2018年成人高考专升本高等数学一真题及答案
2018年浙江数学专升本真题答案
2018年浙江专升本高数考试真题ㆊṾ一、选择题)45(⨯1.C 解析:0lim )(lim 0==→→x x f x x ,1sin lim)(lim )(lim 00===→→→xxx f x f x x x 因为)(lim )(lim 0x f x f x x →→≠,但是又存在,所以0=x 是跳跃间断点2.D 解析:02sin lim 2sin cos cos lim cos sin lim0020==+-=-→→→x x xx x x xx x x x x x 3.A解析:因为0)(lim00=-→x x x f x x ,所以,0)()(lim )('0000=--=→x x x f x f x f x x 则其0)(,0)('00==x f x f ,又因为0)(''0<x f ,所以0x x =是极大值点。
4.B 解析:)()2(2)(2x f x f dx x f dxd xx -=⎰5.C解析:,9cos 13∑∞=+n n n 因为9cos 3+n n<233191nn <+,所以∑∞+1231n n是收敛的.所以根据比较审敛法;,9cos 13∑∞=+n n n是收敛的,所以,9cos 13∑∞=+n n n是绝对收敛。
6.ae解析:axxa x xx a x a x xx e ex a x a ==+=+→→→sin 01sin sin 101lim )sin 1(lim )sin 1(lim 7.,3sin )23()3(lim0=--→x x f f x 则)3('f =23解析:3)3('222)3()23(lim sin )23()3(lim 00==---=--→→f x f x f xx f f x x 8.‐9解析:0lim →x a e x x -2sin =-)(cos b x 0lim→x a e b x x x --2)(cos =5,所以根据洛必达法则可知:1,01==-a a 0lim →x x b x x 2)(cos -=212cos bb x -=-=5b=‐99.3解析:2221)1)(2(11111t t t tt dxdy +++=+++=31==t dx dy 10.322y x y -解析:方程两边同时求导:得:yxy y y x ==⋅-',0'22=-==32221''y x x y dx y d 322y x y -11.(‐1,1)解析:4224222)1(1)1(21'x x x x x y +-=+-+=令0'=y ,则11,12<<-<x x 浙江中浙专升本12.1-e 解析:⎰∑-=+==-=∞→'0101)()()(1lim 2e c e dx xf n k f n x n k n 13.解析:=⎰+∞dx x x e2)(ln 11ln 1ln )(ln 12=∞+-=⎰∞+e x x d x e14.解析:3412)31()1(3212=-=-=⎰x x dx x A 15.解析:特征方程:0122=+-r r ,特征根:121==r r 通解为:2,121()(C C e x C C y x+=为任意常数)二、计算题16.解析:2sin 2lim )sin 1ln(1lim )sin 1ln(lim 02100==--=+-→-→-→x x x e ex e e x x x x x x 17.两边同时求导得x xx x y x cos sin 11)sin 1ln(1+=+=,所以⎥⎦⎤⎢⎣⎡+++=x x x x dy cos sin 11)sin 1ln(dx x x )sin 1(+π=x 代入得在此处的微分为118.10sin sin sin sin sin sin cos 10232435450502=+-+-==-⎰⎰⎰⎰⎰⎰⎰πππππππππππxdx xdx xdx xdx xdx dx x xdx 19.令tdtdx t x x t 2,,2===原式=dt ttt t tdt tdt t tdt t 222211arctan arctan arctan 22arctan +-===⎰⎰⎰⎰=dt tt t 111(arctan 22⎰+--=dt t dt t t 22111arctan +--⎰⎰=c t t t t ++-arctan arctan 2=cx x x x ++-arctan arctan 20.解析:令tdx t x x t 21,45,452-=-=-=原式=6113)315(81)5(81)21(1453312132=-=-=-⋅-⎰⎰t t dt t dt t t t 21.解析:因为)(x f 在0=x 处可导,所以在0=x 处连续)1ln(lim )2(lim 0ax b x x x +=+→→所以0=b 22lim )1ln(lim00==+→→x xxax x x ,所以2=a 浙江中浙专升本22.解析:直线过两点)1,2,1(-A 因为直线平行于平面,所以→→⊥n S ,)1,3,2(-=→n 设两条直线的交点)12,3,1(-+-t t t p ,所以)12,1,(-+==→→t t t P A S 4,012332==-+--t t t t 所以)7,5,4(P ,所以直线方程;715241-=-=+z y x 23.(1)解析:34)('2+-=x x x f 令0)('=x f ,则3,1==x x 列表如下x)1,(-∞1)3,1(3),3(+∞)('x f +0‐+)(x f ↑极大值↓极小值↑(2)42)(''-=x x f 令0)(''=x f ,则2=x 列表如下;x)2,(-∞2),2(+∞)('x f ‐0+)(x f 凸拐点凹浙江中浙专升本。
2018年成人高考《高等数学(一)》真题及答案
A.1B. 2 C. 3 D. 4 解:
设 f x 4x ln 4 x 4 ln x k , x 0,.①
f x 4 4 ln3 x 4 4 x ln3 x 1
则
x
xx
.②
令 f x 0 ,得驻点 x 1.
因为当 x 0,1 时,f x 0 ,故 f x 在 x 0,1单调减少;而当 x 1,时,f x 0 故 f x
x
x
.
第 3 页 共 18 页
综合上述分析可画出 y f x的草图,易知交点个数为 2.
16.设
ln
f
t
cos t
,则
tf f
ttdt
(A)
A. t cost sin t C B. t sin t cost C
C. tcos t sin t C D. t sin t C
lim ln n 1 1 2 1 2 2 1 n 2 17. n n n n (B)
sin x dx
sin 2x dx
2.函数 y 8x 的反函数是(C). A. y 3log 2 x(x 0) ;B. y 8x ;
C.
y
1 3
log 2
x(x
0)
;D.
y
8 x
(x
0)
.
xn
1 n
,当n为奇数,
3.设
107 ,当n为偶数, 则(D)
A.
lim
n
xn
0
;B.
