24平行四边形全章复习与巩固(提高)知识讲解
平行四边形全章知识点
平行四边形全章知识点1.定义:平行四边形是一种四边形,其中两组对边是平行的。
2.性质:-对边平行性质:平行四边形的对边是平行的,根据这一性质,平行四边形也可以被定义为具有两组平行对边的四边形。
-对角线性质:平行四边形的对角线相互平分且相互等长。
-同底角性质:平行四边形的同底角相等。
-同顶角性质:平行四边形的同顶角相等。
-对边长度:平行四边形的对边长度相等。
-对角线长度:平行四边形的对角线长度相等。
-对边角:平行四边形的对边角相等。
-对角:平行四边形的对角互补,即两对角和为180度。
3.公式:-周长公式:平行四边形的周长可以通过将所有边的长度相加来计算:周长=边1长+边2长+边3长+边4长。
-面积公式:平行四边形的面积可以通过底边长度与高的乘积来计算:面积=底边长×高。
-对角线长度公式:平行四边形的对角线长度可以通过底边长度和高的关系来计算:对角线长度=√(底边长²+高²)。
4.判定方法:-边长判定:如果平行四边形的对边长度相等,则它们是平行四边形。
-角判定:如果平行四边形的相邻角或对顶角相等,则它们是平行四边形。
-对角线判定:如果平行四边形的对角线互相平分且相等,则它们是平行四边形。
5.具体类型:-矩形:具有相等对边和对角线的平行四边形。
-正方形:具有相等对边、对角线和四个直角的平行四边形。
-长方形:具有相等对边和对角线的平行四边形,但没有直角。
-菱形:具有相等对边和对角线的平行四边形,但没有直角。
-平行四边形:除了上述特殊情况外,其他包含两组平行对边的四边形都可以称为平行四边形。
平行四边形的应用广泛,包括几何学、物理学和工程学等领域。
在几何学中,平行四边形可以用于解决各种几何问题,如计算面积、周长和对角线长度等。
在物理学中,平行四边形的概念可以用于描述力的平衡条件。
在工程学中,平行四边形也被广泛用于设计和建构建筑物和桥梁等结构。
总之,平行四边形是具有两组对边平行的四边形。
北师大版初中数学八年级下册知识讲解 (教学资料,补习资料):第29讲《平行四边形》全章复习与巩固(提高)
《平行四边形》全章复习与巩固(提高)【学习目标】1.掌握平行四边形的性质定理和判定定理.2.掌握三角形的中位线定理.3.了解多边形的定义以及内角、外角、对角线等概念.掌握多边形的内角和与外角和公式.4.积累数学活动经验,发展推理能力.【知识网络】【要点梳理】要点一、平行四边形的定义平行四边形:两组对边分别平行的四边形叫做平行四边形. 平行四边形ABCD记作“口ABCD”,读作“平行四边形ABCD”.要点诠释:平行四边形是中心对称图形,两条对角线的交点是它的对称中心.要点二、平行四边形的性质定理平行四边形的对角相等;平行四边形的对边相等;平行四边形的对角线互相平分;要点诠释:(1)平行四边形的性质定理中边的性质可以证明两边平行或两边相等;角的性质可以证明两角相等或两角互补;对角线的性质可以证明线段的相等关系或倍半关系. (2)由于平行四边形的性质内容较多,在使用时根据需要进行选择.(3)利用对角线互相平分可解决对角线或边的取值范围的问题,在解答时应联系三角形三边的不等关系来解决.要点三、平行四边形的判定定理1.两组对边分别平行的四边形是平行四边形;2.一组对边平行且相等的四边形是平行四边形;3.两组对边分别相等的四边形是平行四边形;4.两组对角分别相等的四边形是平行四边形;5.对角线互相平分的四边形是平行四边形.要点诠释:(1)这些判定方法是学习本章的基础,必须牢固掌握,当几种方法都能判定同一个行四边形时,应选择较简单的方法.(2)这些判定方法既可作为判定平行四边形的依据,也可作为“画平行四边形”的依据.要点四、平行线间的距离1.两条平行线间的距离:(1)定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.注:距离是指垂线段的长度,是正值.2.平行线性质定理及其推论夹在两条平行线间的平行线段相等.平行线性质定理的推论:夹在两条平行线间的垂线段相等.要点五、三角形的中位线三角形的中位线1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于第三边,并且等于第三边的一半.要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系.(2)三角形的三条中位线把原三角形分成可全等的4个小三角形.因而每个小三角形的周长为原三角形周长的,每个小三角形的面积为原三角形面积的. (3)三角形的中位线不同于三角形的中线.要点六、多边形内角和、外角和边形的内角和为(-2)·180°(≥3).要点诠释:(1)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;(2)正多边形的每个内角都相等,都等于; 多边形的外角和为360°.边形的外角和恒等于360°,它与边数的多少无关.【典型例题】类型一、平行四边形的性质与判定1、(2019•海淀区二模)如图1,在△ABC 中,AB=AC ,∠ABC=α,D 是BC 边上一点,以AD 为边作△ADE,使AE=AD ,∠DAE+∠BAC=180°.(1)直接写出∠ADE 的度数(用含α的式子表示);1214n n n (2)180n n-⋅°n(2)以AB,AE为边作平行四边形ABFE,①如图2,若点F恰好落在DE上,求证:BD=CD;②如图3,若点F恰好落在BC上,求证:BD=CF.【思路点拨】(1)由在△ABC中,AB=AC,∠ABC=α,可求得∠BAC=180°﹣2α,又由AE=AD,∠DAE+∠BAC=180°,可求得∠DAE=2α,继而求得∠ADE的度数;(2)①由四边形ABFE是平行四边形,易得∠EDC=∠ABC=α,则可得∠ADC=∠ADE+∠EDC=90°,证得AD⊥BC,又由AB=AC,根据三线合一的性质,即可证得结论;②由在△ABC中,AB=AC,∠ABC=α,可得∠B=∠C=α,四边形ABFE是平行四边形,可得AE∥BF,AE=BF.即可证得:∠EAC=∠C=α,又由(1)可证得AD=CD,又由AD=AE=BF,证得结论.【答案与解析】解:(1)∵在△ABC中,AB=AC,∠ABC=α,∴∠BAC=180°﹣2α,∵∠DAE+∠BAC=180°,∴∠DAE=2α,∵AE=AD,∴∠ADE=90°﹣α;(2)①证明:∵四边形ABFE是平行四边形,∴AB∥EF.∴∠EDC=∠ABC=α,由(1)知,∠ADE=90°﹣α,∴∠ADC=∠ADE+∠EDC=90°,∴AD⊥BC.∵AB=AC,∴BD=CD;②证明:∵AB=AC,∠ABC=α,∴∠C=∠B=α.∵四边形ABFE是平行四边形,∴AE∥BF,AE=BF.∴∠EAC=∠C=α,由(1)知,∠DAE=2α,∴∠DAC=α,∴∠DAC=∠C.∴AD=CD.∵AD=AE=BF,∴BF=CD.∴BD=CF.【总结升华】此题考查了平行四边形的判定与性质以及等腰三角形的性质与判定.注意(2)①中证得AD⊥BC是关键,(2)②中证得AD=CD是关键.举一反三:【变式】分别以口ABCD(∠CDA≠90°)的三边AB,CD,DA为斜边作等腰直角三角形,△ABE,△CDG,△ADF.(1)如图1,当三个等腰直角三角形都在该平行四边形外部时,连接GF,EF.请判断GF与EF的关系并证明);(2)如图2,当三个等腰直角三角形都在该平行四边形内部时,连接GF,EF,(1)中结论还成立吗?若成立,给出证明;若不成立,说明理由.【答案】解:(1)GF⊥EF,GF=EF成立;∵四边形ABCD是平行四边形,∴AB=CD,∠DAB+∠ADC=180°,∵△ABE,△CDG,△ADF都是等腰直角三角形,∴DG=CG=AE=BE,DF=AF,∠CDG=∠ADF=∠BAE=45°,∴∠GDF=∠GDC+∠CDA+∠ADF=90°+∠CDA,∠EAF=360°﹣∠BAE﹣∠DAF﹣∠BAD=270°﹣(180°﹣∠CDA)=90°+∠CDA,∴∠FDG=∠EAF,∵在△EAF和△GDF中,,∴△EAF≌△GDF(SAS),∴EF=FG,∠EFA=∠DFG,即∠GFD+∠GFA=∠EFA+∠GFA,∴∠GFE=90°,∴GF⊥EF;(2)GF⊥EF,GF=EF成立;理由:∵四边形ABCD是平行四边形,∴AB=CD,∠DAB+∠ADC=180°,∵△ABE,△CDG,△ADF都是等腰直角三角形,∴DG=CG=AE=BE,DF=AF,∠CDG=∠ADF=∠BAE=45°,∴∠BAE+∠FAD+∠EAF+∠ADF+∠FDC=180°,∴∠EAF+∠CDF=45°,∵∠CDF+∠FDG=45°,∴∠FDG=∠EAF,∵在△EAF和△GDF中,DF AFFDG FAEDG AE=⎧⎪∠=∠⎨⎪=⎩,∴△EAF ≌△GDF (SAS ),∴EF =FG ,∠EFA =∠DFG ,即∠GFD +∠GFA =∠EFA +∠GFA ,∴∠GFE =90°,∴GF ⊥EF .2、如图,点D 是△ABC 的边AB 的延长线上一点,点F 是边BC 上的一个动点(不与点B 重合).以BD 、BF 为邻边作平行四边形BDEF ,又AP BE (点P 、E 在直线AB 的同侧),如果BD=AB ,那么△PBC 的面积与△ABC 面积之比为( ) A . B . C . D .【答案与解析】解:过点P 作PH∥BC 交AB 于H ,连接CH ,PF ,∵AP BE ,∴四边形APEB 是平行四边形,∴PE∥AB,PE =AB ,∵四边形BDEF 是平行四边形,∴EF∥BD,EF =BD ,即EF∥AB,∴P,E ,F 共线,设BD =,∵BD=AB ,∴PE=AB =4, 则PF =PE -EF =3,∵PH∥BC,∴,∵PF∥AB,∴四边形BFPH 是平行四边形,∴BH=PF =3,∵=BH :AB =3:4=3:4,DF AF FDG FAE DG AE =⎧⎪∠=∠⎨⎪=⎩1414351534a 14a a HBC BC S S =△△P a :HBC ABC S S △△a a∴=3:4.【总结升华】此题考查了平行四边形的判定与性质与三角形面积比的求解方法.此题难度较大,注意准确作出辅助线,注意等高三角形面积的比等于其对应底的比.举一反三:【变式】已知△ABC 中,AB =3,AC =4,BC =5,分别以AB 、AC 、BC 为一边在BC 边同侧作正△ABD 、正△ACE 和正△BCF ,求以A 、E 、F 、D 四点为顶点围成的四边形的面积.【答案】证明:∵ AB =3,AC =4,BC =5,∴∠BAC =90°∵△ABD 、△ACE 和△BCF 为正三角形,∴AB =BD =AD ,AC =AE =CE ,BC =BF =FC ,∠1+∠FBA =∠2+∠FBA =60°∴∠1=∠2易证△BAC ≌△BDF (SAS ),∴DF =AC =AE =4,∠BDF =90°同理可证△BAC ≌△FEC∴AB =AD =EF =3∴四边形AEFD 是平行四边形(两组对边分别相等的四边形是平行四边形)∵DF ∥AE ,DF ⊥BD延长EA 交BD 于H 点,AH ⊥BD ,则H 为BD 中点∴平行四边形AEFD 的面积=DF ×DH =4×= 6. 3、在平行四边形ABCD 中,点A 1,A 2,A 3,A 4和C 1,C 2,C 3,C 4分别AB 和CD 的五等分点,点B 1,B 2和D 1,D 2分别是BC 和DA 的三等分点,已知四边形A 4B 2C 4D 2的面积为1,则平行四边形ABCD 面积为( )A .2B .C .D .15:BC ABC S S △P △323553【思路点拨】可以设平行四边形ABCD 的面积是S ,根据等分点的定义利用平行四边形ABCD 的面积减去四个角上的三角形的面积,就可表示出四边形A 4B 2C 4D 2的面积,从而得到两个四边形面积的关系,即可求解.【答案】C ;【解析】解:设平行四边形ABCD 的面积是S ,设AB =5,BC =3.AB 边上的高是3,BC 边上的高是5.则S =5•3=3•5.即==. △AA 4D 2与△B 2CC 4全等,B 2C =BC =,B 2C 边上的高是•5=4. 则△AA 4D 2和△B 2CC 4的面积是2=. 同理△D 2C 4D 与△A 4BB 2的面积是. 则四边形A 4B 2C 4D 2的面积是S ----=,即=1, 解得S =. 【总结升华】考查平行四边形的性质和三角形面积计算,正确利用等分点的定义,得到两个四边形的面积的关系是解决本题的关键.类型二、三角形的中位线4、如图,△ABC 的周长为26,点D ,E 都在边BC 上,∠ABC 的平分线垂直于AE ,垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P ,若BC =10,则PQ 的长为( )A. B. C.3 D.4 【答案】C ;【解析】解:易证△ABQ ≌△EBQ, AB =BE ,Q 为AE 中点,△ACP ≌△DCP, AC =CD ,P 为AD 中点,a b x y a x b y a x b y 15S 13b 45y y b y 215S 15S 215S 215S 15S 15S 915S 915S 533252【总结升华】本题考查了三角形的中位线定理及等腰三角形的判定,注意培养自己的敏感性,一般出现高、角平分线重合的情况,都需要找到等腰三角形.类型三、多边形内角和与外角和5、若一个多边形的每个外角都等于60°,则它的内角和等于( )A .180°B .720°C .1080°D .540°【思路点拨】由一个多边形的每个外角都等于60°,根据边形的外角和为360°计算出多边形的边数,然后根据边形的内角和定理计算即可.【答案】B ;【解析】解:设多边形的边数为,∵多边形的每个外角都等于60°,∴=360°÷60°=6,∴这个多边形的内角和=(6-2)×180°=720°.【总结升华】本题考查了边形的内角和定理:边形的内角和=(-2)•180°;也考查了边形的外角和为360°.举一反三:【变式】(2019秋•小金县校级期末)一个多边形的每个内角都相等,且一个外角比一个内角大60°,求这个多边形的每个内角的度数及边数.【答案】解:设内角是x °,外角是y °, 则得到一个方程组60180y x x y -=⎧⎨+=⎩, 解得60120x y =⎧⎨=⎩.而任何多边形的外角是360°,则多边形中外角的个数是360÷120=3,故这个多边形的每个内角的度数是60°,边数是三边形.6、甲、乙两人想在正五边形ABCDE 内部找一点P ,使得四边形ABPE 为平行四边形,其作法如下:(甲) 连接BD 、CE ,两线段相交于P 点,则P 即为所求(乙) 先取CD 的中点M ,再以A 为圆心,AB 长为半径画弧,交AM 于P 点,则P 即为所求. 对于甲、乙两人的作法,下列判断何者正确?( )A .两人皆正确B .两人皆错误n n n n n n n n nC .甲正确,乙错误D .甲错误,乙正确【思路点拨】求出五边形的每个角的度数,求出∠ABP、∠AEP、∠BPE 的度数,根据平行四边形的判定判断即可.【答案】C ;【解析】解:甲正确,乙错误,理由是:如图,∵正五边形的每个内角的度数是=108°, AB =BC =CD =DE =AE ,∴∠DEC=∠DCE=×(180°-108°)=36°, 同理∠CBD=∠CDB=36°,∴∠ABP=∠AEP=108°-36°=72°,∴∠BPE=360°-108°-72°-72°=108°=∠A,∴四边形ABPE 是平行四边形,即甲正确;∵∠BAE=108°,∴∠BAM=∠EAM=54°,∵AB=AE =AP ,∴∠ABP=∠APB=×(180°-54°)=63°,∠AEP=∠APE=63°, ∴∠BPE=360°-108°-63°-63°≠108°,即∠ABP=∠AEP,∠BAE≠∠BPE,∴四边形ABPE 不是平行四边形,即乙错误;【总结升华】本题考查了正五边形的内角和定理,等腰三角形的性质,三角形的内角和定理,平行四边形的判定的应用,注意:有两组对角分别相等的四边形是平行四边形.【巩固练习】一.选择题1. 如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为( )A .120°B .180°C .240°D .300°()521805-⨯︒12122.如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,下列结论正确的是( )A .B .AC =BDC .AC ⊥BD D .口ABCD 是轴对称图形3.(2019春•大石桥市校级期末)如图,在四边形ABCD 中,P 是对角线BD 的中点,E 、F 分别是AB 、CD 的中点,AD=BC ,∠PEF=30°,则∠EPF 的度数是( )A .120°B .150°C .135°D .140°4.如图,在Rt△ABC 中,∠B=90°,AB =3,BC =4,点D 在BC 上,以AC 为对角线的所有口ADCE 中,DE 最小的值是( )A .2B .3C .4D .55.平行四边形的一边长是10cm ,那么这个平行四边形的两条对角线的长可以是( )A.4cm 和6cmB.6cm 和8cmC.8cm 和10cmD.10cm 和12cm6.如图,在平行四边形ABCD 中,AB =4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG⊥AE,垂足为G ,若DG =1,则AE 的边长为( )A.7.(2019•凉山州)一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那4AOB ABCD S S △平行四边形么原多边形的边数为( )A .7B .7或8C .8或9D .7或8或98.如图,平行四边形ABCD 中,AB :BC =3:2,∠DAB=60°,E 在AB 上,且AE :EB =1:2,F 是BC 的中点,过D 分别作DP⊥AF 于P ,DQ⊥CE 于Q ,则DP :DQ 等于( )A .3:4 B.C.D.二.填空题9.如图,在四边形ABCD中,∠A=45°.直线l 与边AB ,AD 分别相交于点M ,N ,则∠1+∠2=___________.10.已知任意直线l 把口ABCD 分成两部分,要使这两部分的面积相等,直线l 所在位置需满足的条件是________.11.如图,在直线m 上摆放着三个正三角形:△ABC、△HFG、△DCE,已知BC =CE ,F 、G 分别是BC 、CE 的中点,FM∥AC,GN∥DC.设图中三个平行四边形的面积依次是S 1,S ,S 3,若S 1+S 3=10,则S =_______.12. 如图所示,在口ABCD 中,E 、F 分别是边AD 、BC 的中点,AC 分别交BE 、DF 于点M 、N .给12出下列结论:①△ABM ≌△CDN ;②AM =AC ;③DN =2NF ;④.其中正确的结论是________.(只填序号) 13.如图,口ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点,若AC+BD=24厘米,△OAB 的周长是18厘米,则EF =________厘米.14.(2019·武汉)如图,在口ABCD 中,E 为边CD 上一点,将△ADE 沿AE 折叠至△AD ’E处,AD ’与CE 交于点F.若∠B =52°,∠DAE=20°,则∠FED ’的大小为_____.15. 如图所示,平行四边形ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好落在CD 上的F 处,若△FDE 的周长为8,△FCB 的周长为22,则FC 的长为________.16.(2019•包河区一模)已知:如图,BD 为△ABC 的内角平分线,CE 为△ABC 的外角平分线,AD⊥BD 于D ,AE⊥CE 于E ,延长AD 交BC 的延长线于F ,连接DE ,设BC=a ,AC=b ,AB=c ,(a <b <c )给出以下结论正确的有 .①CF=c﹣a ;②AE=(a+b );③DE=(a+b ﹣c );④DF=(b+c ﹣a )1312AMB ABC S S △△三.解答题17.如图,已知四边形ABDE是平行四边形,C为边BD延长线上一点,连结AC、CE,使AB=AC.(1)求证:△BAD≌△AEC;(2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE的面积.18.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3 (1)求证:BN=DN;(2)求△ABC的周长.19.(合川区校级期中)如图,Rt△ABC中,分别以AB、AC为斜边,向△ABC的内侧作等腰Rt△ABE、Rt△ACD,点M是BC的中点,连接MD、ME.(1)若AB=8,AC=4,求DE的长;(2)求证:AB﹣AC=2DM.20.(1)如图①,口ABCD的对角线AC,BD交于点O,直线EF过点O,分别交AD,BC于点E,F.求证:AE=CF.(2)如图②,将口ABCD(纸片)沿过对角线交点O的直线EF折叠,点A落在点A1处,点B落在点B1处,设FB1交CD于点G,A1B1分别交CD,DE于点H,I.求证:EI=FG.【答案与解析】一.选择题1.【答案】C ;【解析】根据三角形的内角和定理得:四边形除去∠1,∠2后的两角的度数为180°-60°=120°,则根据四边形的内角和定理得:∠1+∠2=360°-120°=240°.2.【答案】A ;3.