花费的时间为t ,离开家的距离为d ,则下面图象中,能正确表示d 与t 的关系的是( )A B C D3.已知函数y =f (x )的对应关系如表,函数y =g (x )的图象为如图所示的曲线ABC ,则g (f (3))的值为 .二 函数解析式的求法5.已知函数f (x +2)=x 2+6x +8,则函数f (x )的解析式为( ) A.f (x )=x 2+2x B.f (x )=x 2+6x +8 C.f (x )=x 2+4x D.f (x )=x 2+8x +66.函数f (x )满足f (1-2x )=-1x ,则f (2)=( )A.2B.-2C.12 D.-12 7.已知函数f (2x -1)=3x -5,若f (x 0)=4,则x 0= .8.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )= .9.(1)已知函数g (√x +1)=2x +1,求g (x )的解析式;(2)已知f (x )为二次函数,且f (0)=2, f (2)=f (-1)=0,求f (x )的解析式.三 分段函数问题10.已知函数f (x )={√x,x >0,|x +1|,x ≤0,则f (f (-3))=( )A.√3B.1C.2D.√2 11.已知f (x )={x +2,x ≤−1,x 2,−1<x <2,2x,x ≥2,若f (x )=3,则x 的值是( )A.1B.1或32C.1,32或±√3 D.√312.函数f (x )=x +|x |x 的图象是( )A B C D13.(2022山西大同期中)已知函数f (x )={x 2,x ≤0,4−2x,x >0.(1)画出函数f (x )的图象;(2)当f (x )≥2时,求实数x 的取值范围.。
新人教版高中数学必修第一册第三章函数的概念
函数的概念
函数的三要素
具体函数的定义域
定义域
值域
对应关系fຫໍສະໝຸດ 相等函数对应关系相同
定义域相同
总结提升:
素养作业·提技能
P67 1,2P72 2,5,6
新课讲授
x 叫做自变量,x的取值范围构成的集合A叫做函数的定义域;与x的值相对应的 y值 叫做函数值, 所有函数值组成的集合叫做函数的值域.
函数的概念
“函数”由德国数学家莱布尼茨于17世纪后期首次采用
例1.下列对应关系下由A到B是函数关系吗?
123
A
B
456
f
A
B
f
(1)
创设问题·引出概念
若两个函数的定义域和对应关系完全一致,则这两个函数相等。
相等函数
即学即用 感悟新知
题型2 相等函数的判断
不是
是
不是
不是
是
旧知新解
一次函数、二次函数、反比例函数的定义域、对应关系和值域
持续探究 更上层楼
(1)
(2)
所以y=1是集合A到集合B的一个函数
1. 在集合的观点下函数是如何定义?2. 函数有哪三要素? 3. 相等函数是指什么样的函数?
阅读课本P60给出的4个实例,讨论下列问题:
自主探究
问题1 某“复兴号”高速列车加速到350km/h后保持匀速运行半小时。这段时间内,列车行进的路程S(单位:km)与运行时间t(单位:h)的关系可以表示为
③对于集合A中的任意一个元素x,在B中都有唯一确定的y 与之对应
显然,值域是集合B的子集.在问题①和问题②中,定义域就是A,值域就是B.
一般地,设A,B是非空数集,如果集合A中的任意一个实数x,按照某种对应关系 f ,在集合B中都有唯一确定的数y和它对应,就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.
高中数学新教材必修一第三章 《函数的概念与性质》全套课件
4、若函数的定义域只有一个元素,则值域也只有一
个元素 √
5、对于不同的x , y的值也不同
×
6、f (a)表示当x = a时,函数f (x)的值,是一个常量 √
巩固练习
判断下列对应能否表示y是x的函数
(1) y=|x|
(2)|y|=x
(3) y=x 2
(4)y2 =x
(5) y2+x2=1 (6)y2-x2=1
2x
0y 2
x
2
D
0
2x
学习新知
初中我们已知接触过函数的三种表示方法:解析法、列表法和图 象法
问题 2 某电气维修公司一个工人的工资关于天数 d 的函数 w=350d. ②定义域{1,2,3,4,5,6}
学习新知 这里的实数a与b都叫做相应区间的端点。
实数集R可以用区间表示为(-∞,+∞),“∞”读作“无穷 大”。满足x≥ a,x>a ,x ≤b, x<b的实数的集合分别表示 为[a, +∞)、(a, +∞)、(-∞,b]、(-∞,b).