lim
n
xn
107 ;
0, n为奇数,
lim
n
2
2
C. 2 cos y D. 2 cos x
dy 解:因为 dx
成人高考专升本(高等数学一)考试真题及答案
成人高考专升本(高等数学一)考试真题及答案-卷面总分:176分答题时间:120分钟试卷题量:35题一、单选题(共16题,共58分)1.当x→0时,sin(x^2+5x^3)与x^2比较是()A.较高阶无穷小量B.较低阶的无穷小量C.等价无穷小量D.同阶但不等价无穷小量正确答案:C您的答案:本题解析:暂无解析2.设y=x^-5+sinx,则y′等于()A.B.C.D.正确答案:A您的答案:本题解析:暂无解析3.若事件A与B互斥,且P(A)=0.5P(AUB)=0.8,则P(B)等于()A.0.3B.0.4C.0.2D.0.1正确答案:A您的答案:本题解析:暂无解析4.设函数y=2x+sinx,则y'=A.1-cosxB.1+cosxC.2-cosxD.2+cosx正确答案:D您的答案:本题解析:暂无解析5.设函数y=e^x-2,则dy=A.B.D.正确答案:B您的答案:本题解析:暂无解析6.设函数y=(2+x)^3,则y'=A.(2+x)^2B.3(2+x)^2C.(2+x)^4D.3(2+x)^4正确答案:B您的答案:本题解析:暂无解析7.设函数y=3x+1,则y'=()A.0B.1C.2D.3正确答案:A您的答案:本题解析:暂无解析8.设函数z=3x2y,则αz/αy=()A.6yB.6xyC.3xD.3X^2正确答案:D您的答案:本题解析:暂无解析9.设y=x^4,则y'=()A.B.C.D.正确答案:C您的答案:本题解析:暂无解析10.设y=x+inx,则dy=()A.C.D.dx正确答案:B您的答案:本题解析:暂无解析11.设y+sinx,则y''=()A.-sinxB.sinxC.-cosxD.cosx正确答案:A您的答案:本题解析:暂无解析12.在空间直角坐标系中,方程x^2+y^2=1表示的曲面是()A.柱面B.球面C.锥面D.旋转抛物面正确答案:A您的答案:本题解析:暂无解析13.设z=x^2-3y,则dz=()A.2xdx-3ydyB.x^2dx-3dyC.2xdx-3dyD.x^2dx-3ydy正确答案:C您的答案:本题解析:暂无解析14.微分方程y'=2y的通解为y=()A.B.C.D.正确答案:A您的答案:本题解析:暂无解析15.设b≠0,当x→0时,sinbx是x2的()A.高阶无穷小量B.等价无穷小量C.同阶但不等价无穷小量D.低阶无穷小量正确答案:D您的答案:本题解析:暂无解析16.函数f(x)=x^3-12x+1的单调减区间为()A.(-∞,+∞)B.(-∞,-2)C.(-2,2)D.(2,+∞)正确答案:C您的答案:本题解析:暂无解析二、填空题(共13题,共52分)17.设函数y=x3,则y/=()正确答案:3x^2您的答案:18.设函数y=(x-3)^4,则dy=()正确答案:4(x-3)^3dx您的答案:19.设函数y=sin(x-2),则y"=()正确答案:-sin(x-2)您的答案:20.过坐标原点且与直线(x-1)/3=(y+1)/2+(z-3)/-2垂直的平面方程为()正确答案:3x+2y-2z=0您的答案:21.设函数x=3x+y2,则dz=()正确答案:3dx+2ydy您的答案:22.微分方程y/=3x2的通解为y=()正确答案:x^3+C您的答案:23.函数y=1/3x^3-x的单调减少区间为______.正确答案:(-1,1)您的答案:24.过点(1,-1,-2)且与平面2x-2y+3z=0垂直的直线方程为______.正确答案:您的答案:25.微分方程y'=x+1的通解为y=______.正确答案:您的答案:26.函数-e^-x是f(x)的一个原函数,则f(x)=()正确答案:您的答案:27.函数y=x-e^x的极值点x=()正确答案:0您的答案:28.设函数y=cos2x,求y″=()正确答案:-4cos2x您的答案:29.设z=e^xy,则全微分dz=()正确答案:您的答案:三、计算题(共13题,共52分)30.求曲线y=x^3-3x+5的拐点。
2018年河南专升本高数真题+答案解析
2018年河南省普通高等学校选拔专科优秀毕业生进入本科学校学习考试高等数学试卷一、选择题(每小题2分,共60分) 1.函数()f x = )A .[)2,2-B .()2,2-C .(]2,2-D .[]2,2-【答案】B【解析】()2402,2x x ->⇒∈-,故选B .2.函数()()sin x x f x e e x -=-是( ) A .偶函数 B .奇函数C .非奇非偶函数D .无法判断奇偶性【答案】A【解析】sin x ,x x e e --都是奇函数,两个奇函数的乘积为偶函数,故选A .3.极限221lim 21x x x x →∞+=-+( )A .0B .12C .1D .2【答案】B【解析】根据有理分式函数求无穷大时的极限结论知,所求极限值为最高次项系数之比,故选B .4.当0x →时,2(1)1k x +-与1cos x -为等价无穷小,则k 的值为( )A .1B .12-C .12D .1-【答案】C【解析】0x →时,22(1)1~k x kx +-,211cos ~2x x -,根据等价无穷小传递性,有12k =.5.函数22132x y x x -=-+在1x =处间断点的类型为( )A .连续点B .可去间断点C .跳跃间断点D .第二类间断点【答案】B【解析】()()()()221111111lim lim lim 232122x x x x x x x x x x x x →→→+--+===--+---,且函数在1x =处无定义,故为可去间断点.6.设()f x 在x a =的某个领域内有定义,则()f x 在x a =处可导的一个充要条件是( )A .0(2)()limh f a h f a h h →+-+存在B .0()(-)limh f a h f a h h→+-存在C .0()(-)limh f a f a h h→-存在D .01lim ()()h h f a f a h →⎡⎤+-⎢⎥⎣⎦存在 【答案】C【解析】()f x 在x a =处可导时,四个选项的极限都存在,且都等于()f a ',00()()()()limlim h h f a f a h f a h f a h h→-→----=-就是导数的定义,即有()f x 在x a =处可导,故选C .7.极限01arctan lim arctan x x x x x →⎛⎫-= ⎪⎝⎭( ) A .1- B .1 C .0 D .2【答案】A【解析】0001arctan 1arctan lim arctan lim arctan lim 011x x x x x x x x x x x →→→⎛⎫-=-=-=- ⎪⎝⎭.8.已知ln y x x =,则y '''=( )A .1xB .21x C .1x-D .21x -【答案】D【解析】ln 1y x '=+,1y x''=,21y x '''=-.9.已知二元函数(21)xz y =+,则zy∂=∂( )A .1(21)x x y -+B .12(21)x x y -+C .