江苏省无锡市第一女子中学2015届九年级上期中考试数学试题及答案

合集下载

江苏省无锡市新区2015届九年级上期中考试数学试题及答案

江苏省无锡市新区2015届九年级上期中考试数学试题及答案

2014-2015学年第一学期初三数学期中试卷一、选择题(本大题共8小题,每小题3分,共24分)1. 有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两条弧是等弧.其中正确的有 ( )A .4个B .3个C . 2个D . 1个2. 用配方法解方程2250x x --=时,原方程应变形为 ( )A .()216x -= B .()216x += C .()229x += D .()229x -=3. 三角形两边的长是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长为 ( )A .12B .14C .12或14D .以上都不对4. 在Rt△ABC 中,∠C=90°,∠B=30°,BC =4 cm ,以点C 为圆心,以2 cm 的长为半径作圆,则⊙C 与AB 的位置关系是 ( ) A .相离 B .相切 C .相交 D .相切或相交5. 如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是 ( ) A.k >14-B. 14k ≥-且0k ≠C.k <14-D. k >14-且0k ≠6.某厂一月份生产某机器300台,计划二、三月份共生产980台。

设二三月份每月的平均增长率为x ,根据题意列出的方程是 ( ) A .300(1+x )2=980 B .300(1-x )2=980C .300(1+x )+300(1+x )2=980D .300+300(1+x )+300(1+x )2=9807. 如图,将量角器按所示的方式放置在三角形纸板上,使点C 在半圆上.点A 、B 的读数分别为86°、30°,则∠ACB 的大小为 ( ) A .15︒ B .28︒ C .29︒ D .34︒8.如图,等边三角形ABC 的周长为6π,半径是1的⊙O 从与AB 相切于点D 的位置出发,在△ABC 外部按顺时针方向沿三角形滚动,又回到与AB 相切于点D 的位置,则⊙O 自转了 ( )A .2周B . 3周C .4周D .5周 二、填空题(本大题共10小题,每空2分,共26分)9.将一元二次方程x 2+1=2x 化成一般形式可得 ,它的解是 . 10.已知圆锥的母线长为4,底面半径为2,则圆锥的侧面积等于 .班级 姓名 学号 .……………………………………………………………装……………订……………线…………………………………………………………(第8题) O D AB C(第7题)11. 一元二次方程220x x +-=的两根之和是 ,两根之积是 .12. 方程x 2-6x +k =0的一根是4,则k = ,另一个根是______.13. 如图,点A 、B 、C 在⊙O 上,若∠BAC = 24°,则∠OBC = °.14. 如图,ABCD 是⊙O 的内接四边形,AD 为直径,∠C =130°,则∠ADB 的度数为 .15.如图,直角坐标系中一条圆弧经过格点A ,B ,C ,其中B 点坐标为(3,4),则该弧所在圆心的坐标是 .16.若一元二次方程ax 2=b (ab >0)的两个根分别是m +1与2m ﹣4,则ab= .17. 如图,一张圆心角为45°的扇形纸板按如图方式剪得一个正方形,正方形的边长为1,则扇形纸板的面积是 .18. 如图,⊙O 的半径为2,点O 到直线l 的距离为3,点P 是直线l 上的一个动点,PB 切⊙O 于点B ,则PB 的最小值是 .三、解答题(本大题共7小题,共50分) 19(本题满分12分,每小题3分)解下列方程: (1)042=-x x (2)x 2-8x-10=0(配方法)(3)x 2+6x -1=0 (4)2x 2+5x -3=0(第13题)OB C D A(第14题) O x y A B C(第15题)(第17题) (第18题)A BC P O 20(本题满分6分)如图,已知:⊙O 的直径AB 与弦AC 的夹角∠A=30°,AC =CP . (1) 求证:CP 是⊙O 的切线;(2) 若PC =6,AB=43求图中阴影部分的面积.21(本题满分4分)如图,AB 是⊙O 直径,弦CD 与AB 相交于点E ,∠ACD =52°,∠ADC =26°.求∠CEB 的度数.22(本题满分4分)某商店经销一批小家电,每个小家电的成本为40元。

江苏省无锡市锡山区2015届九年级上期中考试数学试题及答案

江苏省无锡市锡山区2015届九年级上期中考试数学试题及答案

2014 一2015年初三数学期中试卷一、精心选一选(本题满分24分,共有8道小题,每小题3分)1.用配方法解一元二次方程542=-x x 的过程中,配方正确的是 ( )A .(1)22=+xB .1)2(2=-xC .9)2(2=+xD .9)2(2=-x2.某厂1月份生产原料a 吨,以后每个月比前一个月增产x %,3月份生产原料的吨数是( )A .a (1+x )2B .a (1+x %)2C .a +a ·x %D .a +a ·(x %)23.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是 ( ) A.k >14-B.k >14-且0k ≠C.k <14- D.14k ≥-且0k ≠4.等腰三角形的底和腰是方程x 2-6x+8=0的两根,则这个三角形的周长为 ( )A 、8B 、10C 、8或10D 、无法确定5.如图,⊙O 的直径AB =10,E 在⊙O 内,且OE=4,则过E 点所有弦中,最短弦为( ) A. 4 B. 6 C .8 D. 106.下列命题:①直径是弦; ②经过三个点一定可以作圆;③三角形的内心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧;⑤菱形的四个顶点在同一个圆上;其中正确结论的个数有( )A .1个B .2个C .3个D .4个7.如图,直径为10的⊙A 经过点C 和点O ,点B 是y 轴右侧⊙A 优弧上一点,∠OBC =30°,则点C 的坐标为 ( ).(A)(0,5) (B)(0,35) (C)(0,325) (D)(0,335) 8.如图,在平面直角坐标系xOy 中,直线AB 经过点A (6,0)、B (0,6),⊙O 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为 ( ).A. 7B. 3C. 3 2D. 14第7题图第5题图第8题图班级 姓名 考试号 .二、细心填一填(本题满分22分,共有10道小题,每空2分)9.方程()03412=+--x x m 是一元二次方程,则m 满足条件 。

无锡市第一女子中学九年级上期中考试数学试题有答案(精选)

无锡市第一女子中学九年级上期中考试数学试题有答案(精选)

