运筹学第二章 线性规划
管理运筹学第二章 线性规划的图解法
B、约束条件不是等式的问题:
若约束条件为 ai1 x1+ai2 x2+ … +ain xn ≤ bi 可以引进一个新的变量si ,使它等于约束右 边与左边之差 si=bi–(ai1 x1 + ai2 x2 + … + ain xn ) 显然,si 也具有非负约束,即si≥0, 这时新的约束条件成为 ai1 x1+ai2 x2+ … +ain xn+si = bi
第二章 线性规划 的图解法
一、线性规划的概念 二、线性规划问题的提出 三、线性规划的数学模型 四、线性规划的图解法 五、线性规划解的情况 六、LP图解法的灵敏度分析
一、线性规划的概念
线性规划Linear Programming 简称LP,是一 种解决在线性约束条件下追求最大或最小的 线性目标函数的方法。 线性规划的目标和约束条件都可以表示成线 性的式子。
max z 3 x1 2 x2
2 x1 x2 ≤ 10 设备B台时占用 s.t. x1 x2 ≤ 8 x , x ≥ 0 产量非负 1 2
决策变量 (decision variable) 目标函数 (objective function) 约束条件 (subject to)
-ai1
x1-ai2 x2- … -ain xn = -bi 。
例1.3:将以下线性规划问题转化为标准形式 Min f = 3.6 x1 - 5.2 x2 + 1.8 x3 s. t. 2.3 x1 + 5.2 x2 - 6.1 x3 ≤15.7 4.1 x1 + 3.3 x3 ≥8.9 x1 + x2 + x3 = 38 x 1 , x 2 , x3 ≥ 0
第二章线性规划
线性规划要研究的两类问题中都包含有约束条件和目 标函数。用数学的方式描述,规划的目的就是在给定 的限制条件(或称约束条件)下,求目标函数的极值 问题(包括极小值和极大值)。
2
线性规划的数学模型
3
解: 设产品 的产量为:1 , 产品 的产量为:x2 x
4
5
6
7
配料问题:由若干种不同价格、不同成分含量的原料,用 不同的配比混合调配出一些不同规格的产品,在原料的供 应量限制和保证产品成分含量的前提下,如何进行配料来 获取最大利润或使总成本最低。
15
2.2.3 线性规划求解的可能结局
1、有唯一的最优解
2、有无穷多个最优解 (将目标函数改为 z=4x1+3x2 )
x2
max z 4 x1 3 x2 x1 2 x2 5 2 x x 4 1 2 s.t. 4 x1 3 x2 9 x1 , x2 0
3x1 2 x2 4 x3 3
3x1 2 x2 4 x3 xs 3
剩余变量
变量xs实际上是原式左端减去右端的差,即 :
xs 3x1 2 x2 4 x3 3
当约束条件是“ ”型的不等式时,只要将该约 束条件左端减去一个非负的剩余变量即可化为等式。 无论是松弛变量还是剩余变量在决策中都不产生实际价 值,因此它们在目标函数中的系数都应该为零。有时也将松 29 弛变量和剩余变量统称为松弛变量。
2x1+x2=4 D C
x1+2x2=5 B 4x1+3x2=9 O A x1
16
3、无界解
指线性规划问题有可行解,但是 在可行域,目标函数值是无界的, 因而达不到有限最优值。因此线 性规划问题不存在最优解。
运筹学第二章线性规划
第二章线性规划教学目的和要求:目的:使学生具备线性规划的基本知识以及应用线性规划的基本能力。
要求:理解线性规划概念,标准型,解的概念,基本定理;掌握单纯形法,人工变量法,了解图解法。
重点:线性规划标准型,解的概念,单纯形法,人工变量法。
难点:线性规划基本定理,单纯形法。
教学方法:讲授法,习题法。
学时分配:12学时 作业安排:见教材P 38.线性规划是运筹学的一个重要分支。
1939年苏联科学家康托罗维奇提出了生产组织和计划中的线性规划模型。