(21)ln(21)x y y ++D .2(21)ln(21)x y y ++【答案】B 【解析】()1221x z x y y-∂=+∂,故选B .10.曲线22xy x x =+-的水平渐近线为( )A .1y =B .0y =C .2x =-D .1x =【答案】A 【解析】2lim 12x xx x →∞=+-,所以水平渐近线为1y =.11下列等式正确的是( ) A .()()d df x f x C '=+⎰ B .()()d df x f x C =+⎰C .()()f x dx f x C '=+⎰D .()()ddf x f x dx =⎰【答案】C【解析】根据不定积分的性质,()()f x dx f x C '=+⎰,故选C .12.已知2()f x dx x C =+⎰,则2(1)xf x dx -=⎰( )A .23(1)x C -+B .231(1)2x -C .231(1)2x C -+D .231(1)2x C --+【答案】D【解析】2222311(1)(1)(1)(1)22xf x dx f x d x x C -=---=--+⎰⎰,故选D .13.导数20(1)xe d t dt dx +=⎰( )A .2(1)x x e e +B .2(1)x x e e +C .22(1)x x e e +D .22(1)x x e e +【答案】A【解析】()()()2220(1)11x e x x x xd t dte e e e dx'+=+=+⎰,故选A .14.下列不等式成立的是( ) A .1120xdx x dx >⎰⎰B .22211xdx x dx >⎰⎰C .1120xdx x dx <⎰⎰D .22311xdx x dx >⎰⎰【答案】A【解析】[]0,1x ∈,2x x >,所以1120xdx x dx >⎰⎰,故选A .15.下列广义积分收敛的是( )A .1+∞⎰B .e+∞⎰C .11dx x+∞⎰D .1ln edx x x+∞⎰【答案】B【解析】四个广义积分都是p 广义积分,只有B 中312p =>是收敛的,故选B .16.已知向量{}2,3,1=-a ,{}1,1,3=-b ,则a 与b 夹角的余弦为( ) AB C D .0【答案】C 【解析】cos θ⋅===⋅a b a b ,故选C .17.曲线20z y x ⎧=⎨=⎩绕z 轴旋转所得旋转曲面的方程为( )A .22z x y =+B .22z x y =-C .22z y x =-D .2()z x y =+【答案】A【解析】绕z 轴旋转,z 不动,y 用代替,即(222z x y ==+,故选A .18.极限222222(,)(0,0)1cos()lim ()xy x y x y x y e +→-+=+( )A .12B .2C .1D .0【答案】D 【解析】222222222(,)(0,0)0001cos()1cos lim lim lim lim 022()x y tt t t xy x y t t t x y t t tte te ex y e +=+→→→→-+-−−−−→===+,故选D . 19.关于二元函数(,)z f x y =在点00(,)x y 处,下列说法正确的是( ) A .可微则偏导数一定存在 B .连续一定可微C .偏导数存在一定可微D .偏导数存在一定连续【答案】A【解析】由可微的必要条件和充分条件可知,选A .20.将二次积分2330(,)xxdx f x y dy ⎰⎰改写为另一种次序的积分是( )A .2330(,)xxdy f x y dx ⎰⎰B .233(,)x xdx f x y dy ⎰⎰C .233(,)x xdx f x y dy ⎰⎰D .93(,)dy f x y dx ⎰⎰【答案】D【解析】将X 型区域转化为Y 型区域(,)09,3y x y y x ⎧≤≤≤≤⎨⎩,则可化为93(,)y dy f x y dx ⎰⎰,故选D .21.设L 为抛物线2y x =介于(0,0)和之间的一段弧,则曲线积分=⎰( )A .136B .136-C .613-D .613【答案】A【解析】2:(0y x L x x x ⎧=≤≤⎨=⎩, 1222011)(41)8x d x ===++⎰3221213(41)836x =⋅+=,故选A .22.关于级数21sin()n na n ∞=⎡⎢⎣∑,下列说法正确的是( ) A .绝对收敛 B .发散C .条件收敛D .敛散性与a 有关【答案】B【解析】级数21sin()n na n ∞=∑收敛,级数n ∞=由级数的性质知,级数21sin()n na n ∞=⎡⎢⎣∑发散,故选B .23.设幂级数0(1)nn n a x ∞=-∑在1x =-处条件收敛,则它在2x =处( )A .绝对收敛B .条件收敛C .发散D .不能确定【答案】A【解析】令1x t -=,级数化为0nn n a t ∞=∑,在1x =-处原级数条件收敛,即级数0nn n a t ∞=∑在2t =-处条件收敛,2x =处,1t =,根据阿贝尔定理知,1t =时,级数0nn n a t ∞=∑绝对收敛,即2x =时原级数绝对收敛,故选A .24.设1y ,2y ,3y 是非齐次线性微分方程()()()y p x y q x y x ϕ'''++=三个线性无关的特解,则该方程的通解为( ) A .112233C y C y C y ++ B .1122123()C y C y C C y +-+C .1122123(1)C y C y C C y +---D .1132233()()C y y C y y y -+-+【答案】D【解析】1y ,2y ,3y 是非齐次线性微分方程()()()y p x y q x y x ϕ'''++=三个线性无关的特解,则13y y -,23y y -为对应齐次方程的两个无关特解,而3y 为非齐次线性微分方程的特解,故非齐次线性微分方程通解为1132233()()C y y C y y y -+-+,故选D .25.微分方程43()2()0y x y xy '''+-=的阶数是( )A .1B .2C .3D .4【答案】B【解析】导数的最高阶为2,故方程的阶数为2,故选B .26.平面230x y z π+-=:与直线111123x y z l ---==-:的位置关系是( )A .平行但不在平面内B .在平面内C .垂直D .相交但不垂直【答案】C【解析】平面的法向量与直线方向向量相等,故直线与平面垂直,故选C .27.用待定系数法求微分方程232x y y y xe '''-+=的特解y *时,下列y *设法正确的是( )A .2()x y x AxB e *=+ B .2()x y Ax B e *=+C .22x y Ax e *=D .2x y Axe *=【答案】A【解析】特征方程有两个根为11r =,22r =,2λ=是特征方程的单根,所以1k =,故特解y *设为2()x y x Ax B e *=+,故选A .28.若曲线积分2232(3)(812)yL x y axy dx x x y ye dy ++++⎰在整个xOy 面内与路径无关,则常数a =( )A .8-B .18-C .18D .8【答案】D【解析】2(,)32P x y x axy y ∂=+∂,2(,)316Q x y x xy x ∂=+∂,因曲线积分在整个xOy 面内与路径无关,则(,)(,)P x y Q x y y x∂∂=∂∂,即2232316x axy x xy +=+,从而8a =,故选D .29.