集合表示 区间表示 数轴表示
{x a<x<b} (a , b)
我国某省城镇居民恩格尔系数变化情况
时间(年)y 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
恩格尔系数r(%) 36.69 36.81 38.17 35.69 35.15 33.53 33.87 29.89 29.35 28.57
请仿照前面的方法描述恩格尔系数r和时间(年)y的关系。
对于集合A中的任意一个数x,按照某种确定的对
应关系f,在集合B中都有唯一确定的数y和它对应, 那么就称f: A→B为从集合A到集合B的一个函数, 记作 y=f(x) , x∈A
新人教版高中数学必修一3.1.1函数的概念(16页PPT)
ab ab
实数集R可以表示为(-∞,+ ∞)
x≥a
x >a
x≤b
x<b
[a,+∞) (a,+∞) ( -∞ ,b] (-∞,b)
练习:用区间表示下列集合
1.{x|1≤x≤4} 2.{x|-1<x≤2} 3.{x|1≤x<5} 4.{x|a≤x<b}
[1,4] (-1,2] [1,5)
[a,b)
课堂小结 1.理解函数的定义,从数集到数集的一 一对应关系.
2.根据函数的定义,判断是否是函数.
3.求函数的定义域,用区间表示集合.
数,记作:
y=f(x) x∈A.
x叫作自变量,集合A叫作函数的定义域, 集合{f(x)|x∈A} 叫作函数的值域.
思维实验
数集A
输入
x
加工设备 输出
fy
数集B
函数的三要素: 定义域 对应关系
值域
例1 结合函数的定义,判断下列对应是不是从数集
A到数集B的函数.
f
A1
2B
2
4
3
6
(1) 7
f A1
2B
2
4
3
6
4 (2)
A1
2B
2
4
3
(3)
f A1
2B
2
4
3
6
(4) 8
练习 判断下列对应是不是从数集A到数集B的函数.
f
A1
2B
2
4
3
6
7
(1)
不是
f
A1
B
2
1
3
(2)
是
下列图形哪个可以表示函数的图象?
新人教版高中数学必修第一册函数的概念ppt课件及课时作业
2.下列图形中不是函数图象的是
√
A中至少存在一处如x=0,一个横坐标对应两个纵坐标,这相当于集 合A中至少有一个元素在集合B中对应的元素不唯一,故A不是函数 图象,B,C,D均符合函数定义.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
例2 (1) 已知函数y=f(x)的图象如图所示,则该函数的定义域为 {_x_|_-__2_≤_ _x_≤__4_或__5_≤__x_≤__8_}__,值域为_{_y_|-__4_≤__y_≤__3_}_.
根 据 y = f(x) 的 函 数 图 象 可 看 出 , f(x) 的 定 义域为{x|-2≤x≤4或5≤x≤8},值域为 {y|-4≤y≤3}.
1234
3.函数y=f(x)的图象与直线x=2 022的公共点有
A.0个
√C.0个或1个
B.1个 D.以上答案都不对
1234
4.若函数y=x2-3x的定义域为{-1,0,2,3},则其值域为_{_-__2_,0_,_4_}_.
1234
课时对点练
基础巩固
1.(多选)对于函数y=f(x),以下说法正确的有
注意点: (1)A,B是非空的实数集. (2)定义域是非空的实数集A,但函数的值域不一定是非空实数集B, 而是集合B的子集. (3)函数定义中强调“三性”:任意性、存在性、唯一性,即对于非 空实数集A中的任意一个(任意性)元素x,在非空实数集B中都有(存在 性)唯一(唯一性)的元素y与之对应. (4)函数符号“y=f(x)”是数学符号之一,不表示y等于f与x的乘积, f(x)也不一定是解析式,还可以是图象或表格,或其他的对应关系. (5)除f(x)外,有时还用g(x),u(x),F(x),G(x)等符号表示函数.
