幂的运算复习课
幂的运算 复习课
2.填上适当的指数:
⑴ a2 a( ) a5
⑶ a3 a9
⑵ a5 a a2
3.填上适当的代数式
(1) x3 x4
x8
(2)
1
2008
2009 2
2
典型例题:
例1:计算:
1 2x3 3 2x3 2x3 2 2x3 5 x2 3 2 x3 4 x2 3 x x5
x5 x5
2.注意符号
0
例2:
1若xm 1 , xn 3,求x3mn的值
5
2已知n为正整数,且x2n 5,求3 x3n 2 9 x2 2n的值
例2:
1若xm 1 , xn 3,求x3 的值 mn
5
解:x3mn x3m xn
xm 3 xn
xm 1 , xn 3 5
原 式 1 3 3 3
5
125
(2)已知n为正整数,且 x2n 5 ,
求 3 x3n 2 9 x2 2n的值
提示:3 x3n 2 9 x2 2n 3x6n 9x4n 3 x2n 3 9 x2n 2
353 952
150
小结: 1.变换指数 2.变换底数
年级:七年级 学科名称:数学 《幂的运算》复习课件
授课学校: 授课教师:
1.同底数幂的乘法法则: 文字叙述:同底数幂相乘,底不变,指数相加
公式表示:am an amn (m、n是正整数)
2.幂的乘方法则: 文字叙述: 底数不变,指数相乘
公式表示: am n amn(m、n是正整数)
3.积的乘方法则: 文字叙述: 积的乘方等于乘方的积
公式表示: abn anbn (n是正整数 ) 4.同底数幂的除法法则: 文字叙述:同底数幂相除,底不变,指数相减
七年级数学下册:第八章 幂的运算复习课 (共12张PPT)
你知道吗?
1、同底数幂的乘法:同底数幂相乘,底数不变,指数相加。 am· an=am+n . (m n为正整数) 2、幂的乘方,底数不变,指数相乘。 (an)m=amn. (m n为正整数) 3、积的乘方,等于把积中每一个因式分别乘方,再把所得 的幂相乘。 (ab)n=anbn . (m n为正整数) 4、同底数幂的除法:同底数幂相除,底数不变,指数相减。 am÷an=am-n.(a≠0,m n为正整数)) 5、a0=1(a≠0),a-n=(1/a)n=1/an( 0 , n 为正整数)时,要特别注意各式子成立的条件 .
1 n a
◆注意上述各式的逆向应用.如计算,可先逆用同底数幂的乘法法 则将写成,再逆用积的乘方法则计算,由此不难得到结果为1.
●在运用 a m a n a m n ( m 、 n 为正整数) , a m a n a mn ( a 0 , m 、 n 为正整数且 m > n ) , (a m ) n a mn ( m 、 n 为 正整数) , (ab) a b ( n 为正整数) , a 1(a 0) , a
练一练: 计算: 3 2 (1)x x x 3 2 (2)( x) x ( x) 2 10 (3) (a b) (a b) (b a) 2 n1 3 n 2 5 n 4 (4) y y y y 2 y y 解:(1)x6 (2)-x6 (3)(b-a)13 (4)0
本章需关注的几个问题
●在运用 a m a n a m n ( m 、 n 为正整数) , a m a n a mn ( a 0 , m 、 n 为正整数且 m > n ) , (a m ) n a mn ( m 、 n 为 正整数) , (ab) a b ( n 为正整数) , a 1(a 0) , a
《幂的运算复习》课件
基础练习题
1. 计算
2^3 + 3^2
3. 计算
a^m × a^n
总结词
考察幂的运算基本概念和简单 计算
2. 计算
(a^2)^3 × a^4
4. 计算
(x^2)^3
进阶练习题
1. 计算
(a + b)^2
3. 计算
(a × b)^n
总结词
考察幂的运算规则 和复杂计算
2. 计算
(a - b)^3
4. 计算
总结词 理解幂的乘方运算在解决实际问 题中的应用。
开方运算
总结词
详细描述
总结词
详细描述
掌握幂的开方运算规则,理解 开方的意义和性质。