下列微分方程中,通解为2312x x y C e C e =+的二阶常系数齐次线性微分方程是( ) A .560y y y '''-+= B .560y y y '''++=C .650y y y '''-+=D .650y y y '''++=【答案】A【解析】特征方程的两个根为12r =,23r =,由根与系数之间的关系知,5p =-,6q =,故对应的二阶常系数齐次线性微分方程是560y y y '''-+=,故选A .30.对函数()1f x =在闭区间[]1,4上应用拉格朗日中值定理时,结论中的ξ=( )A .32B .23C .49D .94【答案】D 【解析】(4)(1)1()413f f f ξ-'===-,解得94ξ=,故选D .二、填空题(每小题2分,共20分)31.已知()x f x e =且[]()12(0)f x x x ϕ=+>,则()x ϕ=________. 【答案】ln(12)(0)x x +>【解析】由()x f x e =得[]()()x f x e ϕϕ=,所以()12x e x ϕ=+,故()ln(12)(0)x x x ϕ=+>.32.极限23lim 2xx x x →∞+⎛⎫= ⎪+⎝⎭________.【答案】2e 【解析】12(2)222lim2231lim lim 122x xx x xxxx x x ee x x →∞+⋅⋅++→∞→∞+⎛⎫⎛⎫=+== ⎪ ⎪++⎝⎭⎝⎭.33.20()20x ae x f x x x ⎧+<=⎨+≥⎩,,在0x =处连续,则a =________.【答案】1【解析】函数在0x =处连续,则该点处左右极限存在且相等,还等于该点处的函数值,而lim ()lim(1)1x x x f x ae a --→→=+=+,00lim ()lim(2)2x x f x x ++→→=+=,所以12a +=,即1a =.34.已知函数sin y x x =,则dy =________. 【答案】(sin cos )x x x dx +【解析】(sin )(sin cos )dy x x dx x x x dx '==+.35.曲线23x t y t z t=⎧⎪=⎨⎪=⎩在1t =对应的点处的法平面方程为________.【答案】236x y z ++=【解析】在1t =对应的点为(1,1,1),该点处曲线的切向量,即平面的法向量为{}{}211,2,31,2,3t t t ===n ,故该点处的法平面方程为1(1)2(1)3(1)0x y z ⋅-+-+-=,即236x y z ++=.36.极限ln(1)lim x x e x→+∞+=________.【答案】1【解析】ln(1)limlim 11x xx x x e e xe →+∞→+∞+==+.37.不定积分21dx x =⎰________. 【答案】1C x-+【解析】211dx C x x=-+⎰.38.定积分121(cos )x x x dx -+=⎰________.【答案】23【解析】111122231011122(cos )cos 233x x x dx x dx x xdx x dx x ---+=+===⎰⎰⎰⎰.39.已知函数(,,)f x y z =(1,1,1)grad =________. 【答案】111,,333⎧⎫⎨⎬⎩⎭【解析】(,,)f x y z =则222x x f x y z '=++,222y y f x y z '=++,222zzf x y z '=++, 故(1,1,1)222222222111(1,1,1),,,,333x y zgrad x y z x y z x y z ⎧⎫⎧⎫==⎨⎬⎨⎬++++++⎩⎭⎩⎭.40.级数1023n nn ∞-==∑________.【答案】9 【解析】10021233392313nn nn n ∞∞-==⎛⎫==⋅= ⎪⎝⎭-∑∑.三、计算题(每小题5分,共50分) 41.求极限20tan lim (1)x x x xx e →--.【答案】13【解析】2222222200000tan tan sec 1tan 1lim lim lim lim lim (1)3333x x x x x x x x x x x x x x e x x x x x →→→→→---=====-⋅.42.已知2(sin )2(1cos )x t t y t =-⎧⎨=-⎩,02t π≤≤,则22d ydx .【答案】212(1cos )t --【解析】sin 1cos t t y dy t dx x t'=='-,22221sin 1cos (1cos )sin 11cos 2(1cos )(1cos )2(1cos )t d y d dy t t t t dx dt dx x t t t t '--⎛⎫⎛⎫=⋅=⋅=⋅ ⎪ ⎪'----⎝⎭⎝⎭ 212(1cos )t =--.43.求不定积分⎰.【答案】352235C ++【解析】t =,则21x t =+,2dx tdt =,故22435352222(1)22()3535t t tdt t t dt t t C C =+⋅=+=++=++⎰⎰⎰.44.求定积分21e ⎰.【答案】1)【解析】22211(1ln )1)e e x =+==⎰⎰.45.求微分方程690y y y '''-+=的通解. 【答案】312()x y C C x e =+【解析】对应特征方程为2690r r -+=,特征根为123r r ==,故所求微分方程的通解为312()x y C C x e =+.46.求函数22(,)22f x y x y y x =++-的极值.【答案】【解析】令220220fx xf y y∂⎧=-=⎪∂⎪⎨∂⎪=+=⎪∂⎩,得唯一驻点(1,1)-.在驻点(1,1)-处有:2xx A f ==,0xy B f ==,2yy C f ==,且20B AC -<,0A >, 故点(1,1)-为(,)f x y 的极小值点,且极小值(1,1)2f -=-,无极大值.47.将函数()ln(2)f x x =+展开为1x -的幂级数. 【答案】11(1)ln 3(1)(24)3(1)n nn n x x n +∞+=-+--<≤+∑ 【解析】令1x t -=,则1x t =+,所以()ln(3)ln 3ln 13t f t t ⎛⎫=+=++ ⎪⎝⎭,而10ln(1)(1)(11)1n n n x x x n +∞=+=--<≤+∑,故 11100(1)3ln(2)ln 3(1)ln 3(1)(24)13(1)n n n n n n n t x x x n n ++∞∞+==⎛⎫ ⎪-⎝⎭+=+-=+--<≤++∑∑.48.设D 是由直线y x =、2y x =及1x =所围成的闭区域,求二重积分Dydxdy ⎰⎰.【答案】12【解析】把D 看作X 型区域,则可表示为{}(,)01,2D x y x x y x =≤≤≤≤,故2121310311222xxDx ydxdy dx ydy dx x ====⎰⎰⎰⎰⎰.49.