高中数学必修一函数的概念知识点总结
高中数学必修一函数的概念知识点总结一、内容概述高中数学必修一的核心概念之一就是函数。
函数作为数学的基本工具,贯穿整个数学的学习过程。
在这一部分,学生将初步接触并理解函数的基本概念、性质和图像特征。
函数的概念是描述事物变化规律的数学模型,通过输入与输出的对应关系,描述了一个变量如何依赖于另一个变量的变化。
在必修一的学习中,学生需要掌握函数的基本定义、表示方法(包括解析法、列表法和图像法),理解函数的定义域和值域等基本概念。
还将学习函数的基本性质,如单调性、奇偶性、周期性等,这些性质有助于理解和描述函数的变化趋势。
函数的图像也是学习的重点,通过观察和分析函数的图像,可以更直观地理解函数的性质和行为。
1. 高中数学必修一的重要性高中数学必修一在整个数学课程体系中占有举足轻重的地位,其重要性不言而喻。
作为高中阶段的第一门数学课,必修一不仅为学生后续的数学课程学习打下坚实的基础,更在培养学生的逻辑思维、问题解决能力等方面扮演着关键角色。
这门课程中的函数概念是整个数学学科的核心部分之一,涉及到众多实际应用和理论基础,对学生建立数学思维模式和掌握数学语言有着极其重要的作用。
理解和掌握高中数学必修一中的函数概念,不仅有助于学生在数学学科上的深入学习和研究,更对学生未来的学术生涯和职业发展有着深远的影响。
我们将对高中数学必修一中的函数概念进行详细的知识点总结。
2. 函数概念在数学学习中的重要性函数概念是数学学习中的核心概念之一,其重要性无法忽视。
函数是数学分析的基础,无论是在初等数学还是高等数学中,函数都是研究自然现象和社会问题的重要工具。
函数的概念对于解决实际问题具有重要意义。
在物理、化学、经济、工程等领域中,许多实际问题都可以通过函数模型进行描述和解决。
函数的学习对于培养学生的逻辑思维能力和抽象思维能力也有重要作用。
通过学习和应用函数,学生可以理解变量之间的关系,掌握函数的性质,运用函数解决现实问题,从而提高自身的逻辑思维能力和抽象思维能力。
最新人教版高中数学必修第一册第3章 函数的概念与性质3.1.1 函数的概念
?
合作探究·释疑解惑
?
探究一 函数关系的判断
【例1】 给出下列对应关系,其中是从A到B的函数的
有
.(填序号)
①A=R,B={x|x>0},f:x→y=|2x|;
②A=Z,B=Z,f:x→y=x2-1;
③A=R,B=[1,+∞),f:x→y= +1;
④A=[-2,4],B={1},f:x→y=1;
x
y
2 018
0.07
2 019
0.08
2 020
0.06
?
(1)以上3个例子中,集合A,B中的元素有什么特点?
(2)按照给出的x与y的对应关系,对于集合A中的任意一个实
数,在集合B中是否都有与之对应的实数?与之对应的实数是
否唯一?
(3)集合B中的每一个实数都有集合A中的某一实数与之对
应吗?
提示:(1)都是实数,即A,B均为非空的实数集.
(1)f(x)= - +
;
-
(2)f(x)= + + ;
0
(3)f(x)=(x+1) +
;
-
(4)矩形的周长为60,其中一边的长为x,另一边的长y是关于x
的函数y=f(x).
?
- ≥ ,
解:(1)要使函数有意义,应满足
解得 x≥2,且 x≠6,
- ≠ ,
故函数的定义域为{x|x≥2,且 x≠6}.
对应关系和值域.
(2)如果两个函数的定义域相同,并且对应关系完全一致,即相
同的自变量对应的函数值也相同,那么这两个函数是同一个
函数.
?
3.做一做:下列函数中,与函数 y=2x 是同一个函数的是(
人教版数学必修一1.2.1函数的概念精品课件(共21张PPT)
§1.2.1函数的概念
(2) 近几十年来,大气层中的臭氧迅速减少, 因而出现了臭氧层空洞问题.下图中的曲线显 示了南极上空臭氧空洞的面积从1979~2001年 的变化情况:
§1.2.1函数的概念
根据上图中的曲线可知,时间t的变化范围是 数集A={t|1979≤t≤2001},臭氧层空洞面积S的变化 范围是数集B ={S|0≤S≤26}.
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
恩格尔系数( % ) 53.8 52.9 50.1 49.9 49.9 48.6 46.4 44.5 41.9 39.2 37.9
A={1991,1992,1993,1994, 1995, 1996, 1997,1998,1999,2000,2001} B={53.8,52.9, 50.1,49.9, 48.6, 46.4, 44.5, 41.9, 39.2, 37.9}
实例2(2)近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞 问题.图中的曲线显示了南极上空臭氧层空洞的面积从年的变化情况.
A={t|1979≤t≤2001}
B ={S|0≤S≤26}
实例3 (3)国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔 系数越低,生活质量越高.表中恩格尔系数随时间(年)变化的情况表 明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.
记作: y=f(x),xA
其中, x叫做自变量, x的取值范围A叫做函数的定义域 (domain);与x的值相对应的y值叫做函数值,函数值的集合 {f(x)|x∈A}叫做函数的值域(range).