1947年美国学者丹捷格(George B.Dantzig)提出了求解一般线性规划问题的方法。
此后,线性规划理论日趋成熟,应用也日益广泛和深入。
第一节线性规划问题一、问题的提出在企业的生产经营活动中经常会面临这样两类问题:一是如何合理地利用有限的人力、物力、财力等资源,取得最佳的经济效果;二是在取得一定的经济效果的前提下,如何合理安排使用人力、物力、财力等资源,使花费的成本最低。
例1.生产计划问题 某工厂利用甲、乙、丙、丁四种设备生产A 、B 、C 三种产品,具体数据如下表所示。
A 、B 、C 单位产品的利润分别是4.5、5、7(百元)。
问如何安排生产计划,才能使所获总利润最大?解:设产品A 、B 、C 产量分别为X 1,X 2,X 3件,Z 表示利润,要求总利润最大,即求Z=4.5X 1+5X 2+7X 3的最大值,故记作极大化Z=4.5X 1+5X 2+7X 3,另外对甲、乙、丙、丁设备需满足2X 1+2X 2+4X 3≦800,X 1+2X 2+3X 3≦650,4X 1+2X 2+3X 3≦850,2X 1+4X 2+2X 3≦700;同时产量应非负,故X j ≧0 (j=1,2,3);以上问题可用数学模型表示为: 极大化Z=4.5X 1+5X 2+7X 3 满足 2X 1+2X 2+4X 3≦800 X 1+2X 2+3X 3≦6504X 1+2X 2+3X 3≦850 2X 1+4X 2+2X 3≦700X j ≧0 (j=1,2,3)例2.运输问题 设某种物资有m 个产地;A 1,A 2, …,A m ,它们的产量分别为a 1,a 2, …,a m ,有n 个销地B 1,B 2, …,B n 需要这种物资,它们的销量分别为b 1,b 2, …,b n 。
管理运筹学第二章线性规划的图解法
02
图解法的基本原理
图解法的概念
图解法是一种通过图形来直观展示线性规划问题解的方法。它通过在坐标系中绘 制可行域和目标函数,帮助我们理解问题的结构和最优解的位置。
图解法适用于线性规划问题中变量和约束条件较少的情况,能够直观地展示出最 优解的几何意义。
图解法的步骤
确定决策变量和目标函数
明确问题的决策变量和目标函数,以便在图 形中表示。
目标函数是要求最小化或最大化的函数,通常表示为 $f(x) = c_1x_1 + c_2x_2 + ldots + c_nx_n$。
04
约束条件是限制决策变量取值的条件,通常表示为 $a_1x_1 + a_2x_2 + ldots + a_nx_n leq b$或 $a_1x_1 + a_2x_2 + ldots + a_nx_n = b$。
LINDO是一款开源的线性规划求解器,用 户可以免费使用。
软件工具的使用方法
Excel
用户需要先在Excel中设置好线性规划模型,然后使 用“数据”菜单中的“规划求解”功能进行求解。
Gurobi/CPLEX/LINDO
这些软件通常需要用户先在软件界面中输入线性规划 模型,然后通过点击“求解”按钮进行求解。
实例三:分配问题
总结词
分配问题是指如何根据一定的分配原则 或目标,将有限的资源分配给不同的需 求方,以最大化整体效益。
VS
详细描述
分配问题在实际生活中广泛存在,如物资 分配、任务分配等。通过图解法,可以将 分配问题转化为线性规划模型,并利用图 形直观地展示最优解的资源分配方案。在 分配问题中,通常需要考虑不同需求方的 重要性和优先级,以及资源的有限性等因 素,以实现整体效益的最大化。
管理运筹学_第二章_线性规划的图解法
线性规划中超过约束最低限的部分,称为剩余量。 记s1,s2为剩余变量,s3为松弛变量,则s1=0, s2=125,
s3=0,加入松弛变量与剩余变量后例2的数学模型变为 标准型: 目标函数: min f =2x1+3x2+0s1+0s2+0s3 约束条件: x1+x2-s1=350, x1-s2=125, 2x1+x2+s3=600, x1, x2, s1,s2,s3≥0.