幂的开方运算规则是"底数开方 ,指数减半"。即,√a^m = a^(m/2)。例如,√2^3 = 2^(3/2)。
理解幂的开方运算在解决实际 问题中的应用。
在解决实际问题时,有时需要 求一个数的平方根,这时就可 以使用幂的开方运算。此外, 在计算一些几何量时,也可以 使用幂的开方运算来简化计算 过程。
忽略幂的运算优先级
总结词
在进行幂的运算时,学生容易忽略运 算的优先级,导致计算结果错误。
详细描述
在数学运算中,幂运算具有优先级, 应该先进行幂运算,然后再进行加减 乘除等其他运算。学生常常忽略这一 点,例如将"a+b*c^2"误写为 "a+(b*c)^2",导致计算结果错误。
错误应用幂的性质
总结词
在金融领域,幂的运算用 于构建各种金融模型,如 股票价格模型、利率模型 等。
人口统计
在人口统计学中,幂的运 算用于预测人口增长和分 布。
幂的运算复习课
误区警示,排忧解难. 误区警示,排忧解难. 你知道下列各式错在哪里吗? 1.你知道下列各式错在哪里吗?
a +a =a
3 3
6
a a =a
3 2
6
(3x y )
2
(a )
4 4
=a
8
3 2
= 9x y
4
5
(− x )
2
(2a )
2 3
= 6a
6
2 3
=x
6
(− a )(− a )
2 2
=a
8
9 2 3 a = a 2 2
12
4×3
2×8
= x ⋅x 28 12+16 =x =x
16
(2)原式 = m
6
2+4
= m + 3m = 4m
6
+ 3m
3×2
6
(3)0.24×0.44×12.54 anbn = (ab)n
3 101 4 102 (4)(− ) ×( ) 4 3
思维逆向 的值。 2、(1)若a2m=2,求:a6m 的值。 (1)若 =2,求 (2)若 =3,求 a 的值。 (2)若am=2,an=3,求: 3m+2n的值。 ∴a
2、说出下列各题的运算依据,并说出结 说出下列各题的运算依据, 果. (1)
(− x )
3 4m
÷ (− x ⋅ x )
2 2m
(2)
( x − y ) ÷ ( y − x)
6
[
2 3
]
例:计算
(1)( x ) ⋅ ( − x )
4 3
2 3
(2) m ⋅ m + 3( m )
第八章 幂的运算复习课
5.计算:
14 2 2 0.2
4
2
8
4
0.4 12.5
4 91
4
2 3 3
1.5 3
4
92
1
93
4
2.1 0.3
10
11
7
10 100
5 2
99
2
6.解答题:
1若x 5, y 2若8
1
(a≠0)
a
n
a-n =
b a
n
(a≠0, n是正整数 )
n
a b
(a≠0, b≠0, n是正整数 )
科学计数法:
一般地,一个正数利用科学记数 法可以写成a×10n的形式,其中1≤a <10,n是整数。
注意:应用题当中单位的换算要统一。
基础训练
1.口算:
a8 ; (1) 2a · a 1= (2) 10-5 ×102 = 1000 ; 2 y3)2 = 4x4y6 (3) (-2 x ; (4) (-20)0+(-0.5)-2= 4 ; 3n+1÷ yn+1= -y2n ; (5) –y (a+b)3; (6) (-a-b)2 · (a+b)3 ·a+b)-2 = (
(6)肥皂泡表面厚度大约是0.0007 7×10-7 m; mm,用科学计数法表示为 1cm3空气的质量是1.293×10-3g,用 小数表示为 0.001293 g 。
注:1m =10 dm=102 cm=103 mm
=106 um = 109 nm
3.用科学计数法表示下列各数:
1
1 800
2 0.5
4
苏教版 中学数学 七年级 下册 幂的运算 复习课 PPT课件
课堂小结
1、同底数幂的乘法 am an amn(m、n是整数)
2、幂的乘方
(am )n amn (m、n是整数)
一、幂的运算公式 3、积的乘方
(ab)n anbn (n是整数)
4、同底数幂的除法 am an amn (m、n是整数)