【参考教案2】《函数的概念》(数学人教版必修一)
《函数的概念》教材分析函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.教学目标(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;教学重难点【教学重点】理解函数的模型化思想,用合与对应的语言来刻画函数;【教学难点】符号“y=f(x)”的含义,函数定义域和值域的区间表示;教学过程引入课题1.复习初中所学函数的概念,强调函数的模型化思想;2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题备用实例:我国2003年4月份非典疫情统计:3.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关。
新课教学(一)函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数(function)。
记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range).注意:○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素:定义域、对应关系和值域3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示。
新教材人教版高中数学必修第一册 第三章 知识点总结
必修第一册第三章函数的概念与性质3.1 函数的概念及其表示1.函数的概念:一般地,设A、B是非空的数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数。
记作:y=f(x),x∈A。
其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。
2.构成函数的三要素:定义域、对应关系和值域(1)函数的定义域的求法:①自然型:解析式自身有意义,如分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数;②实际型:解决函数的综合问题与应用问题时,应认真考察自变量x的实际意义。
(2)求函数的值域的方法:①配方法(将函数转化为二次函数);②不等式法(运用不等式的各种性质);③函数法(运用函数的单调性、函数图象等)。
(3)两个函数的相等:当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。
3.常用的函数表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式;(2)列表法:就是列出表格来表示两个变量的函数关系;(3)图象法:就是用函数图象表示两个变量之间的关系。
4.分段函数:若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数;5.区间的概念:设a,b是两个实数,且a<b,我们规定:(1)满足不等式a≤x≤b的实数x的集合叫做闭区间,表示[a,b];(2)满足不等式a<x<b的实数x的集合叫做开区间,表示(a,b);(3)满足不等式a≤x<b或a<x≤b的实数x的集合叫做半开半闭区间,表示[a,b)或(a,b];a,b都叫做区间的端点。
(4)代数与几何表示对照表(数轴上用实心点表示包括在区间内的端点,用空心点表示不包括在区间内的端点)(5)3.2 函数的基本性质⊆: 1.单调性:(1)定义:一般地,设函数y=f(x)的定义域为I,区间D I①∀ x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数;特别地,当函数f(x)在它的定义域上单调递增时,我们成它是增函数。
人教版高中数学必修一 第一章 1.2.1 函数的概念
人教版高中数学必修一第一章1.2.1函数的概念1.2.1函数的概念[学习目标] 1.理解函数的概念,了解构成函数的三要素.2.能正确使用区间表示数集.3.会求一些简单函数的定义域、函数值.知识点一函数的概念(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.(2)函数的定义域与值域:函数y=f(x)中,x叫做自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.知识点二函数的三要素函数的三个要素:定义域,对应关系,值域.(1)定义域定义域是自变量x的取值集合.有时函数的定义域可以省略,如果未加特殊说明,函数的定义域就是指能使这个式子有意义的所有实数x的集合.(2)对应关系对应关系f是核心,它是对自变量x进行“操作”的“程序”或者“方法”,是连接x与y的纽带,按照这一“程序”,从定义域集合A中任取一个x,可得到值域{y|y=f(x)且x∈A}中唯一确定的y与之对应.