阴影部分的每 一点都是这个线 性规划的可行解, 而此公共部分是 可行解的集合, 称为可行域。
B
X2=250
100
100
300
x1
B点为最优解, X1+X2=300 坐标为(50, 250), Z=0=50x1+100x2 此时Z=27500。 Z=10000=50x1+100x2 问题的解: 最优生产方案是生产I产品50单位,生产Ⅱ产品250单位,可得 最大利润27500元。
Z=10000=50x1+50x2
线段BC上的所有点都代表了最优解,对应的最优值相 同: 50x1+50x2=15000。
10
3. 无界解,即无最优解的情况。对下述线性规划问题:
目标函数:max z =x1+x2 约束条件:x1 - x2≤1 -3x1+2x2≤6 x1≥0, x2≥0.
x2 -3x1+2x2=6 3
其中ci为第i个决策变量xi在目标函数中的系数, aij为第i个约束条件中第j个决策变量xj的系数, bj(≥0)为第j个约束条件中的常数项。
16
灵敏度分析
灵敏度分析:求得最优解之后,研究线性规划的
运筹学第二章第6节矩阵法求解线性规划问题
(3)初始单纯性表与当前单纯性表关系
单纯性法的每一步就是:令非基变量XN(XN1和 XS2)=0,则当前基本可行解X=(XB,0) =(B-1b,0)。当前的目标函数值为 Z=CBB-1b,通过刚才用矩阵法的展示,我们发现: 1)B:初始单纯性表中基。 2)BN:初始单纯性表非基变量在A中对应的矩阵。 3)B-1:初始单纯性表中单位矩阵所对应的列在当 前矩阵中所构成的矩阵。 4)CB:当前基变量的价值向量。 5)CN:当前非基变量的价值向量。
2 x1 [1] 4 0 2
3 x2 0 0 1 0
0 x3 1 0 0 0
0 x4 0 1 0 0
0 x5 0 1/4 -3/4 θ 4 -
-1/2 2
在迭代到单纯性表2时,当前的基变量为x3,x4,x2,其中 x3和x4是松弛变量。这时,松弛变量中,x5为基变量,x3和 x4为非基变量,因此:基变量XB由两部分组成,一部分是 XB1=x2,一部分是XS1=x3和x4;非基变量XN由两部分组成, 一部分是XN1=x1,另外一部分是XS2=x5。
BX X
B
B
b BN X
1
N1
S2 X
N1
S2
;
1
B b B B N1 X
1
1
1
B S 2 X s2 ;
1
目标函数: z C B B b (C N1 C B B B N1 ) X (C S 2 C B B I ) X
1 S N1
令非基变量=0,由上式得到:
x1 2 x 2 x 3 4 x1 4 x2 x
j
8
x4 0
16 x 5 12
j 1, 2 , , 5
第二章线性规划及单纯形法总结
第一章
工厂需要的原棉存放在三个仓库中,现将原棉运往工 厂以满足工厂生产的需求。已知原棉运到各个工厂的单位 运费如表所示。问使总运费最小的运输方案?
仓库\工厂
1 2 3 需求
1
2 2 3 40
2
1 2 4 15
3
3 4 2 35
库存
50 30 10
2.线性规划数学模型
解:设xij为i 仓库运到 j工厂的原棉数量(i =1,2,3
1.线性规划介绍
第一章
线性规划研究的主要问题: 有一定的人力、财力、资源条件下,如何 合理安排使用,效益最高?
某项任务确定后,如何安排人、财、物, 使之最省?
2.线性规划数学模型
第一章
例1 美佳公司计划制造I,II两种家电产品。已知各 制造一件时分别占用的设备A、B的台时、调试时间及A、 B设备和调试工序每天可用于这两种家电的能力、各售出 一件时的获利情况如表I—l所示。问该公司应制造A、B两 种家电各多少件,使获取的利润为最大?
第一章
j =1,2,3)
minZ= 2x11 + x12+3x13+2x21 +2x22 +4x23 +3x31 +4x32 +2x33 x11 +x12+x13 x21+x22+x23 x31+x32+x33 50 30 10 40
st.