【答案】A ;【解析】解:∵在四边形ABCD 中,P 是对角线BD 的中点,E ,F 分别是AB ,CD 的中点,∴FP,PE 分别是△CDB 与△DAB 的中位线,∴PF=BC ,PE=AD ,∵AD=BC,∴PF=PE,故△EPF 是等腰三角形.∵∠PEF=30°,∴∠PEF=∠PFE=30°,∴∠EPF=120°.故选A .4.【答案】B ;【解析】由平行四边形的对角线互相平分、垂线段最短知,当OD⊥BC 时,DE 线段取最小值.5.【答案】D ;6.【答案】B ;7.【答案】D ;【解析】设内角和为1080°的多边形的边数是n ,则(n ﹣2)•180°=1080°,解得:n =8.则原多边形的边数为7或8或9.8.【答案】D ;【解析】连接DE 、DF ,过F 作FN⊥AB 于N ,过C 作CM⊥AB 于M ,根据三角形的面积和平行四边形的面积得出, 求出AF×DP=CE×DQ,设AB =3,BC =2,12DEC DFA S S S ==△△平行四边形ABCD a a则BF =,BE =2,BN =,BM =,FN =,CM, 求出AF,CE =,代入求出即可.二.填空题9.【答案】225°【解析】∵∠A=45°,∴∠B+∠C+∠D=360°-∠A=360°-45°=315°,∴∠1+∠2+∠B+∠C+∠D=(5-2)•180°,解得∠1+∠2=225°.10.【答案】经过对角线的交点;【解析】由于平行四边形是中心对称图形,对称中心为对角线的交点,因而过对角线的交点的直线就能把平行四边形分成全等的两部分,这两部分的面积也就相等了.11.【答案】4;【解析】根据正三角形的性质,△PFC、△QCG 和△NGE 是正三角形,∵F、G 分别是BC 、CE 的中点∴BF=MF =AC =BC ,CP =PF =AB =BC ∴CP=MF ,CQ =BC ,QG =GC =CQ =AB ,∴S 1=S ,S 3=2S , ∵S 1+S 3=10∴S +2S =10 ∴S=4.12.【答案】①②③;【解析】易证四边形BEDF 是平行四边形,△ABM ≌△CDN .∴ ①正确.由口BEDF 可得∠BED =∠BFD ,∴∠AEM =∠NFC .又∵AD ∥BC .∴∠EAM =∠NCF , 又AE =CF ∴ △AME ≌△CNF ,∴AM =CN .由FN ∥BM ,FC =BF ,得CN =MN ,∴CNa a 12a a 2a a a a 121212121212=MN =AM ,AM =AC .∴ ②正确. ∵ AM =AC ,∴ ,∴④不正确. FN 为△BMC 的中位线,BM =2NF ,△ABM ≌△CDN ,则BM =DN ,∴DN =2NF ,∴③正确.13.【答案】3;【解析】根据AC +BD =24厘米,可得出出OA +OB =12cm ,继而求出AB ,判断EF 是△OAB的中位线即可得出EF 的长度.14.【答案】36°;【解析】∵平行四边形ABCD ,∴∠D =∠B=52°,由折叠性质得∴∠D =∠D ’=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°-∠EAD′-∠D′=108°, ∴∠FED′=108°-72°=36°.15.【答案】7;【解析】∵ 四边形ABCD 是平行四边形,∴ AD =BC ,AB =CD . 又∵ 以BE 为折痕,将△ABE 向上翻折到△FBE 的位置,∴ AE =EF ,AB =BF .已知DE +DF +EF =8,即AD +DF =8,AD +DC -FC =8.∴ BC +AB -FC =8.① 又∵ BF +BC +FC =22,即AB +BC +FC =22.②,两式联立可得FC =7.16.【答案】①③;【解析】解:延长AE 交BC 的延长线与点M .∵CE⊥AE,CE 平分∠ACB,∴△ACM 是等腰三角形,∴AE=EM,AC═CM=b,同理,AB=BF=c ,AD=DF ,AE=EM .∴DE=FM ,∵CF=c﹣a ,∴FM=b﹣(c ﹣a )=a+b ﹣c .∴DE=(a+b ﹣c ).故①③正确.故答案是:①③.三.解答题131313AMB ABC S S △△17.【解析】(1)证明:∵AB=AC ,∴∠B=∠ACB.又∵四边形ABDE 是平行四边形∴AE∥BD,AE =BD ,∴∠ACB=∠CAE=∠B,在△DBA 和△AEC 中,∴△DBA≌△AEC(SAS );(2)解:过A 作AG⊥BC,垂足为G .设AG =x ,在Rt△AGD 中,∵∠ADC=45°,∴AG=DG =x ,在Rt△AGB 中,∵∠B=30°, ∴BG=x , 又∵BD=10.∴BG-DG =BD ,即x −x =10,解得AG =x ==5+5, ∴=BD•AG=10×(5+5)=50+50.18.【解析】(1)证明:在△ABN 和△ADN 中,∵∴△ABN ≌△ADN , ∴BN =DN .(2)解:∵△ABN ≌△ADN ,∴AD =AB =10,DN =NB ,又∵点M 是BC 中点,∴MN 是△BDC 的中位线,∴CD =2MN =6,故△ABC 的周长=AB +BC +CD +AD =10+15+6+10=41.19.【解析】解:(1)直角△ABE 中,AE=AB=4, 在直角△ACD 中,AD=AC=2,AB AC B EAC BD AE =⎧⎪∠=∠⎨⎪=⎩3331-3ABDE S 平行四边形3312AN AN ANB AND ∠=∠⎧⎪=⎨⎪∠=∠⎩则DE=AE ﹣AD=4﹣2=2;(2)延长CD 交AB 于点F .在△ADF 和△ADC 中,,∴△ADF≌△ADC(ASA ),∴AC=AF,CD=DF ,又∵M 是BC 的中点,∴DM 是△CBF 的中位线, ∴DM=BF=(AB ﹣AF )=(AB ﹣AC ), ∴AB﹣AC=2DM .20.【解析】证明:(1)∵四边形ABCD 是平行四边形,∴AD∥BC,OA =OC ,∴∠1=∠2,∵在△AOE 和△COF 中,,∴△AOE≌△COF(ASA ),∴AE=CF ;(2)∵四边形ABCD 是平行四边形, ∴∠A=∠C,∠B=∠D,由(1)得AE =CF ,由折叠的性质可得:AE =A 1E ,∠A 1=∠A,∠B 1=∠B, ∴A 1E =CF ,∠A 1=∠A=∠C,∠B 1=∠B=∠D,1234OA OC ∠=∠⎧⎪=⎨⎪∠=∠⎩又∵∠1=∠2, ∴∠3=∠4,∵∠5=∠3,∠4=∠6, ∴∠5=∠6,∵在△A 1IE 与△CGF 中, ,∴△A 1IE≌△CGF(AAS ), ∴EI=FG .1156A C A E CF ∠=∠⎧⎪∠=∠⎨⎪=⎩。
人教版数学八年级下册平行四边形全章复习与巩固(提高)知识讲解
平行四边形全章复习与巩固(提高)【学习目标】1. 掌握平行四边形、矩形、菱形、正方形的概念, 了解它们之间的关系.2. 探索并掌握平行四边形、矩形、菱形、正方形的有关性质和常用判别方法, 并能运用这些知识进行有关的证明和计算.3. 掌握三角形中位线定理. 【知识网络】【要点梳理】要点一、平行四边形1.定义:两组对边分别平行的四边形叫做平行四边形. 2.性质:(1)对边平行且相等; (2)对角相等;邻角互补; (3)对角线互相平分; (4)中心对称图形. 3.面积:高底平行四边形⨯=S4.判定:边:(1)两组对边分别平行的四边形是平行四边形; (2)两组对边分别相等的四边形是平行四边形; (3)一组对边平行且相等的四边形是平行四边形. 角:(4)两组对角分别相等的四边形是平行四边形; (5)任意两组邻角分别互补的四边形是平行四边形. 边与角:(6)一组对边平行,一组对角相等的四边形是平行四边形; 对角线:(7)对角线互相平分的四边形是平行四边形. 要点诠释:平行线的性质: (1)平行线间的距离都相等;(2)等底等高的平行四边形面积相等. 要点二、矩形1.定义:有一个角是直角的平行四边形叫做矩形. 2.性质:(1)具有平行四边形的所有性质;(2)四个角都是直角;(3)对角线互相平分且相等;(4)中心对称图形,轴对称图形. 3.面积:宽=长矩形⨯S4.判定:(1) 有一个角是直角的平行四边形是矩形. (2)对角线相等的平行四边形是矩形. (3)有三个角是直角的四边形是矩形. 要点诠释:由矩形得直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半. 要点三、菱形1. 定义:有一组邻边相等的平行四边形叫做菱形. 2.性质:(1)具有平行四边形的一切性质; (2)四条边相等;(3)两条对角线互相平分且垂直,并且每一条对角线平分一组对角;(4)中心对称图形,轴对称图形.3.面积:2对角线对角线高==底菱形⨯⨯S4.判定:(1)一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形; (3)四边相等的四边形是菱形.要点四、正方形1. 定义:四条边都相等,四个角都是直角的四边形叫做正方形. 2.性质:(1)对边平行;(2)四个角都是直角;(3)四条边都相等;(4)对角线互相垂直平分且相等,对角线平分对角;(5) 两条对角线把正方形分成四个全等的等腰直角三角形; (6)中心对称图形,轴对称图形.3.面积:=S 正方形边长×边长=12×对角线×对角线 4.判定:(1)有一个角是直角的菱形是正方形;(2)一组邻边相等的矩形是正方形; (3)对角线相等的菱形是正方形; (4)对角线互相垂直的矩形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形; (6)四条边都相等,四个角都是直角的四边形是正方形.【典型例题】类型一、平行四边形1、(2015•海淀区二模)如图1,在△ABC 中,AB=AC ,∠ABC=α,D 是BC 边上一点,以AD 为边作△ADE,使AE=AD ,∠DAE+∠BAC=180°.(1)直接写出∠ADE的度数(用含α的式子表示);(2)以AB,AE为边作平行四边形ABFE,①如图2,若点F恰好落在DE上,求证:BD=CD;②如图3,若点F恰好落在BC上,求证:BD=CF.【思路点拨】(1)由在△ABC中,AB=AC,∠ABC=α,可求得∠BAC=180°﹣2α,又由AE=AD,∠DAE+∠BAC=180°,可求得∠DAE=2α,继而求得∠ADE的度数;(2)①由四边形ABFE是平行四边形,易得∠EDC=∠ABC=α,则可得∠ADC=∠ADE+∠EDC=90°,证得AD⊥BC,又由AB=AC,根据三线合一的性质,即可证得结论;②由在△ABC中,AB=AC,∠ABC=α,可得∠B=∠C=α,四边形ABFE是平行四边形,可得AE∥BF,AE=BF.即可证得:∠EAC=∠C=α,又由(1)可证得AD=CD,又由AD=AE=BF,证得结论.【答案与解析】解:(1)∵在△ABC中,AB=AC,∠ABC=α,∴∠BAC=180°﹣2α,∵∠DAE+∠BAC=180°,∴∠DAE=2α,∵AE=AD,∴∠ADE=90°﹣α;(2)①证明:∵四边形ABFE是平行四边形,∴AB∥EF.∴∠EDC=∠ABC=α,由(1)知,∠ADE=90°﹣α,∴∠ADC=∠ADE+∠EDC=90°,∴AD⊥BC.∵AB=AC,∴BD=CD;②证明:∵AB=AC,∠ABC=α,∴∠C=∠B=α.∵四边形ABFE是平行四边形,∴AE∥BF,AE=BF.∴∠EAC=∠C=α,由(1)知,∠DAE=2α,∴∠DAC=α,∴∠DAC=∠C.∴AD=CD.∵AD=AE=BF,∴BF=CD.∴BD=CF.【总结升华】此题考查了平行四边形的判定与性质以及等腰三角形的性质与判定.注意(2)①中证得AD⊥BC是关键,(2)②中证得AD=CD是关键.举一反三:【变式】已知△ABC中,AB=3,AC=4,BC=5,分别以AB、AC、BC为一边在BC边同侧作正△ABD、正△ACE和正△BCF,求以A、E、F、D四点为顶点围成的四边形的面积.【答案】证明:∵ AB=3,AC=4,BC=5,∴∠BAC=90°∵△ABD、△ACE和△BCF为正三角形,∴AB=BD=AD,AC=AE=CE,BC=BF=FC ,∠1+∠FBA=∠2+∠FBA=60°∴∠1=∠2易证△BAC≌△BDF(SAS),∴DF=AC=AE=4,∠BDF=90°同理可证△BAC≌△FEC∴AB=AD=EF=3∴四边形AEFD是平行四边形(两组对边分别相等的四边形是平行四边形)∵DF∥AE,DF⊥BD延长EA交BD于H点,AH⊥BD,则H为BD中点∴平行四边形AEFD的面积=DF×DH=4×32=6.类型二、矩形2、如图,O是矩形ABCD的对角线的交点,E、F、G、H分别是OA、OB、OC、OD上的点,且AE=BF=CG=DH.(1)求证:四边形EFGH是矩形;(2)若E、F、G、H分别是OA、OB、OC、OD的中点,且D G⊥AC,OF=2cm,求矩形ABCD的面积.【答案与解析】(1)证明:∵四边形ABCD是矩形,∴OA=0B=OC=OD,∵AE=BF=CG=DH,∴AO-AE =OB -BF =CO -CG =DO -DH , 即:OE =OF =OG =OH , ∴四边形EFGH 是矩形;(2)解:∵G 是OC 的中点,∴GO=GC , ∵DG⊥AC,∴∠DGO=∠DGC=90°, 又∵DG=DG , ∴△DGC≌△DGO, ∴CD=OD ,∵F 是BO 中点,OF =2cm , ∴BO=4cm ,∵四边形ABCD 是矩形, ∴DO=BO =4cm ,∴DC=4cm ,DB =8cm ,∴CB=2243DB DC -=,∴矩形ABCD 的面积=4×243163cm =.【总结升华】本题主要考查矩形的判定,首先要判定四边形是平行四边形,然后证明对角线相等. 举一反三: 【变式】(2015秋•抚州校级期中)在平行四边形ABCD 中,过点D 作DE⊥AB 于点E ,点F 在边CD 上,DF=BE , 连接AF ,BF .(1)求证:四边形BFDE 是矩形;(2)若CF=9,BF=12,DF=15,求证:AF 平分∠DAB.【答案】证明:(1)∵四边形ABCD 为平行四边形,∴DC∥AB,即DF∥BE, 又∵DF=BE,∴四边形DEBF 为平行四边形, 又∵DE⊥AB, ∴∠DEB=90°,∴四边形DEBF 为矩形; (2)∵四边形DEBF 为矩形,∴∠BFC=90°, ∵CF=9,BF=12,∴BC==15,∴AD=BC=15, ∴AD=DF=15, ∴∠DAF=∠DFA, ∵AB∥CD,∴∠FAB=∠DFA, ∴∠FAB=∠DFA, ∴AF 平分∠DAB.3、在Rt△ABC 中,∠ACB=90°,BC=4.过点A 作AE⊥AB 且AB=AE ,过点E 分别作EF⊥AC,ED⊥BC,分别交AC 和BC 的延长线与点F ,D .若FC=5,求四边形ABDE 的周长.【思路点拨】首先证明△ABC≌△EAF,即可得出BC=AF ,AC=EF ,再利用勾股定理得出AB 的长,进而得出四边形EFCD 是矩形,求出四边形ABDE 的周长即可. 【答案与解析】解:∵∠ACB=90°,AE⊥AB,∴∠1+∠B=∠1+∠2=90°.∴∠B=∠2. ∵EF⊥AC,∴∠4=∠5=90°. ∴∠3=∠4.在△A BC 和△EAF 中,∵342B AB AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,, ∴△ABC≌△EAF(AAS ). ∴BC=AF,AC=EF . ∵BC=4, ∴AF=4. ∵FC=5, ∴AC=EF=9.在Rt△ABC 中,AB=22224997CB AC +=+=. ∴AE=97.∵ED⊥BC,∴∠7=∠6=∠5=90°. ∴四边形EFCD 是矩形.∴CD=EF=9,ED=FC=5.∴四边形ABDE的周长=AB+BD+DE+EA=97+4+9+5+97=18+297.【总结升华】此题主要考查了全等三角形的判定以及矩形的判定与性质和勾股定理等知识,根据已知得出AC=EF=9是解题关键.类型三、菱形4、如图,平行四边形ABCD中,AB⊥AC,AB=1,BC=5.对角线AC,BD 相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;(2)试说明在旋转过程中,线段AF与EC总保持相等;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.【思路点拨】(1)当旋转角为90°时,∠AOF=90°,由AB⊥AC,可得AB∥EF,即可证明四边形ABEF为平行四边形;(2)证明△AOF≌△COE即可;(3)当EF⊥BD时,四边形BEDF为菱形,又由AB⊥AC,AB=1,BC=5,易求得OA=AB,即可得∠AOB=45°,求得∠AOF=45°,则可得此时AC绕点O顺时针旋转的最小度数为45°.【答案与解析】(1)证明:当∠AOF=90°时,AB∥EF,又AF∥BE,∴四边形ABEF为平行四边形.(2)证明:四边形ABCD为平行四边形,∴AO=CO,∠FAO=∠ECO,∠AOF=∠COE.∴△AOF≌△COE∴AF=CE(3)四边形BEDF可以是菱形.理由:如图,连接BF,DE,由(2)知△AOF≌△COE,得OE=OF,∴EF与BD互相平分.∴当EF⊥BD时,四边形BEDF为菱形.AC=-=,在Rt△ABC中,512∴OA=1=AB,又AB⊥AC,∴∠AOB=45°,∴∠AOF=45°,∴AC绕点O顺时针旋转45°时,四边形BEDF为菱形.【总结升华】要证明四边形是菱形,先证明这个四边形是平行四边形,再利用对角线互相垂直的特征证明该平行四边形是菱形.举一反三:【变式】已知:如图所示,BD是△ABC的角平分线,EF是BD的垂直平分线,且交AB于E,交BC于点F.求证:四边形BFDE是菱形.【答案】证明:∵EF是BD的垂直平分线,∴EB=ED,∠EBD=∠EDB.又∵∠EBD= ∠FBD,∴∠FBD=∠EDB,ED∥BF. 同理,DF∥BE,∴四边形BFDE是平行四边形.又∵EB=ED,∴四边形BFDE是菱形.5、在口ABCD中,对角线AC、BD相交于点O,BD=2AB,点E、F分别是OA、BC的中点.连接BE、EF.(1)求证:EF=BF;(2)在上述条件下,若AC=BD,G是BD上一点,且BG:GD=3:1,连接EG、FG,试判断四边形EBFG的形状,并证明你的结论.【思路点拨】(1)根据平行四边形性质推出BD=2BO,推出AB=BO,根据三线合一定理得出BE⊥AC,在△BEC 中,根据直角三角形斜边上中线性质求出EF=BF=CF即可;(2)根据矩形性质和已知求出G为OD中点,根据三角形中位线求出EG∥AD,EG=12BC,求出EG∥BC,EG=12BC,求出BF=EG,BF∥EG,EG=GF,得出平行四边形,根据菱形的判定推出即可.【答案与解析】(1)证明:∵四边形ABCD是平行四边形,∴BD=2BO,∵BD=2AB,∴AB=BO,∵E为OA中点,∴BE⊥AC,∴∠BEC=90°,∵F为BC中点,∴EF=BF=CF,即EF=BF;(2)四边形EBFG是菱形,证明:连接CG,∵四边形ABCD是平行四边形,AC=BD,∴四边形ABCD是矩形,∴AD=BC,AB=CD,AD∥BC,BD=2BO=2OD,∴BD=2AB=2CD,∴OC=CD,∵BG:GD=3:1,OB=OD,∴G为OD中点,∴CG⊥OD(三线合一定理),即∠CGB=90°,∵F为BC中点,∴GF=12BC=12AD,∵E为OA中点,G为OD中点,∴EG∥AD,EG=12 AD,∴EG∥BC,EG=12 BC,∵F为BC中点,∴BF=12BC,EG=GF,即EG∥BF,EG=BF,∴四边形EBFG是平行四边形,∵EG=GF,∴平行四边形EBFG是菱形(有一组邻边相等的平行四边形是菱形).【总结升华】本题考查了平行四边形的性质和判定,矩形性质,菱形性质,三角形的中位线,直角三角形斜边上中线性质,等腰三角形的性质等知识点,主要考查学生综合运用定理进行推理的能力,注意:直角三角形斜边上中线等于斜边的一半.类型四、正方形6、正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE =1时,求EF 的长.【答案与解析】解:(1)证明:∵△DAE 逆时针旋转90°得到△DCM,∴DE=DM ,∠EDM=90°, ∴∠EDF+∠FDM=90°, ∵∠EDF=45°,∴∠FDM=∠EDF =45°, 在△DEF 和△DMF 中,DE DM EDF MDF DF DF =⎧⎪∠=∠⎨⎪=⎩,∴△DEF≌△DMF(SAS ), ∴EF=MF ;(2)设EF =MF =x ,∵AE=CM =1,且BC =3, ∴BM=BC +CM =3+1=4,∴BF=BM -MF =BM -EF =4-x , ∵EB=AB -AE =3-1=2,在Rt△EBF 中,由勾股定理得EB 2+BF 2=EF 2, 即()22224x x +-=, 解得:52x =,则EF =52. 【总结升华】此题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,以及勾股定理,利用了转化及方程的思想,熟练掌握性质及定理是解本题的关键. 举一反三:【变式】如图(1),正方形ABCD 和正方形CEFG 有一公共顶点C ,且B 、C 、E 在一直线上,连接BG 、DE .(1)请你猜测BG 、DE 的位置关系和数量关系?并说明理由.(2)若正方形CEFG 绕C 点向顺时针方向旋转一个角度后,如图(2),BG 和DE 是否还存在上述关系?若存在,试说明理由;若不存在,也请你给出理由.2020年人教版初二数学下学期【答案】解:(1)BG=DE,BG⊥DE;理由是:延长BG交DE于点H,因为BC=DC,CG =CE,∠BCG=∠DCE所以△BCG≌△DCE,所以BG=DE,∠GBC=∠CDE.由于∠CDE+∠CED=90°,所以∠GBC+∠DEC=90°,得∠BHE=90°.所以BG⊥DE.(2)上述结论也存在.理由:设BG交DE于H,BG交DC于K,同理可证△BCG≌△DCE,得BG=ED,∠KBC=∠KDH.又因为∠KBC+∠BKC=90°,可得∠DKH+∠KDH =90°,从而得∠KHD=90°.所以BG⊥DE.。