(3)值域函数的值域是函数值的集合,通常一个函数的定义域和对应关系确定了,那么它的值域也会随之确定.思考(1)符号“y=f(x)”中“f”的意义是什么?(2)有人认为“y=f(x)”表示的是“y等于f与x的乘积”,这种看法对吗?(3)f(x)与f(a)有何区别与联系?答(1)符号“y=f(x)”中“f”表示对应关系,在不同的具体函数中,“f”的含义不一样.例如y=f(x)=x2中,“f”表示的对应关系为因变量y等于自变量x的平方,从而f(a)=a2,f(x+1)=(x+1)2,而函数y=f(x)=2x中,“f”表示的对应关系为因变量y等于自变量x的二倍,从而f(a)=2a,f(x+1)=2(x +1).(2)这种看法不对.符号y=f(x)是“y是x的函数”的数学表示,应理解为x是自变量,它是关系所施加的对象;f是对应关系,它可以是一个或几个解析式,可以是图象、表格,也可以是文字描述;y是自变量的函数,当x允许取某一具体值时,相应的y值为与该自变量值对应的函数值.y=f(x)仅仅是函数符号,不表示“y等于f与x的乘积”.在研究函数时,除用符号f(x)外,还常用g(x),F(x),G(x)等来表示函数.(3)f(x)与f(a)的区别与联系:f(a)表示当x=a时,函数f(x)的值,是一个常量,而f(x)是自变量x的函数,一般情况下,它是一个变量,f(a)是f(x)的一个特殊值,如一次函数f(x)=3x+4,当x=8时,f(8)=3×8+4=28是一个常数.知识点三函数相等如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等.思考函数y=x2+x与函数y=t2+t相等吗?答相等,这两个函数定义域相同,都是实数集R,而且这两个函数的对应关系也相同,因此这两个函数相等.函数相等与否与自变量用什么字母没有关系,只是习惯上自变量用x表示.知识点四区间概念区间的定义、名称、符号及数轴表示如下表:思考(1)对于区间[a,b]而言,区间端点a,b应满足什么关系?(2)区间是数集的另一种表示方法,那么任何数集都能用区间表示吗?(3)“∞”是数吗?如何正确使用“∞”?答(1)若a,b为区间的左右端点,则a<b.(2)不是任何数集都能用区间表示,如集合{0}就不能用区间表示.(3)“∞”读作“无穷大”,是一个符号,不是数.以“-∞”或“+∞”作为区间一端时,这一端必须是小括号.题型一函数概念的应用例1设M={x|0≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示从集合M到集合N 的函数关系的有()A.0个B.1个C.2个D.3个答案 B解析①错,x=2时,在N中无元素与之对应,不满足任意性.②对,同时满足任意性与唯一性.③错,x=2时,对应元素y=3∉N,不满足任意性.④错,x=1时,在N中有两个元素与之对应,不满足唯一性.反思与感悟 1.判断一个对应关系是不是函数关系的方法:(1)A,B必须都是非空数集;(2)A中任意一个数在B中必须有并且是唯一的实数和它对应.注意:A中元素无剩余,B中元素允许有剩余.2.函数的定义中“任意一个x”与“有唯一确定的y”说明函数中两变量x,y的对应关系是“一对一”或者是“多对一”而不能是“一对多”.跟踪训练1下列对应关系式中是A到B的函数的是()A.A⊆R,B⊆R,x2+y2=1B.A={-1,0,1},B={1,2},f:x→y=|x|+1C.A=R,B=R,f:x→y=D.A=Z,B=Z,f:x→y=答案 B解析对于A,x2+y2=1可化为y=±,显然对任意x∈A,y值不唯一,故不符合.对于B,符合函数的定义.对于C,2∈A,但在集合B中找不到与之相对应的数,故不符合.对于D,-1∈A,但在集合B中找不到与之相对应的数,故不符合.题型二判断是否为同一函数例2判断下列函数是否为同一函数:(1)f(x)=与g(x)=(2)f(x)=与g(x)=;(3)f(x)=x2-2x-1与g(t)=t2-2t-1;(4)f(x)=1与g(x)=x0(x≠0).解(1)f(x)的定义域中不含有元素0,而g(x)的定义域为R,定义域不相同,所以二者不是同一函数.(2)f(x)的定义域为[0,+∞),而g(x)的定义域为(-∞,-1]∪[0,+∞),定义域不相同,所以二者不是同一函数.(3)尽管两个函数的自变量一个用x表示,另一个用t表示,但它们的定义域相同,对应关系相同,对定义域内同一个自变量,根据表达式,都能得到同一函数值,因此二者为同一函数.(4)f(x)的定义域为R,g(x)的定义域为{x|x≠0},因此二者不是同一函数.反思与感悟判断两个函数是否相同,只需判断这两个函数的定义域与对应关系是否相同.(1)定义域和对应关系都相同,则两个函数相同;(2)定义域不同,则两个函数不同;(3)对应关系不同,则两个函数不同;(4)即使定义域和值域都分别相同的两个函数,也不一定相同,例如y=x和y=2x-1的定义域和值域都是R,但不是同一函数;(5)两个函数是否相同,与自变量用什么字母表示无关.