求函数43342y x x =-+的凹凸区间和拐点.【答案】凸区间为20,3⎛⎫ ⎪⎝⎭,凹区间为(,0)-∞和2,3⎛⎫+∞ ⎪⎝⎭;拐点为(0,2)和238,327⎛⎫⎪⎝⎭【解析】函数定义域为(,)-∞+∞,321212y x x '=-,2362412(32)y x x x x ''=-=-, 令0y ''=,得0x =,23x =, 列表如下故所求函数的凸区间为20,3⎛⎫ ⎪⎝⎭,凹区间为(,0)-∞和2,3⎛⎫+∞ ⎪⎝⎭;拐点为(0,2)和238,327⎛⎫⎪⎝⎭.50.已知函数cos()xy z e x y =++,求全微分dz .【答案】sin()sin()xy xyye x y dx xe x y dy ⎡⎤⎡⎤-++-+⎣⎦⎣⎦【解析】sin()xy z ye x y x∂=-+∂,sin()xyz xe x y y ∂=-+∂,在定义域内为连续函数,由全微分存在的充分条件可知dz 存在,且sin()sin()xy xyz z dz dx dy ye x y dx xe x y dy x y∂∂⎡⎤⎡⎤=+=-++-+⎣⎦⎣⎦∂∂.四、应用题(每小题7分,共14分) 51.设平面图形D 由曲线1y x=、直线y x =及3x =所围成的部分,求D 绕x 轴旋转形成的旋转体的体积. 【答案】8π【解析】把区域D 看作X 型区域,取x 为积分变量,且[]1,3x ∈, 平面图形D 绕x 轴旋转一周所得旋转体的体积为323312111183x V x dx x x x πππ⎛⎫⎛⎫=-=+= ⎪ ⎪⎝⎭⎝⎭⎰.52.某车间靠墙壁要盖一间长方形的小屋,现有存砖只够砌20米长的墙壁,应围城怎样的长方形才能使这间小屋的面积最大?【答案】长方形小屋的长为10米,宽为5米时小屋面积最大【解析】设长方形的正面长为x ,侧面长为y 时,面积为S ,则S xy =且220y x +=,即 (202)S y y =-,令2040S y '=-=,则唯一可能的极值点5y =,而此时40S ''=-<,所以5y =是极大值点,即为最大值点,此时10x =, 故长方形小屋的长为10米,宽为5米时小屋面积最大.五、证明题(6分)53.设()f x 在区间[]0,1内连续,(0,1)内可导,且(0)0f =,1(1)2f =,证明:存在不同两个点,12,(0,1)ξξ∈,使得12()()1f f ξξ''+=成立.【解析】函数()f x 在区间10,2⎡⎤⎢⎥⎣⎦,1,12⎡⎤⎢⎥⎣⎦都满足拉格朗日中值定理,所以110,2ξ⎛⎫∃∈ ⎪⎝⎭,21,12ξ⎛⎫∃∈ ⎪⎝⎭,使得11(0)12()21202f f f fξ⎛⎫- ⎪⎛⎫⎝⎭'== ⎪⎝⎭-,21(1)12()121212f f f f ξ⎛⎫- ⎪⎛⎫⎝⎭'==- ⎪⎝⎭-,两式相加,即可得 存在不同两个点,12,(0,1)ξξ∈,使得12()()1f f ξξ''+=成立.。
2018年成人高考专升本《高等数学(一)》考试及参考答案(共三套)
2018年成人高等学校专升本招生全国统一考试高等数学(一)。
答案必须答在答题卡上指定的位置,答在试卷上无效.......(共三套及参考答案)第Ⅰ卷(选择题,共40分)一、选择题:1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A.0B.1C.2D.不存在2.().A.单调增加且为凹B.单调增加且为凸c.单调减少且为凹D.单调减少且为凸3.A.较高阶的无穷小量B.等价无穷小量C.同阶但不等价无穷小量D.较低阶的无穷小量4.A.B.0C.D.15.A.3B.5C.1D.A.-sinxB.cos xC.D.A.B.x2C.2xD.28.A.B.C.D.9.设有直线当直线l1与l2平行时,λ等于().A.1B.0C.D.一110.下列命题中正确的有().A.B.C.D.第Ⅱ卷(非选择题,共110分)二、填空题:11~20小题,每小题4分,共40分.11.12.13.14.15.16.17.18.19.20.三、解答题.21~28小题,共70分.解答应写出推理、演算步骤.21.(本题满分8分)22.(本题满分8分)设y=x+arctanx,求y'.23.(本题满分8分)24.(本题满分8分)计算25.(本题满分8分)26.(本题满分10分)27.(本题满分10分)28.(本题满分10分)求由曲线y=x,y=lnx及y=0,y=1围成的平面图形的面积S及此平面图形绕y轴旋转一周所得旋转体体积.模拟试题参考答案一、选择题1.【答案】C.【解析】本题考查的知识点为左极限、右极限与极限的关系.2.【答案】B.【解析】本题考查的知识点为利用一阶导数符号判定函数的单调性和利用二阶导数符号判定曲线的凹凸性.3.【答案】C.【解析】本题考查的知识点为无穷小量阶的比较.4.【答案】D.【解析】本题考查的知识点为拉格朗日中值定理的条件与结论.可知应选D.5.【答案】A.【解析】本题考查的知识点为判定极值的必要条件.故应选A.6.【答案】C.【解析】本题考查的知识点为基本导数公式.可知应选C.7.【答案】D.【解析】本题考查的知识点为原函数的概念.可知应选D.8.【答案】D.【解析】本题考查的知识点为牛顿一莱布尼茨公式和定积分的换元法.因此选D.9.【答案】C.【解析】本题考查的知识点为直线间的关系.10.【答案】B.【解析】本题考查的知识点为级数的性质.可知应选B.通常可以将其作为判定级数发散的充分条件使用.二、填空题11.【参考答案】e.【解析】本题考查的知识点为极限的运算.12.【参考答案】1.【解析】本题考查的知识点为导数的计算.13.【参考答案】x—arctan x+C.【解析】本题考查的知识点为不定积分的运算.14.【参考答案】【解析】本题考查的知识点为定积分运算.15.【参考答案】【解析】本题考查的知识点为隐函数的微分.解法1将所给表达式两端关于x求导,可得从而解法2将所给表达式两端微分,16.【参考答案】【解析】本题考查的知识点为二阶常系数线性齐次微分方程的求解.17.【参考答案】1.【解析】本题考查的知识点为二元函数的极值.可知点(0,0)为z的极小值点,极小值为1.18.【参考答案】【解析】本题考查的知识点为二元函数的偏导数.19.【参考答案】【解析】本题考查的知识点为二重积分的计算.20.【参考答案】【解析】本题考查的知识点为幂级数的收敛半径.所给级数为缺项情形,三、解答题21.【解析】本题考查的知识点为极限运算.解法1解法2【解题指导】在极限运算中,先进行等价无穷小代换,这是首要问题.应引起注意.22.【解析】23.【解析】本题考查的知识点为定积分的换元积分法.【解题指导】比较典型的错误是利用换元计算时,一些考生忘记将积分限也随之变化. 24.【解析】本题考查的知识点为计算反常积分.计算反常积分应依反常积分收敛性定义,将其转化为定积分与极限两种运算.25.【解析】26.【解析】27.【解析】本题考查的知识点为二重积分运算和选择二次积分次序.28.【解析】所给曲线围成的图形如图8—1所示.2018年成人高等学校专升本招生全国统一考试高等数学(一)。
成人高考自考数学真题2018年成人高等学校高起点招生全国统一考试理科数学附答案解析
已知椭圆 C 的长轴长为 4,两焦点分别为 F1(- 3,0),F2( 3,0). (1)求 C 的标准方程.