平行四边形提高知识讲解.doc
平行四边形(提高)责编:杜少波【学习目标】1.理解平行四边形的概念,掌握平行四边形的性质定理和判定定理;2.能初步运用平行四边形的性质进行推理和计算,并体会如何利用所学的三角形的知识解决四边形的问题.3. 能综合运用平行四边形的判定定理和平行四边形的性质定理进行证明和计算.4. 理解三角形的中位线的概念,掌握三角形的中位线定理.【要点梳理】要点一、平行四边形的定义平行四边形的定义:两组对边分别平行的四边形叫做平行四边形. 平行四边形ABCD记作“ABCD”,读作“平行四边形ABCD”.要点诠释:平行四边形的基本元素:边、角、对角线.相邻的两边为邻边,有四对;相对的边为对边,有两对;相邻的两角为邻角,有四对;相对的角为对角,有两对;对角线有两条.要点二、平行四边形的性质1.边的性质:平行四边形两组对边平行且相等;2.角的性质:平行四边形邻角互补,对角相等;3.对角线性质:平行四边形的对角线互相平分;4.平行四边形是中心对称图形,对角线的交点为对称中心.要点诠释:(1)平行四边形的性质中边的性质可以证明两边平行或两边相等;角的性质可以证明两角相等或两角互补;对角线的性质可以证明线段的相等关系或倍半关系.(2)由于平行四边形的性质内容较多,在使用时根据需要进行选择.(3)利用对角线互相平分可解决对角线或边的取值范围的问题,在解答时应联系三角形三边的不等关系来解决.要点三、平行四边形的判定1.两组对边分别平行的四边形是平行四边形;2.两组对边分别相等的四边形是平行四边形;3.一组对边平行且相等的四边形是平行四边形;4.两组对角分别相等的四边形是平行四边形;5.对角线互相平分的四边形是平行四边形.要点诠释:(1)这些判定方法是学习本章的基础,必须牢固掌握,当几种方法都能判定同一个平行四边形时,应选择较简单的方法.(2)这些判定方法既可作为判定平行四边形的依据,也可作为“画平行四边形”的依据.要点四、三角形的中位线1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系.(2)三角形的三条中位线把原三角形分成可重合的4个小三角形.因而每个小三角形的周长为原三角形周长的12,每个小三角形的面积为原三角形面积的14.(3)三角形的中位线不同于三角形的中线.要点五、平行线间的距离1.两条平行线间的距离:(1)定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.注:距离是指垂线段的长度,是正值.(2)平行线间的距离处处相等任何两平行线间的距离都是存在的、唯一的,都是夹在这两条平行线间最短的线段的长度. 两条平行线间的任何两条平行线段都是相等的.2.平行四边形的面积:平行四边形的面积=底×高;等底等高的平行四边形面积相等.【典型例题】类型一、平行四边形的性质1、如图,平行四边形ABCD的周长为60cm,对角线交于O,△AOB的周长比△BOC•的周长大8cm,求AB,BC的长.【答案与解析】解:∵四边形ABCD是平行四边形.∴ AB=CD,AD=BC,AO=CO,∵□ABCD的周长是60.∴2AB+2BC=60,即AB+BC=30,①又∵△ AOB的周长比△BOC的周长大8.即(AO+OB+AB)-(BO+OC+BC)=AB-BC=8,②由①②有解得∴AB,BC的长分别是19cm和11cm.【总结升华】根据平行四边形对角线互相平分,利用方程的思想解题.举一反三:【变式】(安岳县期末)如图,平行四边形ABCD中,点E是DC边上一点,连接AE、BE,已知AE是∠DAB的平分线,BE是∠CBA的平分线.(1)求证:AE⊥BE;(2)若AE=3,BE=2,求平行四边形ABCD的面积.【答案】解:(1)∵四边形ABCD是平行四边形,∴∠ABC+∠BAD=180°,∵BE、AE分别平分∠ABC和∠BAD,∴∠ABE+∠BAE=×180°=90°,∴∠AEB=90°,即AE⊥BE;(2)∵AE⊥BE∴S△ABE=AE×BE÷2=3,∴平行四边形ABCD的面积=2S△ABE=6.类型二、平行四边形的判定2、、(张掖校级模拟)已知:如图四边形ABCD是平行四边形,P、Q是直线AC上的点,且AP=CQ.求证:四边形PBQD是平行四边形.【思路点拨】证明四边形是平行四边形有很多种方法,此题可由对角线互相平分来证明.【答案与解析】证明:连接BD交AC与O点,∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,又∵AP=CQ,∴AP+AO=CQ+CO,即PO=QO,∴四边形PBQD是平行四边形.【总结升华】本题主要考查平行四边形的判定,利用“对角线互相平分的四边形是平行四边形”来证明.举一反三:【变式】以锐角△ABC的边AC、BC、AB向形外作等边△ACD、等边△BCE,作等边△ABF,连接DF、CE如图所示.求证:四边形DCEF是平行四边形.【答案】证明:在等边△ADC和等边△AFB中∠DAC=∠FAB=60°.∴∠DAF=∠CAB.又∵ AD=AC,AF=AB.∴△ADF≌△ACB(SAS).∴ DF=CB=CE.同理,△BAC≌△BFE,∴ EF=AC=DC.∴四边形DCEF是平行四边形(两组对边分别相等的四边形是平行四边形).类型三、构造平行四边形,应用性质3、在等边三角形ABC中,P为ΔABC内一点,PD∥AB,PE∥BC,PF//AC,D,E,F分别在AC,AB和BC上,试说明:PD+PF+PE=BA.【答案与解析】解:延长FP交AB于G, 延长DP交BC于H,∵四边形AGPD,EBHP为平行四边形,∴PD=AG,PH=BE.∵PD∥AB,PE∥BC,PF//AC,△ABC是等边三角形,∴∠GEP=∠EGP=∠EPG=∠PHF=∠PFH=∠HPF=60°,∴ΔGEP,ΔPHF为等边三角形∴PF=PH=BE, PE=GE,∴PD+PF+PE=AG+BE+GE=AB.【总结升华】添加辅助线构造平行四边形是当题目中有平行关系的条件时经常使用的方法. 类型四、三角形的中位线4、如图所示,在△ABC中,M为BC的中点,AD为∠BAC的平分线,BD⊥AD于D,AB =12,AC=18,求MD的长.【思路点拨】本题中所求线段MD与已知线段AB、AC之间没有什么联系,但由M为BC的中点联想到中位线,另有AD为角平分线和垂线,根据等腰三角形“三线合一”构造等腰三角形ABN,D为BN的中点,DM即为中位线,不难求出MD的长度.【答案与解析】解:延长BD交AC于点N.∵ AD为∠BAC的角平分线,且AD⊥BN,∴∠BAD=∠NAD,∠ADB=∠ADN=90°,又∵ AD为公共边,∴△ABD≌△AND(ASA)∴ AN=AB=12,BD=DN.∵ AC=18,∴ NC=AC-AN=18-12=6,∵ D、M分别为BN、BC的中点,∴ DM=12CN=162=3.【总结升华】当条件中含有中点的时候,可以将它与等腰三角形的“三线合一”、三角形的中线、中位线等联系起来,进行联想,必要时添加辅助线,构造中位线等图形.举一反三:【变式】如图所示,四边形ABCD中,Q是CD上的一定点,P是BC上的一动点,E、F分别是PA、PQ两边的中点;当点P在BC边上移动的过程中,线段EF的长度将( ).A.先变大,后变小 B.保持不变 C.先变小,后变大 D.无法确定【答案】B;解:连接AQ.∵ E、F分别是PA、PQ两边的中点,∴ EF是△PAQ的中位线,即AQ=2EF.∵ Q是CD上的一定点,则AQ的长度保持不变,∴线段EF的长度将保持不变.。
华东师大初中数学八年级下册《平行四边形》全章复习与巩固(基础)知识讲解
《平行四边形》全章复习与巩固(基础)【学习目标】1. 掌握平行四边形、矩形、菱形、正方形的概念, 了解它们之间的关系.2. 探索并掌握平行四边形、矩形、菱形、正方形的有关性质和常用判别方法, 并能运用这些知识进行有关的证明和计算.【知识网络】【要点梳理】要点一、平行四边形1.定义:两组对边分别平行的四边形叫做平行四边形.2.性质:(1)对边平行且相等;(2)对角相等;邻角互补;(3)对角线互相平分;(4)中心对称图形.3.面积:高底平行四边形⨯=S4.判定:边:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形.角:(4)两组对角分别相等的四边形是平行四边形;(5)两组邻角分别互补的四边形是平行四边形.边与角:(6)一组对边平行,一组对角相等的四边形是平行四边形; 对角线:(7)对角线互相平分的四边形是平行四边形.要点诠释:平行线的性质:(1)平行线间的距离都相等;(2)等底等高的平行四边形面积相等.要点二、矩形1.定义:有一个角是直角的平行四边形叫做矩形.2.性质:(1)具有平行四边形的所有性质;(2)四个角都是直角;(3)对角线互相平分且相等;(4)中心对称图形,轴对称图形.3.面积:宽=长矩形⨯S4.判定:(1) 有一个角是直角的平行四边形是矩形.(2)对角线相等的平行四边形是矩形.(3)有三个角是直角的四边形是矩形.要点诠释:由矩形得直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半.要点三、菱形1. 定义:有一组邻边相等的平行四边形叫做菱形.2.性质:(1)具有平行四边形的一切性质;(2)四条边相等;(3)两条对角线互相平分且垂直,并且每一条对角线平分一组对角;(4)中心对称图形,轴对称图形.3.面积:2对角线对角线高==底菱形⨯⨯S 4.判定:(1)一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形;(3)四边相等的四边形是菱形.要点四、正方形1. 定义:四条边都相等,四个角都是直角的四边形叫做正方形.2.性质:(1)对边平行;(2)四个角都是直角;(3)四条边都相等;(4)对角线互相垂直平分且相等,对角线平分对角;(5) 两条对角线把正方形分成四个全等的等腰直角三角形;(6)中心对称图形,轴对称图形.3.面积:=S 正方形边长×边长=12×对角线×对角线 4.判定:(1)有一个角是直角的菱形是正方形;(2)一组邻边相等的矩形是正方形;(3)对角线相等的菱形是正方形;(4)对角线互相垂直的矩形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形;(6)四条边都相等,四个角都是直角的四边形是正方形.【典型例题】类型一、平行四边形1、如图,在口ABCD 中,点E 在AD 上,连接BE ,DF ∥BE 交BC 于点F ,AF 与BE 交于点M ,CE 与DF 交于点N .求证:四边形MFNE 是平行四边形.【答案与解析】证明:∵四边形ABCD 是平行四边形.∴AD =BC,AD ∥BC (平行四边形的对边相等且平行)又∵DF∥BE(已知)∴四边形BEDF是平行四边形(两组对边分别平行的四边形是平行四边形)∴DE=BF(平行四边形的对边相等)∴AD-DE=BC-BF,即AE=CF又∵AE∥CF∴四边形AFCE是平行四边形(一组对边平行且相等的四边形是平行四边形)∴AF∥CE∴四边形MFNE是平行四边形(两组对边分别平行的四边形是平行四边形)【总结升华】要证明一个四边形是平行四边形首先要根据已知条件选择一种合理的判定方法,如本题中已有一边平行,只须说明另一边也平行即可,故选用“两组对边分别平行的四边形是平行四边形”来证明.举一反三:【变式】如图,等腰△ABC中,D是BC边上的一点,DE∥AC,DF∥AB,通过观察分析线段DE,DF,AB三者之间有什么关系,试说明你的结论.【答案】AB=DE+DF,提示:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∠C=∠EDB∴DF=AE.∵△ABC是等腰三角形,∴∠B=∠C,∴∠B=∠EDB,∴DE=BE,∴AB=AE+BE=DF+DE2、(2015•哈尔滨)如图1,口ABCD中,点O是对角线AC的中点,EF过点O,与AD,BC分别相交于点E,F,GH过点O,与AB,CD分别相交于点G,H,连接EG,FG,FH,EH.(1)求证:四边形EGFH是平行四边形;(2)如图2,若EF∥AB,GH∥BC,在不添加任何辅助线的情况下,请直接写出图2中与四边形AGHD面积相等的所有平行四边形(四边形AGHD除外).【思路点拨】(1)由四边形ABCD是平行四边形,得到AD∥BC,根据平行四边形的性质得到∠EAO=∠FCO,证出△OAE≌△OCF,得到OE=OF,同理OG=OH,根据对角线互相平分的四边形是平行四边形得到结论;(2)根据两组对边分别平行的四边形是平行四边形即可得到结论.【答案与解析】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAO=∠FCO,在△OAE与△OCF中,∴△OAE≌△OCF,∴OE=OF,同理OG=OH,∴四边形EGFH是平行四边形;(2)解:与四边形AGHD面积相等的所有平行四边形有口GBCH,口ABFE,口EFCD,口EGFH;∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∵EF∥AB,GH∥BC,∴四边形GBCH,ABFE,EFCD,EGFH为平行四边形,∵EF过点O,GH过点O,∵OE=OF,OG=OH,∴口GBCH,口ABFE,口EFCD,口EGFH,口ACHD它们面积=口ABCD的面积,∴与四边形AGHD面积相等的所有平行四边形有口GBCH,口ABFE,口EFCD,口EGFH.【总结升华】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键.类型二、矩形3、(2016春•常州期末)如图,在△ABC中,AB=AC,D为BC的中点,AE∥BC,DE∥AB.试说明:(1)AE=DC;(2)四边形ADCE为矩形.(1)根据已知条件可以判定四边形ABDE是平行四边形,则其对边相等:AE=BD.结【思路点拨】合中点的性质得到AE=CD;(2)依据“对边平行且相等”的四边形是平行四边形判定四边形ADCE是平行四边形,又由“有一内角为直角的平行四边形是矩形”证得结论.【答案与解析】证明:(1)如图,∵AE∥BC,∴AE∥BD.又∵DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD.∵D 为BC 的中点,∴BD=DC ,∴AE=DC ;(2)∵AE ∥CD ,AE=BD=DC ,即AE=DC ,∴四边形ADCE 是平行四边形.又∵AB=AC ,D 为BC 的中点,∴AD ⊥CD ,∴平行四边形ADCE 为矩形.【总结升华】本题考查了等腰三角形的性质,矩形的判定与性质以及平行四边形的性质.此题也可以根据“对角线相等的平行四边形是矩形”来证明(2)的结论.4、如图所示,在矩形ABCD 中,AB =6,BC =8.将矩形ABCD 沿CE 折叠后,使点D 恰好落在对角线AC 上的点F 处,求EF 的长.【思路点拨】要求EF 的长,可以考虑把EF 放入Rt △AEF 中,由折叠可知CD =CF ,DE =EF ,易得AC =10,所以AF =4,AE =8-EF ,然后在Rt △AEF 中利用勾股定理求出EF 的值.【答案与解析】解:设EF =x ,由折叠可得:DE =EF =x ,CF =CD =6,又∵ 在Rt △ADC 中,10AC ==.∴ AF =AC -CF =4,AE =AD -DE =8-x .在Rt △AEF 中,222AE AF EF =+,即222(8)4x x -=+,解得:x =3 ∴ EF =3【总结升华】在矩形折叠问题中往往根据折叠找出相等的量,然后把未知边放在合适的直角三角形中,再利用勾股定理进行求解.举一反三:【变式】把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB = 3cm ,BC = 5cm ,则重叠部分△DEF 的面积是__________2cm .【答案】5.1.提示:由题意可知BF=DF,设FC=x,DF=5-x,在Rt△DFC中,222DC FC DF+=,解得x=85,BF=DE=3.4,则DEF1=DE AB2S⨯△=12×3.4×3=5.1.类型三、菱形5、如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连结DF,则∠CDF等于( ).A.80°B.70°C.65°D.60°【答案】D;【解析】解:连结BF,由FE是AB的中垂线,知FB=FA,于是∠FBA=∠FAB==40°.∴∠CFB=40°+40°=80°,由菱形ABCD知,DC=CB,∠DCF=∠BCF,CF=CF,于是△DCF≌△BCF,因此∠CFD=∠CFB=80°,在△CDF中, ∠CDF=180°-40°-80°=60°.【总结升华】运用菱形的性质可以证明线段相等、角相等、线段的平行及垂直等问题,关键是要记住它们的判定和性质.举一反三:【变式】用两张等宽的纸带交叉重叠地放在一起,重合的四边形ABCD是菱形吗?如果是菱形请给出证明,如果不是菱形请说明理由.【答案】四边形ABCD是菱形;证明:由AD∥BC,AB∥CD得四边形ABCD是平行四边形,过A,C两点分别作AE⊥BC于E,CF⊥AB于F.∴∠CFB=∠AEB=90°.∵AE=CF(纸带的宽度相等)∠ABE=∠CBF,∴Rt△ABE≌Rt△CBF,∴AB=BC,∴四边形ABCD是菱形.类型四、正方形6、(2015春•上城区期末)如图,矩形ABCD中,AD=6,DC=8,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连结CF.(1)若DG=2,求证:四边形EFGH为正方形;(2)若DG=6,求△FCG的面积.【思路点拨】(1)通过证明Rt△DHG≌△AEH,得到∠DHG=∠AEH,从而得到∠GHE=90°,然后根据有一个角为直角的菱形为正方形得到四边形EFGH为正方形;(2)作FQ⊥CD于Q,连结GE,如图,利用AB∥CD得到∠AEG=∠QGE,再根据菱形的性质得HE=GF,HE∥GF,则∠HEG=∠FGE,所以∠AEH=∠QGF,于是可证明△AEH≌△QGF,得到AH=QF=2,然后根据三角形面积公式求解.【答案与解析】(1)证明:∵四边形EFGH为菱形,∴HG=EH,∵AH=2,DG=2,∴DG=AH,在Rt△DHG和△AEH中,,∴Rt△DHG≌△AEH,∴∠DHG=∠AEH,∵∠AEH+∠AHG=90°,∴∠DHG+∠AHG=90°,∴∠GHE=90°,∵四边形EFGH为菱形,∴四边形EFGH为正方形;(2)解:作FQ⊥CD于Q,连结GE,如图,∵四边形ABCD为矩形,∴AB∥CD,∴∠AEG=∠QGE,即∠AEH+∠HEG=∠QGF+∠FGE,∵四边形EFGH为菱形,∴HE=GF,HE∥GF,∴∠HEG=∠FGE,∴∠AEH=∠QGF,在△AEH和△QGF中,∴△AEH≌△QGF,∴AH=QF=2,∵DG=6,CD=8,∴CG=2,∴△FCG的面积=CG•FQ=×2×2=2.【总结升华】本题考查了正方形的判定与性质:正方形的判定没有固定的方法,只要判定既是矩形又是菱形就可以判定;正方形具有平行四边形、矩形、菱形的所有性质.也考查了菱形和矩形的性质.7、如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由.【思路点拨】AE=EF.根据正方形的性质推出AB=BC,∠BAD=∠HAD=∠DCE=90°,推出∠HAE=∠CEF,根据△HEB是以∠B为直角的等腰直角三角形,得到BH=BE,∠H=45°,HA=CE,根据CF平分∠DCE推出∠H=∠FCE,根据ASA证△HAE≌△CEF即可得到答案.【答案与解析】探究:AE=EF证明:∵△BHE为等腰直角三角形,∴∠H=∠HEB=45°,BH=BE.又∵CF平分∠DCE,四边形ABCD为正方形,∴∠FCE=12∠DCE=45°,∴∠H=∠FCE.由正方形ABCD知∠B=90°,∠HAE=90°+∠DAE=90°+∠AEB, 而AE⊥EF,∴∠FEC=90°+∠AEB,∴∠HAE=∠FEC.由正方形ABCD知AB=BC,∴BH-AB=BE-BC,∴HA=CE,∴△AHE≌△ECF (ASA),∴AE=EF.【总结升华】充分利用正方形的性质和题目中的已知条件,通过证明全等三角形来证明线段相等.。
《平行四边形》全章复习与巩固(提高)知识讲解