第一学期期中试卷初三数学(时间:120分钟满分:130分)一、选择题(本大题共10小题,每小题3分,共30分) 1. 81的平方根是() A .9 B .C . D .2.下列一元二次方程中,两实数根的积为4的是()A .22-5+4=0B .32-5+4=0C .2+2+4=0D .2-5+4=0 3.若关于的方程022=+-n x x 无实数根,则一次函数n x n y --=)1(的图像不.经过() A .第一象限 B.第二象限 C.第三象限 D.第四象限4.无锡市环保检测中心网站公布的2016年4月某日的PM2.5研究性检测部分数据如下表A. 0.032, 0.0295B. 0.026,0.0295C. 0.026, 0.032D. 0.032, 0.0275.如图,大正方形中有2个小正方形,如果它们的面积分别是S 1、S 2,那么S 1、S 2的大小关系是() A . S 1> S 2 B .S 1 = S 2 C .S 1<S 2 D .S 1、S 2的大小关系不确定6.如图,在平面直角坐标系中,过格点A 、B 、C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是()A .点(0,3)B .点(2,3)C .点(5,1)D .点(6,1)7.据调查,2011年11月无锡市的房价均价为7530元/m 2,2013年同期将达到8120元/m 2,假设这两年无锡市房价的平均增长率为x ,根据题意,所列方程为() A .27530(1%)8120x -=B .27530(1%)8120x +=C .27530(1)8120x -=D .27530(1)8120x +=8.如图,四边形ABCD 中,AD ∥BC ,∠D=90°,以AB 为直径的⊙O 与CD 相切于E ,与BC 相交于F ,若AB=8,AD=2,则图中两阴影部分面积之和为( ) A . B .3C .D .9.如图,直线343+=x y 与轴、y 轴分别交于A 、B 两点,已知点C (0,-1)、D (0,),且0< < 3,以点D 为圆心、DC 为半径作⊙D ,当⊙D 与直线AB 相切时,的值为( ) A .95 B .32 C .97 D .98 10.如图,在平面直角坐标系xOy 中,点(1,0)A ,(2,0)B ,正六边形ABCDEF 沿轴正方向无滑动滚动,保持上述运动过程,经过的正六边形的顶点是(). A .C 或E B .B 或D C .A 或E D .B 或F二、填空题(本大题共8小题,每小题2分,共16分.)11.写出一个以2与-3为根的一元二次方程________________________.12. 若方程()22570m x x ++-=是关于x 的一元二次方程,则m 的取值范围是.13.一组数据1,3,2,5,的平均数为3,那么这组数据的方差是.14.将一个底面半径为5cm ,母线长为12cm 的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是度.15.如图,AB 是⊙O 的直径,直线PA 与⊙O 相切于点A ,PO 交⊙O 于点C ,连接BC .若∠P=40°,则∠ABC 的度数为.16. 如图是由两个长方形组成的工件平面图(单位:mm ),直线l 是它的对称轴,能完全覆盖这个平面图形的圆面的最小半径是 mm .第5题图第6题图第8题图17.已知正方形ABCD边长是2,点P从点D出发沿DB向点B运动,至点B停止运动,连结AP,过点B作BH⊥AP于点H,在点P运动过程中,点H所走过的路径长是.18.如图,Rt△AOB中,O为坐标原点,∠AOB=90°,∠B=30°,如果点A在反比例函数y=1x(>0)的图象上运动,那么点B在函数(填函数解析式并写出自变量取值范围)的图象上运动.三、解答题(本大题共10小题,共84分.解答时应写出文字说明、证明过程或演算步骤)19.(本题8分,每小题4分) 计算或化简:(1)()023200921)1(---+-(2)22121x xxx x x--⎛⎫÷-⎪+⎝⎭20.(本题8分,每小题4分)解方程:(1) 5(-3)=2(3-).(2)0242=-+xx;21.(本题6分)在正方形方格纸中,我们把顶点都在“格点”上的三角形称为“格点三角形”,如图,△ABC是一个格点三角形.(1)请你在所给的方格纸中,以O为位似中心,将△ABC放大为原的2倍,得到一个△A1B1C1.(2)若每一个方格的面积为1,则△A1B1C1的面积为_____.22.(本题7分)某校对各个班级教室卫生情况的考评包括以下几项:门窗,桌椅,地面,一天,两个班级的各项卫生成绩分别如表:(单位:分)(1)两个班的平均得分分别是多少?第15题图第16题图第17题图第18题图(2)按学校的考评要求,将黑板、门窗、桌椅、地面这三项得分依次按25%、35%、40%的比例计算各班的卫生成绩,那么哪个班的卫生成绩高?请说明理由.23.(本题7分)如图,BD 为⊙O 的直径,点A 是弧BC 的中点,AD 交BC 于E 点,2AE =,4ED =.(1)求证△ABE ∽△ADB ; (2)求BE 长;24.(本题8分)如图,△ABC 中,AB=AC ,F 为BC 的中点,D 为CA 延长线上一点,∠DFE=∠B .(1)求证:△CDF ∽△BFE ;(2)若EF ∥CD ,求证:2CF 2=AC •CD .25.(本题8分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原的1.5倍,结果提前4天完成了该项绿化工程. (1)该项绿化工程原计划每天完成多少米2? (2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?26.(本题10分)如图,已知AB 为⊙O 的直径,点E 是OA 上任意一点,过E 作弦CD ⊥AB ,点F 是⊙O 上一点,连接AF 交CE 于H ,连接AC 、CF 、BD 、OD .(1)求证:△ACH ∽△AFC ;(2)猜想:AH •AF 与AE •AB 的数量关系,并说明你的猜想; (3)当AE=______AB 时,S △AEC :S △BOD =1:4.27.(本题10分)如图,在平面直角坐标系中,O 为坐标原点,⊙C 的圆心坐标为(-2,-2),半径为2.函数y =-+2图象与轴交于点A ,与y 轴交于点B ,点P 为线段AB 上一动点第24题图第26题图第25题图第23题图(包括端点).(1)连接CO ,求证:CO ⊥AB ;(2)当直线PO 与⊙C 相切时,求∠POA 的度数; (3)当直线PO 与⊙C 相交时,设交点为E 、F ,点M 为线段EF 的中点,令PO =t ,MO =s ,求s 与t 之间的 函数关系,并写出t 的取值范围;(4)请在(3)的条件下,直接..写出点M 运动路径的长度.28.(本题12分)如图,在平面直角坐标系中,等腰直角△ABC 的直角顶点C 为(﹣4,0),腰长为2,将三角形绕着顶点C 旋转.(点A 在轴的上方)分别过点A 、点B 向轴作垂线,垂足分别为O 1,O 2. (1)如图①和图②证明在点B 不在坐标轴上的情况下,△ACO 1与△BCO 2全等吗?选择其中一幅图说明你的理由;(2)如图③所示,点B 运动到轴上时,点O 1与C 重合,以C 为圆心CA 为半径作圆,得到如图所示的⊙C ,在⊙C 上有一个动点P (点P 不在轴上),过点P 作⊙C 的切线与y 轴的交点为点Q ,直线BP 交y 轴于点M .①如图,当点Q 在y 轴的正半轴时,写出线段PQ 与线段QM 之间的数量关系,并说明理由;②随着点P 的运动(点P 在坐标轴上除外)①中的两条线段之间的关系变吗?若变说明理由,若不变,则它们有最小值吗?最小值为多少?第28题图第27题图初三数学期中试卷参考答案(时间:120分钟满分:130分)一、选择题(每题3分,共30分) BDBAA CDACD二、填空题(每空2分,共16分)11.答案不唯一; 12.m-2___; 13.2__; 14.___150゜; 15.__25゜; 16.__50_;17._π__; 18.___(>0).三、解答题 19.(1)(2)20.(1)1=3,2=-0.4(2)1=-2+,2=2-21.(1)图略(2)___16________.22.解:(1)一班的平均得分:(95+85+90)÷3=90,二班的平均得分:(90+95+85)÷3=90,(2)一班的加权平均成绩:85×25%+90×35%+95×40%=90.75,二班的加权平均成绩:95×25%+85×35%+90×40%=89.5, 所以一班的卫生成绩高.23.(1)略(2)BE=424.(1)证明:∵∠DFB=∠DFE+∠EFB=∠C+∠FDC ,∴∠EFB=∠FDC ,∵AB=AC ,∴∠C=∠B , ∴△CDF ∽△BFE ;(2)解:∵EF ∥CD ,∴∠EFD=∠FDC ,∵∠B=∠C ,∠DEG=∠B ,∴∠FDC=∠C=∠B ,∴△CDF ∽△BCA ,∴,∵BC=2CF ,DF=CF ,∴,∴2CF 2=AC •CD .25.(本题8分).(1)解:(1)设该项绿化工程原计划每天完成米2,根据题意﹣=4解得:=2000经检验,=2000是原方程的解,答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为米,根据题意得,(20﹣3)(8﹣2)=56 解得:=2或=(不合题意,舍去).答:人行道的宽为2米.26.(1)∵直径AB⊥CD,∴∴∠F=∠ACH,又∠CAH=∠FAC, ∴△ACH∽△AFC(2)AH·AF=AE·AB,连接FB,∵AB是直径,∴∠AFB=∠AEH=90°,又∠EAH=∠FAB,∴Rt△AEH∽Rt△AFB,∴AH·AF=AE·AB;(3)27.解:(1)延长CO交AB于D,过点C作CG⊥轴于点G.∵易得A(2,0),B(0,2),∴AO=BO=2.又∵∠AOB=90°,∴∠DAO=45°.∵C(-2,-2),∴∠COG=45°,∠AOD=45°,∴∠ODA=90°.∴OD⊥AB,即CO⊥AB.(2)当直线PO与⊙C相切时,设切点为,连接C,则C⊥O.由点C的坐标为(-2,-2),易得CO=∴∠POD=30°,又∠AOD=45°,∴∠POA=75°,同理可求得∠POA的另一个值为15°.(3)∵M为EF的中点,∴CM⊥EF,又∵∠COM=∠POD,CO⊥AB,∴△COM∽△POD,所以CO MOPO DO =,即MO ·PO =CO ·DO .∵PO =t ,MO =s ,CO= DOst =4.但PO 过圆心C 时,MO =CO=PO =DO即MO ·PO =4,也满足st =4.∴s =4tt(4)28.解:(1)△ACO 1与△BCO 2全等如图①,∵∠ACB=90°,∴∠ACO 1+∠BCO 2=90°,∵AO 1⊥OC ,BO 2⊥OC ,∴∠AO 1C=∠BO 2C=90°,∴∠BCO 2+∠CBO 2=90°, ∴∠ACO 1=∠CBO 2, 在△ACO 1和△CBO 2中,,∴△ACO 1≌△CBO 2, 如图2,同①的方法可证;(2)①∵PQ 是⊙C 的切线,∴∠QPC=90°,∴∠QPM+∠CPB=90°,∵CP=CB , ∴∠CPB=∠CBP,∴∠QPM+∠CBP=90°,∵∠CBP=∠OBM , ∴∠QPM+∠OBM=90°,∵∠OBM+∠OMB=90°,∴∠QPM=∠OMB ,∴QP=QM , ②不变,理由:同(1)连接CQ ,在Rt △CPQ 中,PQ 2=CQ 2﹣CP 2, ∵CP 是⊙C 的半径,∴CP 为定值是2,∴CQ 最小时,PQ 最小, ∵点Q 在y 轴上,点C 在轴,∴点Q 在点O 处时,CQ 最小,最小值为CO=4, ∴PQ 最小==2,。

江苏省无锡 九年级(上)期中数学试卷-(含答案)

江苏省无锡 九年级(上)期中数学试卷-(含答案)