(2)若 P 为 C 上一点,|PF1|-|PF2|=2,求 cos∠F1PF2.
2
2
【答案】题知 a=2,c= 3,所以 b= 2 − 2=1,所以椭圆方程为 + = 1
41
(2) | |
3
3
=22 −1
(2) = 22 −1=128=27
即 2k-1=7 ,得 k=4
23.(本小题满分 12 分)
在ΔABC 中,A=300,AB=2, BC= 3.求
(1)sinC
(2)AC
【答案】(1)根据正弦定理 =
有2 =
3300,解得
sinC=
3 3
.
(2) sinC= 3 ,sin600= 3 ,知∠C <600 ,得到∠B 为钝角.
A. 3/10
B. 1/5
C. 1/10
D.3/5
【答案】C 10.圆 x2+y2+2x-6y-6=0 的半径为( )
A. 10
B. 4
【答案】B
11.双曲线 3x2-4y2=12 的焦距为( )
C. 15
D.16
A. 2 7
B. 2 3
C. 4
D.2
【答案】A
12.已知抛物线 y2=6x 的焦点为 F,点 A(0,-1),则直线 AF 的斜率为( )
2018 年成人高等学校高起点招生全国统一考试
理科数学
本试卷分第 I 卷(选择题)和第Ⅱ卷(非选择题)两部分。满分 150 分。考试时间 150 分钟。
第 I 卷(选择题,共 85 分)
2018年专升本高数真题答案解析
浙江省2018年选拔优秀高职高专毕业生进入本科学习统一考试高等数学参考答案选择题部分一、选择题:本大题共5小题,每小题4分,共20分。
题号12345答案CCABC1.C 解析:)0(0lim )(lim 0f x x f x x ===--→→,1sin lim )(lim 0==++→→xxx f x x ,所以0=x 是)(x f 的跳跃间断点,选项C 正确。
2.C 解析:02sin lim 2sin cos cos lim cos sin lim 0020==+-=-→→→xx x x x x x x x x x x x ,所以选项C 正确。
3.A 解析:因为函数)(x f 二阶可导,且0)(lim=-→x x x f x x ,所以0)()(lim 00==→x f x f x x ,故0)()()(lim )(lim000000='=--=-→→x f x x x f x f x x x f x x x x ,又因为0)(0<''x f ,所以由极值的第二充分条件可知,函数)(x f 在0x x =处取得极大值,因此选项A 正确。
4.B 解析:;⎰-=xxx f x f dx x f dx d 2)()2(2)(,故选项B 错误;由零点定理可知选项C 正确;由定积分性质中的估值定理可知选项D 正确。
5.C 解析:选项A :交错级数,通项极限为:011lim =+∞→n n ,且n n u u <+1,所以由莱布尼茨审敛法,该级数收敛,但是加上绝对值后,级数∑∞=+111n n 发散,所以选项A为条件收敛。
选项B :交错级数,通项极限为:0)1ln(1lim=+∞→n n ,且n n u u <+1所以由莱布尼茨审敛法,该级数收敛,但是加上绝对值后,因为nn 1)1ln(1>+,由小散证大散,级数∑∞=+1)1ln(1n n 发散,所以选项B 为条件收敛。
成人高考专升本(高等数学一)考试真题及答案
成人高考专升本(高等数学一)考试真题及答案一、单选题(共16题,共58分)1.当x→0时,sin(x^2 +5x^3 )与 x^2比较是( )A.较高阶无穷小量B.较低阶的无穷小量C.等价无穷小量D.同阶但不等价无穷小量2.设y=x^-5+sinx,则y′等于()A.B.C.D.3.若事件A与B互斥,且P(A)=0.5P(AUB)=0.8,则P(B)等于()A.0.3B.0.4C.0.2D.0.14.设函数y=2x+sinx,则y'=A.1-cosxB.1+cosxC.2-cosxD.2+cosx5.设函数 y=e^x-2 ,则dy=A.B.C.D.6.设函数y=(2+x)^3,则y'=A.(2+x)^2B.3(2+x)^2C.(2+x)^4D.3(2+x)^47.设函数y=3x+1,则y'=()A.0B.1C.2D.38.设函数z=3x2y,则αz/αy=()A.6yB.6xyC.3xD.3X^29.设y=x^4,则y'=()A.B.C.D.10.设y=x+inx,则dy=()A.B.C.D.dxA.-sin xB.sin xC.-cosxD.cosx12.在空间直角坐标系中,方程x^2+y^2=1表示的曲面是()A.柱面B.球面C.锥面D.旋转抛物面13.设z=x^2-3y ,则dz=()A.2xdx -3ydyB.x^2dx-3dyC.2xdx-3dyD.x^2dx-3ydy14.微分方程 y'=2y的通解为y=()A.B.C.D.15.设b≠0,当x→0时,sinbx是x2的()A.高阶无穷小量B.等价无穷小量C.同阶但不等价无穷小量D.低阶无穷小量16.函数f(x)=x^3-12x+1的单调减区间为()A.(- ∞,+ ∞)B.(- ∞,-2)C.(-2,2)D.(2,+ ∞)二、填空题(共13题,共52分)17.设函数 y=x3,则 y/=()18.设函数y=(x-3)^4,则dy=()19.设函数y=sin(x-2),则y"=()20.过坐标原点且与直线(x-1)/3=(y+1)/2+(z-3)/-2垂直的平面方程为()21.设函数x=3x+y2,则dz=()22.微分方程y/=3x2 的通解为y=()23.函数y=1/3x^3-x的单调减少区间为______.24.过点(1,-1,-2)且与平面2x-2y+3z=0垂直的直线方程为______.25.微分方程y'=x+1的通解为y= ______.26.函数-e^-x 是 f(x) 的一个原函数,则 f(x) =()27.函数y=x-e^x的极值点x=()28.设函数y=cos2x,求y″=()29.设z=e^xy ,则全微分dz=()三、计算题(共13题,共52分)30.求曲线 y=x^3 -3x+5的拐点。
2018年成人高考数学试题及答案(高起点)
25。(本小题满分 13 分) 已知椭圆 的长轴长为 4,两焦点分别为 1( f ,0), 2( ,0) (1)求 的标准方程; (2)若 为 上一点,| 1| f | 2| = 2,求 ={∠ 1 2.
C.