《平行四边形》全章复习与稳固(提升)【学习目标】1. 掌握平行四边形的性质定理和判断定理.2.掌握三角形的中位线定理 .3.认识多边形的定义以及内角、外角、对角线等观点. 掌握多边形的内角和与外角和公式.4.累积数学活动经验,发展推理能力.【知识网络】【重点梳理】重点一、平行四边形的定义平行四边形:两组对边分别平行的四边形叫做平行四边形.平行四边形ABCD记作“口ABCD”,读作“平行四边形ABCD” .重点解说:平行四边形是中心对称图形,两条对角线的交点是它的对称中心.重点二、平行四边形的性质定理平行四边形的对角相等;平行四边形的对边相等;平行四边形的对角线相互均分;重点解说:( 1)平行四边形的性质定理中边的性质能够证明两边平行或两边相等;角的性质能够证明两角相等或两角互补;对角线的性质能够证明线段的相等关系或倍半关系.( 2)因为平行四边形的性质内容许多,在使用时依据需要进行选择.(3)利用对角线相互均分可解决对角线或边的取值范围的问题,在解答时应联系三角形三边的不等关系来解决 .重点三、平行四边形的判断定理1.两组对边分别平行的四边形是平行四边形;2.一组对边平行且相等的四边形是平行四边形;3.两组对边分别相等的四边形是平行四边形;4.两组对角分别相等的四边形是平行四边形;5.对角线相互均分的四边形是平行四边形.重点解说:(1)这些判断方法是学习本章的基础,一定坚固掌握,当几种方法都能判断同一个行四边形时,应选择较简单的方法 .(2)这些判断方法既可作为判断平行四边形的依照,也可作为“画平行四边形”的依据 .重点四、平行线间的距离 1. 两条平行线间的距离:( 1)定义:两条平行线中,一条直线上的随意一点到另一条直线的距离,叫做这两条平行 线间的距离 . 注:距离是指垂线段的长度,是正当 . 2.平行线性质定理及其推论夹在两条平行线间的平行线段相等. 平行线性质定理的推论:夹在两条平行线间的垂线段相等.重点五、三角形的中位线三角形的中位线1.连结三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于第三边,而且等于第三边的一半.重点解说:( 1)三角形有三条中位线, 每一条与第三边都有相应的地点关系与数目关系.( 2)三角形的三条中位线把原三角形分红可全等的4 个小三角形 . 因此每个小三角形的周长为原三角形周长的 1,每个小三角形的面积为原三角形面积的12.4( 3)三角形的中位线不一样于三角形的中线 .重点六、多边形内角和、外角和n 边形的内角和为 ( n - 2) ·180° ( n ≥ 3) .重点解说: (1) 内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;(2) 正多边形的每个内角都相等,都等于(n 2) 180°;多边形的外角和为 360°. n 边形的外角和恒等于 n360°,它与边数的多少没关 .【典型例题】种类一、平行四边形的性质与判断1、(2015?海淀区二模)如图 1,在△ ABC 中, AB=AC ,∠ ABC=α , D 是 BC 边上一点,以 AD 为边作△ ADE ,使 AE=AD ,∠ DAE+∠BAC=180°.( 1)直接写出∠ ADE 的度数(用含 α 的式子表示) ;( 2)以 AB , AE 为边作平行四边形 ABFE ,①如图 2,若点 F 恰巧落在 DE 上,求证: BD=CD ;②如图 3,若点 F 恰巧落在 BC 上,求证: BD=CF .【思路点拨】( 1)由在△ ABC 中,AB=AC,∠ABC=α,可求得∠ BAC=180°﹣ 2α,又由 AE=AD,∠D AE+∠BAC=180°,可求得∠ DAE=2 α,既而求得∠ ADE 的度数;(2)①由四边形 ABFE是平行四边形,易得∠ EDC=∠ABC= α,则可得∠ADC=∠ADE+∠EDC=90°,证得 AD⊥BC,又由 AB=AC,依据三线合一的性质,即可证得结论;②由在△ ABC中,AB=AC,∠ABC=α,可得∠ B=∠C= α,四边形 ABFE是平行四边形,可得 AE∥BF,AE=BF.即可证得:∠ EAC=∠C= α,又由( 1)可证得AD=CD,又由 AD=AE=BF,证得结论.【答案与分析】解:( 1)∵在△ ABC中, AB=AC,∠ ABC=α,∴∠ BAC=180°﹣ 2α,∵∠ DAE+∠BAC=180°,∴∠ DAE=2α,∵AE=AD,∴∠ ADE=90°﹣α;(2)①证明:∵四边形ABFE是平行四边形,∴AB∥EF.∴∠ EDC=∠ABC=α,由( 1)知,∠ ADE=90°﹣α,∴∠ ADC=∠ADE+∠EDC=90°,∴AD⊥BC.∵AB=AC,∴BD=CD;②证明:∵ AB=AC,∠ ABC= α,∴∠ C=∠B=α .∵四边形ABFE是平行四边形,∴AE∥BF, AE=BF.∴∠ EAC=∠C= α,由( 1)知,∠ DAE=2α,∴∠ DAC=α,∴∠ DAC=∠C.∴AD=CD.∵AD=AE=BF,∴BF=CD.∴BD=CF.注意( 2)【总结升华】本题考察了平行四边形的判断与性质以及等腰三角形的性质与判断.①中证得AD⊥BC 是重点,( 2)②中证得AD=CD是重点.贯通融会:【变式】分别以口 ABCD(∠ CDA≠ 90 °)的三边 AB, CD, DA 为斜边作等腰直角三角形,△ ABE,△ CDG,△ ADF.( 1)如图 1 ,当三个等腰直角三角形都在该平行四边形外面时,连结GF, EF.请判断 GF 与 EF 的关系并证明);( 2)如图2,当三个等腰直角三角形都在该平行四边形内部时,连结GF, EF,( 1 )中结论还建立吗?若建立,给出证明;若不建立,说明原因.【答案】解:( 1) GF⊥ EF, GF= EF建立;∵四边形ABCD是平行四边形,∴AB= CD,∠ DAB+∠ ADC= 180°,∵△ ABE,△ CDG,△ ADF都是等腰直角三角形,∴DG= CG=AE= BE,DF= AF,∠ CDG=∠ ADF=∠ BAE=45°,∴∠ GDF=∠ GDC+∠ CDA+∠ ADF= 90°+∠ CDA,∠EAF=360°﹣∠ BAE﹣∠ DAF﹣∠ BAD= 270°﹣( 180°﹣∠ CDA)= 90°+∠CDA,∴∠ FDG=∠ EAF,∵在△ EAF和△ GDF中,DF AFFDG FAE ,DG AE∴△ EAF≌△ GDF( SAS),∴EF= FG,∠ EFA=∠ DFG,即∠ GFD+∠ GFA=∠ EFA+∠GFA,∴∠ GFE= 90°,∴ GF⊥EF;(2) GF⊥ EF, GF= EF 建立;原因:∵四边形ABCD是平行四边形,∴AB= CD,∠ DAB+∠ ADC= 180°,∵△ ABE,△ CDG,△ ADF都是等腰直角三角形,∴DG=CG= AE=BE, DF=AF,∠ CDG=∠ ADF=∠ BAE=45°,∴∠ BAE+∠ FAD+∠ EAF+∠ ADF+∠ FDC= 180°,∴∠EAF+∠CDF=45°,∵∠ CDF+∠FDG=45°,∴∠ FDG=∠ EAF,∵在△ EAF和△ GDF中,DF AFFDG FAE ,DG AE∴△ EAF ≌△ GDF ( SAS ),∴ EF =FG ,∠ EFA =∠ DFG ,即∠ GFD +∠ GFA =∠ EFA +∠ GFA , ∴∠ GFE = 90°,∴ GF ⊥EF .2、如图,点 D 是△ ABC 的边 AB 的延伸线上一点,点 F 是边 BC 上的一个动点(不与点B 重合).以 BD 、 BF 为邻边作平行四边形 BDEF ,又 AP BE (点 P 、E 在直线 AB 的同侧),假如 BD = 1AB ,那么△ PBC 的面积与△ ABC 面积之比为()4A .1B .3C .1D.34 5 54【答案与分析】解:过点 P 作 PH ∥BC 交 AB 于 H ,连结 CH , PF ,∵AP BE ,∴四边形 APEB 是平行四边形, ∴PE ∥AB , PE =AB ,∵四边形 BDEF 是平行四边形, ∴EF ∥BD , EF =BD , 即 EF ∥AB ,∴P , E , F 共线,设 BD = a ,∵ BD = 1AB ,∴ PE = AB =4 a ,4则 PF = PE - EF = 3 a , ∵PH ∥BC ,∴S △HBCS △ PBC,∵PF ∥AB ,∴四边形 BFPH 是平行四边形, ∴BH = PF = 3 a ,∵ S △HBC : S △ ABC = BH : AB = 3 a : 4 a = 3: 4,∴ S △PBC : S △ABC = 3: 4.【总结升华】 本题考察了平行四边形的判断与性质与三角形面积比的求解方法. 本题难度较大,注意正确作出协助线,注意等高三角形面积的比等于其对应底的比.贯通融会:【变式】已知△ ABC 中, AB = 3, AC = 4,BC = 5,分别以 AB 、 AC 、 BC 为一边在 BC 边同侧作正△ ABD 、正△ ACE 和正△ BCF ,求以 A 、 E 、 F 、D 四点为极点围成的四边形的面积.【答案】证明:∵ AB = 3, AC = 4, BC = 5,∴∠ BAC = 90°∵△ ABD 、△ ACE 和△ BCF 为正三角形,∴ AB =BD = AD ,AC = AE =CE , BC = BF = FC ,∠ 1+∠ FBA =∠ 2+∠ FBA = 60° ∴∠ 1=∠ 2易证△ BAC ≌△ BDF (SAS ),∴ DF =AC = AE =4,∠ BDF = 90° 同理可证△ BAC ≌△ FEC∴ AB =AD = EF =3∴四边形 AEFD 是平行四边形(两组对边分别相等的四边形是平行四边形)∵ DF ∥ AE , DF ⊥ BD延伸 EA 交 BD 于 H 点, AH ⊥ BD ,则 H 为 BD 中点∴平行四边形 AEFD 的面积= DF × DH = 4× 3= 6.23、在平行四边形 ABCD 中,点 A 1,A 2, A 3, A 4 和 C 1,C 2, C 3, C 4 分别 AB 和 CD 的五均分点,点 B 1,B 2 和 D 1,D 2 分别是 BC 和 DA 的三均分点,已知四边形 A 4B 2C 4D 2 的面积为 1,则平行四边形 ABCD 面积为( ) A .2B .3C .5D .155 3【思路点拨】 能够设平行四边形 ABCD 的面积是 S ,依据均分点的定义利用平行四边形 ABCD的面积减去四个角上的三角形的面积,便可表示出四边形 A 4B 2C 4D 2 的面积,进而获得两个四边形面积的关系,即可求解. 【答案】 C ; 【分析】解:设平行四边形ABCD 的面积是 S ,设 AB = 5 a ,BC = 3 b .AB 边上的高是 3 x , BC 边上的高是 5 y . 则 S =5 a ?3 x = 3 b ?5 y .即 a x = b y =S.15△AA 4D 2 与△B 2CC 4 全等, B 2C =1BC = b , B 2C 边上的高是4 ?5 y = 4 y .35则△ AA 4D 2 和△B 2CC 4 的面积是 2 b y = 2S.同理△D 2C 4D 与△A 4BB 2 的面积是S.1515则四边形 A B C D 的面积是 S - 2S - 2S - S - S = 9S ,即 9S = 1,42 42151515151515解得 S = 5.3【总结升华】 考察平行四边形的性质和三角形面积计算,正确利用均分点的定义, 获得两个四边形的面积的关系是解决本题的重点.种类二、三角形的中位线4、如图,△ ABC 的周长为 26,点 D ,E 都在边 BC 上,∠ ABC 的均分线垂直于 AE ,垂足为 Q ,∠ ACB 的均分线垂直于 AD ,垂足为 P ,若 BC = 10,则 PQ 的长为()A.3B.2【答案】 C ;【分析】52C.3D.4解:易证△ ABQ ≌ △ EBQ, AB =BE , Q 为 AE 中点,△ACP ≌ △ DCP, AC =CD , P 为 AD 中点, ∴PQ ∥ DE,PQ = 1DE ,2∵AB + AC +BC = 26,BC = 10,∴AB + AC =BE + CD =16= BD +DE + DE +EC = BC + DE ,12【总结升华】 本题考察了三角形的中位线定理及等腰三角形的判断, 注意培育自己的敏感性,一般出现高、角均分线重合的状况,都需要找到等腰三角形. 种类三、多边形内角和与外角和5、若一个多边形的每个外角都等于 60°,则它的内角和等于( )A. 180°B.720°C. 1080° D. 540°【思路点拨】 由一个多边形的每个外角都等于 60°,依据 n 边形的外角和为360°计算出多边形的边数 n ,而后依据 n 边形的内角和定理计算即可.【答案】 B ;【分析】解:设多边形的边数为n ,∵多边形的每个外角都等于60°,∴ n =360°÷60°=6,∴这个多边形的内角和=(6- 2)× 180°= 720°.【总结升华】本题考察了 n 边形的内角和定理:n 边形的内角和=(n -2)?180°;也考查了 n 边形的外角和为360°.贯通融会:【变式】( 2016 秋 ?小金县校级期末)一个多边形的每个内角都相等,且一个外角比一个内角大 60°,求这个多边形的每个内角的度数及边数.【答案】解:设内角是 x°,外角是 y°,y x60则获得一个方程组,x y180x60解得.y120而任何多边形的外角是360°,则多边形中外角的个数是360÷ 120=3 ,故这个多边形的每个内角的度数是60°,边数是三边形.6、甲、乙两人想在正五边形 ABCDE内部找一点 P,使得四边形 ABPE为平行四边形,其作法以下:(甲)连结 BD、 CE,两线段订交于P 点,则 P 即为所求(乙)先取 CD的中点 M,再以 A 为圆心, AB长为半径画弧,交 AM于 P 点,则 P 即为所求.关于甲、乙两人的作法,以下判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确【思路点拨】求出五边形的每个角的度数,求出∠ABP、∠ AEP、∠ BPE的度数,依据平行四边形的判断判断即可.【答案】 C;【分析】解:甲正确,乙错误,52180原因是:如图,∵正五边形的每个内角的度数是=108°,5AB= BC= CD= DE= AE,∴∠ DEC=∠ DCE=1×(180°-108°)=36°,2同理∠ CBD=∠ CDB= 36°,∴∠ ABP=∠ AEP=108°- 36°= 72°,∴∠ BPE=360°- 108°- 72°- 72°= 108°=∠ A,∴四边形ABPE是平行四边形,即甲正确;∵∠ BAE=108°,∴∠ BAM=∠ EAM=54°,∵AB= AE=AP,∴∠ ABP=∠ APB=1×(180°-54°)=63°,∠AEP=∠APE=63°,2∴∠ BPE=360°- 108°- 63°- 63°≠ 108°,即∠ ABP=∠ AEP,∠ BAE≠∠ BPE,∴四边形ABPE不是平行四边形,即乙错误;【总结升华】本题考察了正五边形的内角和定理,等腰三角形的性质,三角形的内角和定理,平行四边形的判断的应用,注意:有两组对角分别相等的四边形是平行四边形.。
平行四边形全章知识点总结
平行四边形全章知识点总结平行四边形是初中数学中非常重要的一个几何图形,它具有许多独特的性质和判定方法。
接下来,让我们一起系统地梳理一下平行四边形全章的知识点。
一、平行四边形的定义两组对边分别平行的四边形叫做平行四边形。
这是平行四边形最基本的定义,也是判定一个四边形是否为平行四边形的首要条件。
二、平行四边形的性质1、平行四边形的对边平行且相等这是平行四边形最显著的性质之一。
也就是说,如果一个四边形是平行四边形,那么它的两组对边不仅相互平行,而且长度相等。
2、平行四边形的对角相等平行四边形的两组对角分别相等。
例如,∠A =∠C,∠B =∠D。
3、平行四边形的对角线互相平分平行四边形的两条对角线相交于一点,并且这一点将两条对角线平分。
4、平行四边形是中心对称图形对称中心是两条对角线的交点。
将平行四边形绕着对角线的交点旋转 180 度后,能与原图重合。
三、平行四边形的判定1、两组对边分别平行的四边形是平行四边形这是根据定义进行判定的方法。
2、两组对边分别相等的四边形是平行四边形如果一个四边形的两组对边长度分别相等,那么它就是平行四边形。
3、一组对边平行且相等的四边形是平行四边形这是一种常见的判定方法,只要一组对边既平行又相等,就能判定该四边形为平行四边形。
4、两组对角分别相等的四边形是平行四边形当一个四边形的两组对角分别相等时,它就是平行四边形。
5、对角线互相平分的四边形是平行四边形如果一个四边形的两条对角线相互平分,那么它一定是平行四边形。
四、平行四边形的面积平行四边形的面积=底 ×高需要注意的是,底和高必须是对应的,也就是说底乘以其对应的高才能得到平行四边形的面积。
五、平行四边形的周长平行四边形的周长= 2×(相邻两边之和)六、平行四边形的拓展1、若一条直线过平行四边形对角线的交点,则这条直线平分平行四边形的面积。
2、平行四边形的相邻两边之和等于平行四边形周长的一半。
七、平行四边形在实际生活中的应用平行四边形在建筑设计、机械制造、图案设计等领域都有广泛的应用。
(完整版)平行四边形专题讲义
平行四边形专题讲义一、学习目标 复习平行四边形、特殊平行四边形性质与判定,能利用它们进行计算或证明. 二、学习重难点 重点:性质与判定的运用;难点:证明过程的书写。
三、本章知识结构图1.平行四边形是特殊的 ;特殊的平行四边形包括 、 、 。
2.梯形 (是否)特殊平行四边形, (是否)特殊四边形。
3.特殊的梯形包括 梯形和 梯形。
4、本章学过的四边形中,属于轴对称图形的有 ;属于中心对称图形的有 。
四、复习过程 (一)知识要点1:平行四边形的性质与判定1.平行四边形的性质:(1)从边看:对边 ,对边 ; (2)从角看:对角 ,邻角 ; (3)从对角线看:对角线互相 ; (4)从对称性看:平行四边形是 图形。
2、平行四边形的判定:(1)判定1:两组对边分别 的四边形是平行四边形。
(定义)(2)判定2:两组对边分别 的四边形是平行四边形。
(3)判定3:一组对边 且 的四边形是平行四边形。
(4)判定4:两组对角分别 的四边形是平行四边形。
(5)判定5:对角线互相 的四边形是平行四边形。
【基础练习】1.已知□ABCD 中,∠B =70°,则∠A =____,∠C =____,∠D =____.2.已知O 是ABCD 的对角线的交点,AC =38 mm ,BD =24 mm,AD =14 mm ,那么△BOC 的周长等于__ __.3.如图1,ABCD 中,对角线AC 和BD 交于点O ,若AC =8,BD =6,则边AB 长的取值范围是( ). A.1<AB <7 B.2<AB <14 C.6<AB <8 D.3<AB <44.不能判定四边形ABCD 为平行四边形的题设是( ) A.AB=CD,AD=BC B.ABCD C.AB=CD,AD ∥BC D.AB ∥CD,AD ∥BC5.在ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,AE=4,AF=6,ABCD 的周长为40,则ABCD 的面积是 ( ) A 、36 B 、48 C 、 40 D 、24【典型例题】例1、若平行四边形ABCD 的周长是20cm,△AOD 的周长比△ABO 的周长大6cm.求AB,AD 的长. F DA OA B CDOA DDC AB E F M NBE F C AD例2、 如图,已知四边形ABCD 是平行四边形,∠BCD 的平分线CF 交边AB 于F ,∠ADC 的平分线DG 交边AB 于G 。
人教版八年级下册第十八章平行四边形全章复习和巩固(提高)知识讲解