x11 +x21+x31 =
x12 +x22+x32 =
x13 +x23+x33 = xij 0
15
35
2.线性规划数学模型
第一章
练习4 连续投资10万元 A:从第1年到第4年每年初投资,次年末回收本利1.15; B:第3年初投资,到第5年末回收本利1.25,最大投资4万元; C:第2年初投资,到第5年末回收本利1.40,最大投资3万元; D:每年初投资,每年末回收本利1.11。 求:使5年末总资本最大的投资方案。 分析: A 1 x1A 2 x2A x2C x1D x2D x3D x4D x5D 3 x3A 4 x4A 5
运筹学第2章:线性规划的对偶理论
目
标函数求极小时取“≥”号
注:对称形式与线性规划标准型是两种不同的形 式,对称形式中约束条件的符号由目标函数决定
从以下方面比较(LP1)与(LP2):
原问题
对偶问题 约束系数矩阵的转 臵 目标函数中的价格 系数向量 约束条件的右端项 向量 Min w=Y’b A’Y≥C’ Y≥0
A
b C 目标函数 约束条件 决策变量
非基变量 基变量
XB
0 b Xs C j - zj B
XN
N
Xs
I
0
初始 单纯形表
非基变量
CB
CN
基变量
最终
单纯形表
CB
XB
XB B-1b Cj - zj
I 0
Xs B-1 N B-1 CN-CBB-1N -CBB-1
XN
若B-1b为最优解,则
CB CB ( B 1B) 0 C N CB B N 0 CB B 1 0
令 y 2 y 2 , y3 y3 y3 ,则
min 2 y1 y2 4 y3
2 y1 3 y2 y3 1 3 y y y 4 1 2 3 s.t. 5 y1 6 y2 y3 3 y1 0, y2 0, y3无约束
n j 1 m j j
C X Y b, 即 c j x j y i bi
j 1 i 1
__
__
n
m
c x ( a
j 1 m i 1 n i i i 1 i 1 j 1
n
m
ij
yi ) x j aij x j yi ( a ji yi c j )
例1
运筹学第二章线性规划的对偶理论
(5.5) (5.6)
4.3 对偶问题的基本性质
证: 设B是一可行基,于是A=(B,N)
max z=CBXB+ CNXN BXB+BXN +Xξ=b X,XB,Xξ ≥0
其中Yξ=(Yξ1, Yξ2)
min ω =Yb YB-Yξ1=CB YN-Yξ2=CN Y, Yξ1 Yξ2 ≥0
(5.5) (5.6)
x1﹐x2 ≥0
关系?
对原模型设: 1 2
A= 4 0 b=(8,16,12)T C=(2,3) 04
X=(x1,x2)T Y=(y1,y2 ,y3 ) 则可得:
4.1 对偶问题的提出
min ω=8 y1+16y2 +12y3
y1+4y2
≥2
2 y1 +4y3≥3
与
y1 , y2 ,y3≥0 12
max z=2x1+3x2 x1+ 2x2 ≤8
4x1
≤16
4x2 ≤12
x1﹐x2 ≥0
有何关 系?
对愿模型设: A= 4 0 04
b=(8,16,12)T C=(2,3)
X=(x1,x2)T
Y=(y1,y2 ,y3 ) 则可得:
max z=CX AX≤b (5.1) 和
min ω =Yb YA ≥ C (5.2)
120
A=
1 -3
0 2
1 1
1 -1 1
b=(2,3,-5,1)T C=(5,4, 6)
确定约束条件
YA
C
x1 ≥0 ﹐x2≤0, x3 无约束
解:因原问题有3个变 于是 量,4个约束条件, 所以对偶问题4个 变量,3个约束条
《管理运筹学》02-1线性规划的数学模型及相关概念
03 线性规划的求解方法
单纯形法
1
单纯形法是一种求解线性规划问题的经典算法, 其基本思想是通过不断迭代来寻找最优解。
2
单纯形法的基本步骤包括:建立初始单纯形表格、 确定主元、进行基变换、更新单纯形表格和判断 是否达到最优解。
3
单纯形法在处理大规模线性规划问题时,由于其 迭代次数与问题规模呈指数关系,因此计算量较 大。
06 线性规划的案例分析
生产计划问题
总结词