九年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列方程中是关于x的一元二次方程的是()A. B.C. D.2.如图,CD是⊙O的直径,弦DE∥OA,若∠D的度数是50°,则∠C的度数是()A.B.C.D.3.如图,已知等边三角形ABC的边长为2,DE是它的中位线,则下面四个结论:(1)DE=1,(2)△CDE∽△CAB,(3)△CDE的面积与△CAB的面积之比为1:4.其中正确的有()A. 0个B. 1个C. 2个D.3个4.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A. 6B. 5C. 4D. 35.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是()A. cmB.C. cmD. 1cm6.如图,在一幅长80cm,宽50cm的矩形树叶画四周镶一条金色的纸边,制成一幅矩形挂图,若要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,则满足的方程是()A. B.C. D.7.下列命题是真命题的是()A. 垂直于圆的半径的直线是圆的切线B. 经过半径外端的直线是圆的切线C. 直线上一点到圆心的距离等于圆的半径的直线是圆的切线D. 到圆心的距离等于圆的半径的直线是圆的切线8.如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于()A.B.C.D.9.如图,一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则在该正方形内,这张圆形纸片“不能接触到的部分”的面积是()A.B.C.D.10.如图,在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在边DC,CB上移动,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,若AD=2,线段CP的最小值是()A. B. C. D.二、填空题(本大题共8小题,共16.0分)11.已知=,则= ______ .12.近年来全国房价不断上涨,我市2013年的房价平均每平方米为7000元,经过两年的上涨,2015年房价平均每平方米为8500元,设这两年房价的年平均增长率均为x,则关于的方程为______ .13.若关于x的一元二次方程(k-1)x2+2x-2=0有两个不相等的实数根,则k的取值范围是______.14.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA= ______ °.15.小红需要用扇形薄纸板制作成底面半径为9厘米,高为12厘米的圆锥形生日帽,如图所示,则该扇形薄纸板的圆心角为______ .16.如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是______.17.如图,平面直角坐标系中,⊙A的圆心在x轴上,坐标为(a,0),半径为1,直线l为y=2x-2,若⊙A沿x轴向右运动,当⊙A与直线l有公共点时,点A横坐标a 的取值范围是______ .18.如图,在平面直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,点B落在点D的位置,且AD交y轴于点E,那么点D的坐标为______ .三、解答题(本大题共10小题,共84.0分)19.(1)3y(y-1)=2(y-1)(2)(x-1)(x+2)=70(3)2y2-3=4y(配方法)20.小玲用下面的方法来测量学校教学大楼AB的高度:如图,在水平地面上放一面平面镜,镜子与教学大楼的距离EA=21米.当她与镜子的距离CE=2.5米时,她刚好能从镜子中看到教学大楼的顶端B.已知她的眼睛距地面高度DC=1.6米.请你帮助小玲计算出教学大楼的高度AB是多少米?(注意:根据光的反射定律:反射角等于入射角).21.在等腰△ABC中,三边分别为a、b、c,其中a=5,若关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,求△ABC的周长.22.如图,在单位长度为1的正方形网格中,一段圆弧经过格点A、B、C.(1)请找出该圆弧所在圆的圆心O的位置;(2)请在(1)的基础上,完成下列问题:①⊙O的半径为______ (结果保留根号);②的长为______ (结果保留π);③试判断直线CD与⊙O的位置关系,并说明理由.23.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,过点A作⊙O的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE⊥CD;(2)已知AE=4cm,CD=6cm,求⊙O的半径.24.如图,Rt△ABC中,∠ACB=90°,∠B=30°,AB=4,以BC为直径的半圆交AB于点D,以A为圆心,AC为半径的扇形交AB 于点E.(1)以BC为直径的圆与AC所在的直线有何位置关系?请说明理由;(2)求图中阴影部分的面积(结果保留根号和π).25.某公司销售一种进价为20(元/个)的计算器,其销售量y(万个)与销售价格x(元/个)之间为一次函数关系,其变化如下表:40万元的净利润,且尽可能让顾客得到实惠,那么销售价格应定为多少?(注:净利润=总销售额-总进价-其他开支)26.如图,在平面直角坐标系中,矩形AOBC的边长为AO=6,BO=8,(1)如图①,动点P以每秒2个单位的速度由点C向点A沿线段CA运动,同时点Q以每秒4个单位的速度由点O向点C沿线段OC运动,求当P、Q、C三点构成等腰三角形时点P的坐标.(2)如图②,E是OB的中点,将△AOE沿AE折叠后得到△AFE,点F在矩形AOBC 内部,延长AF交BC于点G.求点G的坐标.27.如图1,小红将一张直角梯形纸片沿虚线剪开,得到矩形和三角形两张纸片,测得AB=15,AD=12.在进行如下操作时遇到了下面的几个问题,请你帮助解决.(1)将△EFG的顶点G移到矩形的顶点B处,再将三角形绕点B顺时针旋转使E 点落在CD边上,此时,EF恰好经过点A(如图2)求FB的长度;(2)在(1)的条件下,小红想用△EFG包裹矩形ABCD,她想了两种包裹的方法如图3、图4,请问哪种包裹纸片的方法使得未包裹住的面积大?(纸片厚度忽略不计)请你通过计算说服小红.28.对于半径为r的⊙P及一个正方形给出如下定义:若⊙P上存在到此正方形四条边距离都相等的点,则称⊙P是该正方形的“等距圆”.如图1,在平面直角坐标系xOy中,正方形ABCD的顶点A的坐标为(2,4),顶点C、D在x轴上,且点C 在点D的左侧.(1)当r=4时,①在P1(0,-3),P2(4,6),P3(4,2)中可以成为正方形ABCD的“等距圆”的圆心的是______;②若点P在直线y=-x+2上,且⊙P是正方形ABCD的“等距圆”,则点P的坐标为______;(2)如图2,在正方形ABCD所在平面直角坐标系xOy中,正方形EFGH的顶点F的坐标为(6,2),顶点E、H在y轴上,且点H在点E的上方.①若⊙P同时为上述两个正方形的“等距圆”,且与BC所在直线相切,求⊙P在y轴上截得的弦长;②将正方形ABCD绕着点D旋转一周,在旋转的过程中,线段HF上没有一个点能成为它的“等距圆”的圆心,则r的取值范围是______.答案和解析1.【答案】C【解析】解:A、由原方程得到2x+1=0,即未知数的最高次数是1.故本选项错误;B、当a=0时.该方程不是一元二次方程.故本选项错误;C、由原方程得到x2-x-1=0,符合一元二次方程的定义,故本选项正确;D、该方程中含有两个未知数.故本选项错误;故选C.本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.本题考查了利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.2.【答案】A【解析】解:∵DE∥OA,∴∠AOD=∠D=50°,∴∠C=∠AOD=25°,故选:A.根据平行线的性质可得∠AOD=∠D,再根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得答案.此题主要考查了圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.【答案】D【解析】解:∵等边三角形ABC的边长为2,DE是它的中位线,∴DE=1,DE∥AB,∴△CDE∽△CAB,∴DE:AB=1:2,∴△CDE的面积与△CAB的面积之比为1:4.故选D.由题意即可推出DE∥AB,推出DE=1,△CDE∽△CAB,△CDE的面积与△CAB 的面积之比为相似比的平方,即为1:4.本题主要考查相似三角形的判定与性质、等边三角形的性质、三角形中位线定理,关键在于推出DE∥AB.4.【答案】B【解析】解:过O作OC⊥AB于C,∵OC过O,∴AC=BC=AB=12,在Rt△AOC中,由勾股定理得:OC==5.故选:B.过O作OC⊥AB于C,根据垂径定理求出AC,根据勾股定理求出OC即可.本题考查了垂径定理和勾股定理的应用,关键是求出OC的长.5.【答案】A【解析】解:连接AC,过B作BD⊥AC于D;∵AB=BC,∴△ABC是等腰三角形,∴AD=CD;∵此多边形为正六边形,∴∠ABC==120°,∴∠ABD=×120°=60°,∴∠BAD=30°,AD=AB•cos30°=2×=,∴a=2cm.故选A.连接AC,作BD⊥AC于D;根据正六边形的特点求出∠ABC的度数,再由等腰三角形的性质求出∠BAD的度数,由特殊角的三角函数值求出AD的长,进而可求出AC的长.此题比较简单,解答此题的关键是作出辅助线,根据等腰三角形及正六边形的性质求解.6.【答案】B【解析】解:依题意,设金色纸边的宽为xcm,则(80+2x)(50+2x)=5400.故选:B.根据矩形的面积=长×宽,我们可得出本题的等量关系应该是:(树叶画的长+2个纸边的宽度)×(树叶画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程.