平行四边形全章复习与巩固(提高)【学习目标】1. 掌握平行四边形、矩形、菱形、正方形的概念, 了解它们之间的关系.2. 探索并掌握平行四边形、矩形、菱形、正方形的有关性质和常用判别方法, 并能运用这些知识进行有关的证明和计算.3. 掌握三角形中位线定理.【知识网络】【要点梳理】要点一、平行四边形1.定义:两组对边分别平行的四边形叫做平行四边形.2.性质:(1)对边平行且相等;(2)对角相等;邻角互补;(3)对角线互相平分;(4)中心对称图形.3.面积:高底平行四边形⨯=S4.判定:边:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形.角:(4)两组对角分别相等的四边形是平行四边形;(5)两组邻角分别互补的四边形是平行四边形.边与角:(6)一组对边平行,一组对角相等的四边形是平行四边形;对角线:(7)对角线互相平分的四边形是平行四边形.要点诠释:平行线的性质:(1)平行线间的距离都相等;(2)等底等高的平行四边形面积相等.要点二、矩形1.定义:有一个角是直角的平行四边形叫做矩形.2.性质:(1)具有平行四边形的所有性质;(2)四个角都是直角;(3)对角线互相平分且相等;(4)中心对称图形,轴对称图形.3.面积:宽=长矩形⨯S4.判定:(1) 有一个角是直角的平行四边形是矩形.(2)对角线相等的平行四边形是矩形.(3)有三个角是直角的四边形是矩形.要点诠释:由矩形得直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半. 要点三、菱形1. 定义:有一组邻边相等的平行四边形叫做菱形.2.性质:(1)具有平行四边形的一切性质;(2)四条边相等;(3)两条对角线互相平分且垂直,并且每一条对角线平分一组对角;(4)中心对称图形,轴对称图形.3.面积:2对角线对角线高==底菱形⨯⨯S 4.判定:(1)一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形;(3)四边相等的四边形是菱形.要点四、正方形1. 定义:四条边都相等,四个角都是直角的四边形叫做正方形.2.性质:(1)对边平行;(2)四个角都是直角;(3)四条边都相等;(4)对角线互相垂直平分且相等,对角线平分对角;(5) 两条对角线把正方形分成四个全等的等腰直角三角形;(6)中心对称图形,轴对称图形.3.面积:=S 正方形边长×边长=12×对角线×对角线 4.判定:(1)有一个角是直角的菱形是正方形;(2)一组邻边相等的矩形是正方形;(3)对角线相等的菱形是正方形;(4)对角线互相垂直的矩形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形;(6)四条边都相等,四个角都是直角的四边形是正方形.【典型例题】类型一、平行四边形1、如图,点D 是△ABC 的边AB 的延长线上一点,点F 是边BC 上的一个动点(不与点B 重合).以BD 、BF 为邻边作平行四边形BDEF ,又AP BE (点P 、E 在直线AB 的同侧),如果BD =14AB ,那么△PBC 的面积与△AB C 面积之比为( ) A .14 B .35 C .15D .34【答案与解析】解:过点P 作PH∥BC 交AB 于H ,连接CH ,PF ,∵AP BE ,∴四边形APEB 是平行四边形,∴PE∥AB,PE =AB ,∵四边形BDEF 是平行四边形,∴EF∥BD,EF =BD ,即EF∥AB ,∴P,E ,F 共线,设BD =a ,∵BD=14AB ,∴PE=AB =4a , 则PF =PE -EF =3a , ∵PH∥BC,∴HBC BC S S △△P ,∵PF∥AB,∴四边形BFPH 是平行四边形,∴BH=PF =3a ,∵:HBC ABC S S △△=BH :AB =3a :4a =3:4,∴:BC ABC S S △P △=3:4.【总结升华】此题考查了平行四边形的判定与性质与三角形面积比的求解方法.此题难度较大,注意准确作出辅助线,注意等高三角形面积的比等于其对应底的比.举一反三:【变式】已知△ABC 中,AB =3,AC =4,BC =5,分别以AB 、AC 、BC 为一边在BC 边同侧作正△ABD 、正△ACE 和正△BCF ,求以A 、E 、F 、D 四点为顶点围成的四边形的面积.【答案】证明:∵ AB=3,AC=4,BC=5,∴∠BAC=90°∵△ABD、△ACE和△BCF为正三角形,∴AB=BD=AD,AC=AE=CE,BC=BF=FC ,∠1+∠FBA=∠2+∠FBA=60°∴∠1=∠2易证△BAC≌△BDF(SAS),∴DF=AC=AE=4,∠BDF=90°同理可证△BAC≌△FEC∴AB=AD=EF=3∴四边形AEFD是平行四边形(两组对边分别相等的四边形是平行四边形)∵DF∥AE,DF⊥BD延长EA交BD于H点,AH⊥BD,则H为BD中点∴平行四边形AEFD的面积=DF×DH=4×32=6.类型二、矩形2、如图,O是矩形ABCD的对角线的交点,E、F、G、H分别是OA、OB、OC、OD上的点,且AE=BF=CG=DH.(1)求证:四边形EFGH是矩形;(2)若E、F、G、H分别是OA、OB、OC、OD的中点,且DG⊥AC,OF=2cm,求矩形ABCD的面积.【答案与解析】(1)证明:∵四边形ABCD是矩形,∴OA=0B=OC=OD,∵AE=BF=CG=DH,∴AO-AE=OB-BF=CO-CG=DO-DH,即:OE=OF=OG=OH,∴四边形EFGH是矩形;(2)解:∵G是OC的中点,∴GO=GC,∵DG⊥AC,∴∠DGO=∠DGC=90°,又∵DG=DG ,∴△DGC≌△DGO,∴CD=OD ,∵F 是BO 中点,OF =2cm ,∴BO=4cm ,∵四边形ABCD 是矩形,∴DO=BO =4cm ,∴DC=4cm ,DB =8cm , ∴CB=2243DB DC -=,∴矩形ABCD 的面积=4×243163cm =.【总结升华】本题主要考查矩形的判定,首先要判定四边形是平行四边形,然后证明对角线相等.举一反三:【变式】如图,O 为△ABC 内一点,把AB 、OB 、OC 、AC 的中点D 、E 、F 、G 依次连接形成四边形DEFG .(1)四边形DEFG 是什么四边形,请说明理由;(2)若四边形DEFG 是矩形,点0所在位置应满足什么条件?说明理由.【答案】解:(1)四边形DEFG 是平行四边形.理由如下:∵D、G 分别是AB 、AC 的中点,∴DG 是△ABC 的中位线;∴DG∥BC,且DG =12BC ; 同理可证:EF∥BC,且EF =12BC ; ∴DG∥EF,且DG =EF ;故四边形DEFG 是平行四边形;(2)O 在BC 边的高上且A 和垂足除外.理由如下:连接OA ;同(1)可证:DE∥OA∥FG;∵四边形DEFG 是矩形,∴DG⊥DE;∴OA⊥BC;即O 点在BC 边的高上且A 和垂足除外.3、在Rt△ABC 中,∠ACB=90°,BC=4.过点A 作AE⊥AB 且AB=AE ,过点E 分别作EF⊥AC,ED⊥BC,分别交AC 和BC 的延长线与点F ,D .若FC=5,求四边形ABDE 的周长.【思路点拨】首先证明△ABC≌△EAF,即可得出BC=AF ,AC=EF ,再利用勾股定理得出AB 的长,进而得出四边形EFCD 是矩形,求出四边形ABDE 的周长即可.【答案与解析】解:∵∠ACB=90°,AE⊥AB,∴∠1+∠B=∠1+∠2=90°.∴∠B=∠2.∵EF⊥AC,∴∠4=∠5=90°.∴∠3=∠4.在△ABC 和△EAF 中,∵342B AB AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,,∴△ABC≌△EAF(AAS ).∴BC=AF,AC=EF .∵BC=4,∴AF=4.∵FC=5,∴AC=EF=9.在Rt△ABC 中,AB=22224997CB AC +=+=.∴AE=97.∵ED⊥BC,∴∠7=∠6=∠5=90°.∴四边形EFCD 是矩形.∴CD=EF=9,ED=FC=5.∴四边形ABDE 的周长=AB+BD+DE+EA=97+4+9+5+97=18+297.【总结升华】此题主要考查了全等三角形的判定以及矩形的判定与性质和勾股定理等知识,根据已知得出AC=EF=9是解题关键.类型三、菱形4、如图,平行四边形ABCD 中,AB ⊥AC ,AB =1,BC =5.对角线AC ,BD 相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;(2)试说明在旋转过程中,线段AF与EC总保持相等;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.【思路点拨】(1)当旋转角为90°时,∠AOF=90°,由AB⊥AC,可得AB∥EF,即可证明四边形ABEF为平行四边形;(2)证明△AOF≌△COE即可;(3)当EF⊥BD时,四边形BEDF为菱形,又由AB⊥AC,AB=1,BC=5,易求得OA=AB,即可得∠AOB=45°,求得∠AOF=45°,则可得此时AC绕点O顺时针旋转的最小度数为45°.【答案与解析】(1)证明:当∠AOF=90°时,AB∥EF,又AF∥BE,∴四边形ABEF为平行四边形.(2)证明:四边形ABCD为平行四边形,∴AO=CO,∠FAO=∠ECO,∠AOF=∠COE.∴△AOF≌△COE∴AF=CE(3)四边形BEDF可以是菱形.理由:如图,连接BF,DE,由(2)知△AOF≌△COE,得OE=OF,∴EF与BD互相平分.∴当EF⊥BD时,四边形BEDF为菱形.AC=-=,在Rt△ABC中,512∴OA=1=AB,又AB⊥AC,∴∠AOB=45°,∴∠AOF=45°,∴AC绕点O顺时针旋转45°时,四边形BEDF为菱形.【总结升华】要证明四边形是菱形,先证明这个四边形是平行四边形,再利用对角线互相垂直的特征证明该平行四边形是菱形.举一反三:【变式】已知:如图所示,BD是△ABC的角平分线,EF是BD的垂直平分线,且交AB于E,交BC于点F.求证:四边形BFDE是菱形.【答案】证明:∵EF是BD的垂直平分线,∴EB=ED,∠EBD=∠EDB.又∵∠EBD= ∠FBD,∴∠FBD=∠EDB,ED∥BF. 同理,DF∥BE,∴四边形BFDE是平行四边形.又∵EB=ED,∴四边形BFDE是菱形.5、在口ABCD中,对角线AC、BD相交于点O,BD=2AB,点E、F分别是OA、BC的中点.连接BE、EF.(1)求证:EF=BF;(2)在上述条件下,若AC=BD,G是BD上一点,且BG:GD=3:1,连接EG、FG,试判断四边形EBFG的形状,并证明你的结论.【思路点拨】(1)根据平行四边形性质推出BD=2BO,推出AB=BO,根据三线合一定理得出BE⊥AC,在△BEC 中,根据直角三角形斜边上中线性质求出EF=BF=CF即可;(2)根据矩形性质和已知求出G为OD中点,根据三角形中位线求出EG∥AD,EG=12BC,求出EG∥BC,EG=12BC,求出BF=EG,BF∥EG,EG=GF,得出平行四边形,根据菱形的判定推出即可.【答案与解析】(1)证明:∵四边形ABCD是平行四边形,∴BD=2BO,∵BD=2AB,∴AB=BO,∵E为OA中点,∴BE⊥AC,∴∠BEC=90°,∵F为BC中点,∴EF=BF=CF,即EF=BF;(2)四边形EBFG是菱形,证明:连接CG,∵四边形ABCD是平行四边形,AC=BD,∴四边形ABCD是矩形,∴AD=BC,AB=CD,AD∥BC,BD=2BO=2OD,∴BD=2AB=2CD,∴OC=CD,∵BG:GD=3:1,OB=OD,∴G为OD中点,∴CG⊥OD(三线合一定理),即∠CGB=90°,∵F为BC中点,∴GF=12BC=12AD,∵E为OA中点,G为OD中点,∴EG∥AD,EG=12 AD,∴EG∥BC,EG=12 BC,∵F为BC中点,∴B F=12BC,EG=GF,即EG∥BF,EG=BF,∴四边形EBFG是平行四边形,∵EG=GF,∴平行四边形EBFG是菱形(有一组邻边相等的平行四边形是菱形).【总结升华】本题考查了平行四边形的性质和判定,矩形性质,菱形性质,三角形的中位线,直角三角形斜边上中线性质,等腰三角形的性质等知识点,主要考查学生综合运用定理进行推理的能力,注意:直角三角形斜边上中线等于斜边的一半.类型四、正方形6、正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=1时,求EF的长.【答案与解析】解:(1)证明:∵△DAE 逆时针旋转90°得到△DCM,∴DE=DM ,∠EDM=90°,∴∠EDF+∠FDM=90°,∵∠EDF=45°,∴∠FDM=∠EDF =45°,在△DEF 和△DMF 中,DE DM EDF MDFDF DF =⎧⎪∠=∠⎨⎪=⎩,∴△DEF≌△DMF(SAS ),∴EF=MF ;(2)设EF =MF =x ,∵AE=CM =1,且BC =3,∴BM=BC +CM =3+1=4,∴BF=BM -MF =BM -EF =4-x ,∵EB=AB -AE =3-1=2,在Rt△EBF 中,由勾股定理得EB 2+BF 2=EF 2,即()22224x x +-=, 解得:52x =,则EF =52. 【总结升华】此题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,以及勾股定理,利用了转化及方程的思想,熟练掌握性质及定理是解本题的关键.举一反三:【变式】如图(1),正方形ABCD 和正方形CEFG 有一公共顶点C ,且B 、C 、E 在一直线上,连接BG 、DE .(1)请你猜测BG 、DE 的位置关系和数量关系?并说明理由.(2)若正方形CEFG 绕C 点向顺时针方向旋转一个角度后,如图(2),BG 和DE 是否还存在上述关系?若存在,试说明理由;若不存在,也请你给出理由.【答案】解:(1)BG =DE ,BG ⊥DE ;理由是:延长BG 交DE 于点H ,因为BC =DC ,CG =CE ,∠BCG =∠DCE所以△BCG ≌△DCE ,所以BG=DE,∠GBC=∠CDE.由于∠CDE+∠CED=90°,所以∠GBC+∠DEC=90°,得∠BHE=90°.所以BG⊥DE.(2)上述结论也存在.理由:设BG交DE于H,BG交DC于K,同理可证△BCG≌△DCE,得BG=ED,∠KBC=∠KDH.又因为∠KBC+∠BKC=90°,可得∠DKH+∠KDH=90°,从而得∠KHD=90°.所以BG⊥DE.。
平行四边形知识点归纳、巩固及题型综合训练
的四边形是平行四边形;④两条对角线
的四边形
是平行四边形;⑤一组对边 (2) 识别矩形的方法: ①有一个角是 的
的
是平行四边形.
是矩形;②两条对角线
的平行四边形是矩形;
③有三个角是 的四边形是矩形;④两条对角线 且互相平分的四边形是矩形。
3.已知:如图,在□ABCD 中,E、F 分别为边 AB、CD 的中点,BD 是对角线,AG∥ DB 交 CB 的延长线于 G.
C.有一组邻边相等的平行四边形是菱形 D.对角线互相垂直平分的四边形等是正方形
6. 下列错误的是( )
腰
A.一组邻边相等的平行四边形是菱形 B.一组邻边相等的矩形是正方形梯
C. 一组对边平行且相等的四边形是平行四边形
形
四、正方形 定义:有一个角是直角的菱形是正方形. 一组邻边邻边相等的矩形是正方形. 性质:1、正方形的四条边都相等; 2、正方形的四个角都是直角; 3、正方形既是轴对称图形,又是中心对称图形. 判定定理:1、一组邻边相等的矩形是正方形. 2、有一个角是直角的菱形是正方形.
五、梯形 定义: 一组对边平行,另一组对边不平行的四边形叫做梯形. 1、直角梯形定义:有一个角是直角的梯形是直角梯形. 2、等腰梯形定义:两腰相等的梯形是等腰梯形. 等腰梯形的性质:1、等腰梯形同一底边上的两个角相等; 2、等腰梯形的两条对角线相等; 3、对称性:等腰梯形是轴对称图形. 等腰梯形判定定理:1、两腰相等的梯形是等腰梯形; 2、同一底上两个底角相等的梯形是等腰梯形; 3、两条对角线相等的梯形是等腰梯形; 梯形问题常见的辅助线:如图
判定 1、两组对边分别平行的四边形是平行四边形(定义); 2、两组对边分别相等的四边形是平行四边形; 3、一组对边平行且相等的四边形是平行四边形; 4、两组对角分别相等的四边形是平行四边形; 5、对角线互相平分的四边形是平行四边形 .
华东师大初中数学八年级下册《平行四边形》全章复习与巩固(基础)知识讲解
《平行四边形》全章复习与巩固(基础)【学习目标】1. 掌握平行四边形、矩形、菱形、正方形的概念, 了解它们之间的关系.2. 探索并掌握平行四边形、矩形、菱形、正方形的有关性质和常用判别方法, 并能运用这些知识进行有关的证明和计算. 【知识网络】【要点梳理】要点一、平行四边形1.定义:两组对边分别平行的四边形叫做平行四边形.2.性质:(1)对边平行且相等;(2)对角相等;邻角互补;(3)对角线互相平分;(4)中心对称图形.3.面积:高底平行四边形S 4.判定:边:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形.角:(4)两组对角分别相等的四边形是平行四边形;(5)两组邻角分别互补的四边形是平行四边形.边与角:(6)一组对边平行,一组对角相等的四边形是平行四边形;对角线:(7)对角线互相平分的四边形是平行四边形.要点诠释:平行线的性质:(1)平行线间的距离都相等;(2)等底等高的平行四边形面积相等.要点二、矩形1.定义:有一个角是直角的平行四边形叫做矩形.2.性质:(1)具有平行四边形的所有性质;(2)四个角都是直角;(3)对角线互相平分且相等;(4)中心对称图形,轴对称图形.3.面积:宽=长矩形S 4.判定:(1) 有一个角是直角的平行四边形是矩形.(2)对角线相等的平行四边形是矩形. (3)有三个角是直角的四边形是矩形.要点诠释:由矩形得直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半.要点三、菱形1. 定义:有一组邻边相等的平行四边形叫做菱形. 2.性质:(1)具有平行四边形的一切性质;(2)四条边相等;(3)两条对角线互相平分且垂直,并且每一条对角线平分一组对角;(4)中心对称图形,轴对称图形.3.面积:2对角线对角线高==底菱形S 4.判定:(1)一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形;(3)四边相等的四边形是菱形.要点四、正方形1. 定义:四条边都相等,四个角都是直角的四边形叫做正方形.2.性质:(1)对边平行;(2)四个角都是直角;(3)四条边都相等;(4)对角线互相垂直平分且相等,对角线平分对角;(5) 两条对角线把正方形分成四个全等的等腰直角三角形;(6)中心对称图形,轴对称图形.3.面积:=S 正方形边长×边长=12×对角线×对角线4.判定:(1)有一个角是直角的菱形是正方形;(2)一组邻边相等的矩形是正方形;(3)对角线相等的菱形是正方形;(4)对角线互相垂直的矩形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形;(6)四条边都相等,四个角都是直角的四边形是正方形.【典型例题】类型一、平行四边形1、如图,在口ABCD中,点E在AD上,连接BE,DF∥BE交BC于点F,AF与BE交于点M,CE与DF交于点N.求证:四边形MFNE是平行四边形.【答案与解析】证明:∵四边形ABCD是平行四边形.∴AD=BC,AD∥BC(平行四边形的对边相等且平行)又∵DF∥BE(已知)∴四边形BEDF是平行四边形(两组对边分别平行的四边形是平行四边形)∴DE=BF(平行四边形的对边相等)∴AD-DE=BC-BF,即AE=CF又∵AE∥CF∴四边形AFCE是平行四边形(一组对边平行且相等的四边形是平行四边形)∴AF∥CE∴四边形MFNE是平行四边形(两组对边分别平行的四边形是平行四边形)【总结升华】要证明一个四边形是平行四边形首先要根据已知条件选择一种合理的判定方法,如本题中已有一边平行,只须说明另一边也平行即可,故选用“两组对边分别平行的四边形是平行四边形”来证明.举一反三:【变式】如图,等腰△ABC中,D是BC边上的一点,DE∥AC,DF∥AB,通过观察分析线段DE,DF,AB三者之间有什么关系,试说明你的结论.【答案】AB=DE+DF,提示:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∠C=∠EDB∴DF=AE.∵△ABC是等腰三角形,∴∠B=∠C,∴∠B=∠EDB,∴DE=BE,∴AB=AE+BE=DF+DE2、(2015?哈尔滨)如图1,口ABCD中,点O是对角线AC的中点,EF过点O,与AD,BC分别相交于点E,F,GH过点O,与AB,CD分别相交于点G,H,连接EG,FG,FH,EH.(1)求证:四边形EGFH是平行四边形;(2)如图2,若EF∥AB,GH∥BC,在不添加任何辅助线的情况下,请直接写出图2中与四边形AGHD面积相等的所有平行四边形(四边形AGHD除外).【思路点拨】(1)由四边形ABCD是平行四边形,得到AD∥BC,根据平行四边形的性质得到∠EAO=∠FCO,证出△OAE≌△OCF,得到OE=OF,同理OG=OH,根据对角线互相平分的四边形是平行四边形得到结论;(2)根据两组对边分别平行的四边形是平行四边形即可得到结论.【答案与解析】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAO=∠FCO,在△OAE与△OCF中,∴△OAE≌△OCF,∴OE=OF,同理OG=OH,∴四边形EGFH是平行四边形;(2)解:与四边形AGHD面积相等的所有平行四边形有口GBCH,口ABFE,口EFCD,口EGFH;∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∵EF∥AB,GH∥BC,∴四边形GBCH,ABFE,EFCD,EGFH为平行四边形,∵EF过点O,GH过点O,∵OE=OF,OG=OH,∴口GBCH,口ABFE,口EFCD,口EGFH,口ACHD它们面积=口ABCD的面积,∴与四边形AGHD面积相等的所有平行四边形有口GBCH,口ABFE,口EFCD,口EGFH.【总结升华】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键.类型二、矩形3、(2016春?常州期末)如图,在△ABC中,AB=AC,D为BC的中点,AE∥BC,DE∥AB.试说明:(1)AE=DC;(2)四边形ADCE为矩形.【思路点拨】(1)根据已知条件可以判定四边形ABDE是平行四边形,则其对边相等:AE=BD.结合中点的性质得到AE=CD;(2)依据“对边平行且相等”的四边形是平行四边形判定四边形ADCE是平行四边形,又由“有一内角为直角的平行四边形是矩形”证得结论.【答案与解析】证明:(1)如图,∵AE∥BC,∴AE∥BD.又∵DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD.∵D为BC的中点,∴BD=DC,∴AE=DC;(2)∵AE∥CD,AE=BD=DC,即AE=DC,∴四边形ADCE是平行四边形.又∵AB=AC,D为BC的中点,∴AD⊥CD,∴平行四边形ADCE为矩形.【总结升华】本题考查了等腰三角形的性质,矩形的判定与性质以及平行四边形的性质.此题也可以根据“对角线相等的平行四边形是矩形”来证明(2)的结论.4、如图所示,在矩形ABCD中,AB=6,BC=8.将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F处,求EF的长.【思路点拨】要求EF的长,可以考虑把EF放入Rt△AEF中,由折叠可知CD=CF,DE=EF,易得AC=10,所以AF=4,AE=8-EF,然后在Rt△AEF中利用勾股定理求出EF的值.【答案与解析】解:设EF=x,由折叠可得:DE=EF=x,CF=CD=6,又∵在Rt△ADC中,226810AC.∴ AF=AC-CF=4,AE=AD-DE=8-x.在Rt△AEF中,222AE AF EF,即222(8)4x x,解得:x=3 ∴ EF=3【总结升华】在矩形折叠问题中往往根据折叠找出相等的量,然后把未知边放在合适的直角三角形中,再利用勾股定理进行求解.举一反三:【变式】把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB = 3cm,BC = 5cm,则重叠部分△DEF的面积是__________2cm.