生产计划问题是一个常见的线性规划应用场景,通过合理安排生产计划,企业可以优化资源利用,降低成本并提 高利润。
详细描述
生产计划问题通常涉及确定不同产品组合、生产数量、生产批次等,以满足市场需求、资源限制和利润目标。线 性规划模型可以帮助企业找到最优的生产计划,使得总成本最低或总利润最大。
最优性条件由单纯形法推导得出,是判断线性规划问题是否达到最优解的 重要依据。
解的稳定性
解的稳定性是指最优解在参数变化时保持相对稳定的能力。
在实际应用中,由于数据的不确定性或误差,参数可能会发生变化。因此,解的稳 定性对于线性规划问题的实际应用非常重要。
解的稳定性取决于目标函数和约束条件的性质,以及求解算法的鲁棒性。在某些情 况下,可以通过敏感性分析来评估解对参数变化的敏感性。
输标02入题
决策变量是问题中需要求解的未知数,通常表示为 $x_1, x_2, ldots, x_n$。
01
03
目标函数是需要最大或最小化的函数,通常表示为 $f(x) = c_1x_1 + c_2x_2 + ldots + c_nx_n$。
04
约束条件是问题中给定的限制条件,通常表示为 $a_1x_1 + a_2x_2 + ldots + a_nx_n leq b$ 或 $a_1x_1 + a_2x_2 + ldots + a_nx_n = b$。
运筹学第2章-线性规划的对偶理论
Ma例x:Z ( 2第x一1 章3例x22)
2 x1 2 x2 12
当原问题和对偶问题都取得最优解时,这 一对线性规划对应的目标函数值是相等的:
Zmax=Wmin
二、原问题和对偶问题的关系
1、对称形式的对偶关系
(1)定义:若原问题是
MaxZ c1 x1 c2 x2 cn xn
a11x1 a12 x2 a1n xn b1
s.t.a21
x1
a22
二、 手工进行灵敏度分析的基本原则 1、在最优表格的基础上进行; 2、尽量减少附加计算工作量;
5y3 3
,y
2
3
0
(用于生产第i种产 品的资源转让收益不 小于生产该种产品时 获得的利润)
对偶变量的经济意义可以解释为对工时及原材 料的单位定价 ;
若工厂自己不生产产品A、B和C,将现 有的工时及原材料转而接受外来加工时, 那么上述的价格系统能保证不亏本又最富 有竞争力(包工及原材料的总价格最低)
内,使得产品的总利润最大 。
MaxZ 2x1 3x 2
2x1 2x2 12
s.t.54xx12
16 15
x1, x 2 0
它的对偶问题就是一个价格系统,使在平衡了 劳动力和原材料的直接成本后,所确定的价格系统 最具有竞争力:
MinW 12y1 16y2 15y3
2y1 4y2
2
s.t.2y1y,1y
y1, y2, , ym 0
(运筹学第二章)线性规划的对偶理论
第二章线性规划的对偶理论1.对偶问题的提出2.原问题与对偶问题3.对偶问题的基本性质4.影子价格5对偶单纯形法5.对偶单纯形法6.灵敏度分析7.参数线性规划1§1.对偶问题的提出原问题设某企业有m种资源用于生产n种不同产品,各种(i=1m)又生产单位第j种资源的拥有量分别为b i (i=1,…,m),又生产单位第j种产品(j=1,…,n)消费第i种资源a ij 单位,产值为c j 元。
用x 代表第j种产品的生产数量,为使该企业产值最大,可将上述问题建立线性规划模型j 将上述问题建立线性规划模型:max z =c 1x 1+c 2x 2+…+c n x n a 11x 1+a 12x 2+…+a 1n x n ≤b 1a 21x 1+a 22x 2+…+a 2n x n ≤b 2………………2a m 1x 1+a m 2x 2+…+a m n x n ≤b m x 1,x 2,…,x n ≥0§1.对偶问题的提出现在从另一角度提出问题:假定有另一企业欲将上述企业拥有的资源收买过来,至少应付出多少代价,才能使前一拥有的资源收买过来,至少应付出多少代价,才能使前企业愿意放弃生产活动,出让资源。