此题主要考查了由实际问题抽象出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据题意列出方程是解题关键.7.【答案】D【解析】解:A、应经过此半径的外端,故本选项错误;B、应该垂直于此半径,故本选项错误.C、应是圆心到直线的距离等于圆的半径,故本选项错误;D、根据切线的判定方法,故本选项正确;故选D.要正确理解切线的定义:和圆有唯一公共点的直线是圆的切线.掌握切线的判定:①经过半径的外端,且垂直于这条半径的直线,是圆的切线;②到圆心的距离等于半径的直线是该圆的切线.本题考查了命题和定理,知识点有:切线的判定方法.8.【答案】D【解析】解:∵∠C=∠E,且∠BDE=∠ADC,∴△BDE∽△ADC,∴=,∵BC=8,BD:DC=5:3,∴BD=5,DC=3,AD=4,∴=,解得DE=,故选:D.由条件可证明△BDE∽△ADC,且可求得BD和DC的长度,利用相似三角形的对应边的比相等可求得DE.本题主要考查了相似三角形的判定与性质,解题时注意:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.9.【答案】B【解析】解:小正方形的面积是:1;当圆运动到正方形的一个角上时,形成扇形BAO,它的面积是.则这张圆形纸片“不能接触到的部分”的面积是4×(1-)=4-π.故选:B.这张圆形纸片“不能接触到的部分”的面积是就是小正方形的面积与扇形的面积的差的4倍.本题主要考查了轨迹、正方形和圆的面积的计算公式,正确记忆公式是关键.10.【答案】B【解析】解:∵动点E,F分别从D,C两点同时出发,以相同的速度在边DC,CB上移动,∴DE=CF,在△ADE和△DCF中,,∴∠DAE=∠CDF,∵∠CDF+∠ADF=∠ADC=90°,∴∠ADF+∠DAE=90°,∴∠APD=90°,取AD的中点O,连接OP,则OP=AD=×2=1(不变),根据两点之间线段最短得C、P、O三点共线时线段CP的值最小,在Rt△COD中,根据勾股定理得,CO===,所以,CP=CO-OP=-1.故选B.根据点E、F的运动速度判断出DE=CF,然后利用“边角边”证明△ADE和△DCF全等,根据全等三角形对应角相等可得∠DAE=∠CDF,然后求出∠APD=90°,取AD的中点O,连接OP,根据直角三角形斜边上的中线等于斜边的一半可得点P到AD的中点的距离不变,再根据两点之间线段最短可得C、P、O三点共线时线段CP的值最小,然后根据勾股定理列式求出CO,再求解即可.本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,确定出点P到AD的中点的距离是定值是解题的关键,也是本题的难点.11.【答案】【解析】解;由=,得=.由合比性质,得=.=,故答案为:.根据比例的性质,可得y:x的值,再根据倒数的意义,可得答案.本题是基础题,考查了比例的基本性质,比较简单12.【答案】7000(1+x)2=8500【解析】解:设这两年房价的年平均增长率均为x,根据题意,可列方程:7000(1+x)2=8500,故答案为:7000(1+x)2=8500.由于设这两年房价的平均增长率均为x,那么2014年房价平均每平方米为7000(1+x)元,2015年的房价平均每平方米为7000(1+x)(1+x)元,然后根据2015年房价平均每平方米为8500元即可列出方程.此题主要考查了由实际问题抽象出一元二次方程,关键是掌握增长率问题的计算公式:变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.13.【答案】k>且k≠1【解析】解:根据题意得k-1≠0且△=22-4(k-1)×(-2)>0,解得:k>且k≠1.故答案为:k>且k≠1.根据一元二次方程的定义和判别式的意义得到k-1≠0且△=22-4(k-1)×(-2)>0,然后求出两个不等式的公共部分即可.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.14.【答案】67.5【解析】解:∵PD切⊙O于点C,∴∠OCD=90°;又∵CO=CD,∴∠COD=∠D=45°;∴∠A=∠COD=22.5°(同弧所对的圆周角是所对的圆心角的一半),∵OA=OC,∴∠A=∠ACO=22.5°(等边对等角),∴∠PCA=180°-∠ACO-∠OCD=67.5°.故答案是:67.5°.根据切线的性质知∠OCD=90°,然后在等腰直角三角形OCD中∠COD=∠D=45°;再由圆周角定理求得∠ACO=22.5°;最后由平角的定义即可求得∠PCA的度数.本题考查了圆的切线.解题的关键是根据切线的定义推知∠OCD=90°.15.【答案】216°【解析】解:母线长==15,设该扇形薄纸板的圆心角为n°,所以2π•9=,解得n=216,即该扇形薄纸板的圆心角为216°.故答案为216°.利用勾股定理计算出母线长=15,设该扇形薄纸板的圆心角为n°,利用弧长公式得到2π•9=,解得n=216.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.【答案】4π【解析】解:弧CD的长是=,弧DE的长是:=,弧EF的长是:=2π,则曲线CDEF的长是:++2π=4π.故答案为:4π.弧CD,弧DE,弧EF的圆心角都是120度,半径分别是1,2,3,利用弧长的计算公式可以求得三条弧长,三条弧的和就是所求曲线的长.本题考查了弧长的计算公式,理解弧CD,弧DE,弧EF的圆心角都是120度,半径分别是1,2,3是解题的关键.17.【答案】1-≤a≤1+【解析】解:如图:当⊙A在直线L的左侧,⊙A与直线L相切时,△BOD∽△ABC,∵直线l为y=2x-2,∴B(1,0),D(0,-2),∴OB=1,OD=2,∴,即,∴BC=,∴AB=,当⊙A在直线L的右侧,⊙A与直线L相切时,同理A′B=,∴A横坐标a的取值范围是1-≤a≤1+,故答案为:1-≤a≤1+.根据⊙A与L有公共点从左相切开始,到相交,到右相切,所以A移动的距离是左相切到右相切时的距离.此题主要考查了坐标与图形的性质和直线与圆的位置关系,关键是知道点A 移动距离.18.【答案】(-,)【解析】解:如图,过D作DF⊥AF于F,∵点B的坐标为(1,3),∴AO=1,AB=3,根据折叠可知:CD=OA,而∠D=∠AOE=90°,∠DEC=∠AEO,∴△CDE≌△AOE,∴OE=DE,OA=CD=1,设OE=x,那么CE=3-x,DE=x,∴在Rt△DCE中,CE2=DE2+CD2,∴(3-x)2=x2+12,∴x=.又DF⊥AF,∴DF∥EO,∴△AEO∽△ADF,而AD=AB=3,∴AE=CE=3-=,∴==,即==.∴DF=,AF=.∴OF=-1=.∴点D的坐标为(-,).故答案为:(-,).如图,过D作DF⊥AF于F,根据折叠可以证明△CDE≌△AOE,然后利用全等三角形的性质得到OE=DE,OA=CD=1,设OE=x,那么CE=3-x,DE=x,利用勾股定理即可求出OE的长度,而利用已知条件可以证明△AEO∽△ADF,而AD=AB=3,接着利用相似三角形的性质即可求出DF、AF的长度,也就求出了D的坐标.此题主要考查了图形的折叠问题,也考查了坐标与图形的性质,解题的关键是把握折叠的隐含条件,利用隐含条件得到全等三角形和相似三角形,然后利用它们的性质即可解决问题.19.【答案】解:(1)∵3y(y-1)=2(y-1),∴(y-1)(3y-2)=0,∴y-1=0或3y-2=0,∴y1=1,y2=;(2)∵(x-1)(x+2)=70,∴x2+x-2=70,∴x2+x-72=0,∴(x+9)(x-8)=0,∴x+9=0或x-8=0,∴x1=-9,x2=8;(3)∵2y2-3=4y,∴2(y2-2y+1-1)-3=0,∴2(y-1)2=5,y=1±,y1=1+,y2=1-.【解析】(1)移项将方程右边化简为0,然后在提取公因式即可求解;(2)将方程左边去括号然后再化简成x2+x-72=0,利用因式分解即可求解;(3)移项然后在利用配方法即可求解.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.20.【答案】解:根据题意可得:∠AEB=∠CED,∠BAE=∠DCE=90°,(2分)∴△ABE∽△CDE,(5分)∴,(7分)∴,(8分)∴AB=13.44(米).(11分)答:教学大楼的高度AB是13.44米.(12分)【解析】根据反射定律,∠1=∠2,又因为FE⊥EC,所以∠3=∠4,再根据垂直定义得到∠BAE=∠DCE,所以可得△BAE∽△DCE,再根据相似三角形的性质解答.本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.21.【答案】解:∵关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,∴△=(b+2)2-4(6-b)=0,即b2+8b-20=0;解得b=2,b=-10(舍去);①当a为底,b为腰时,则2+2<5,构不成三角形,此种情况不成立;②当b为底,a为腰时,则5-2<5<5+2,能够构成三角形;此时△ABC的周长为:5+5+2=12;答:△ABC的周长是12.【解析】若一元二次方程有两个相等的实数根,则根的判别式△=0,据此可求出b的值;进而可由三角形三边关系定理确定等腰三角形的三边长,即可求得其周长.此题考查了根与系数的关系、等腰三角形的性质及三角形三边关系定理;在求三角形的周长时,不能盲目的将三边相加,而应在三角形三边关系定理为前提条件下分类讨论,以免造成多解、错解.22.【答案】2;π【解析】解:(1)如图所示:连接AC,作线段AC的垂线OE,交正方形网格于点O,则O点即为⊙O的圆心;(2)①在Rt△OCF中,∵CF=2,OF=4,∴OC===2;②在Rt△OAG与Rt△OCF中,AG=OF=4,OG=CF=2,OA=OC=2,∴∠OAG=∠COF,∠AOG=∠OCF,∵∠OAG+∠AOG=90°,∠OCF+∠COF=90°,∴∠AOG+∠COF=90°,∴∠AOC=90°,∴===π;③直线DC与⊙O相切.理由:∵连接CD,在△DCO中,CD=,CO=2,DO=5,∴CD2+CO2=25=DO2.