【答案】5.1.提示:由题意可知BF=DF,设FC=x,DF=5-x,在Rt△DFC中,222DC FC DF,解得x=85,BF=DE=3.4,则DEF1=DE AB2S△=12×3.4×3=5.1.类型三、菱形5、如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连结DF,则∠CDF等于( ).A.80°B.70°C.65°D.60°【答案】D;【解析】解:连结BF,由FE是AB的中垂线,知FB=FA,于是∠FBA=∠FAB==40°.∴∠CFB=40°+40°=80°,由菱形ABCD知,DC=CB,∠DCF=∠BCF,CF=CF,于是△DCF≌△BCF,因此∠CFD=∠CFB=80°,在△CDF中, ∠CDF=180°-40°-80°=60°.【总结升华】运用菱形的性质可以证明线段相等、角相等、线段的平行及垂直等问题,关键是要记住它们的判定和性质.举一反三:【变式】用两张等宽的纸带交叉重叠地放在一起,重合的四边形ABCD是菱形吗?如果是菱形请给出证明,如果不是菱形请说明理由.【答案】四边形ABCD是菱形;证明:由AD∥BC,AB∥CD得四边形ABCD是平行四边形,过A,C两点分别作AE⊥BC于E,CF⊥AB于F.∴∠CFB=∠AEB=90°.∵AE=CF(纸带的宽度相等)∠ABE=∠CBF,∴Rt△ABE≌Rt△CBF,∴AB=BC,∴四边形ABCD是菱形.类型四、正方形6、(2015春?上城区期末)如图,矩形ABCD中,AD=6,DC=8,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连结CF.(1)若DG=2,求证:四边形EFGH为正方形;(2)若DG=6,求△FCG的面积.【思路点拨】(1)通过证明Rt△DHG≌△AEH,得到∠DHG=∠AEH,从而得到∠GHE=90°,然后根据有一个角为直角的菱形为正方形得到四边形EFGH为正方形;(2)作FQ⊥CD于Q,连结GE,如图,利用AB∥CD得到∠AEG=∠QGE,再根据菱形的性质得HE=GF,HE∥GF,则∠HEG=∠FGE,所以∠AEH=∠QGF,于是可证明△AEH≌△QGF,得到AH=QF=2,然后根据三角形面积公式求解.【答案与解析】(1)证明:∵四边形EFGH为菱形,∴HG=EH,∵AH=2,DG=2,∴DG=AH,在Rt△DHG和△AEH中,,∴Rt△DHG≌△AEH,∴∠DHG=∠AEH,∵∠AEH+∠AHG=90°,∴∠DHG+∠AHG=90°,∴∠GHE=90°,∵四边形EFGH为菱形,∴四边形EFGH为正方形;(2)解:作FQ⊥CD于Q,连结GE,如图,∵四边形ABCD为矩形,∴AB∥CD,∴∠AEG=∠QGE,即∠AEH+∠HEG=∠QGF+∠FGE,∵四边形EFGH为菱形,∴HE=GF,HE∥GF,∴∠HEG=∠FGE,∴∠AEH=∠QGF,在△AEH和△QGF中,∴△AEH≌△QGF,∴AH=QF=2,∵DG=6,CD=8,∴CG=2,∴△FCG的面积=CG?FQ=×2×2=2.【总结升华】本题考查了正方形的判定与性质:正方形的判定没有固定的方法,只要判定既是矩形又是菱形就可以判定;正方形具有平行四边形、矩形、菱形的所有性质.也考查了菱形和矩形的性质.7、如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过 E点作EF⊥AE交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由.【思路点拨】AE=EF.根据正方形的性质推出AB=BC,∠BAD=∠HAD=∠DCE=90°,推出∠HAE=∠CEF,根据△HEB是以∠B为直角的等腰直角三角形,得到BH=BE,∠H=45°,HA=CE,根据CF平分∠DCE推出∠H=∠FCE,根据ASA证△HAE≌△CEF即可得到答案.【答案与解析】探究:AE=EF证明:∵△BHE为等腰直角三角形,∴∠H=∠HEB=45°,BH=BE.又∵CF平分∠DCE,四边形ABCD为正方形,∴∠FCE=12∠DCE=45°,∴∠H=∠FCE.由正方形ABCD知∠B=90°,∠HAE=90°+∠DAE=90°+∠AEB,而AE⊥EF,∴∠FEC=90°+∠AEB,∴∠HAE=∠FEC.由正方形ABCD知AB=BC,∴BH-AB=BE-BC,∴HA=CE,∴△AHE≌△ECF (ASA),∴AE=EF.【总结升华】充分利用正方形的性质和题目中的已知条件,通过证明全等三角形来证明线段相等.。
人教版初二数学下册:平行四边形全章复习与巩固(基础)知识讲解
平行四边形全章复习与巩固(基础)【学习目标】1. 掌握平行四边形、矩形、菱形、正方形的概念, 了解它们之间的关系.2. 探索并掌握平行四边形、矩形、菱形、正方形的有关性质和常用判别方法, 并能运用这些知识进行有关的证明和计算.3. 掌握三角形中位线定理. 【知识网络】【要点梳理】要点一、平行四边形1.定义:两组对边分别平行的四边形叫做平行四边形. 2.性质:(1)对边平行且相等; (2)对角相等;邻角互补; (3)对角线互相平分; (4)中心对称图形. 3.面积:高底平行四边形⨯=S4.判定:边:(1)两组对边分别平行的四边形是平行四边形; (2)两组对边分别相等的四边形是平行四边形; (3)一组对边平行且相等的四边形是平行四边形. 角:(4)两组对角分别相等的四边形是平行四边形; (5)任意两组邻角分别互补的四边形是平行四边形. 边与角:(6)一组对边平行,一组对角相等的四边形是平行四边形; 对角线:(7)对角线互相平分的四边形是平行四边形. 要点诠释:平行线的性质: (1)平行线间的距离都相等;(2)等底等高的平行四边形面积相等. 要点二、矩形1.定义:有一个角是直角的平行四边形叫做矩形.2.性质:(1)具有平行四边形的所有性质;(2)四个角都是直角;(3)对角线互相平分且相等;(4)中心对称图形,轴对称图形. 3.面积:宽=长矩形⨯S4.判定:(1) 有一个角是直角的平行四边形是矩形. (2)对角线相等的平行四边形是矩形. (3)有三个角是直角的四边形是矩形. 要点诠释:由矩形得直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半. 要点三、菱形1. 定义:有一组邻边相等的平行四边形叫做菱形. 2.性质:(1)具有平行四边形的一切性质; (2)四条边相等;(3)两条对角线互相平分且垂直,并且每一条对角线平分一组对角;(4)中心对称图形,轴对称图形.3.面积:2对角线对角线高==底菱形⨯⨯S4.判定:(1)一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形; (3)四边相等的四边形是菱形.要点四、正方形1. 定义:四条边都相等,四个角都是直角的四边形叫做正方形. 2.性质:(1)对边平行;(2)四个角都是直角;(3)四条边都相等;(4)对角线互相垂直平分且相等,对角线平分对角;(5) 两条对角线把正方形分成四个全等的等腰直角三角形; (6)中心对称图形,轴对称图形.3.面积:=S 正方形边长×边长=12×对角线×对角线 4.判定:(1)有一个角是直角的菱形是正方形;(2)一组邻边相等的矩形是正方形; (3)对角线相等的菱形是正方形; (4)对角线互相垂直的矩形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形; (6)四条边都相等,四个角都是直角的四边形是正方形.【典型例题】类型一、平行四边形1、如图,在口ABCD 中,点E 在AD 上,连接BE ,DF ∥BE 交BC 于点F ,AF 与BE 交于点M,CE与DF交于点N.求证:四边形MFNE是平行四边形.【答案与解析】证明:∵四边形ABCD是平行四边形.∴AD=BC,AD∥BC(平行四边形的对边相等且平行)又∵DF∥BE(已知)∴四边形BEDF是平行四边形(两组对边分别平行的四边形是平行四边形)∴DE=BF(平行四边形的对边相等)∴AD-DE=BC-BF,即AE=CF又∵AE∥CF∴四边形AFCE是平行四边形(一组对边平行且相等的四边形是平行四边形)∴AF∥CE∴四边形MFNE是平行四边形(两组对边分别平行的四边形是平行四边形)【总结升华】要证明一个四边形是平行四边形首先要根据已知条件选择一种合理的判定方法,如本题中已有一边平行,只须说明另一边也平行即可,故选用“两组对边分别平行的四边形是平行四边形”来证明.举一反三:【变式】如图,等腰△ABC中,D是BC边上的一点,DE∥AC,DF∥AB,通过观察分析线段DE,DF,AB三者之间有什么关系,试说明你的结论.【答案】AB=DE+DF,提示:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∠C=∠EDB∴DF=AE.∵△ABC是等腰三角形,∴∠B=∠C,∴∠B=∠EDB,∴DE=BE,∴AB=AE+BE=DF+DE2、如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC交AC于点E,CF∥AB交DE的延长线于点F.(1)求证:DE=EF;(2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.【思路点拨】(1)首先证明四边形DBCF为平行四边形,可得DF=BC,再证明DE=12 BC,进而得到EF=CB,即可证出DE=EF;(2)首先画出图形,首先根据平行线的性质可得∠ADG=∠G,再证明∠B=∠DCB,∠A=∠DCA,然后再推出∠1=∠DCB=∠B,再由∠A+∠ADG=∠1可得∠A+∠G=∠B.【答案与解析】证明:(1)∵DE∥BC,CF∥AB,∴四边形DBCF为平行四边形,∴DF=BC,∵D为边AB的中点,DE∥BC,∴DE=12BC,∴EF=DF-DE=BC-12CB=12CB,∴DE=EF;(2)∵DB∥CF,∴∠ADG=∠G,∵∠ACB=90°,D为边AB的中点,∴CD=DB=AD,∴∠B=∠DCB,∠A=∠DCA,∵DG⊥DC,∴∠DCA+∠1=90°,∵∠DCB+∠DCA=90°,∴∠1=∠DCB=∠B,∵∠A+∠ADG=∠1,∴∠A+∠G=∠B.【总结升华】此题主要考查了平行四边形的判定与性质,以及直角三角形的性质,关键是找出∠ADG=∠G,∠1=∠B.掌握在直角三角形中,斜边上的中线等于斜边的一半.举一反三:【变式】(2015•哈尔滨)如图1,口ABCD中,点O是对角线AC的中点,EF过点O,与AD,BC分别相交于点E,F,GH过点O,与AB,CD分别相交于点G,H,连接EG,FG,FH,EH.(1)求证:四边形EGFH是平行四边形;(2)如图2,若EF∥AB,GH∥BC,在不添加任何辅助线的情况下,请直接写出图2中与四边形AGHD面积相等的所有平行四边形(四边形AGHD除外).【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAO=∠FCO,在△OAE与△OCF中,∴△OAE≌△OCF,∴OE=OF,同理OG=OH,∴四边形EGFH是平行四边形;(2)解:与四边形AGHD面积相等的所有平行四边形有口GBCH,口ABFE,口EFCD,口EGFH;∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∵EF∥AB,GH∥BC,∴四边形GBCH,ABFE,EFCD,EGFH为平行四边形,∵EF过点O,GH过点O,∵OE=OF,OG=OH,∴口GBCH,口ABFE,口EFCD,口EGFH,口ACHD它们面积=口ABCD的面积,∴与四边形AGHD面积相等的所有平行四边形有口GBCH,口ABFE,口EFCD,口EGFH.类型二、矩形3、已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.①求证:CD=AN;②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.【思路点拨】①根据两直线平行,内错角相等求出∠DAC=∠NCA,然后利用“角边角”证明△AMD和△CMN全等,根据全等三角形对应边相等可得AD=CN,然后判定四边形ADCN是平行四边形,再根据平行四边形的对边相等即可得证;②根据三角形的一个外角等于与它不相邻的两个内角的和推出∠MCD=∠MDC,再根据等角对等边可得MD=MC,然后证明AC=DN,再根据对角线相等的平行四边形是矩形即可得证.【答案与解析】 证明:①∵CN∥AB,∴∠DAC=∠NCA, 在△A MD 和△CMN 中,∵DAC NCA MA MC AMD CMN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AMD≌△CMN(ASA ), ∴AD=CN , 又∵AD∥CN,∴四边形ADCN 是平行四边形, ∴CD=AN ;②∵∠AMD=2∠MCD ,∠AMD=∠MCD+∠MDC, ∴∠M CD =∠MDC, ∴MD=MC ,由①知四边形ADCN 是平行四边形, ∴MD=MN =MA =MC , ∴AC=DN ,∴四边形ADCN 是矩形.【总结升华】要判定一个四边形是矩形,通常先判定它是平行四边形,再根据平行四边形构成矩形的条件,判定有一个角是直角或对角线相等.4、如图所示,在矩形ABCD 中,AB =6,BC =8.将矩形ABCD 沿CE 折叠后,使点D 恰好落在对角线AC 上的点F 处,求EF 的长.【思路点拨】要求EF 的长,可以考虑把EF 放入Rt △AEF 中,由折叠可知CD =CF ,DE =EF ,易得AC =10,所以AF =4,AE =8-EF ,然后在Rt △AEF 中利用勾股定理求出EF 的值. 【答案与解析】 解:设EF =x ,由折叠可得:DE =EF =x ,CF =CD =6, 又∵ 在Rt △ADC 中,226810AC +=. ∴ AF =AC -CF =4,AE =AD -DE =8-x . 在Rt △AEF 中,222AE AF EF =+, 即222(8)4x x -=+,解得:x =3 ∴ EF =3 【总结升华】在矩形折叠问题中往往根据折叠找出相等的量,然后把未知边放在合适的直角三角形中,再利用勾股定理进行求解.举一反三:【变式】把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB = 3cm,BC = 5cm,则重叠部分△DEF的面积是__________2cm.【答案】5.1.提示:由题意可知BF=DF,设FC=x,DF=5-x,在Rt△DFC中,222DC FC DF+=,解得x=85,BF=DE=3.4,则DEF1=DE AB2S⨯△=12×3.4×3=5.1.类型三、菱形5、如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连结DF,则∠CDF等于( ).A.80°B.70°C.65°D.60°【答案】D;【解析】解:连结BF,由FE是AB的中垂线,知FB=FA,于是∠FBA=∠FAB==40°.∴∠CFB=40°+40°=80°,由菱形ABCD知,DC=CB,∠DCF=∠BCF,CF=CF,于是△DCF≌△BCF,因此∠CFD=∠CFB=80°,在△CDF中, ∠CDF=180°-40°-80°=60°.【总结升华】运用菱形的性质可以证明线段相等、角相等、线段的平行及垂直等问题,关键是要记住它们的判定和性质.举一反三:【变式】用两张等宽的纸带交叉重叠地放在一起,重合的四边形ABCD是菱形吗?如果是菱形请给出证明,如果不是菱形请说明理由.【答案】四边形ABCD是菱形;证明:由AD∥BC,AB∥CD得四边形ABCD是平行四边形,过A,C两点分别作AE⊥BC于E,CF⊥AB于F.∴∠CFB=∠AEB=90°.∵AE=CF(纸带的宽度相等)∠ABE=∠CBF,∴Rt△ABE≌Rt△CBF,∴AB=BC,∴四边形ABCD是菱形.类型四、正方形6、(2015春•上城区期末)如图,矩形ABCD中,AD=6,DC=8,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连结CF.(1)若DG=2,求证:四边形EFGH为正方形;(2)若DG=6,求△FCG的面积.【思路点拨】(1)通过证明Rt△DHG≌△AEH,得到∠DHG=∠AEH,从而得到∠GHE=90°,然后根据有一个角为直角的菱形为正方形得到四边形EFGH为正方形;(2)作FQ⊥CD于Q,连结GE,如图,利用AB∥CD得到∠AEG=∠QGE,再根据菱形的性质得HE=GF,HE∥GF,则∠HEG=∠FGE,所以∠AEH=∠QGF,于是可证明△AEH≌△QGF,得到AH=QF=2,然后根据三角形面积公式求解.【答案与解析】(1)证明:∵四边形EFGH为菱形,∴HG=EH,∵AH=2,DG=2,∴DG=AH,在Rt△DHG和△AEH中,,∴Rt△DHG≌△AEH,∴∠DHG=∠AEH,∵∠AEH+∠AH E=90°,∴∠DHG+∠AHG=90°,∴∠GHE=90°,∵四边形EFGH为菱形,∴四边形EFGH为正方形;(2)解:作FQ⊥CD于Q,连结GE,如图,∵四边形ABCD为矩形,∴AB∥CD,∴∠AEG=∠QGE,即∠AEH+∠HEG=∠QGF+∠FGE,∵四边形EFGH为菱形,∴HE=GF,HE∥GF,∴∠HEG=∠FGE,∴∠AEH=∠QGF,在△AEH和△QGF中,∴△AEH≌△QGF,∴AH=QF=2,∵DG=6,CD=8,∴CG=2,∴△FCG的面积=CG•FQ=×2×2=2.【总结升华】本题考查了正方形的判定与性质:正方形的判定没有固定的方法,只要判定既是矩形又是菱形就可以判定;正方形具有平行四边形、矩形、菱形的所有性质.也考查了菱形和矩形的性质.举一反三:【变式】如图所示,E、F、G、H分别是四边形ABCD各边中点,连接EF、FG、GH、HE,则四边形EFGH为________形.(1)当四边形满足________条件时,四边形EFGH是菱形.(2)当四边形满足________条件时,四边形EFGH是矩形.(3)当四边形满足________条件时,四边形EFGH是正方形.在横线上填上合适的条件,并说明你所填条件的合理性.【答案】四边形EFGH为平行四边形;解:(1)AC=BD,理由:如图①,四边形ABCD的对角线AC=BD,此时四边形EFGH为平行四边形,且EH=12BD,HG=12AC,得EH=GH,故四边形EFGH为菱形.(2)AC⊥BD,理由:如图②,四边形ABCD的对角线互相垂直,此时四边形EFGH为平行四边形.易得GH⊥BD,即GH⊥EH,故四边形EFGH为矩形.(3)AC=BD且AC⊥BD,理由:如图③,四边形ABCD的对角线相等且互相垂直,综合(1)(2)可得四边形EFGH为正方形.本题是以平行四边形为前提,加上对角线的特殊条件来判定特殊的平行四边形,加上邻边相等为菱形,加上对角线互相垂直为矩形,综合得到正方形.附录资料:菱形(基础)=【学习目标】1. 理解菱形的概念.2. 掌握菱形的性质定理及判定定理.【要点梳理】【高清课堂特殊的平行四边形(菱形)知识要点】要点一、菱形的定义有一组邻边相等的平行四边形叫做菱形.要点诠释:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件.要点二、菱形的性质菱形除了具有平行四边形的一切性质外,还有一些特殊性质:1.菱形的四条边都相等;2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心. 要点诠释:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分.(2)菱形的面积有两种计算方法:一种是平行四边形的面积公式:底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.(3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题.要点三、菱形的判定菱形的判定方法有三种:1.定义:有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四条边相等的四边形是菱形.要点诠释:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等.【典型例题】类型一、菱形的性质1、(2016•广安)如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF ⊥AD交AD的延长线于点F,求证:DF=BE.【思路点拨】连接AC,根据菱形的性质可得AC平分∠DAE,CD=BC,再根据角平分线的性质可得CE=FC,然后利用HL证明Rt△CDF≌Rt△CBE,即可得出DF=BE.【答案与解析】证明:连接AC,∵四边形ABCD是菱形,∴AC平分∠DAE,CD=BC,∵CE⊥AB,CF⊥AD,∴CE=FC,∠CFD=∠CEB=90°.在Rt△CDF与Rt△CBE中,,∴Rt△CDF≌Rt△CBE(HL),∴DF=BE.【总结升华】此题考查了菱形的性质,角平分线的性质,关键是掌握菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;角平分线的性质:角的平分线上的点到角的两边的距离相等.同时考查了全等三角形的判定与性质.举一反三:【变式1】(2015•温州模拟)如图,在菱形ABCD中,点E是AB上的一点,连接DE交AC于点O,连接BO,且∠AED=50°,则∠CBO=度.