设用y i 代表收买该企业一单位i种资源时付给的代价,则总收买价为:ωb ω = b1y 1+…+b m y m 前一企业生产一单位第j种产品时,消耗各种资源的数量分别为a 1j ,a 2j ,…,a mj ,如果出让这些资源,价值应不低于单位j种产品的价值c j 元,因此:a 1 j y 1+ a 2 j y 2 + …+ a m j y m ≥ c j 3j j j j (j =1,…,n)§1.对偶问题的提出对后一企业来说,希望用最小代价把前一企业所有资源收过来此有有资源收买过来,因此有:min ω=b1y 1+b 2y 2+…+b m y m a11y 1+a 21y 2+…+a m 1y m ≥c 1a 12y 1+a 22y 2+…+a m 2y m ≥c 2………………a 1n y 1+a 2n y 2+…+a mn y m ≥c ny 1,y 2,…,y m ≥04§1对偶问题的提出§1.对偶问题的提出max z = c 1x 1+ c 2x 2+ … + c n x na x +a x ++a xb a 1 1x 1+ a 1 2x 2 + … + a 1 n x n ≤b 1a 2 1x 1+ a 2 2x 2 + … + a 2 n x n ≤b 2………………a m 1x 1+ a m 2x 2 + … + a m n x n ≤b mmin ω = b 1y 1+b 2y 2+…+b m y mx 1 ,x 2 ,… ,x n ≥0a 1 1y 1+ a 21 y 2 + … + a m 1y m ≥c 1a 1 2y 1+ a 22y 2 + … + a m 2y m ≥c 2………………a 1n y + a 2n y 2+ … + a y ≥c 51 n 12 n 2 mn m ny 1,y 2,… ,y m ≥0§2.原问题与对偶问题后一个线性规划问题是前一个问题从不同角度作的阐述如前者称为线性规划问的话的阐述。
运筹学—线性规划第2章
1 1
1 0
0 1
0 0
6 2 0 0 1
1 0 0
则
B 0
1
0
的列是线性无关的,即
1
0
0 0 1
p3 0, p4 1 0 0
•
0
p5 0 是线性无关,因此 1
x3
x4
x5
是, 0
p2
1 2
不在这个基中,所以x1,
x2为非基变量。
定义10:使目标函数达到最优值的基本可行解,称为基
本最优值。
• 例4:(SLP)如例3,试找一个基本可行解。
1 1 0
解:B1
1
0
0
是其一个基矩阵.p1,p3, p5是一个基。
6 0 1
则 x1 , x3, x5为基变量。X2, x4为非基变量。令 x2=x4=0. 得x1=2, x3=3, x5=9. 故 x1=(2,0,3,0,9)是原问题的一个基本 可行解,B1为基可行基。
•当 由0连续变动到1时,点z由y沿此直线连续的变动到x,且 因z-y平行x-y,则有:z y (x y) 于是有:
z x (1 ) y
•这说明当 0 1 时,x (1 ) y表示以x.y为端点的直线段
上的所有点,因而它代表以 x.y为端点的直线段。 一般地,如果x.y是n维欧氏空间Rn中的两点,则有如下定义:
• 定义14:设R是Rn中的一个点集,(即R Rn),对于任意 两点x R, y R 以及满足0 1 的实数 ,恒有
x (1 )y R
则称R为凸集。
• 根据以上定义12及13可以看到,凸集的几何意义是:连接凸 集中任意两点的直线段仍在此集合内。
其可行域如上图,可行解(3,1,0,0)T。用x1, x2 表示则为图上点(3,1)。由图可见这不是可行域的 顶点。而我们将证明基本可行解是可行域的顶点。而 在例4中p1,p3线性无关,所以B=(p1,p3)是一个基矩阵, 对应的基本解为(4,0,0,0)T。用坐标x1, x2表示则 为平面上的点(4,0),是上图可行域的顶点。
运筹学第四版第二章线性规划及单纯形法
方案的制定受到那些现实条件制约:
确定约束条件
人力资源(劳动力)的限制: 9x1 4x2 360
设备工时的限制:
4x1 5x2 200
原材料资源的限制:
3x1 10x2 300
此外,决策变量的取值不应为负值即 x1 0, x2 0
6
综上所述,我们得到了这个问题的数学模型
目标函数 约束条件
大?