5、零指数幂 a0 1(a 0)
6、负整数指数幂
an
9 64 416 512
999 (11 9)9 119 99
幂的运算———思想方法篇
∵
拓展延伸
已知:a3m 2,b2m 3 求
a2m
3
bm
6
a2b
3m bm 的值。
解:原式
a3m
2
b2m
3
a3m
2
b2m
2
转化思想
= 22 33 22 32
=4+27-36 =-5
∴
2y=x-9
解之得: x=15 y=3
∴ x+2y=15+6=21
幂的运算———思想方法篇
例6、已知:x2n 4, 求(3x3n )2 4(x2 )2n的值。 解:(3x3n )2 4(x2 )2n 9(x3n )2 4(x2 )2n
9(x2n )3 4(x2n )2
转化思想
9 43 4 42
6、负整数指数幂:
பைடு நூலகம்
an
1 an
(a
0, n是正整数)
幂的运算———计算篇
幂的乘方
例1:计算(1) 2( x3 )2 x3 (3x3 )3 (5x)2 x7
积的乘方
解:原式 2x6 x3 27x9 25x2 x7
同底数幂的乘法
2x9 27x9 25x9
幂的运算复习课
幂的运算复习课学习目标1. 能说出同底数幂的乘(除)法、幂的乘方、积的乘方运算性质;知道它们的联系和区别,并能运用它们熟练进行有关计算。
2.熟练掌握零指数幂、负整数指数幂的意义, 能与幂的运算法则一起进行运算,并能解决有关问题。
学习重点 :运用幂的运算性质进行计算.一.复习提问, 知识聚会:1.幂的运算性质有哪些?用字母如何表示?2.零指数幂和负整指数幂是怎样规定的?用字母如何表示?二.数学“诊所”,寻找“病原”考眼力,辨真伪:(1)a 3+a 3=a 6; ( )(2)a 3·a 2=a 6; ( )(3)(x 4)4=x 8; ( )(4)a ·a 3·a 2=a 5 ( )(5)(ab 2)5=ab 10 ( )(6)(-a 2)3=a 6 ( )(7)x 2n+1÷x n ÷x n =x 2n+1÷1=x 2n+1 ( )(8)-2-2=4; ( )三.知识练习,快速作答1.抢答: (1)x 3·x ·x 2 (2)[(x +y )4]5 (3)(-a 5b 2)32.计算: (1)22·(-2)3·(-2)4 (2)(-x 3)2·(x 2)4忽视指数“1”所致符号混淆所致 法则混淆导致 违背运算顺序所致 忽视指数幂的意义所致(3)(x4)3÷(-x3)2÷(-x3)2 (4)(m-n)9· (n-m)8÷(m-n)2(5)(-x)8÷x5+(-2x)·(-x)2 (6)y2y n-1+y3y n+2-2y5y n四.巧用性质,融会贯通1.填空:若a m=3,a n=2,则a m+n的值等于a12=( )2=( )3=( )4 若x2n=2,则x6n=(-0.25)2010×42011= 若23×82=2n ,则n=2.求值:(1)已知10m=4,10m=5,求103m+2n的值.3. 计算:(-2)2010+(-2) 20094.比较大小:(1)2100与375 (2)355、444与533(3)已知:4m= a,8n = b求:①22m+3n的值;②24m-6n的值.课堂反馈:一.填空:1.―y2·y5=; (-2 a ) 3÷a-2=;2×2m+1÷2m =.2. a12=( )2=( )3=( )4;若x2n=2,则x6n=.3. 若a=355,b=444,c=533,请用“<”连接a、b、c.4. 把-2360000用科学计数法表示;1纳米= 0.000000001 m,则2.5纳米用科学记数法表示为m. 二.选择:1. 若a m=3,a n=2,则a m+n的值等于()A.5B.6C.8D.92. -x n与(-x)n的正确关系是()A.相等B.当n为奇数时它们互为相反数,当n为偶数时相等C.互为相反数D.当n为奇数时相等,当n为偶数时互为相反数3.如果a=(-99)0,b=(-0.1)-1,c=(-)-2,那么a、b、c三数的大小为()A. a>b>cB. c>a>bC. a>c>bD. c>b>a 三.