∴∠DCO=90°,即CD⊥OC.∴CD与⊙O相切.(1)连接AC,作AC的垂直平分线,由垂径定理可知OE与网格的交点即为⊙O的圆心;(2)①直接根据正方形网格的特点及勾股定理求出OC的长即为⊙O的半径;②先根据直角三角形的性质得出∠AOC=90°,再根据弧长公式求出的度数;③连接CD,根据勾股定理得出CD、OD的长,由勾股定理的逆定理判断出△OCD的形状即可.本题考查的是垂径定理的应用、勾股定理、直线与圆的位置关系、勾股定理的逆定理及弧长的计算,在解答此题时要先根据垂径定理作出圆心,再根据勾股定理的相关知识进行解答.23.【答案】(1)证明:连接OA.∵AE是⊙O切线,∴OA⊥AE,∴∠OAE=90°,∴∠EAD+∠OAD=90°,∵∠ADO=∠ADE,OA=OD,∴∠OAD=∠ODA=∠ADE,∴∠EAD+∠ADE=90°,∴∠AED=90°,∴AE⊥CD;(2)解:过点O作OF⊥CD,垂足为点F.∵∠OAE=∠AED=∠OFD=90°,∴四边形AOFE是矩形.∴OF=AE=4cm.又∵OF⊥CD,∴DF=CD=3cm.在Rt△ODF中,OD==5cm,即⊙O的半径为5cm.【解析】(1)欲证明AE⊥CD,只要证明∠EAD+∠ADE=90°即可;(2)过点O作OF⊥CD,垂足为点F.从而证得四边形AOFE是矩形,得出OF=AE,根据垂径定理得出DF=CD,在Rt△ODF中,根据勾股定理即可求得⊙O的半径.本题考查了等腰三角形的性质,垂径定理,平行线的判定和性质,切线的判定和性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.24.【答案】解:(1)相切,理由是:∵∠ACB=90°,BC为半圆的直径,∴以BC为直径的圆与AC所在的直线相切;(2)在Rt△ACB中,∠B=30°,∴∠A=90°-30°=60°,AC=AB=×4=2,由勾股定理得:BC==2,∴S阴影=S半圆-(S△ABC-S扇形AEC),=π-×2×+,=-2,答:图中阴影部分的面积是-2.【解析】(1)切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,满足这两个条件,则与圆相切;(2)先根据条件求直角三角形的各边长和锐角∠A的度数,再利用差求阴影部分的面积.本题考查了直线和圆的位置关系、勾股定理及扇形的面积,属于常考题型,难度不大;熟练掌握直线和圆的位置关系,在求阴影部分面积时,要注意利用和或差来求解.25.【答案】解:设y与x的解析式为:y=ax+b,则,解得:,∴y=-0.1x+8,根据题意,得:(x-20)(-0.1x+8)-40=40,∴x1=40,x2=60,∵尽可能让顾客得到实惠,∴价格应定为40元.答:价格应定为40元.【解析】设y与x的解析式为:y=ax+b,将表格中的数代入解析式,求出a、b的值,求出解析式,然后表示出利润,根据利润为40万元,求出销售价格.本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.26.【答案】解:(1)设运动的时间为t秒,由勾股定理得,OC==10,当CQ=CP时,2t=10-4t,解得,t=,此时CP=2×=,∴AP=8-=,P点坐标为(,6),当PC=PQ时,如图①,过点Q作AC的垂线交AC于点E,CQ=10-4t,CP=2t.∵△CEQ∽△CAO,∴EQ=CQ=(10-4t)=6-t,PE=(10-4t)-2t=8-t-2t=8-t,由勾股定理得,(6-t)2+(8-t)2=(2t)2,整理得:36t2-140t+125=0,解得,t1=,t2=(舍去),此时,AP=8××2=,∴P点坐标为(,6),当QC=PQ时,如图②,过点Q作AC的垂线交AC于点F,CQ=10-4t,CP=2t,∵△CFQ∽△CAO,∴QF═(10-4t)=6-t,PF=2t-(10-4t)=t-8,则(6-t)2+(t-8)2=(10-4t)2,整理得,21t2-40t=0,解得,t1=,t2=0(舍去),此时,AP=8-×2=,则P点坐标为(,6),综上所述,P点坐标为(,6),(,6),(,6);(2))如图③,连接EG,由题意得:△AOE≌△AFE,∴∠EFG=∠OBC=90°,∵E是OB的中点,∴EG=EG,EF=EB=4,在Rt△EFG和Rt△EBG中,,∴Rt△EFG≌Rt△EBG(HL)∴∠FEG=∠BEG,∠AOB=∠AEG=90°,∴△AOE∽△AEG,∴AE2=AO•AG,即36+16=6×AG,解得,AG=,由勾股定理得,CG==,∴BG=6-=,G的坐标为(8,).【解析】(1)分CQ=CP、PC=PQ和QC=PQ三种情况,根据等腰三角形的性质计算即可;(2)连接EG,由翻转变换的性质得到△AOE≌△AFE,根据全等三角形的性质得到∠EFG=∠OBC=90°,证明Rt△EFG≌Rt△EBG得到∠FEG=∠BEG,∠AOB=∠AEG=90°,得到△AOE∽△AEG,根据相似三角形的性质列出比例式,计算即可.本题考查的是翻转变换的性质、等腰三角形的性质、相似三角形的判定和性质,掌握翻转变换的性质、灵活运用分情况讨论思想是解题的关键.27.【答案】解:(1)∵BE=AB=15,在直角△BCE中,CE===9∴DE =6,∵∠EAD +∠BAE =90°,∠BAE =∠BEF ,∴∠EAD +∠BEF =90°,∵∠BEF +∠F =90°,∴∠EAD =∠F∵∠ADE =∠FBE∴△ADE ∽△FBE ,∴ ,, ∴BF =30;(2)①如图1,将矩形ABCD 和直角△FBE 以CD 为轴翻折,则△AMH 即为未包裹住的面积,∵Rt △F ′HN ∽Rt △F ′EG ,∴ ′ ′ = ,即 ,解得:HN =3,∴S △AMH = •AM •MH = ×12×24=144; ②如图2,将矩形ABCD 和Rt △ECF 以AD 为轴翻折,∵Rt △GBE ∽Rt △GB ′C ′,∴ ′ ′ ′,即′ ′ ,解得:GB ′=24, ∴S △B ′C ′G = •B ′C ′•B ′G = ×12×24=144, ∴按照两种包裹方法的未包裹面积相等.【解析】(1)先证明△ADE ∽△FBE ,利用相似的性质得BF ;(2)①利用相似三角形的判定,证明Rt △F′HN ∽Rt △F′EG ,利用相似三角形的性质,求得HN ,利用三角形的面积公式得结果;②利用相似三角形的判定,证明Rt △F′HN ∽Rt △F′EG ,利用相似三角形的性质,求得HN ,利用三角形的面积公式得结果.本题主要考查了相似三角形的判定和性质及翻折变化,以动态(平移和旋转)的形式考查了分类讨论的思想、函数的知识和直角三角形是解答此题的关键.28.【答案】P 2,P 3;(4,-2)或P (-4,6);0<r < 或r >2 +2【解析】解:(1)①连接AC和BD,交于点M,∵四边形ABCD是正方形,∴M到正方形ABCD四条边距离都相等∴⊙P一定通过点M,∵A(2,4)∴M(0,2)设⊙P的圆心坐标是(x,y),∴r=4时,∴x2+(y-2)2=(4)2,即,x2+(y-2)2=32,把P1(0,-3),P2(4,6),P3(4,2)代入,只有P2,P3成立,∴可以成为正方形ABCD的“等距圆”的圆心的是P2,P3,故答案为:P2,P3;②∵点P在直线y=-x+2上,且⊙P是正方形ABCD的“等距圆”,∴把y=-x+2代入x2+(y-2)2=32,得x2+x2=32,解得x=±4,∴y=-2或6,∴P(4,-2)或P(-4,6).故答案为:(4,-2)或P(-4,6).(2)如下图:①∵⊙P同时为正方形ABCD与正方形EFGH的“等距圆”,∴⊙P同时过正方形ABCD的对称中心E和正方形EFGH的对称中心I.∴点P在线段EI的中垂线上.∵A(2,4),正方形ABCD的边CD在x轴上;F(6,2),正方形EFGH的边HE 在y轴上,∴E(0,2),I(3,5)∴∠IEH=45°,设线段EI的中垂线与y轴交于点L,与x轴交于点M,∴△LIE为等腰直角三角形,LI⊥y轴,∴L(0,5),∴△LOM为等腰直角三角形,LO=OM∴M(5,0),∴P在直线y=-x+5上,∴设P(p,-p+5)过P作PQ⊥直线BC于Q,连结PE,∵⊙P与BC所在直线相切,∴PE=PQ,∴p2+(-p+5-2)2=(p+2)2,解得:P1=5+2,P2=5-2,∴P1(5+2,-2),P2(5-2,2),∵⊙P过点E,且E点在y轴上,∴⊙P在y轴上截得的弦长为2|-2-2|=4或2|2-2|=4-4.②如图2,连接DH,作DT⊥HF,以D为圆心,DE为半径作圆,交DT于点E1,交HD于E2,当0<r<DT-DE1时,线段HF上没有一个点能成为它的“等距圆”的圆心.∵HF所在的直线为:y=-x+8,DT所在的直线为:y=x-2,∴T(5,3),∵D(2,0),∴DT==3,∵DE=DE1∴DT-DE=DT-DE=3-2=,1∴当0<r<时,线段HF上没有一个点能成为它的“等距圆”的圆心.当r>HE2时,线段HF上没有一个点能成为它的“等距圆”的圆心.∵HE2=HD+DE2,DE2=DE,∴HE=HD+DE=+2=2+2,2∴当r>2+2时,线段HF上没有一个点能成为它的“等距圆”的圆心.综上可知当0<r<或r>2+2时线段HF上没有一个点能成为它的“等距圆”的圆心,故答案为:0<r<或r>2+2.(1)①连接AC和BD,交于点M,设⊙P的圆心坐标是(x,y),列出圆心到M的关系式,把P1(0,-3),P2(4,6),P3(4,2)代入,看是否成立来逆定,②把y=-x+2代入x2+(y-2)2=32,求出x和y的值,再写出坐标.(2)①先求出△LIE为等腰直角三角形,得到L(0,5),进而得出△LOM为等腰直角三角形,设P(p,-p+5)据关系列出方程求了圆心,的坐标,最后得出弦长.②连接DH,作DT⊥HF,以D为圆心,DE为半径作圆,交DT于点E1,交HD于E2,当0<r<DT-DE1时,线段HF上没有一个点能成为它的“等距圆”的圆心.当r>HE2时,线段HF上没有一个点能成为它的“等距圆”的圆心.据此求解.本题考查圆的综合题,解题的关键是明确题意,根据题目给出的条件,作出合适的辅助线,找出所求问题需要的条件,利用数形结合的思想解答问题.此外对本题中的“等距圆”的定义正确理解也是解题的关键.。