项目
Ⅰ
设备A (h)
0
设备B (h)
6
调试工序(h) 1
利润(元) 2
Ⅱ 每天可用能力
5
15
2
24
表1-2
1
5
1
12
其数学模型为:
max Z 2x1 x2
5x2 15
6xx11
2x2 x2
24 5
x1, x2 0
13
例3:捷运公司在下一年度的1~4月份的4个月内拟租用仓库
堆放物资。已知各月份所需仓库面积列于下表1-3。仓库租
借费用随合同期而定,期限越长,折扣越大,具体数字见表
1-4。租借仓库的合同每月初都可办理,每份合同具体规定
租用面积和期限。因此该厂可根据需要,在任何一个月初办
理租借合同。每次办理时可签一份合同,也可签若干份租用
面积和租用期限不同的合同。试确定该公司签订租借合同的
最优决策,目的是使所租借费用最少。
14
max Z 70 x1 120 x2
9x1 s.t. 43xx11
x1,
4x2 5x2 10x2 x2 0
360 200 300
资源约束
非负约束
其中 约束条件可记 s.t (subject to), 意思为“以… 为条件“、”假定“、”满足“之意。
运筹学第二章——第八节—线性规划的对偶理论
四、对偶问题经济学含义——影子价格
因为Z*=Y*=Yb 所以:Δ Z/ Δ b=Y b——资源的量 Z——目标函数 经济学含义:资源每变动一个单位,目标函 数(利润、总产值等)变动的大小。 资源对生产做出的贡献。(影子价格) 是对现有资源实现最大效益的一个评价,叫 机会成本。
V*X=0, Y*U=0,其中V是对偶问题的剩余变量,U是 原问题的松弛变量。
(七)原问题在单纯性法迭代过程中的检验 数对应于对偶问题的一个基本解。(对应性 定理) 原问题 XB XN 对应基B检验数 0 CN-CBB-1BN 对偶问题的变量 -YS1 -YS2 XS –CBB-1 -Y
对偶问题性质的启示
原问题 有最优解 无可行解 有可行解无上界 无有限最优解 对偶问题 有最优解 无可行解 无有限最优解 有可行解但无下界
由互补松弛性定理可知: 当U>0,即AX <b时,资源未充分利用时,影 子价格为0。
二、原问题与对偶问题之间的转化
1、目标函数 MAX——Min 2、约束条件——变量 约束条件n个——变量n个 约束条件≥0 ——变量≤ 0 约束条件≤ 0 ——变量 ≥ 0 约束条件=0——变量无约束 要点:max为反向关系(约束条件——变量)
二、原问题与对偶问题之间的转化
3、变量——约束条件 变量m个——约束条件m个 变量≥0——约束条件≥ 0 变量≤ 0 ——约束条件≤ 0 变量无约束——约束条件=0 4、目标函数中变量的系数C为对偶问题中约 束条件的右端常数项b,个数对等变动。
(五)若原问题和对偶问题具有可行解,若 原问题或对偶问题之一有最优解,则另一个 对偶问题也必有最优解,且最优值相同。 (主对偶性定理) 证明 含义: 若原问题有一个对应于基B的最优解,则 CBB-1为对偶问题的最优解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例4 求解线性规划
图 2-1
例4 求解线性规划
图 2-2
例5 用图解法求解下列线性规划
(1)极大化z=2x1+2x2 (2)极小化z=2x1+2x2
例5 用图解法求解下列线性规划
解 这两个问题的约束条件相同,其可行域如图2-3所示,这是个无界集。从 图2-3中目标函数的等值线看出,无论z有多么大,z=2x1+2x2总与D相交,这说 明目标函数值可无限增大;所以问题(1)无最优解,或者说问题(1)可行而无最 优解;但当z减小时,最后目标函数线L*与D唯一的交点x*(1,0),即为问题(2) 的最优解。
例2 运输问题
表 2-2
例3 配料问题
表 2-3
二、线性规划模型
第二节 图 解 法
当线性规划的变量个数n=2时,能够在平面直角 坐标系中利用图解法直观地求解。虽然在应用中, 图解法没有实际意义,但通过图解法可以形象地 说明线性规划的许多特征。
例4 求解线性规划
极大化z=600x1+700x2 满足x1+2x2≤160 x1+x2≤120 3x1+x2≤300 x2≤60 x1, x2≥0
例4 求解线性规划
解 在以x1、x2为坐标轴的平面直角坐标系中,将线性规划的可行 域表示出来。先考虑约束条件x1+2x2≤160。在图2-1中,等式x1+2x2 =160表示直线L1;严格不等式x1+2x2<160表示以L1为边界的左下半 平面(图2-1a中有阴影的部分),于是,约束条件x1+2x2≤160表示以直 线L1为边界的、含边界在内的左下半平面。类似地,能够确定约束 条件x1+x2≤120、3x1+x2≤300、x2≤60所表示的区域。
二、化标准型
(3) 如果第k个约束条件为a k1x 1+a k2x 2+…+a k n x n ≤ b k 那么增加一个非负变量x n + k, 使上述约束成为 ak1x1+ak2x2+…+a k n x n + x n + k=b k X n + k称为松弛变量。 如果第s个约束为 as1x1+as2x2+…+a s n x n ≥ b s 那么引入一个非负变量x n + s,使该约束成为 as1x1+as2x2+…+a s n x n – x n + s = b s X n + s称为剩余变量。有时,松弛变量和剩余变量通称为松弛变量。
第二章 线性规划
第一节 第二节 第三节 第四节 第五节 第六节
线性规划问题 图解法 标准型和解 单纯形法 人工变量法和几种特殊情况 改进的单纯形法
第一节 线性规划问题
一、问题的提出 二、线性规划模型
一、问题的提出
例1 生产计划问题 某工厂利用甲、乙、丙、丁四种设备生产A、B、C三种 产品,具体数据如表2-1所示。A、B、C单位产品的利润分别是4.5百元、5百 元、7百元。问如何安排生产计划,才能使所获总利润最大? 例2 运输问题 设某种物资有m个产地A1,A2,…,Am,它们的产量分别为 a1,,有n个销地B1,B2,…,Bn需要这种物资,它们的销量分别为b1,b 2,…,bn。已知Ai到Bj的单位运价是cij(i=1,2,…,m;j=1,2,…,n),表 2-2为单位运价表。设供、销满足平衡条件,即∑mi=1ai=∑nj=1bj。问怎样组 织运输,才能满足要求,且使总运费最少?