【答案】50;解:在菱形ABCD 中,AB ∥CD ,∴∠CDO=∠AED=50°,CD=CB ,∠BCO=∠DCO ,∴在△BCO 和△DCO 中,,∴△BCO ≌△DCO (SAS ),∴∠CBO=∠CDO=50°.【高清课堂 特殊的平行四边形(菱形) 例1】【变式2】菱形ABCD 中,∠A ∶∠B =1∶5,若周长为8,则此菱形的高等于( ).A.21B.4C.1D.2【答案】C ;提示:由题意,∠A =30°,边长为2,菱形的高等于12×2=1. 类型二、菱形的判定2、如图所示,在△ABC 中,CD 是∠ACB 的平分线,DE ∥AC ,DF ∥BC ,四边形DECF 是菱形吗?试说明理由.【思路点拨】由菱形的定义去判定图形,由DE ∥AC ,DF ∥BC 知四边形DECF 是平行四边形,再由∠1=∠2=∠3得到邻边相等即可.【答案与解析】解:四边形DECF 是菱形,理由如下:∵ DE ∥AC ,DF ∥BC∴ 四边形DECF 是平行四边形.∵ CD 平分∠ACB ,∴ ∠1=∠2∵ DF ∥BC ,∴ ∠2=∠3,∴ ∠1=∠3.∴ CF =DF ,∴ 四边形DECF 是菱形.【总结升华】在用菱形的定义判定一个四边形是菱形时,首先判定这个四边形是平行四边形,再由一对邻边相等来判定它是菱形.举一反三:【变式】如图所示,AD 是△ABC 的角平分线,EF 垂直平分AD ,分别交AB 于E ,交AC 于F ,则四边形AEDF是菱形吗?请说明理由.【答案】解:四边形AEDF是菱形,理由如下:∵ EF垂直平分AD,∴△AOF与△DOF关于直线EF成轴对称.∴∠ODF=∠OAF,又∵ AD平分∠BAC,即∠OAF=∠OAE,∴∠ODF=∠OAE.∴ AE∥DF,同理可得:DE∥AF.∴四边形AEDF是平行四边形,∴ EO=OF又∵AEDF的对角线AD、EF互相垂直平分.∴AEDF是菱形.3、如图所示,在△ABC中,∠BAC=90°,AD⊥BC于点D,CE平分∠ACD,交AD于点G,交AB于点E,EF⊥BC于点F.求证:四边形AEFG是菱形.【思路点拨】由角平分线性质易知AE=EF,欲证四边形AEFG是菱形,只要再证四边形AEFG是平行四边形或AG=GF=AE即可.【答案与解析】证明:方法一:∵ CE平分∠ACB,∠BAC=90°,EF⊥BC,∴ AE=EF,∠1+∠3=90°,∠4+∠2=90°.∵∠1=∠2,∴∠3=∠4.∵ EF⊥BC,AD⊥BC,∴ EF∥AD.∴∠4=∠5.∴∠3=∠5.∴ AE=AG.∴ EF AG.∴四边形AEFG是平行四边形.又∵ AE=AG,∴四边形AEFG是菱形.方法二:∵ CE平分∠ACB,∠BAC=90°,EF⊥BC,∴ AE=EF,∠1+∠3=90°,∠4+∠2=90°.∴∠3=∠4.∵ EF⊥BC,AD⊥BC,∴ EF∥AD.∴∠4=∠5.∴∠3=∠5.∴ AE=AG.在△AEG和△FEG中,AE=EF,∠3=∠4,EG=EG,∴△AEG≌△FEG.∴ AG=FG.∴ AE=EF=FG=AG.∴四边形AEFG是菱形.【总结升华】判定一个四边形是菱形,关键是把已知条件转化成判定方法所需要的条件.举一反三:【变式】如图所示,在ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90°,求证四边形DEBF是菱形.【答案】证明:(1)ABCD中,AB∥CD,AB=CD∵ E、F分别为AB、CD的中点∴ DF=12DC,BE=12AB∴ DF∥BE.DF=BE∴四边形DEBF为平行四边形∴ DE∥BF(2)证明:∵ AG∥BD∴∠G=∠DBC=90°∴△DBC为直角三角形又∵ F为边CD的中点.∴ BF=12DC=DF又∵四边形DEBF为平行四边形∴四边形DEBF是菱形类型三、菱形的应用4、如图所示,是一种长0.3m,宽0.2m的矩形瓷砖,E、F、G、H分别为矩形四边BC、CD、DA、AB的中点,阴影部分为淡黄色花纹,中间部分为白色,现有一面长4.2 m,宽2.8m的墙壁准备贴如图所示规格的瓷砖.试问:(1)这面墙最少要贴这种瓷砖多少块?(2)全部贴满后,这面墙壁会出现多少个面积相同的菱形?【答案与解析】解:墙壁长4.2m,宽2.8m,矩形瓷砖长0.3m,宽0.2m,4.2÷0.3=14,2.8÷0.2=14,则可知矩形瓷砖横排14块,竖排14块可毫无空隙地贴满墙面.(1)则至少需要这种瓷砖14×14=196(块).(2)每块瓷砖中间有一个白色菱形,则共有196个白色的菱形,它的面积等于瓷砖面积的一半.另外在同一个顶点处的瓷砖能够拼成一个淡黄色花纹的菱形,它的面积也等于瓷砖面积的一半,有花纹的菱形横排有13个,竖排也有13个,则一共有淡黄色花纹菱形13×13=169个,面积相等的菱形一共有196+169=365(个).【总结升华】菱形可以看作是由直角三角形组成的,因而铺满墙面后,要计算空白菱形的个数和阴影菱形的个数.将相同的图形拼在一起,在顶点周围的几个图形也能拼成一定的图案,不要忽略周围图形的拼接.。
人教版数学八年级下册平行四边形全章复习与巩固(基础)知识讲解
人教版数学八年级下册平行四边形全章复习与巩固(基础)【学习目标】1.掌握平行四边形、矩形、菱形、正方形的概念,了解它们之间的关系2.探索并掌握平行四边形、矩形、菱形、正方形的有关性质和常用判别方法些知识进行有关的证明并能运用这和计算 .3.掌握三角形中位线定理.【知识网络】一个麻是近米।------- 蛆靠边相等-------- 1 ----------- ]1\两姐时边 /--------- -7加口. ---- 乙△有甲之二^一矩形fl四边形平行四边形 ______ _____ 正方形一组邻边点事、获三第菱形【要点梳理】要点一、平行四边形1.定义:两组对边分别平行的四边形叫做平行四边形^2.性质:(1)对边平行且相等;(2)对角相等;邻角互补;(3)对角线互相平分;(4)中心对称图形.B3.面积:S平行四边形底高4.判定:边:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3) 一组对边平行且相等的四边形是平行四边形.角:(4)两组对角分别相等的四边形是平行四边形;(5)任意两组邻角分别互补的四边形是平行四边形.边与角:(6) 一组对边平行,一组对角相等的四边形是平行四边形;对角线:(7)对角线互相平分的四边形是平行四边形.要点诠释:平行线的性质:(1)平行线间的距离都相等;(2)等底等高的平行四边形面积相等 .要点二、矩形1.定义:有一个角是直角的平行四边形叫做矩形2.性质:(1)具有平行四边形的所有性质;(2)四个角都是直角;(3)对角线互相平分且相等;(4)中心对称图形,轴对称图形 .3.面积: S矩形=长范要点诠释:(1)有一个角是直角的平行四边形是矩形(2)对角线相等的平行四边形是矩形.(3)有三个角是直角的四边形是矩形. 由矩形得直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半. 要点二、麦形1.定义:2.性质: 有一组邻边相等的平行四边形叫做菱形(1)(2)(3)(4)3.面积:4.判定:要点四、正方形1.定义:2.性质:3.面积:4.判定:具有平行四边形的一切性质;四条边相等;两条对角线互相平分且垂直,并且每一条对角线平分一组对角;中心对称图形,轴对称图形 .L吉对角线对角线S菱形:底段=---------------------(1)(2)(3)一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形; 四边相等的四边形是菱形 .四条边都相等,四个角都是直角的四边形叫做正方形(1)对边平行;(2)四个角都是直角;(3)(4)(5)(6)四条边都相等;对角线互相垂直平分且相等,对角线平分对角;两条对角线把正方形分成四个全等的等腰直角三角形;中心对称图形,轴对称图形 .1 ,一,…S正方形=边长X边长=—X对角线X对角线(1)(2)(3)(4)(5)(6)2有一个角是直角的菱形是正方形;一组邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形;对角线互相垂直平分且相等的四边形是正方形;四条边都相等,四个角都是直角的四边形是正方形【典型例题】类型一、平行四边形,1、如图,在口ABCM,点E在AD上,连接BE, DF// BE交BC于点F, AF与BE交于点M CE与DF交于点N.求证:四边形MFNE平行四边形.【答案与解析】证明:四边形ABC虚平行四边形.AD= BC,AD// BC (平行四边形的对边相等且平行)又「DF// BE (已知)••・四边形BEDF^平行四边形(两组对边分别平行的四边形是平行四边形)DE= BF (平行四边形的对边相等)AD- DE= BC- BF,即AE= CF又「AE// CF••・四边形AFC弱平行四边形(一组对边平行且相等的四边形是平行四边形)AF// CE••・四边形MFNE^平行四边形(两组对边分别平行的四边形是平行四边形)【总结升华】要证明一个四边形是平行四边形首先要根据已知条件选择一种合理的判定方法,如本题中已有一边平行,只须说明另一边也平行即可,故选用“两组对边分别平行的四边形是平行四边形”来证明 . 举一反三:【变式】如图,等腰△ ABC中,D是BC边上的一点,DE// AC DF// AB,通过观察分析线段DE DF, AB三者之间有什么关系,试说明你的结论.【答案】AB= DE+ DF,提示:•••DE// AC, DF// AB,••・四边形AEDF^平行四边形,/ C= / EDBDF= AE..「△ABC是等腰三角形,,/B= / C,,/B=/EDB DE= BE,AB= AE+ BE= DF+ DE2、如图,在△ ABC 中,/ ACB=90° , / B> / A,点D 为边AB 的中点,DE//BC交AC于点E, CF// AB交DE的延长线于点F.(1)求证:DE=EF;(2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:/ B=/ A+ / DGCD............................... …一一一,r —、r 1 【思路点拨】(1 )首先证明四边形DBCF为平行四边形,可得DF=BC,再证明DE=」BO,2进而得到EF=CB,即可证出DE=EF;(2)首先画出图形,首先根据平行线的性质可得/ ADG=Z G,再证明/ B= / DOB,/ A=Z DCA,然后再推出/1=/ DOB=Z B,再由/ A+Z ADG=Z 1 可得/ A+Z G=Z B. 【答案与解析】证明:(1) ; DE// BO, OF// AB,四边形DBCF为平行四边形,DF=BO,D为边AB的中点,DE// BO,DE」BC, EF=DF-DE=BC- - OB=- OB,2 2 2DE=EF;(2) ••• DB// OF,/ ADG=Z G,/ AOB=9Q° , D 为边AB 的中点,OD=DB=AD,/ B=/ DOB, / A=/ DOA, DG± DO,••• / DOA+Z 1=9Q ° ,••• / DOB+Z DOA=9Q ° ,•. / 1=/ DOB=Z B,••• Z A+Z ADG=Z 1, / A+Z G=Z B.【总结升华】此题主要考查了平行四边形的判定与性质,以及直角三角形的性质,关键是找出/ ADG=/ G, /1=/B.掌握在直角三角形中,斜边上的中线等于斜边的一半.举一反三:【变式】(2Q15?哈尔滨)如图1, 口ABOD^,点O是对角线AO的中点,EF过点0,与AD, BO分别相交于点E, F, GH过点0,与AB, OD分别相交于点G, H,连接EG, FG, FH, EH (1)求证:四边形EGFH^平行四边形;(2)如图2,若EF// AR GH BG 在不添加任何辅助线的情况下,请直接写出图2中与四边形AGH 的积相等的所有平行四边形(四边形AGHLB 外).【答案】(1)证明:二•四边形 ABC 虚平行四边形,• •.AD// BC ••• / EAOW FCOC ZEAO=ZFCO在△OAE 与△OCF 中 ZAOB=ZCOF , [oA=OC••.△OA 陵 AOCF.•.OE=O F同理OG=OH• •・四边形EGFK 平行四边形;(2)解:与四边形AGH 面积相等的所有平行四边形有 口 GBCH 口 ABFE 口 EFCD 口 EGFH• •・四边形ABC 虚平行四边形, • •.AD// BC AB// CD ••• EF// AB, GH/ BC,四边形 GBCH ABFE EFCD EGFH^平行四边形, .「EF 过点 O, GH±点 O, •. OE=OF OG=OH• •• 口 GBCH 口 ABFE 口 EFCD 口 EGFH 口 ACH 出们面积三口 ABCD 勺面积, ,与四边形 AGH 面积相等的所有平行四边形有口 GBCH 口 ABFE 口 EFCD 口 EGFH类型二、矩形D 是4ABC 的边AB 上一点,CN// AB, DNx AC 于点 M MA= MC ①求证:CD= AN;②若/ AMD= 2/MCD 求证:四边形 ADCN1矩形.【思路点拨】 ①根据两直线平行,内错角相等求出/ △ AMD 和△CMN^等,根据全等三角形对应边相等可得 行四边形,再根据平行四边形的对边相等即可得证;邻的两个内角的和推出/ MCD= /MDC 再根据等角对等边可得 MD= MC 然后证明AC= DN,再根据对角线相等的平行四边形是矩形即可得证.^^3、已知:如图,DAC= /NCA 然后利用“角边角”证明AD= CN 然后判定四边形 ADCN^平 ②根据三角形的一个外角等于与它不相【答案与解析】 证明:①: CN ARDAC= / NCA在AA M 加△CMN^,DAC NCA••• MA MC AMD CMN• .△AM 牵ACMN( ASA), .•.AD= CN 又「AD// CN• •・四边形ADCN^平行四边形,•.CD= AN;②••• / AMD= 2/ MCD , / AMD= / MCD- / MDC ・ ./ MCD= Z MDC .•.MD= MC 由①知四边形 ADChM 平行四边形, .•.MD= MN= MA= MC • .AC= DN••・四边形ADCN^矩形.【总结升华】 要判定一个四边形是矩形,通常先判定它是平行四边形,再根据平行四边形构成矩形的条件,判定有一个角是直角或对角线相等.、如图所示,在矩形 ABCD43, A2 6, BC= 8.将矢I 形ABCDgCE 折叠后,使点 D 恰EF 的长,可以考虑把 EF 放入Rt^AEF 中,由折叠可知 CD= CF, DE= EF, AF= 4, AE= 8-EF,然后在Rt^AEF 中利用勾股定理求出 EF 的值.DE= EF= x , C 已 CD= 6,又••・在 Rt^ADC 中,AC ,6282 10-AF=AC — CF= 4, AE= AD- DE= 8- X .在 Rt^AEF 中,AE 2AF 2EF 2,即(8 x)242x 2,解得:x = 3 EF =3【总结升华】在矩形折叠问题中往往根据折叠找出相等的量, 然后把未知边放在合适的直角三角形中,再利用勾股定理进行求解.F 处,求EF 的长.【思路点拨】要求 易得AC= 10,所以 【答案与解析】 解:设EF= X , 由折叠可得:举一反三:【变式】把一张矩形纸片(矩形ABCD按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB = 3 cm , BC = 5 cm ,则重叠部分△ DEF的面积是足,连结DF,则/ CDF等于().2 --------cm 提示:由题意可知BF= DF,设FC= X , DF= 5 — X ,在Rt △ DFC中,DC2 FC2 DF2,解得x 8 一1 1 -,BF= DE= 3.4,贝U S A DEF=—DE AB =—5 2 2类型三、菱形X3.4 X 3 = 5.1.、如图,在菱形ABCD43, / BAD= 80° ,AB的垂直平分线交对角线AC于点F, E为垂A.80 ° C.65D.60【答案】D;【解析】解:连结BF,由FE是AB的中垂线,知FB= FA,CQ O于是/ FBA= / FAB=------ = 402・./ CFB= 40° +40° = 80° ,由菱形ABCD^, DC= CB / DCF= / BCF, CF= CF, 于是△DC障△ BCF因止匕/ CFD= / CFB= 80° ,在^CDF中,/CDF= 180° —40° —80° =60° .【总结升华】运用菱形的性质可以证明线段相等、角相等、是要记住它们的判定和性质 .举一反三:【变式】用两张等宽的纸带交叉重叠地放在一起,重合的四边形形请给出证明,如果不是菱形请说明理由. 线段的平行及垂直等问题,关键ABC比菱形吗?如果是菱5.1.OB.70>c【答案】四边形ABC比菱形;证明:由AD// BC, AB// CD得四边形ABC比平行四边形过A, C两点分别作A已BC于E, CF, AB于F.・ ./ CFB= / AEB= 90° .••• AE= CF (纸带的宽度相等)/ ABE= / CBF••• RtAABE^ RtACBF, AB= BC, 四边形ABC虚菱形.类型四、正方形6、(2015春?上城区期末)如图,矩形ABCD43, AD=6 DC=8菱形EFGH勺二个顶点E, G H分别在矩形ABC曲边AB, CD, DA±, AH=2,连结CF.(1)若DG=2求证:四边形EFGH^正方形;⑵若DG=6求4FCG的面积.【思路点拨】(1)通过证明Rt^DHBAAEFH得到/ DHG =AEH从而彳#到/ GHE=90 ,然后根据有一个角为直角的菱形为正方形得到四边形EFGH?正方形;(2)作FQLCD于Q连结GE如图,利用AB// CD得至ij/AEGW Q GE再根据菱形的性质得HE=GFHE// GF 贝U/ HEGgFGE 所以/ AEH= QGF 于是可证明△ AE中AQGF 得至U AH=QF=2 然后根据三角形面积公式求解.【答案与解析】(1)证明:二•四边形EFGH^菱形,.•.HG=E H•.AH=2 DG=2 DG=A H在RtADHG^D^AEH 中,傍屈,1.DG = AH•••RtADH<^ AAEH,/DHG =AEH•• /AEH廿AHE=90° , ・ ./DHG +AHG=90 ,•./ GHE=90 ,••・四边形EFG的菱形,••・四边形EFG的正方形;(2)解:作FQLCD于Q,连结GE,如图,••・四边形ABC的矩形,••.AB// CD••• / AEGW QGE 即 / AEH廿HEG= QGF+ FGE••・四边形EFG的菱形,.•.HE=GF HE// GFHEGg FGEAEHW QGF在^AEH和AQGF中fZA=Z9\ /相H=/QGF ,(HE=FG•.△AEH^ AQGF.•.AH=QF=2•. DG=6 CD=8.•.CG=2••.△FCG 的面积」CG?FQ=X 2X2=2.2 2【总结升华】本题考查了正方形的判定与性质:正方形的判定没有固定的方法,只要判定既是矩形又是菱形就可以判定;正方形具有平行四边形、矩形、菱形的所有性质.也考查了菱形和矩形的性质.举一反三:【变式】如图所示,E、F、G H分别是四边形ABC格边中点,连接EF、FG GH HE,则四边形EFGH^形.① ② ③(1)当四边形满足条件时,四边形EFGH^菱形.(2)当四边形满足条件时,四边形EFGH^矩形.⑶ 当四边形满足条件时,四边形EFGH^正方形.在横线上填上合适的条件,并说明你所填条件的合理性.【答案】四边形EFGH^平行四边形;解:(1)AC=BD,理由:如图①,四边形ABCD勺对角线AC= BD,此时四边形EFGH^平行四边形,且EH= - BD HG= 1 AC彳导EH= GH2 2故四边形EFGH^菱形.(2)AC ± BD,理由:如图②,四边形ABCD勺对角线互相垂直,此时四边形EFGH^平行四边形.易得GHL BD,即GHL EH故四边形EFGH^矩形.(3)AC = BD且ACL BD,理由:如图③,四边形ABCD勺对角线相等且互相垂直,综合⑴(2)可得四边形EFGHmE方形.本题是以平行四边形为前提,加上对角线的特殊条件来判定特殊的平行四边形,加上邻边相等为菱形,加上对角线互相垂直为矩形,综合得到正方形.。
《四边形》全章复习与巩固(提高)知识讲解