跟踪训练2下列各组函数中,表示同一函数的是()A.y=x+1与y=B.y=x2与y=(x+1)2C.y=()3与y=xD.f(x)=()2与g(x)=答案 C题型三求函数的定义域例3求下列函数的定义域:(1)y=-;(2)y=.解(1)要使函数有意义,自变量x的取值必须满足即所以函数的定义域为{x|x≤1,且x≠-1}.(2)要使函数有意义,必须满足|x|-x≠0,即|x|≠x,∴x<0.∴函数的定义域为{x|x<0}.反思与感悟 1.当函数是由解析式给出时,求函数的定义域就是求使解析式有意义的自变量的取值集合,必须考虑下列各种情形:(1)负数不能开偶次方,所以偶次根号下的式子大于或等于零;(2)分式中分母不能为0;(3)零次幂的底数不为0;(4)如果f(x)由几部分构成,那么函数的定义域是使各部分都有意义的实数的集合;(5)如果函数有实际背景,那么除符合上述要求外,还要符合实际情况.2.求函数的定义域,一般是转化为解不等式或不等式组的问题,注意定义域是一个集合,其结果必须用集合或区间来表示.跟踪训练3求下列函数的定义域:(1)y=;(2)y=-+.解(1)由于00无意义,故x+1≠0,即x≠-1.又x+2>0,x>-2,所以x>-2且x≠-1.所以函数y=的定义域为{x|x>-2,且x≠-1}.(2)要使函数有意义,需解得-≤x<2,且x≠0,所以函数y=-+的定义域为.题型四求函数值例4已知f(x)=(x∈R,且x≠-1),g(x)=x2+2(x∈R).(1)求f (2),g (2)的值; (2)求f [g (3)]的值.解 (1)∵f (x )=,∴f (2)==. 又∵g (x )=x 2+2, ∴g (2)=22+2=6. (2)∵g (3)=32+2=11, ∴f [g (3)]=f (11)==.反思与感悟 求函数值时,首先要确定出函数的对应关系f 的具体含义,然后将变量代入解析式计算,对于f [g (x )]型的求值,按“由内到外”的顺序进行,要注意f [g (x )]与g [f (x )]的区别. 跟踪训练4 已知函数f (x )=. (1)求f (2);(2)求f [f (1)]. 解 (1)∵f (x )=,∴f (2)==. (2)f (1)==,f [f (1)]=f ==.抽象函数定义域理解错误致误例5 已知函数f (3x +1)的定义域为[1,7],求函数f (x )的定义域. 错解 因为f (3x +1)的定义域为[1,7], 即1≤3x +1≤7,解得0≤x ≤2, 所以f (x )的定义域为[0,2]. 正解 令3x +1=t ,则4≤t ≤22, 即f (t )中,t ∈[4,22], 故f (x )的定义域为[4,22]. 易错警示跟踪训练5若f(x)的定义域为[-3,5],求φ(x)=f(-x)+f(x)的定义域.解由f(x)的定义域为[-3,5],得φ(x)的定义域需满足即解得-3≤x≤3.所以函数φ(x)的定义域为[-3,3].1.下列图象中能表示函数y=f(x)图象的是()答案 B解析由函数的概念知答案为B.2.下列各组函数中表示同一函数的是()A.f(x)=x与g(x)=()2B.f(x)=|x|与g(x)=x(x>0)C.f(x)=2x-1与g(x)=2x+1(x∈N*)D.f(x)=与g(x)=x+1(x≠1)答案 D解析选项A,B,C中两个函数的定义域均不相同,故选D.3.函数f(x)=+的定义域为________.答案{x|x≥-1且x≠2}解析由,得x≥-1且x≠2.4.函数f(x)对任意自然数x满足f(x+1)=f(x)+1,f(0)=1,则f(5)=________. 答案 6解析f(1)=f(0)+1=1+1=2,f(2)=f(1)+1=3,f(3)=f(2)+1=4,f(4)=f(3)+1=5,f(5)=f(4)+1=6.5.已知函数f(x)=x2+x-1.(1)求f(2),f();(2)若f(x)=5,求x的值.解(1)f(2)=22+2-1=5,f()=+-1=.(2)∵f(x)=x2+x-1=5,∴x2+x-6=0,∴x=2,或x=-3.1.对函数相等的概念的理解:(1)函数有三个要素:定义域、值域、对应关系.函数的定义域和对应关系共同确定函数的值域,因此当且仅当两个函数的定义域和对应关系都分别相同时,这两个函数才是同一个函数. (2)定义域和值域都分别相同的两个函数,它们不一定是同一函数,因为函数对应关系不一定相同.如y=x与y=3x的定义域和值域都是R,但它们的对应关系不同,所以是两个不同的函数. 2.区间实质上是数轴上某一线段或射线上的所有点所对应的实数的取值集合,即用端点所对应的数、“+∞”(正无穷大)、“-∞”(负无穷大)、方括号(包含端点)、小圆括号(不包含端点)等来表示的部分实数组成的集合.如{x|a<x≤b}=(a,b],{x|x≤b}=(-∞,b]是数集描述法的变式.一、选择题1.下列四个图象中,是函数图象的是()A.①B.①③④C.①②③D.③④答案 B解析由每一个自变量x对应唯一一个f(x)可知②不是函数图象,①③④是函数图象.2.