1 10
D. 5
10.圆 2 + 2 + 2 − 6 − 6 = 0 的半径为
()
A. 10 C. 15 11.曲线 2 − 4 2 = 12 的焦距为
B.4 D.16
()
A.27
B.2
C.4
D.2
12.已知抛物线 2 = 6 的焦点为 F,点 A(0, − 1),则直线 AF 的斜率为( )
2018 年成人高考高起专数学试题
1.已知集合 A = {2,4,8},B = {2,4,6,8},则 A ∪ B =
A.{2,4,6,8} C.{2,4,8}
B.{2,4} D.{6}
2.不等式 2 − 2 < 0 的解集为
() ()
A.{ | < 0 或 > 2}
B.{ | f 2 < < 0}
B. = log2 ( + ) D. = log2 ( + 2) + 1
8.在等差数列 , 中, 1 = 1,公差 0, 2, , 6成等比数列,则 =
()
A.1 C. − 2
B. − 1 D.2
9.从 1,2, ,4,5 中任取 2 个不同的数,这 2 个数都是偶数的概率为 ( )
A. 10
B.
1 5
2018年《高数》真题
2018年成人高等学校专升本招生全国统一考试高等数学(一)一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。
1.=→xxx cos lim 0()A.eB.2C.1D.02.设x y cos 1+=,则dy=()A.()dxx sin 1+ B.()dxx sin 1- C.xdxsin D.xdxsin -3.若函数()x x f 5=,则()='x f ()A.15-x B.15-x x C.5ln 5x D.x54.=-⎰dx x21()A.C x +-2ln B.Cx +--2ln C.()Cx +--221D.()Cx +-2215.()='⎰dx x f 2()A.()Cx f +221 B.()Cx f +2 C.()Cx f +22 D.()Cx f +216.若()x f 为连续的奇函数,则()=⎰-dx x f 11A.0B.2C.()12-f D.()12f 7.若二元函数y x y x z 232++=,则=∂∂xz()A.yxy 232++ B.yxy 23++ C.32+xy D.3+xy 8.方程0222=-+z y x 表示的二次曲面是()A.柱面B.球面C.旋转抛物面D.椭球面9.已知区域(){}11,11,≤≤-≤≤-=y x y x D ,则=⎰⎰Dxdxdy ()A.0B.1C.2D.410.微分方程1='y y 的通解为()A.Cx y +=2 B.Cx y +=221 C.Cxy =2 D.Cx y +=22二、填空题:11~20小题,每小题4分,共40分11.曲线43623++-=x x x y 的拐点为___________12.()=-→xx x 1031lim ___________13.若函数()x x x f arctan -=,则()='x f ___________14.若x e y 2=,则=dy ___________15.()=+⎰dx x 32___________16.()=+⎰-dx x x 1125___________17.=⎰dx x π02sin ___________18.=∑∞=031n n___________19.=⎰+∞-dx e x 0___________20.若二元函数22y x z =,则=∂∂∂yx z2___________三、解答题:21~28题,共70分.解答应写出推理、演算步骤21.设函数()⎪⎩⎪⎨⎧≥+=0a,30<,sin 3x x x x xx f ,在0=x 处连续,求a22.求()1sin 123lim2231---→x x x x 23.设函数()()23ln 2++=x x x f ,求()0f ''24.求23sin lim x tdt xx ⎰→25.求⎰xdxx cos 26.求函数()5213123+-=x x x f 的极值27.求微方程x y xy ln 21=-'的通解28.设区域(){}0,9,22≥≤+=y y x y x D ,计算()d xdyy x D⎰⎰+222018年成人高等学校专升本招生全国统一考试高等数学(一)试题答案解析1.【答案】D【解析】010cos lim lim cos lim00===→→→x x x x x x 2.【答案】D【解析】()x x y sin cos 1-='+=',故xdx dy sin -=3.【答案】C【解析】()()5ln 55x x x f ='='4.【答案】B 【解析】C x dx x+--=-⎰2ln 215.【答案】A 【解析】()()()()C x f x d x f dx x f +='='⎰⎰221222126.【答案】A【解析】因为()x f 为连续的奇函数,故()011=⎰-dx x f 7.【答案】C【解析】y x y x z 232++=,故32+=∂∂xy xz8.【答案】C【解析】0222=-+z y x 可化为z y x =+2222,故表示的是旋转抛物面9.【答案】A【解析】02111111===⎰⎰⎰⎰⎰---xdx dy xdx xdxdy D10.【答案】B【解析】原方程分离变量得dx ydy =,两边同时积分得C x y +=221,故方程的通解为C x y +=22111.【答案】(2,-6)【解析】31232+-='x x y ,126-=''x y ,令0=''y ,则6,2-==y x ,故拐点为(2,-6)12.【答案】3-e 【解析】()()[]()33311031lim 31lim --⋅-→→=-+=-e x x xx x x 13.【答案】221x x +【解析】()x x x f arctan -=,则()2221111x x x x f +=+-='14.【答案】dxe x 22【解析】()x x e e y 222='=',则dx e dy x 22=15.【答案】C x x ++32【解析】()C x x dx x ++=+⎰332216.【答案】32【解析】()32316111361125=⎪⎭⎫ ⎝⎛+=+--⎰x x dx x x 17.【答案】2【解析】22cos 222sin 22sin 000=-=⎪⎭⎫ ⎝⎛=⎰⎰πππxx d x dx x 18.【答案】23【解析】2331123lim 3113111lim 31000=⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛-⋅=→→∞=∑n x n x n n19.【答案】1【解析】10=-=∞+-+∞-⎰x x e dx e 20.【答案】xy4【解析】22y x z =,22xy x z =∂∂,xyyx z 42=∂∂∂21.【答案】()3sin 3limlim 00==--→→xxx f x x ()()aa x x f x x =+=++→→3lim lim 00且()af =0因为()0=x x f 在处连续所以()()()0lim lim 00f x f x f x x ==+-→→3=a 22.【答案】()1123lim1sin 123lim 22312231---=---→→x x x x x x x x ()()()()25113lim 11113lim2121=+++=+--++=→→x x x x x x x xx x 23.