江苏省无锡市九年级(上)期中数学试卷

江苏省无锡市九年级(上)期中数学试卷

江苏省无锡市九年级(上)期中数学试卷一、精心选一选(本大题共10小题,每小题3分,共30分,每题的四个选项中,只有一个符合题意)1.(3分)(2015秋•无锡期中)下列方程①7x2﹣8x=1 ②2x2﹣5xy+6y2=0 ③5x2﹣﹣1=0 ④=3y中是一元二次方程的为()A.①②B.①③C.①④D.①②③2.(3分)(2015秋•无锡期中)下列方程中两根之和等于1的是()A.x2+x+1=0 B.x2﹣x=﹣1 C.x2﹣x﹣100=0 D.3.(3分)(2015秋•无锡期中)在平面直角坐标系中,以O为圆心的圆过点A(0,﹣4),则点B(﹣2,3)与⊙O的位置关系是()A.在圆内B.在圆外C.在圆上D.无法确定4.(3分)(2010•芜湖)关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠55.(3分)(2015秋•无锡期中)如图,△ABC中,DE∥BC,且DE:BC=2:3,则下列结论一定正确的是()A.AD:DE=2:3 B.AD:BD=2:3 C.AD:AE=2:3 D.AD:AB=2:3 6.(3分)(2011•海南)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有()A.1对B.2对C.3对D.4对7.(3分)(2015秋•无锡期中)已知一个点到圆上的点的最大距离是5,最小距离是1,则这个圆的半径是()A.6 B.2 C.2或3 D.4或68.(3分)(2016•湘潭一模)如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是()A.B.C.D.9.(3分)(2015秋•无锡期中)如图,四边形PAOB是扇形OMN的内接矩形,顶点P在弧MN上,且不与M,N重合,当P点在弧MN上移动时,矩形PAOB的形状、大小随之变化,则PA2+PB2的值()A.变大 B.变小 C.不变 D.不能确定10.(3分)(2012•南京)如图,在菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在点A′、D′处,且A′D′经过点B,EF为折痕,当D′F⊥CD时,的值为()A.B.C.D.二、仔细填一填(本大题共8小题,每空2分,共16分)11.(2分)(2015•东莞)若两个相似三角形的周长比为2:3,则它们的面积比是______.12.(2分)(2015•兰州)如果===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=______.13.(2分)(2014•泰州一模)某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是______.14.(2分)(2011秋•香河县期末)已知(x2+y2+1)(x2+y2﹣3)=5,则x2+y2的值等于______.15.(2分)(2015秋•宜兴市校级期末)若a,b是方程x2+x﹣2015=0的两实数根,则a2+2a+b=______.16.(2分)(2011•津南区一模)如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为______cm.17.(2分)(2015•永春县校级自主招生)如图,在梯形ABCD中,AB∥DC,AB⊥BC,AB=2cm,CD=4cm.以BC上一点O为圆心的圆经过A、D两点,且∠AOD=90°,则圆心O到弦AD的距离是______cm.18.(2分)(2015•宿迁)如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=x﹣3与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为______.三、精心做一做(本大题共9小题,满分84分)19.(16分)(2015秋•无锡期中)用适当的方法解下列方程(1)4x2﹣1=0(2)x2﹣4x+1=0(配方法)(3)5(x+2)=4x(x+2)(4)x2﹣2x﹣3=0.20.(8分)(2015秋•揭阳校级期末)已知x=﹣1是方程x2+mx﹣5=0的一个根,求m的值及方程的另一个根.21.(8分)(2015•枣庄)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是______;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是______;(3)△A2B2C2的面积是______平方单位.22.(8分)(2015秋•无锡期中)如图,在⊙O中,弦AB的长为8,圆心O到AB的距离为3.(1)求⊙O的半径;(2)若点P是AB上的一动点,试求线段OP的取值范围.23.(8分)(2015•泰安)如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.(1)求证:AC•CD=CP•BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.24.(8分)(2015秋•无锡期中)万圣节两周前,某商店购进1000个万圣节面具,进价为每个6元,第一周以每个10元的价格售出200个;随着万圣节的临近,预计第二周若按每个10元的价格销售可售出400个,但商店为了尽快减少库存,决定单价降价x元销售(根据市场调查,单价每降低1元,可多售出100个,但售价不得低于进价);节后,商店对剩余面具清仓处理,以第一周售价的四折全部售出.(1)当单价降低2元时,计算第二周的销售量和售完这批面具的总利润;(2)如果销售完这批面具共获利1300元,问第二周每个面具的销售价格为多少元?25.(8分)(2014•防城港)如图,在正方形ABCD中,点M是BC边上的任一点,连接AM并将线段AM绕M顺时针旋转90°得到线段MN,在CD边上取点P使CP=BM,连接NP,BP.(1)求证:四边形BMNP是平行四边形;(2)线段MN与CD交于点Q,连接AQ,若△MCQ∽△AMQ,则BM与MC存在怎样的数量关系?请说明理由.26.(10分)(2002•陕西)阅读下面短文:如图①,△ABC是直角三角形,∠C=90°,现将△ABC补成矩形,使△ABC的两个顶点为矩形一边的两个端点,第三个顶点落在矩形这一边的对边上,那么符合要求的矩形可以画出两个矩形ACBD和矩形AEFB(如图②)解答问题:(1)设图②中矩形ACBD和矩形AEFB的面积分别为S1、S2,则S1______S2(填“>”“=”或“<”).(2)如图③,△ABC是钝角三角形,按短文中的要求把它补成矩形,那么符合要求的矩形可以画______个,利用图③把它画出来.(3)如图④,△ABC是锐角三角形且三边满足BC>AC>AB,按短文中的要求把它补成矩形,那么符合要求的矩形可以画出______个,利用图④把它画出来.(4)在(3)中所画出的矩形中,哪一个的周长最小?为什么?27.(10分)(2015•南通)如图,Rt△ABC中,∠C=90°,AB=15,BC=9,点P,Q分别在BC,AC上,CP=3x,CQ=4x(0<x<3).把△PCQ绕点P旋转,得到△PDE,点D落在线段PQ上.(1)求证:PQ∥AB;(2)若点D在∠BAC的平分线上,求CP的长;(3)若△PDE与△ABC重叠部分图形的周长为T,且12≤T≤16,求x的取值范围.江苏省无锡市九年级(上)期中数学试卷参考答案与试题解析一、精心选一选(本大题共10小题,每小题3分,共30分,每题的四个选项中,只有一个符合题意)1.(3分)(2015秋•无锡期中)下列方程①7x2﹣8x=1 ②2x2﹣5xy+6y2=0 ③5x2﹣﹣1=0 ④=3y中是一元二次方程的为()A.①②B.①③C.①④D.①②③【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:①7x2﹣8x=1是一元二次方程,②2x2﹣5xy+6y2=0 是二元二次方程,③5x2﹣﹣1=0是分式方程,④=3y是一元二次方程,故选:C.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.(3分)(2015秋•无锡期中)下列方程中两根之和等于1的是()A.x2+x+1=0 B.x2﹣x=﹣1 C.x2﹣x﹣100=0 D.【分析】根据根的判别式对A、B、D进行判断;根据根与系数的关系对C进行判断.【解答】解:A、△=12﹣4×1<0,方程没有实数解,所以A选项错误;B、x2﹣x+1=0,△=(﹣1)2﹣4×1<0,方程没有实数解,所以B选项错误;C、x1+x2=1,所以C选项正确;D、△=12﹣4×<0,方程没有实数解,所以D选项错误.故选C.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.3.(3分)(2015秋•无锡期中)在平面直角坐标系中,以O为圆心的圆过点A(0,﹣4),则点B(﹣2,3)与⊙O的位置关系是()A.在圆内B.在圆外C.在圆上D.