设M={x|-2≤x≤2},N={y|0≤y≤2},函数f(x)的定义域为M,值域为N,则f(x)的图象可以是()答案 B解析A项中,当0<x≤2时,每一个x都没有y与它对应,故不可能是函数的图象;B项中,-2≤x≤2时,每一个x都有唯一的y值与它对应,故它是函数的图象且是f(x)的图象;C项中,-2≤x<2时,每一个x都有两个不同的y值与它对应,故它不是函数的图象;D项中,-2≤x≤2时,每一个x都有唯一的y值与它对应,故它是某个函数的图象,但函数的值域不是N={y|0≤y≤2},故它是某个函数的图象但不是f(x)的图象.3.已知函数y=f(x)的定义域为[-1,5],则在同一坐标系中,函数f(x)的图象与直线x=1的交点个数为()A.0B.1C.2D.0或1答案 B解析因为1在定义域[-1,5]上,所以f(1)存在且唯一.4.函数f(x)=的定义域为()A.(1,+∞)B.[0,+∞)C.(-∞,1)∪(1,+∞)D.[0,1)∪(1,+∞)答案 D解析因为f(x)=,所以x≥0且x≠1,故可知定义域为[0,1)∪(1,+∞),故选D.5.若函数y=x2-3x的定义域为{-1,0,2,3},则其值域为()A.{-2,0,4}B.{-2,0,2,4}C.{y|y≤-}D.{y|0≤y≤3}答案 A解析依题意,当x=-1时,y=4;当x=0时,y=0;当x=2时,y=-2;当x=3时,y=0.所以函数y=x2-3x的值域为{-2,0,4}.6.若函数f(x)=的定义域为R,则实数m的取值范围是()A.(-∞,+∞)B.(0,)C.(,+∞)D.[0,)答案 C解析(1)当m=0时,分母为4x+3,此时定义域不为R,故m=0不符合题意.(2)当m≠0时,由题意,得解得m>.由(1)(2),知实数m的取值范围是(,+∞).二、填空题7.用区间表示下列集合:(1){x|-≤x<5}=________;(2){x|x<1或2<x≤3}=________.答案(1)[-,5);(2)(-∞,1)∪(2,3]解析(1)注意到包括不包括区间的端点与不等式含不含等号对应,则{x|-≤x<5}=[-,5). (2)注意到集合中的“或”对应区间中的“∪”,则{x|x<1或2<x≤3}=(-∞,1)∪(2,3].8.已知函数f(x)的定义域为(-1,1),则函数g(x)=f+f(x-1)的定义域是________.答案(0,2)解析由题意知即∴0<x<2.9.设f(x)=2x2+2,g(x)=,则g[f(2)]=________.答案解析∵f(2)=2×22+2=10,∴g[f(2)]=g(10)==.10.已知f(x)=x2+2x+4(x∈[-2,2]),则f(x)的值域为________.答案[3,12]解析函数f(x)的图象对称轴为x=-1,开口向上,而-1在区间[-2,2]上,所以f(x)的最小值为f(-1)=3,最大值为f(2)=12,所以f(x)在[-2,2]上的值域为[3,12].三、解答题11.已知函数f(x)=+.(1)求函数的定义域;(2)求f(-3),f()的值;(3)当a>0时,求f(a),f(a-1)的值.解(1)由得函数的定义域为[-3,-2)∪(-2,+∞).(2)f(-3)=-1,f()=+.(3)当a>0时,f(a)=+,a-1∈(-1,+∞),f(a-1)=+.12.求下列函数的值域.(1)y=-1(x≥4);(2)y=2x+1,x∈{1,2,3,4,5};(3)y=x+;(4)y=x2-2x-3(x∈[-1,2]).解(1)∵x≥4,∴≥2,∴-1≥1,∴y∈[1,+∞).(2)y={3,5,7,9,11}.(3)方法一函数y=x+的定义域为[,+∞),易知在定义域内y随x的增大而增大,故函数在x=时取最小值,无最大值,故值域为[,+∞).方法二设u=,则u≥0,且x=,于是,y=+u=(u+1)2≥,∴y=x+的值域为[,+∞).(4)y=x2-2x-3=(x-1)2-4,作出其图象可得值域为[-4,0].13.已知函数f(x)=.(1)求f(2)+f,f(3)+f的值;(2)求证f(x)+f是定值.(1)解∵f(x)=,∴f(2)+f=+=1.f(3)+f=+=1.(2)证明f(x)+f=+=+==1.第11页共11页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) y (x 3)( x 5) 与 y x 5 x3
(2) y x 1 x 1 与 y (x 1)( x 1) (3) f (x) ( 2x 5)2 与 f (x) 2x 5 (1)定义域不同。 (2)定义域不同。 (3)定义域和值域都不同。
新人教版高中数学必修一函数的概念
4.已学函数的定义域和值域
反比例函数 一次函数
y
k x
y axb (a 0)
(k 0)
二次函数
y ax2 bxc (a 0)
a> 0
a< 0
图像
定义域 {x| x 0} 值域 {y| y 0}
新人教版高中数学必修一函数的概念
b 2a
4ac b2 4a
新人教版高中数学必修一函数的概念
新人教版高中数学必修一函数的概念
练习:判断下列函数f(x)与g(x)是否表示相 等的函数,并说明理由?