【答案】()()()22392332+-=''++='x x f x x f 故()490-=''f 24.【答案】202003cos 31lim 3sin lim xt x tdt x x xx -=→→⎰()2329lim 313cos 131lim 22020==-=→→x xx x x x 25.【答案】⎰⎰-=xdxx x xdx x sin sin cos Cx x x ++=cos sin 26.【答案】()x x x f -='2,令()0='x f ,得01=x ,12=x ,当1>0<x x 或时,()0>x f ',此时()x f 为单调增加函数当1<x <0时,()0<x f ',此时()x f 为单调减少函数故当0=x 时,()x f 取极大值,极大值()50=f 当1=x 时,,()x f 取极小值,极小值()6291=f 27.【答案】这是个一阶线性非齐次微分方程()xx P 1-=,()x x Q ln 2=故通解为⎪⎪⎭⎫ ⎝⎛+⎰⎰=⎰-C dx xe e y dx x x 11ln 2()[]Cx x C dx x x x +=⎪⎭⎫ ⎝⎛+⋅=⎰2ln ln 228.【答案】D 在极坐标系里可表示为30,0≤≤≤≤r πθ,故()πθπ48132022=⋅=+⎰⎰⎰⎰rdr r d dxdy y xD。
2018年成人高考高数一真题及答案
29
6
27.这是个一阶线性非齐次微分方程。
P(x) = −
1
, Q(x) = 2lnx
1
1
故通解为y = ∫ .∫ 2 ∫ ; + C/ = x ∙ .2 ∫
dx + C/ = x,(lnx)2 + -
28.积分区域用极坐标可表示为:0 ≤ θ ≤ π,0 ≤ r ≤ 3,
三、解答题(21-28 题,共 70 分)
21.lim→0− () = limx→0−
3 sin
=3
lim () = lim+(3 + ) =
x→0+
x→0
且 f(x)=a
因为 f(x)在 x=0 处连续,所以.limx→0− () = limx→0+ () = (0)
23.设函数f(x) = 2x + ln(3x + 2),求f ′′ (0)
24.计算lim→0
∫0 sin 3
2
25.求∫ cos
1
1
26.求函数f(x) = 3 x 3 − 2 2 + 5 的极值
1
27.求微分方程y ′ − y = 2lnx的通解
28.设区域D = *(x, y)|x 2 + 2 ≤ 9, ≥ 0+,计算∬( 2 + 2 )。
D. 4
C.2
10.微分方程yy ′ = 1的通解为(
A. 2 = +
)
1
B. 2 2 = +
)
C. y 2 =
2018年专升本高数真题答案
2018年专升本高数真题答案1、下列有关《红楼梦》的说明,正确的一项是( ) [单选题] *A.《红楼梦》中长着“两弯似蹙非蹙罥烟眉,一双似喜非喜含情目”的是王熙凤,该人最擅弄权术,例如毒设相思局、弄权铁槛寺、逼死尤二姐、破坏宝黛婚姻,最后落了个“机关算尽太聪明,反误了卿卿性命”的悲剧下场。
B.《红楼梦》中贾府的“四春”分别是:孤独的贾元春、精明的贾迎春、懦弱的贾探春、孤僻的贾惜春,取“原应叹息”之意。
C.“花谢花飞飞满天,红消香断有谁怜?……一朝春尽红颜老,花落人亡两不知!”这首诗出自《红楼梦》中人物林黛玉之手。
(正确答案)D.《红楼梦》中表明贾府收入主要书回的情节在第二十五回“乌庄头交租”一事上,表明贾府“排场费用,又不肯讲究省俭”的主要情节是“可卿丧仪”和“元春省亲”两件事。
2、1《边城》是沈从文创作的一部中篇小说。
[判断题] *对错(正确答案)3、14.下面各组词语中加点字的注音,完全正确的一项是()[单选题] *A.渲染(xuàn)抽噎(yè)逞能(chěnɡ)自惭形秽(huì)B.迸溅(bènɡ)荣膺(yīnɡ)褶皱(zhě)气冲斗牛(dǒu)(正确答案)C.殷红(yīn)阔绰(chuò)惩戒(chéng)戛然而止(jiá)D.缄默(jiān)追溯(sù)栈桥(zhàn)鲜为人知(xiān)4、下列各句中加点词的解释,全部正确的一项是()[单选题] *A.虞常果引张胜引:招出会论虞常论:判罪(正确答案)B.欲信大义于天下信:通“伸”,伸张子为父死,亡所恨恨:怨恨C.自分己死久矣分:职责恐前语发发:暴露,泄露D.又非亲属,何谓相坐坐:定罪,治罪汉使张胜谋杀单于近臣,当死当:应当5、关联词选用:()怎么样,()让你觉得它们是泰山的天然的主人,好像少了谁都不应该似的。
[单选题] *只有才不仅还不但而且不管都(正确答案)6、下列关于名著的表述,不正确的一项是;( ) [单选题] *A.凤姐发现贾琏偷娶尤二姐,待贾琏外出办事,把尤二姐骗到家中,百般羞辱二姐,后又利用贾琏新妾秋桐羞辱折磨尤二姐,最后逼得尤二姐吞金自杀。
2018山东专升本数学真题及答案
2018山东专升本数学真题及答案一、单项选择题:本大题共5小题,每小题5分,共25分。
[单选题] *
A.振荡间断点
B.可去间断点
C.无穷间断点
D.跳跃间断点(正确答案)
[单选题] *
A.点x=0 是极值点,且点 (0,0) 是拐点
B.点x=0 是极值点,但点不是拐点
C.点x=0 不是极值点,但点是拐点(正确答案)
D.点x=0 不是极值点,且点不是拐点
[单选题] *
A(正确答案)
B
C
D
[单选题] *
A(正确答案)
B
C
D
[单选题] *
A
B
C(正确答案)
D
二、填空题:本大题共5小题,每小题5分,共25分。
将二、三、四大题的答案按题号写在答题纸上,上传于试卷末尾考试文件上传处。
[填空题] *
_________________________________
三、计算题:本大题共10小题,每小题8分,共80分。
计算题要有计算过程。
将二、三、四大题的答案按题号写在答题纸上,上传于试卷末尾考试文件上传处。
[填空题] *
_________________________________
四、应用题与证明题:本大题共2小题,每小题10分,共20分。
应用题的计算要有计算过程,证明题要有证明过程。
将二、三、四大题的答案按题号写在答题纸上,上传于试卷末尾考试文件上传处。
[上传文件题] *。
2018年浙江专升本高等数学真题
D
n 1 n3 9
1
、
n 1n
解析: A. lim n
1
n1 1
n
1 ,由
1
发散
n1 n
1
发散
n1
1
B. lim n
n 1
ln(1 n)
lim ln(1 n)
n
n
C. cosn n2 9
1 ,而 lim
n2 9
n
收敛
lim 1
0 ,由
1
发散
n 1n
n 1n
1
n2 1
3
9 =1,由
1
3 收敛
n 1 n2
.
2018 年浙江专升本高数考试真题答案
一、选择题:本大题共 5 小题,每小题 4 分,共 20 分。
1、设 f ( x)
sin x , x 0
x x
ห้องสมุดไป่ตู้
,x
0 ,则 f ( x) 在 ( 1,1) 内( C
)
A、有可去间断点
解析: lim f ( x) x0
B、连续点
lim x 0, lim
x0
x0
f ( x)
n2
1
发散
n 1 ln(1 n )
1
收敛
n2 9
cosn n2 9
D.
1
发散
n 1n
二、填空题
1
6、 lim (1 a sin x) x ea x0
1
1
解析: lim (1 a sin x) x
lim
e1 x
ln(1
a sin x )
ln(1 a sin x )
lim