计算:(1)(-a3)2 · (-a2)3 (2)-t3·(-t)4·(-t)5(3) (p-q)4÷(q-p)3 · (p -q)2(4)(-3a)3-(-a)· (-3a)2 (5)4-(-2)-2-32÷(3.14—π)0四.解答:1.已知a x=3,a y=2,分别求①a2x+3y的值②a3x-2y的值2.已知3×9m×27m=316,求m的值.3.已知x3=m,x5=n用含有m、n的代数式表示x14.思维体操:①若x=2m+1,y=3+4m,请用x的代数式表示y.。
【数学课件】幂的运算复习课
(6) (x5)5
x25
(8)(y3)2·(y2)3
= y 6 ·y 6 = y 12
练习一 2. 计算:
①10m·10m-1·100= 102m+1 ②3×27×9×3m= 3m+6 ③(m-n)4·(m-n) 5·(n-m)6 = (m-n)15 ④ (x-2y)4·(2y-x) 5·(x-2y)6 = (2y-x)15
积的乘方
试猜想:
(ab)n=? 其中 n是正整数
证明:
(ab)n= (ab) (ab) (ab)
n个( )
=(a a a)( • b b b)
n个
n个
= a nbn ∴(ab)n = a nbn (n为正整数)
语言叙述:积的乘方,等于各因数Байду номын сангаас方的积。
-8x3
2.计算:
页 练
(1)(3a)2 =32a2=9a2
习
(2)(-3a)3 =(-3)3a3=-27a3
(3)(ab2)2 =a2(b2)2=a2b4
(4)(-2×103)3 =(-2)3×(103)3=-8×109
(2)(-
(1)24×44×0.1254
4)2005×(0.25)2005
逆 = (2×4×0.125)4
同底数幂相乘
am·an=am+n
指数相加 底数不变 指数相乘
(a ) =a 其中m , n都是
m n mn
正整数
幂的乘方
练习一 1. 计算:( 口答)
(1) 105×106 1011
(3) a7 ·a3 a10
(5) x5 ·x5
x10 (7) x5 ·x ·x3
《幂的运算复习》课件
幂的除法运算:a^m/a^n=a^(m-n)
幂的除法运算:a^m/a^n=a^(m-n)
乘方运算
概念:乘方运算是一种特殊的乘法运算,表示一个数自乘若干次
符号:乘方运算的符号为“^”,如2^3表示2的3次方
运算规则:a^m * a^n = a^(m+n),如2^3 * 2^2 = 2^5
幂的运算方法:包括加法、减法、乘法、除法、乘方、开方等
《幂的运算复习》PPT课件
单击添加副标题
Ppt
汇报人:PPT
目录
01
单击添加目录项标题
03
幂的运算方法
05
幂的运算注意事项
02
幂的定义与性质
04
幂的运算应用
06
幂的运算易错点分析
07
幂的运算练习题与答案解析
添加章节标题
01
幂的定义与性质
02
幂的定义
幂是指一个数自乘若干次
幂的表示方法:a^n,其中a是底数,n是指数
幂的运算分配律:a^m*(b+c)=a^mb+a^mc
幂的运算结合律:a^m*a^n=a^(m+n)
幂的运算优先级:乘方>乘除>加减
底数与指数的符号问题
底数与指数的符号对幂的运算结果有重要影响
底数为负数时,幂的运算结果也为负数
指数为负数时,幂的运算结果也为负数
底数为正数时,指数为正数或负数,幂的运算结果都为正数
指数方程的解法:利用指数函数的性质和指数方程的性质进行求解
指数方程的性质:指数函数的单调性、奇偶性、周期性等
指数方程的求解步骤:确定指数方程的类型、利用指数函数的性质进行求解、验证解的正确性
幂函数的性质与图像
幂的运算复习课件
大家好12Leabharlann 课堂小结:幂的运算法则
零指数、负指数的意义
、
要根据式子的特征正确选用幂 的运算法则,并能灵活运用幂的 运算法则进行计算
大家好
13
结束
大家好
14
a-p= (a ≠ 0,p为正整数) a0= 1 (a ≠0)