× (1) f (x) (x 1)0, g(x) 1 × (2) f (x) x; g(x) x2 × (3) f (x) x2; g(x) (x 1)2
新人教版高中数学必修一函数的概念
例题1: 已 知函 数f ( x) x 3 1 , x2 (1) 求 函数 的 定 义域 ; (2) 求f (3), f ( 2)的 值; 3 (3) 当a 0时 , 求f (a), f (a 1)的 值。
新人教版高中数学必修一函数的概念
新人教版高中数学必修一函数的概念
不等于零的实数的集合 . (3)如果f(x)是二次根式,那么函数的定义域是使根号
内的式子大于或等于零的实数的集合. (4)a0有意义,a≠0。 (5)如果f(x)是由几个部分的数学式子构成的,那么 函数定义域是使各部分式子都有意义的实数集合(即 求各集合的交集). (6)满足实际问题有意义。
新人教版高中数学必修一函数的概念
例题2: 下 列 哪 个 函 数 与y x表 示 相 同 的 函 数 ?
(1) y ( x )2 (3) y x2
(2) y 3 x3 x2
(4) y x
两个函数相等当且仅当它们的定义域和对应关系 完全一致,而与表示自变量和函数值的字母无关。
新人教版高中数学必修一函数的概念
新人教版高中数学必修一函数的概念
4ac b2 4a
b 2a
R
R
R
R
{y
|
y
4ac 4a
b2}{y
|
y
4ac4a b2}
新人教版高中数学必修一函数的概念
练一练:试用区间表示下列实数集
(1){x|5 ≤ x<6} (2) {x|x ≥9}
[5,6)
[9,)
(3) {x|x ≤ -1} ∩{x| -5 ≤ x<2} (,1] [5,2)
函数的概念
第二课时
复习回顾 1. y=f(x)的理解: y=f(x)
“y是x的函数”
2. 函数的三要素: 定义域;值域;对应法则.
3. 求函数的定义域: 使函数的表达式有意义或实际问题有
意义的自变量的集合.
新人教版高中数学必修一函数的概念
求定义域: (1)如果f(x)是整式,那么函数的定义域是实数集R . (2)如果f(x)是分式,那么函数的定义域是使分母
(4) {x|x < -9}∪{x| 9 < x<20} (,9) (9,20)
新人教版高中数学必修一函数的概念
新人教版高中数学必修一函数的概念
练一练 求下列函数的定义域:
(1) f (x) 1 x2
(2) f (x) 3x 2 (3) f (x) x 1 1
2x
新人教版高中数学必修一函数的概念
新人教版高中数学必修一函数的概念
例题4: 求下列函数的值域:
(1) y 1 x
(2) y 1 x1
(3) y 1 2 x1
(4) y 2x 1 , x (1, 5] x1
新人教版高中数学必修一函数的概念
观察法
y
2
01
x
图像法
新人教版高中数学必修一函数的概念
例题3
求下列函数的值域:
y 2x 2x 1
新人教版高中数学必修一函数的概念
√ (4) f (x) x ; g(x) x2
新人教版高中数学必修一函数的概念
新人教版高中数学必修一函数的概念
例题3: 求下列函数的值域:
y x2 2x 1
( x 1)2 2
x [1, 2]
y
01
x
2
新人教版高中数学必修一函数的概念
配方
作图
截段
定结论
换元法
解:设 u
2x 1
,则
u0且
x u2 1 2
y
2
u2 1 2
u
u2
u
1
u
1 2
2
3 4
u 0, y 1.
函数y 2x 2x 1的值域为y y 1.
新人教版高中数学必修一函数的概念
新人教版高中数学必修一函数的概念
练习: (1) y x2 4x, x [1,5) (2) y x x 1 (3) y 2x 3 x 1
练习:已知 f (x) 3x 6,
求 f (2), f (a), f (m n).
解:f (2) 3 2 6 12 f (a) 3 a 6 3a 6 f (m n) 3 (m n) 6 3(m n) 6
新人教版高中数学必修一函数的概念
新人教版高中数学必修一函数的概念