二、化标准型
下面讨论怎样将一个一般的线性规划模Байду номын сангаас化为标 准型。
(1)如果目标函数为“极小化z=CX”,因为min{z}=-max{-z},所以可令 z′=-z=(-C)X, 目标函数变为“极大化z′=(-C)X”,z′值的相反数就是所求目标 函数值。 (2) 如果有bi<0(1≤i≤m), 那么将这个约束的两边同乘(-1), 便得(-bi)>0。
一、线性规划的标准型 二、化标准型 三、线性规划解的基本概念 四、线性规划的基本定理
一、线性规划的标准型
本书确定线性规划的标准型满足下列条件:
(1)极大化目标函数。 (2)约束条件的右端常数bi≥0,i=1,2,…,m。 (3)约束条件用等式表示。 (4)决策变量xj(j=1,2,…,n)有非负要求。
2.基可行解
满足非负要求的基解, 即属于可行域中的基解, 称为线性规划的基可行解。
3.最优解
前面已经谈到,可行解中,使目标函数值z达到 极值的是最优解。
1.基本概念 2.基本定理
四、线性规划的基本定理
1.基本概念
(1) 凸集。设S是n维空间En中的一个集合, 如果对任意的X(1)、 X(2)∈S及任意的实数λ(0≤λ≤1)都有λX(1)+(1-λ)X(2)∈S, 那么S称为 凸集。
一、问题的提出
例3 配料问题 要配制一种面包,每只面包要求含甲、乙、丙3种营养成分 至少各为20单位、24单位、30单位。现有4种原料可供选用,表2-3给出了每1 0g原料所含各种营养成分的单位数和价格。试确定每种原料各取多少,才能 使面包的制作成本最低?
例1 生产计划问题
表 2-1单位:h/件
二、化标准型
(4)如果决策变量xj≤0,那么用xj′=-xj代入目标函数和约束条件中,这样就有 xj′≥0;如果决策变量xs无非负要求,那么用两个有非负要求的变量xs′和xs″的 差代替xs,即xs=xs′-xs″,代入线性规划模型中,使变量都有了非负要求。
三、线性规划解的基本概念
1.基解
线性规划模型表明, 求解线性规划, 实质上是 求解具有特殊要求(变量非负及目标函数值达到 极大)的线性方程组。
(2) 凸组合。设X(1), X(2), …, X (k)是 E (n)的k个点, 实数λ1, λ2, …, λ k满足λi≥0, i=1, 2, …, k
∑k i=1λi=1 则λ1X(1)+λ2X(2)+…+λ k X (k)称为X(1), X(2), …, X (k)的凸组 合; 如果X=λ1X(1)+λ2X(2)+…+λ k X (k), 则称X是X(1), X(2), …, X (k)的凸组合。 (3) 极点。对于凸集S, X∈S, 如果不存在这样的两个点X(1)、 X(2)∈S(X(1)≠X(2), X(1)≠X, X(2)≠X)使X可以表示成X(1)和X(2) 的凸组合, 即可表示为X=λX(1)+(1-λ)X(2), 0<λ<1 则称X是S的一个极点。
例5 用图解法求解下列线性规划
图 2-3
例6 求解线性规划
解 根据约束条件和变量的非负要求,画出各自满足的区域(图2-4),看到该 线性规划的可行域是空集,因两个约束条件是相互矛盾的,所以,问题不存 在可行解,当然也无最优解。
例6 求解线性规划
图 2-4
例6 求解线性规划
图 2-5
第三节 标准型和解