6、科学记数法: 一般的,一个小于1的正数可以表示为 a×10n
式,其中 1 ≤a< 10,n是负整数。
• 用科学记数法表示0.000 00320得( D )
的形
A、3.20×10-5
B、3.2×10-6
C、3.2×10-7
大家好 D、3.20×10-6 4
0
先分析题目,确定运算顺序,
温馨提示: 分清运算,正确运用法则。
大家好
6
跟踪练习
(1)(a2)3÷(-a)3
(2) 105÷10-1×100 (3)(5×104)×(3×102)
(4)
x3·x5
+
(x )2 4 大家好
+(-2x4)2
7
法则逆用
am+n=am∙an (m、n是正整数)
amn=( am)n=(an)m (m、n是正整数)
anbn=( ab)n (n是正整数)
am-n=am÷an (m、n是正整数)
大家好
8
例2:公式逆用
1若 xm1,xn3,求 x3mn的 值
5
(2)(-0.25)11×(-4)12
大家好
9
例2: 1若xm1,xn3,求x3mn的 值
(word完整版)幂的运算总复习
幂的运算第一部分 知识梳理一、 同底数幂的乘法1. 同底数幂的乘法同底数幂相乘,底数不变,指数相加。
公式表示为:+m n m n a a a ⋅=()m n 、都是正整数2. 同底数幂的乘法可以推广到三个或三个以上的同底数幂相乘,即m n p m n p a a a a ++⋅⋅=()m n p 、、都是正整数。
注意点:(1) 同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数。
(2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算.二、 幂的乘方和积的乘方1. 幂的乘方幂的乘方,底数不变,指数相乘.公式表示为:()()m n mn a a m n =,都是正整数.幂的乘方推广:[()]()m n p mnp a am n p =,,都是正整数2.积的乘方积的乘方,把积的每个因式分别乘方,再把所得的幂相乘。
公式表示为:()()n n n ab a b n =是正整数积的乘方推广:()()n n n n abc a b c n =是正整数注意点:(1) 幂的乘方的底数是指幂的底数,而不是指乘方的底数。
(2) 指数相乘是指幂的指数与乘方的指数相乘,一定要注意与同底数幂相乘中“指数相加”区分开。
(3) 运用积的乘方法则时,数字系数的乘方,应根据乘方的意义计算出结果.(4) 运用积的乘方法则时,应把每一个因式都分别乘方,不要遗漏其中任何一个因式. 三、 同底数幂的除法1. 同底数幂的除法 : 同底数幂相除,底数不变,指数相减。
公式表示为:(0)m n m n a a a a m n m n -÷=≠>,、是正整数,且同底数幂的除法推广:(0)m n p m n p a a a a a m n p m n p --÷÷=≠>+,,、、是正整数 2.零指数幂的意义:任何不等于0的数的0次幂都等于1: 用公式表示为:01(0)a a =≠3.负整数指数幂的意义:任何不等于0的数的()n n -是正整数次幂,等于这个数的n 次幂的倒数.(先进行幂的运算然后直接倒数): 用公式表示为:1(0)n na a n a -=≠,是正整数 4.绝对值小于1的数的科学记数法对于绝对值大于0小于1的数,可以用科学记数法表示的形式为10na -⨯,其中110a ≤<,n 由原数左边起第一个不为零的数字前面的0的个数(含整数位上的零)所决定.注意点:(1) 底数a 不能为0,若a 为0,则除数为0,除法就没有意义了.(2) (0)a m n m n ≠>,、是正整数,且是法则的一部分,不要漏掉。
第八章 《幂的运算》复习课
写出下列各数的原数. (1)102=__________;
(2)10-3=__________;
(3)1.2×105=______; (4)2.05×10-5=_____;
(5)1.001×10-6=____;
(6)-3÷10-9=_______.