无法确定【分析】由已知条件可知圆的半径为4,再根据勾股定理可求出OB的长,和圆的半径4比较大小即可判断点B和⊙O的位置关系.【解答】解:∵以O为圆心的圆过点A(0,﹣4),∴圆的半径r=4,∵点B(﹣2,3),∴OB==<4,∴点B(﹣2,3)与⊙O的位置关系是在圆内,故选A.【点评】本题考查了点与圆的位置关系的判断.解决此类题目的关键是首先确定点与圆心的距离,然后与半径进行比较,进而得出结论.4.(3分)(2010•芜湖)关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5【分析】由于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,那么分两种情况:(1)当a﹣5=0时,方程一定有实数根;(2)当a﹣5≠0时,方程成为一元二次方程,利用判别式即可求出a的取值范围.【解答】解:分类讨论:①当a﹣5=0即a=5时,方程变为﹣4x﹣1=0,此时方程一定有实数根;②当a﹣5≠0即a≠5时,∵关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根∴16+4(a﹣5)≥0,∴a≥1.∴a的取值范围为a≥1.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根;切记不要忽略一元二次方程二次项系数不为零这一隐含条件.5.(3分)(2015秋•无锡期中)如图,△ABC中,DE∥BC,且DE:BC=2:3,则下列结论一定正确的是()A.AD:DE=2:3 B.AD:BD=2:3 C.AD:AE=2:3 D.AD:AB=2:3 【分析】由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:∵DE∥BC,∴=,∴AD:AB=2:3,故选:D.【点评】本题考查了平行线分线段成比例定理;熟练掌握平行线分线段成比例定理,由平行线得出比例式是解题的关键.6.(3分)(2011•海南)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有()A.1对B.2对C.3对D.4对【分析】根据相似三角形的判定定理及已知即可得到存在的相似三角形.【解答】解:∵∠ACB=90°,CD⊥AB,∴△ABC∽△ACD,△ACD∽△CBD,△ABC∽△CBD,所以有三对相似三角形.故选C.【点评】本题主要考查相似三角形的判定定理:(1)两角对应相等的两个三角形相似.(2)两边对应成比例且夹角相等的两个三角形相似.(3)三边对应成比例的两个三角形相似.7.(3分)(2015秋•无锡期中)已知一个点到圆上的点的最大距离是5,最小距离是1,则这个圆的半径是()A.6 B.2 C.2或3 D.4或6【分析】点应分为位于圆的内部与外部两种情况讨论:①当点在圆内时,直径=最小距离+最大距离;②当点在圆外时,直径=最大距离﹣最小距离.【解答】解:分为两种情况:①当点M在圆内时,如图1,∵点到圆上的最小距离MB=1,最大距离MA=5,∴直径AB=1+5=6,∴半径r=3;②当点M在圆外时,如图2,∵点到圆上的最小距离MB=1,最大距离MA=5,∴直径AB=5﹣1=4,∴半径r=2.故选C.【点评】本题主要考查了点与圆的位置关系,注意到分两种情况进行讨论是解决本题的关键.8.(3分)(2016•湘潭一模)如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是()A.B.C.D.【分析】设小正方形的边长为1,根据已知可求出△ABC三边的长,同理可求出阴影部分的各边长,从而根据相似三角形的三边对应成比例即可得到答案.【解答】解:∵小正方形的边长均为1∴△ABC三边分别为2,,同理:A中各边的长分别为:,3,;B中各边长分别为:,1,;C中各边长分别为:1、2,;D中各边长分别为:2,,;∵只有B项中的三边与已知三角形的三边对应成比例,且相似比为故选B.【点评】此题主要考查学生对相似三角形的判定方法的理解及运用.9.(3分)(2015秋•无锡期中)如图,四边形PAOB是扇形OMN的内接矩形,顶点P在弧MN上,且不与M,N重合,当P点在弧MN上移动时,矩形PAOB的形状、大小随之变化,则PA2+PB2的值()A.变大 B.变小 C.不变 D.不能确定【分析】连接OP,根据勾股定理以及矩形的性质定理即可求解.【解答】解:∵直角△PAB中,AB2=PA2+PB2,又∵矩形PAOB中,OP=AB,∴PA2+PB2=AB2=OP2.故选C.【点评】本题考查的是圆的认识,涉及到矩形的性质定理以及勾股定理,正确作出辅助线是关键.10.(3分)(2012•南京)如图,在菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D 分别落在点A′、D′处,且A′D′经过点B,EF为折痕,当D′F⊥CD时,的值为()A.B.C.D.【分析】首先延长DC与A′D′交于点M,由四边形ABCD是菱形与折叠的性质,易求得△BCM是等腰三角形,△D′FM是含30°角的直角三角形,然后设CF=x,D′F=DF=y,利用正切函数的知识,即可求得答案.【解答】解:延长DC与A′D′,交于点M,∵在菱形纸片ABCD中,∠A=60°,∴∠DCB=∠A=60°,∵AB∥CD,∴∠D=180°﹣∠A=120°,根据折叠的性质,可得∠A′D′F=∠D=120°,∴∠FD′M=180°﹣∠A′D′F=60°,∵D′F⊥CD,∴∠D′FM=90°,∠M=90°﹣∠FD′M=30°,∵∠BCM=180°﹣∠BCD=120°,∴∠CBM=180°﹣∠BCM﹣∠M=30°,∴∠CBM=∠M=30°,∴BC=CM,设CF=x,D′F=DF=y,则BC=CM=CD=CF+DF=x+y,∴FM=CM+CF=2x+y,在Rt△D′FM中,tanM=tan30°==,∴x=y,∴==.故选:A.【点评】此题考查了折叠的性质、菱形的性质、等腰三角形的判定与性质以及直角三角形的性质.此题难度较大,注意掌握辅助线的作法,注意折叠中的对应关系,注意数形结合思想的应用.二、仔细填一填(本大题共8小题,每空2分,共16分)11.(2分)(2015•东莞)若两个相似三角形的周长比为2:3,则它们的面积比是4:9.【分析】根据相似三角形周长的比等于相似比求出相似比,再根据相似三角形面积的比等于相似比的平方求解即可.【解答】解:∵两个相似三角形的周长比为2:3,∴这两个相似三角形的相似比为2:3,∴它们的面积比是4:9.故答案为:4:9.【点评】本题考查了相似三角形的性质,是基础题,熟记性质是解题的关键.12.(2分)(2015•兰州)如果===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=3.【分析】根据等比性质,可得答案.【解答】解:由等比性质,得k===3,故答案为:3.【点评】本题考查了比例的性质,利用了等比性质:===k⇒k==.13.(2分)(2014•泰州一模)某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是20%.【分析】设该药品平均每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是25(1﹣x),第二次后的价格是25(1﹣x)2,据此即可列方程求解.【解答】解:设该药品平均每次降价的百分率为x,由题意可知经过连续两次降价,现在售价每盒16元,故25(1﹣x)2=16,解得x=0.2或1.8(不合题意,舍去),故该药品平均每次降价的百分率为20%.【点评】本题考查数量平均变化率问题.原来的数量(价格)为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a(1±x),再经过第二次调整就是a(1±x)(1±x)=a(1±x)2.增长用“+”,下降用“﹣”.14.(2分)(2011秋•香河县期末)已知(x2+y2+1)(x2+y2﹣3)=5,则x2+y2的值等于4.【分析】首先把x2+y2当作一个整体,设x2+y2=k,方程即可变形为关于k的一元二次方程,解方程即可求得k即x2+y2的值.【解答】解:设x2+y2=k∴(k+1)(k﹣3)=5∴k2﹣2k﹣3=5,即k2﹣2k﹣8=0∴k=4,或k=﹣2又∵x2+y2的值一定是非负数∴x2+y2的值是4.故答案为:4.【点评】此题注意把x2+y2看作一个整体,然后运用因式分解法解方程,最后注意根据式子的形式分析值的取舍.15.(2分)(2015秋•宜兴市校级期末)若a,b是方程x2+x﹣2015=0的两实数根,则a2+2a+b= 2014.【分析】先根据一元二次方程的解的定义得到a2+a﹣2015=0,即a2+a=2015,则a2+2a+b可化为a2+a+a+b=2015+a+b,然后利用根与系数的关系得到a+b=﹣1,再利用整体代入的方法计算即可.【解答】解:∵a是方程x2+x﹣2015=0的根,∴a2+a﹣2015=0,即a2+a=2015,∴a2+2a+b=a2+a+a+b=2015+a+b,∵a,b是方程x2+x﹣2015=0的两个实数根,∴a+b=﹣1,∴a2+2a+b=2015+(﹣1)=2014.故答案为:2014.