《四边形》全章复习与巩固(提高)【学习目标】1. 掌握多边形内角和与外角和公式,灵活运用多边形内角和与外角和公式解决有关问题;通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解它们这些性质在生产、生活中的广泛应用.2. 掌握平行四边形、矩形、菱形、正方形的概念, 了解它们之间的关系. 掌握它们的性质和判别方法, 并能运用这些知识进行证明和计算.3. 掌握三角形中位线定理,并能灵活应用.4. 理解用多边形进行镶嵌的应用,能灵活运用公式解决有关问题.体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【知识网络】【要点梳理】要点一、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n条对角线.要点二、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:①n边形的内角和等于(n-2)·180°(n≥3,n是正整数),可见多边形内角和与边数n有关,每增加1条边,内角和增加180°.要点三、平行四边形1.定义:两组对边分别平行的四边形叫做平行四边形.2.性质与判定性质:(1).边的性质:平行四边形两组对边平行且相等;(2).角的性质:平行四边形邻角互补,对角相等;(3).对角线性质:平行四边形的对角线互相平分;(4).平行四边形是中心对称图形,对角线的交点为对称中心.判定:(1).两组对边分别平行的四边形是平行四边形;(2).两组对边分别相等的四边形是平行四边形;(3).一组对边平行且相等的四边形是平行四边形;(4).两组对角分别相等的四边形是平行四边形;(5).对角线互相平分的四边形是平行四边形.3.平行线的性质(1)平行线间的距离都相等(2)等底等高的平行四边形面积相等要点四、特殊的平行四边形1.矩形、菱形、正方形的定义有一个角是直角的平行四边形叫做矩形.有一组邻边相等的平行四边形叫做菱形.有一组邻边相等并且有一个内角是直角的平行四边形叫做正方形.2.矩形的性质与判定性质: 1.矩形具有平行四边形的所有性质;2.矩形的对角线相等;3.矩形的四个角都是直角;4.矩形是轴对称图形,它有两条对称轴.判定: 1. 有三个角是直角的四边形是矩形.2. 对角线相等的平行四边形是矩形.3. 定义:有一个角是直角的平行四边形叫做矩形.3.菱形的性质与判定性质: 1.菱形的四条边都相等;2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;3.菱形是轴对称图形,它有两条对称轴.判定: 1. 四条边相等的四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3. 定义:有一组邻边相等的平行四边形是菱形.4正方形的性质与判定性质: 1.正方形四个角都是直角,四条边都相等.2.正方形的两条对角线相等并且互相垂直平分,每条对角线平分一组对角.3.正方形是轴对称图形,有4条对称轴;又是中心对称图形,两条对角线的交点是对称中心.判定: 1.有一组邻边相等的矩形是正方形. 2.有一个内角是直角的菱形是正方形. 5.三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半. 要点五、镶嵌的概念和特征用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同. 要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边. (2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用. 【典型例题】 类型一、多边形1.某多边形除一个内角α外,其余内角的和是2750°.求这个多边形的边数. 【思路点拨】由已知条件可知,这个多边形内角和要大于2750°,而因为凸多边形的每一个内角α的范围是:0°<α<180°,所以2750°加上一个180°又大于内角和,所以本题建立不等式组来解答. 【答案与解析】解:设这个多边形是边形,则它的内角和是,∴ 2750°+0°<(n-2)×180°<2750°+180° ∵ n 为正整数, ∴ n=18.【总结升华】本题是多边形的内角和定理和的综合运用.一般设出边数,根据条件列出关于的不等式组,求出的取值范围,再根据n 取正整数得出正确的值即可. 举一反三【变式】一个多边形的内角和与某一个外角的度数总和为1350°,求这个多边形的边数. 【答案】解:可设多边形的边数为n ,某一个外角为α,则(n -2)×180°+α=1350°1350902).180180--从而(=7+n αα︒︒-=︒︒因为边数n 为正整数,所以α=90°,n =9.2.某校七年级六班举行篮球比赛,比赛采用单循环积分制(即每两个班都进行一次比赛).你能算出一共需要进行多少场比赛吗?【思路点拨】本题体现与体育学科的综合,解题方法参照多边形对角线条数的求法,即多边形的对角线条数加上边数. 如图:【答案与解析】共需要比赛636152⨯+=(场).【总结升华】对于其他学科问题要善于把它与数学知识联系在一起,便于解决.举一反三【变式】一个多边形共有44条对角线,则多边形的边数是().A.8 B.9 C.10 D.11【答案】D;类型二、四边性的不稳定性3. 如图是一种流行的衣帽架,它是用木条(四长四短)构成的几个连续的菱形(四条边都相等),每一个顶点处都有一个挂钩(连在轴上),不仅美观,而且实用,你知道它能收缩的原因和固定方法吗?【答案与解析】解:这种衣帽架能收缩是利用四边形的不稳定性,可以根据需要改变挂钩间的距离.它的固定方法是:任选两个不在同一木条上的顶点固定就行了。
完整版平行四边形全章知识点总结
完整版平行四边形全章知识点总结哎呀呀,让我们一起来瞧瞧完整版平行四边形全章知识点总结吧!第一,平行四边形的定义可得好好记住呀!两组对边分别平行的四边形叫做平行四边形。
这可是认识平行四边形的基础呢!嘿,那平行四边形都有啥性质呀?平行四边形的对边相等,比如说,AB 等于CD,AD 等于BC 。
平行四边形的对角相等,∠A 等于∠C ,∠B 等于∠D 。
还有哦,平行四边形的对角线互相平分,AC 和BD 相交于点O ,那OA 就等于OC ,OB 就等于OD 。
第二,平行四边形的判定方法也很重要呢!一组对边平行且相等的四边形是平行四边形。
两组对边分别相等的四边形是平行四边形。
两组对角分别相等的四边形是平行四边形。
对角线互相平分的四边形是平行四边形。
哇,这么多判定方法,可得好好理解,才能熟练运用呀!第三,咱们再来说说平行四边形的面积。
平行四边形的面积等于底乘以高,用字母表示就是S = ah (a 表示底,h 表示高)。
哎呀呀,可别小瞧这个公式,做题的时候经常用到呢!第四,平行四边形具有不稳定性。
生活中就有很多这样的例子,像伸缩门,就是利用了平行四边形的不稳定性。
想想看,是不是很神奇呀?第五,平行四边形中还常常涉及到角度的计算。
比如说,已知平行四边形的一个内角,就能通过对角相等、邻角互补的性质来求出其他内角的度数。
这在解题中可经常用到哟!第六,在复杂的图形中,识别平行四边形也是一项重要技能。
要仔细观察图形中的边和角的关系,判断是否符合平行四边形的定义和判定条件。
第七,关于平行四边形的周长计算,那就是相邻两边之和乘以 2 。
这是不是很简单呢?总之呀,平行四边形这一章节的知识点可不少呢!只有把这些知识点都掌握透彻了,做起题来才能得心应手呀!加油,小伙伴们,相信你们一定可以学好平行四边形的知识!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行四边形全章复习与巩固(提高)【学习目标】1. 掌握平行四边形、矩形、菱形、正方形的概念, 了解它们之间的关系.2. 探索并掌握平行四边形、矩形、菱形、正方形的有关性质和常用判别方法, 并能运用这些知识进行有关的证明和计算.3. 掌握三角形中位线定理.【知识网络】【要点梳理】要点一、平行四边形1.定义:两组对边分别平行的四边形叫做平行四边形.2.性质:(1)对边平行且相等;(2)对角相等;邻角互补;(3)对角线互相平分;(4)中心对称图形.3.面积:高底平行四边形⨯=S4.判定:边:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形.角:(4)两组对角分别相等的四边形是平行四边形;(5)任意两组邻角分别互补的四边形是平行四边形.边与角:(6)一组对边平行,一组对角相等的四边形是平行四边形;对角线:(7)对角线互相平分的四边形是平行四边形.要点诠释:平行线的性质:(1)平行线间的距离都相等;(2)等底等高的平行四边形面积相等.要点二、矩形1.定义:有一个角是直角的平行四边形叫做矩形.2.性质:(1)具有平行四边形的所有性质;(2)四个角都是直角;(3)对角线互相平分且相等;(4)中心对称图形,轴对称图形.3.面积:宽=长矩形⨯S4.判定:(1) 有一个角是直角的平行四边形是矩形.(2)对角线相等的平行四边形是矩形.(3)有三个角是直角的四边形是矩形.要点诠释:由矩形得直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半. 要点三、菱形1. 定义:有一组邻边相等的平行四边形叫做菱形.2.性质:(1)具有平行四边形的一切性质;(2)四条边相等;(3)两条对角线互相平分且垂直,并且每一条对角线平分一组对角;(4)中心对称图形,轴对称图形.3.面积:2对角线对角线高==底菱形⨯⨯S 4.判定:(1)一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形;(3)四边相等的四边形是菱形.要点四、正方形1. 定义:四条边都相等,四个角都是直角的四边形叫做正方形.2.性质:(1)对边平行;(2)四个角都是直角;(3)四条边都相等;(4)对角线互相垂直平分且相等,对角线平分对角;(5) 两条对角线把正方形分成四个全等的等腰直角三角形;(6)中心对称图形,轴对称图形.3.面积:=S 正方形边长×边长=12×对角线×对角线 4.判定:(1)有一个角是直角的菱形是正方形;(2)一组邻边相等的矩形是正方形;(3)对角线相等的菱形是正方形;(4)对角线互相垂直的矩形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形;(6)四条边都相等,四个角都是直角的四边形是正方形.【典型例题】类型一、平行四边形1、(2015•海淀区二模)如图1,在△ABC 中,AB=AC ,∠ABC=α,D 是BC 边上一点,以AD 为边作△ADE,使AE=AD ,∠DAE+∠BAC=180°.(1)直接写出∠ADE 的度数(用含α的式子表示);(2)以AB,AE为边作平行四边形ABFE,①如图2,若点F恰好落在DE上,求证:BD=CD;②如图3,若点F恰好落在BC上,求证:BD=CF.【思路点拨】(1)由在△ABC中,AB=AC,∠ABC=α,可求得∠BAC=180°﹣2α,又由AE=AD,∠DAE+∠BAC=180°,可求得∠DAE=2α,继而求得∠ADE的度数;(2)①由四边形ABFE是平行四边形,易得∠EDC=∠ABC=α,则可得∠ADC=∠ADE+∠EDC=90°,证得AD⊥BC,又由AB=AC,根据三线合一的性质,即可证得结论;②由在△ABC中,AB=AC,∠ABC=α,可得∠B=∠C=α,四边形ABFE是平行四边形,可得AE∥BF,AE=BF.即可证得:∠EAC=∠C=α,又由(1)可证得AD=CD,又由AD=AE=BF,证得结论.【答案与解析】解:(1)∵在△ABC中,AB=AC,∠ABC=α,∴∠BAC=180°﹣2α,∵∠DAE+∠BAC=180°,∴∠DAE=2α,∵AE=AD,∴∠ADE=90°﹣α;(2)①证明:∵四边形ABFE是平行四边形,∴AB∥EF.∴∠EDC=∠ABC=α,由(1)知,∠ADE=90°﹣α,∴∠ADC=∠ADE+∠EDC=90°,∴AD⊥BC.∵AB=AC,∴BD=CD;②证明:∵AB=AC,∠ABC=α,∴∠C=∠B=α.∵四边形ABFE是平行四边形,∴AE∥BF,AE=BF.∴∠EAC=∠C=α,由(1)知,∠DAE=2α,∴∠DAC=α,∴∠DAC=∠C.∴AD=CD.∵AD=AE=BF,∴BF=CD.∴BD=CF.【总结升华】此题考查了平行四边形的判定与性质以及等腰三角形的性质与判定.注意(2)①中证得AD⊥BC是关键,(2)②中证得AD=CD是关键.举一反三:【变式】已知△ABC中,AB=3,AC=4,BC=5,分别以AB、AC、BC为一边在BC边同侧作正△ABD、正△ACE和正△BCF,求以A、E、F、D四点为顶点围成的四边形的面积.【答案】证明:∵ AB=3,AC=4,BC=5,∴∠BAC=90°∵△ABD、△ACE和△BCF为正三角形,∴AB=BD=AD,AC=AE=CE,BC=BF=FC ,∠1+∠FBA=∠2+∠FBA=60°∴∠1=∠2易证△BAC≌△BDF(SAS),∴DF=AC=AE=4,∠BDF=90°同理可证△BAC≌△FEC∴AB=AD=EF=3∴四边形AEFD是平行四边形(两组对边分别相等的四边形是平行四边形)∵DF∥AE,DF⊥BD延长EA交BD于H点,AH⊥BD,则H为BD中点∴平行四边形AEFD的面积=DF×DH=4×32=6.类型二、矩形2、如图,O是矩形ABCD的对角线的交点,E、F、G、H分别是OA、OB、OC、OD上的点,且AE=BF=CG=DH.(1)求证:四边形EFGH是矩形;(2)若E、F、G、H分别是OA、OB、OC、OD的中点,且DG⊥AC,OF=2cm,求矩形ABCD的面积.【答案与解析】(1)证明:∵四边形ABCD是矩形,∴OA=0B=OC=OD,∵AE=BF=CG=DH,∴AO-AE=OB-BF=CO-CG=DO-DH,即:OE=OF=OG=OH,∴四边形EFGH 是矩形;(2)解:∵G 是OC 的中点,∴GO=GC ,∵DG⊥AC,∴∠DGO=∠DGC=90°,又∵DG=DG ,∴△DGC≌△DGO,∴CD=OD ,∵F 是BO 中点,OF =2cm ,∴BO=4cm ,∵四边形ABCD 是矩形,∴DO=BO =4cm ,∴DC=4cm ,DB =8cm , ∴CB=2243DB DC -=,∴矩形ABCD 的面积=4×243163cm =.【总结升华】本题主要考查矩形的判定,首先要判定四边形是平行四边形,然后证明对角线相等.举一反三:【变式】(2015秋•抚州校级期中)在平行四边形ABCD 中,过点D 作DE⊥AB 于点E ,点F 在边CD 上,DF=BE ,连接AF ,BF .(1)求证:四边形BFDE 是矩形;(2)若CF=9,BF=12,DF=15,求证:AF 平分∠DAB.【答案】证明:(1)∵四边形ABCD 为平行四边形,∴DC∥AB,即DF∥BE,又∵DF=BE,∴四边形DEBF 为平行四边形,又∵DE⊥AB,∴∠DEB=90°,∴四边形DEBF 为矩形;(2)∵四边形DEBF 为矩形,∴∠BFC=90°,∵CF=9,BF=12,∴BC==15,∴AD=BC=15,∴AD=DF=15,∴∠DAF=∠DFA,∵AB∥CD,∴∠FAB=∠DFA,∴∠FAB=∠DFA,∴AF 平分∠DAB.3、在Rt△ABC 中,∠ACB=90°,BC=4.过点A 作AE⊥AB 且AB=AE ,过点E 分别作EF⊥AC,ED⊥BC,分别交AC 和BC 的延长线与点F ,D .若FC=5,求四边形ABDE 的周长.【思路点拨】首先证明△ABC≌△EAF,即可得出BC=AF ,AC=EF ,再利用勾股定理得出AB 的长,进而得出四边形EFCD 是矩形,求出四边形ABDE 的周长即可.【答案与解析】解:∵∠ACB=90°,AE⊥AB,∴∠1+∠B=∠1+∠2=90°.∴∠B=∠2.∵EF⊥AC,∴∠4=∠5=90°.∴∠3=∠4.在△ABC 和△EAF 中,∵342B AB AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,,∴△ABC≌△EAF(AAS ).∴BC=AF,AC=EF .∵BC=4,∴AF=4.∵FC=5,∴AC=EF=9.在Rt△ABC 中,AB=22224997CB AC +=+=.∴AE=97.∵ED⊥BC,∴∠7=∠6=∠5=90°.∴四边形EFCD 是矩形.∴CD=EF=9,ED=FC=5.∴四边形ABDE 的周长=AB+BD+DE+EA=97+4+9+5+97=18+297.【总结升华】此题主要考查了全等三角形的判定以及矩形的判定与性质和勾股定理等知识,根据已知得出AC=EF=9是解题关键.类型三、菱形4、如图,平行四边形ABCD中,AB⊥AC,AB=1,BC=5.对角线AC,BD 相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;(2)试说明在旋转过程中,线段AF与EC总保持相等;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.【思路点拨】(1)当旋转角为90°时,∠AOF=90°,由AB⊥AC,可得AB∥EF,即可证明四边形ABEF为平行四边形;(2)证明△AOF≌△COE即可;(3)当EF⊥BD时,四边形BEDF为菱形,又由AB⊥AC,AB=1,BC=5,易求得OA=AB,即可得∠AOB=45°,求得∠AOF=45°,则可得此时AC绕点O顺时针旋转的最小度数为45°.【答案与解析】(1)证明:当∠AOF=90°时,AB∥EF,又AF∥BE,∴四边形ABEF为平行四边形.(2)证明:四边形ABCD为平行四边形,∴AO=CO,∠FAO=∠ECO,∠AOF=∠COE.∴△AOF≌△COE∴AF=CE(3)四边形BEDF可以是菱形.理由:如图,连接BF,DE,由(2)知△AOF≌△COE,得OE=OF,∴EF与BD互相平分.∴当EF⊥BD时,四边形BEDF为菱形.AC=-=,在Rt△ABC中,512∴OA=1=AB,又AB⊥AC,∴∠AOB=45°,∴∠AOF=45°,∴AC绕点O顺时针旋转45°时,四边形BEDF为菱形.【总结升华】要证明四边形是菱形,先证明这个四边形是平行四边形,再利用对角线互相垂直的特征证明该平行四边形是菱形.举一反三:【变式】已知:如图所示,BD是△ABC的角平分线,EF是BD的垂直平分线,且交AB于E,交BC于点F.求证:四边形BFDE是菱形.【答案】证明:∵EF是BD的垂直平分线,∴EB=ED,∠EBD=∠EDB.又∵∠EBD= ∠FBD,∴∠FBD=∠EDB,ED∥BF. 同理,DF∥BE,∴四边形BFDE是平行四边形.又∵EB=ED,∴四边形BFDE是菱形.5、在口ABCD中,对角线AC、BD相交于点O,BD=2AB,点E、F分别是OA、BC的中点.连接BE、EF.(1)求证:EF=BF;(2)在上述条件下,若AC=BD,G是BD上一点,且BG:GD=3:1,连接EG、FG,试判断四边形EBFG的形状,并证明你的结论.【思路点拨】(1)根据平行四边形性质推出BD=2BO,推出AB=BO,根据三线合一定理得出BE⊥AC,在△BEC 中,根据直角三角形斜边上中线性质求出EF=BF=CF即可;(2)根据矩形性质和已知求出G为OD中点,根据三角形中位线求出EG∥AD,EG=12BC,求出EG∥BC,EG=12BC,求出BF=EG,BF∥EG,EG=GF,得出平行四边形,根据菱形的判定推出即可.【答案与解析】(1)证明:∵四边形ABCD是平行四边形,∴BD=2BO,∵BD=2AB,∴AB=BO,∵E为OA中点,∴BE⊥AC,∴∠BEC=90°,∵F为BC中点,∴EF=BF=CF,即EF=BF;(2)四边形EBFG是菱形,证明:连接CG,∵四边形ABCD是平行四边形,AC=BD,∴四边形ABCD是矩形,∴AD=BC,AB=CD,AD∥BC,BD=2BO=2OD,∴BD=2AB=2CD,∴OC=CD,∵BG:GD=3:1,OB=OD,∴G为OD中点,∴CG⊥OD(三线合一定理),即∠CGB=90°,∵F为BC中点,∴GF=12BC=12AD,∵E为OA中点,G为OD中点,∴EG∥AD,EG=12 AD,∴EG∥BC,EG=12 BC,∵F为BC中点,∴BF=12BC,EG=GF,即EG∥BF,EG=BF,∴四边形EBFG是平行四边形,∵EG=GF,∴平行四边形EBFG是菱形(有一组邻边相等的平行四边形是菱形).【总结升华】本题考查了平行四边形的性质和判定,矩形性质,菱形性质,三角形的中位线,直角三角形斜边上中线性质,等腰三角形的性质等知识点,主要考查学生综合运用定理进行推理的能力,注意:直角三角形斜边上中线等于斜边的一半.类型四、正方形6、正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=1时,求EF的长.【答案与解析】解:(1)证明:∵△DAE 逆时针旋转90°得到△DCM,∴DE=DM ,∠EDM=90°,∴∠EDF+∠FDM=90°,∵∠EDF=45°,∴∠FDM=∠EDF =45°,在△DEF 和△DMF 中,DE DM EDF MDFDF DF =⎧⎪∠=∠⎨⎪=⎩, ∴△DEF≌△DMF(SAS ),∴EF=MF ;(2)设EF =MF =x ,∵AE=CM =1,且BC =3,∴BM=BC +CM =3+1=4,∴BF=BM -MF =BM -EF =4-x ,∵EB=AB -AE =3-1=2,在Rt△EBF 中,由勾股定理得EB 2+BF 2=EF 2,即()22224x x +-=, 解得:52x =,则EF =52. 【总结升华】此题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,以及勾股定理,利用了转化及方程的思想,熟练掌握性质及定理是解本题的关键.举一反三:【变式】如图(1),正方形ABCD 和正方形CEFG 有一公共顶点C ,且B 、C 、E 在一直线上,连接BG 、DE .(1)请你猜测BG 、DE 的位置关系和数量关系?并说明理由.(2)若正方形CEFG 绕C 点向顺时针方向旋转一个角度后,如图(2),BG 和DE 是否还存在上述关系?若存在,试说明理由;若不存在,也请你给出理由.【答案】解:(1)BG=DE,BG⊥DE;理由是:延长BG交DE于点H,因为BC=DC,CG =CE,∠BCG=∠DCE所以△BCG≌△DCE,所以BG=DE,∠GBC=∠CDE.由于∠CDE+∠CED=90°,所以∠GBC+∠DEC=90°,得∠BHE=90°.所以BG⊥DE.(2)上述结论也存在.理由:设BG交DE于H,BG交DC于K,同理可证△BCG≌△DCE,得BG=ED,∠KBC=∠KDH.又因为∠KBC+∠BKC=90°,可得∠DKH+∠KDH=90°,从而得∠KHD=90°.所以BG⊥DE.。