计算.
6.生物学家发现一种病毒,用1015个这样的病 毒首尾连接起来,可以绕长约为4万km的赤道 1周,一个这样的病毒的长度为( ) A. 4×10-6mm B. 4×10-5mm C. 4×10-7mm D. 4×10-8mm 7.(1)计算(-0.25)2004×(-4)2005=___ (2) 22003×32004的个位数字是____ (3)一列数71,72,73,……,72001,其中末位数 字是3的有__个。
一、同底数幂的乘法 am·an=am+n (m、n都是正整数)
m+n+s m 幂相乘,底数不变 ,指数 相加 . (m、n、s都是正整数)
当我们学了负指数幂之后,上面指数不再受正 负性的限制.
例.am· a-n=am-n
am· a-n· a-p= am-n-p
二、幂的乘方运算性质:
幂的乘方,底数不变 ,指数 相乘 .
n m mn a =a , 其中m,n是正整数
三、积的乘方的运算性质: anbn (n为正整数) (ab)n=_____. 积的乘方,把积的每一个因式分别乘方, 再把所得的幂相乘.
计算: 1. (102)3 3. (5an)3 5. (-a2)3.(-a3)2
4.若a,b互为相反数,且ab≠0,n为正整数,则下 列各对数中,互为相反数的是( ) A. an和bn B. a2n和b2n C. a2n-1和b2n-1 D. a2n-1和-b2n-1
十四章幂的运算性质(复习课)
幂的运算性质复习课学习目标:知识与技能:1、进一步理解同底数幂的乘法法则、幂的乘方意义及积的乘方的运算法则。
2、运用幂的运算性质与法则解决一些的实际问题。
过程与方法:1、在进一步体会幂的意义时,发展推理能力和有条理的表达能力。
2、通过幂的各种运算,提高解决问题的能力。
情感、态度与价值观:在发展推理能力和有条理的语言、符号表达能力的同时,进一步体会学习数学的信心,提高自己勇于探究的能力。
学习重点:会进行幂的各种运算。
学习难点:灵活的运用幂的三种运算学习过程:一、知识梳理1.知识要点(填空)(1)同底数幂相乘,底数不变,指数 ,即 =⋅nm a a .( m 、n 是正整数) (2)幂的乘方,底数不变,指数 ,即()=n m a . ( m 、n 是正整数) (3)积的乘方,等于 分别乘方,即()=nab . (n 是正整数) 2.快速写出答案:(1)=-⋅-42)()(x x =⋅3x x a =-⋅-43)()(x x =-⋅-42)(x x (2)()=23a ()=a x 3 =++23)()(m n n m =--23)()(m n n m(3)()=32y x ()=-3b a y x =-22)21(b a ()2322003231⎪⎭⎫ ⎝⎛-∙-y x = 二、精讲精练:1、幂运算中“—”号的巧处理:(1)依据上面2题中每小题的最后一道小题,小组内共同总结:幂运算中的各种“负号”的如何处理。
(2)在前几节课学习中,你遇到过因为负号的处理不正确而导致答案错误的题吗?列出来与同学们共同纠正。
2、幂运算中互逆运算对照练习:(用幂的形式表示结果,完成后与小组内总结交流做法)(1)()838232-2⨯⨯⨯ ()20142013-2+-2()(2)()3510-- 553比较: ○44 4(3)()35310-⨯ ()202120201-8-7-0.125)-)7⨯⨯⨯()((3、利用幂的运算知识求字母值:(1)已知3,4,m n m n b b b +==求的值。
数学:幂的运算复习课
a0 1(a 0)
a p 1 p (a 0) a
a m a n a mn
环节1:师友回顾
注意幂的运算公式逆用
a
m n
mn
= a a (a≠0,m、n为正整数),
a
a (a ) n n n a b (ab) mn m
环节1:师友归纳
•这节课我学会(懂得)了。。。 •这节课我想对师傅(学友)说。。。
友情提示:从知识学法方面和师友互助方面 进行总结
环节2:教师梳理 1、同底数幂的乘法:同底数幂 m n m n a a a 相乘底数不变,指数相加. 2、幂的乘方:幂的乘方,底数 不变,指数相乘. 3、积的乘方:积的乘方, 等于 积中每一个因式乘方的积 . 4、同底数幂的除法:同底数幂 相除底数不变,指数相减.
比一比,哪对师友讲得更好!
环节2:教师点拨
a3 a (4a 2 )2 a 4 16a 4 15a 4
1、当出现加 减法时,要注 意是否能合并 同类项
2 3 5
4 2 3 3 3
3 2 2
2 5 23
2、巧妙逆用 公式,简便运 算
(2 5) 2 3
m n
a a
m
n
n
环节2:教师检查
题目
[( a b ) [( 2) ]] ( 2 ) ( 3) a a ( b ) b b a 2
Байду номын сангаас
1 3 2 2 23 3 3 m 2 3 4 m 2 ( ) 2 3
1 36 7 6 2 m 6 m 2 (a b ) b 2 a a b 9
苏科版七年级下数学第8章《幂的运算》复习教学课件(47张ppt)
说明: 第八章 幂的运算复习
在幂的运算中,经常会用到如下一些变形:
(1)(-a)2=a2,(-a)4=a4,(-a)6=a6…… (2)(-a)3= —a3,(-a)5= —a5,(-a)7=—a7…… (3)(b-a)2=(a-b)2,(b-a)4=(a-b)4…… (4)(b-a)3= —(a-b)3,(b-a)5= —(a-b)5……
字母表示:a0=1 a≠0
负指数 任何不等于0的数的-n(n是正整数)
次幂,等于这个数的n次幂的倒数
字母表示:
a-n=
1 an
=( a1a≠)no, n是整数
1= am÷am=am–m= a0,∴ 规定 a0 =1(a ≠0)
任何不等于0的数的0次幂等于1.
任何不等于0的数的-n(n是正整数)次幂, 等于这个数的n次幂的倒数.
考考你
(-a5)4 -(a8)2 [(-2)3]10
第八章 幂的运算复习
(-bm)7 (m是正整数) [(-a)2 ]3 .(-a4)3 -[(m-n)3]6
注意:“-”的处理
综合运用
1.计算:
第八章 幂的运算复习
综合运用
第八章 幂的运算复习
2.若xm = 2 ,x3n = 5,求x4m+6n
注意它的逆运算
考考你
(-0.5a)4
第八章 幂的运算复习
-(ab3)2
(-xy3)3
(0.25)100. (-4)100
(-2a3b6c2)3
(2×106)3
综合运用
第八章 幂的运算复习
1.下列各式中正确的有几个?(A )
(1) (2a2 )3 6a6 (2)(3 x)2 32 x2
4
幂的运算复习课最新版ppt课件
逆 = (2×4×0.125)4
(-4×0.25)2005
用 法 则
= =1 (3)-82000×(-0.125)=2001
-1
进
行 = -82000×(-0.125)2000× (-0.125)
计
算 = -82000×0.1252000× (-0.125)
= -(8×0.125)2000× (-0.125)
解(1)(2b)3
=23b3 =8b3
(2)(2×a3)2 =22×(a3)2 =4a6
(3)(-a)3 (4)(-3x)4
=(-1)3 •a3 = -a3
=(-3)4 • x4 = 81 x4
13
75
1.判断下列计算是否正确,并说明理由:
课 本
(1)(xy3)2=xy6
x3y6
第 (2)(-2x)3=-2x3
(A)0
(B) -2×310
(C)2×310
(D) -2×37
8
思考题:
动脑筋!
1、若 am = 2, 则a3m =__8___. 2、若 mx = 2, my = 3 ,
则 mx+y =__6__, m3x+2y =__7_2___.
9
积的乘方
(1)(ab)2 = (ab) • (ab) = (aa) • (bb) = a (2 )b(2 ) (2)(ab)3=___(a_b_)_•__(a_b_)_•_(_a_b_)___________
4
同底数幂相乘
am·an=am+n
指数相加 底数不变 指数相乘
(a ) =a 其中m , n都是
m n mn
正整数
幂的乘方
5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2
1 22 1 23
为
。
图(1)
(2)请你利用图(2),再设计一个能求 1 1 1 1 2 3 n 的值的几何图形。
2 2 2 2
(2)
(3)请仿照上述方法计算下列式子:
2 2 2 2 3 3 3 3
2 n 3
已知a、b为有理数,且ab=1, 求a 、b
(2)求整数的位数
求N=212×58是几位整数.
(3)确定幂的末尾数字
求7100-1的末尾数字.
(4)比较实数的大小
比较750与4825的大小.
ቤተ መጻሕፍቲ ባይዱ
(5)求代数式的值 已知10m=4,10n=5. 求103m-2n+1的值.
(6)求参数 1、已知162×43×26=22a-1, (102)b=1012,求a+b的值。
;
5 -8a (7) (-2 a = ; (8) 2×2m+1÷2m = 4 ;
)3
÷a-2
科学记数法表示: 5 1.26 × 10 (9) 126000 = ; (10) 0.00000126 = 1.26×10-6;
(1) 下列命题( C )是假命题. A. (a-1)0 = 1 a≠1 B. (-a )n = - an n是奇数 C. n是偶数 , (- an )3 = a3n D. 若a≠0 ,p为正整数, 则ap =1/a-p (2) [(-x ) 3 ] -2 · [(-x ) -2 ] 3 的结果是( C ) A. x-10 B. - x-10 C. x-12 D. - x-12
(3) 1纳米 = 0.000000001 m ,则2.5纳 米用科学记数法表示为( B )米. A. 2.5×10-8 B. 2.5×10-9 C. 2.5×108 D. 2.5×109 (4) am = 3 , an = 2, 则am-n 的值是 (A ) A. 1.5 B. 6 C. 9 D. 1
5 2 7 (a ) =a ,
5 2 10 a· a =a .
m+n m n a =a +a m-n m n a =a -a
3、注意幂的运 算法则逆用
am · an=am+n
am÷an=am-n(a≠0,m、n为正整数), (am)n=amn, (ab)n=anbn
(1)用于实数计算
计算: 1、(-4)1995×0.251994 2、22006-22005-22004-…-2-1
2、已知4×104×0.1÷(5×106)=m×10n
(1≤m<10).求m、n的值.
在数学活动中,小明为了
1 1 1 求 2 3 2 2 2 1 n 的值, 2
设计如图(1)所示的几何图 形。 (1)请你利用这个几何图形 1 1 1 1 求 2 3 n 的值
2 2 2 2
学习幂的运算性质 应注意的几个问题
1.注意符号问题
例1 判断下列等式是否成立: ① (-x)2=-x2, ② (-x)3=-x3, √ √ ③ (x-y)2=(y-x)2, ④ (x-y)3=(y-x)3, ⑤ x-a-b=x-(a+b), √ ⑥ x+a-b=x-(b-a). √
2.注意幂的性质的混淆和错误
(1) a · a7- a4 · a4 = 0 ; 8 5 3 (1/10) (2) (1/10) ×(1/10) = ; 4y 6 2 3 2 4x (3) (-2 x y ) = ; 6 2 3 -8x (4) (-2 x ) = ; (5) 0.5-2 = 4 ; (6) (-10)2 ×(-10)0 ×10-2 = 1