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.16.(2分)(2011•津南区一模)如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为cm.【分析】已知小正方形的面积即可求得边长,在直角△ACE中,利用勾股定理即可求解.【解答】解:如图,圆心为A,设大正方形的边长为2x,圆的半径为R,∵正方形有两个顶点在半圆上,另外两个顶点在圆心两侧,∴AE=BC=x,CE=2x;∵小正方形的面积为16cm2,∴小正方形的边长EF=DF=4,由勾股定理得,R2=AE2+CE2=AF2+DF2,即x2+4x2=(x+4)2+42,解得,x=4,∴R=4cm,故答案为:4【点评】本题考查了勾股定理的运用和正方形的性质,解题的关键是正确的做出辅助线构造直角三角形.17.(2分)(2015•永春县校级自主招生)如图,在梯形ABCD中,AB∥DC,AB⊥BC,AB=2cm,CD=4cm.以BC上一点O为圆心的圆经过A、D两点,且∠AOD=90°,则圆心O到弦AD的距离是cm.【分析】本题的综合性质较强,根据全等三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理,直角梯形的性质可知.【解答】解:如图,作AE⊥CD,垂足为E,OF⊥AD,垂足为F,则四边形AECB是矩形,CE=AB=2cm,DE=CD﹣CE=4﹣2=2cm,∵∠AOD=90°,AO=OD,所以△AOD是等腰直角三角形,AO=OD,∠OAD=∠ADO=45°,BO=CD,∵AB∥CD,∴∠BAD+∠ADC=180°∴∠ODC+∠OAB=90°,∵∠ODC+∠DOC=90°,∴∠DOC=∠BAO,∵∠B=∠C=90°∴△ABO≌△OCD,∴OC=AB=2cm,OB=CD=4cm,BC=BO+OC=AE=6cm,由勾股定理知,AD2=AE2+DE2,得AD=2cm,∴AO=OD=2cm,S△AOD=AO•DO=AD•OF,∴OF=cm.【点评】本题利用了全等三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理,直角梯形的性质求解.18.(2分)(2015•宿迁)如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=x﹣3与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为.【分析】认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用△PBM∽△ABO,即可求出本题的答案.【解答】解:如图,过点P作PM⊥AB,则:∠PMB=90°,当PM⊥AB时,PM最短,因为直线y=x﹣3与x轴、y轴分别交于点A,B,可得点A的坐标为(4,0),点B的坐标为(0,﹣3),在Rt△AOB中,AO=4,BO=3,AB==5,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴=,即:,所以可得:PM=.【点评】本题主要考查了垂线段最短,以及三角形相似的性质与判定等知识点,是综合性比较强的题目,注意认真总结.三、精心做一做(本大题共9小题,满分84分)19.(16分)(2015秋•无锡期中)用适当的方法解下列方程(1)4x2﹣1=0(2)x2﹣4x+1=0(配方法)(3)5(x+2)=4x(x+2)(4)x2﹣2x﹣3=0.【分析】(1)通过移项,化二次项系数为1,利用直接开平方法解方程;(2)解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数;(3)方程移项分解后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解;(4)等式的左边利用“十字相乘法”进行因式分解.【解答】解:(1)由原方程,得4x2=1,x2=,解得x1=,x2=﹣;(2)方程变形得:x2﹣4x=﹣1,配方得:x2﹣4x+4=3,即(x﹣2)2=3,开方得:x﹣2=±,则x1=2+,x2=2﹣.(3)移项得:5(x+2)﹣4x(x+2)=0,分解因式得:(5﹣4x)(x+2)=0,可得5﹣4x=0或x+2=0,解得:x1=,x2=﹣2.(4)x2﹣2x﹣3=0,(x﹣3)(x+1)=0,则x﹣3=0或x+1=0,解得x1=3,x2=﹣1.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.20.(8分)(2015秋•揭阳校级期末)已知x=﹣1是方程x2+mx﹣5=0的一个根,求m的值及方程的另一个根.【分析】根据一元二次方程的解的定义,将x=﹣1代入关于x的一元二次方程x2+mx﹣5=0,求得m的值;利用根与系数的关系求得方程的另一根.【解答】解:设方程的另一根为x2.∵关于x的一元二次方程x2+mx﹣5=0的一个根是﹣1,∴x=﹣1满足关于x的一元二次方程x2+mx﹣5=0,∴(﹣1)2﹣m﹣5=0,解得m=﹣4;又由韦达定理知﹣1×x2=﹣5,解得x2=5.即方程的另一根是5.【点评】本题主要考查了一元二次方程的解.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.21.(8分)(2015•枣庄)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,﹣2);(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0);(3)△A2B2C2的面积是10平方单位.【分析】(1)利用平移的性质得出平移后图象进而得出答案;(2)利用位似图形的性质得出对应点位置即可;(3)利用等腰直角三角形的性质得出△A2B2C2的面积.【解答】解:(1)如图所示:C1(2,﹣2);故答案为:(2,﹣2);(2)如图所示:C2(1,0);故答案为:(1,0);(3)∵A2C22=20,B2C=20,A2B2=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:×20=10平方单位.故答案为:10.【点评】此题主要考查了位似图形的性质以及平移的性质和三角形面积求法等知识,得出对应点坐标是解题关键.22.(8分)(2015秋•无锡期中)如图,在⊙O中,弦AB的长为8,圆心O到AB的距离为3.(1)求⊙O的半径;(2)若点P是AB上的一动点,试求线段OP的取值范围.【分析】(1)作OC⊥AB于点C,构造直角三角形,利用勾股定理求得半径即可;(2)最长等于半径,最小等于弦心距.【解答】解:(1)作OC⊥AB于点C,∵圆心O到AB的距离为3,∴OC=3,∵弦AB的长为8,∴AC=BC=4,∴OA==5,∴⊙O的半径为5;(2)∵点P是AB上的一动点,∴3≤PO≤5.【点评】本题考查了垂径定理的知识,平分弦的直径平分这条弦,并且平分弦所对的两条弧,需要同学们熟练掌握.23.(8分)(2015•泰安)如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.(1)求证:AC•CD=CP•BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.【分析】(1)易证∠APD=∠B=∠C,从而可证到△ABP∽△PCD,即可得到=,即AB•CD=CP•BP,由AB=AC即可得到AC•CD=CP•BP;(2)由PD∥AB可得∠APD=∠BAP,即可得到∠BAP=∠C,从而可证到△BAP∽△BCA,然后运用相似三角形的性质即可求出BP的长.【解答】解:(1)∵AB=AC,∴∠B=∠C.∵∠APD=∠B,∴∠APD=∠B=∠C.∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴=,∴AB•CD=CP•BP.∵AB=AC,∴AC•CD=CP•BP;(2)∵PD∥AB,∴∠APD=∠BAP.∵∠APD=∠C,∴∠BAP=∠C.∵∠B=∠B,∴△BAP∽△BCA,∴=.∵AB=10,BC=12,∴=,∴BP=.【点评】本题主要考查了相似三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形外角的性质等知识,把证明AC•CD=CP•BP转化为证明AB•CD=CP•BP是解决第(1)小题的关键,证到∠BAP=∠C进而得到△BAP∽△BCA是解决第(2)小题的关键.24.(8分)(2015秋•无锡期中)万圣节两周前,某商店购进1000个万圣节面具,进价为每个6元,第一周以每个10元的价格售出200个;随着万圣节的临近,预计第二周若按每个10元的价格销售可售出400个,但商店为了尽快减少库存,决定单价降价x元销售(根据市场调查,单价每降低1元,可多售出100个,但售价不得低于进价);节后,商店对剩余面具清仓处理,以第一周售价的四折全部售出.(1)当单价降低2元时,计算第二周的销售量和售完这批面具的总利润;(2)如果销售完这批面具共获利1300元,问第二周每个面具的销售价格为多少元?【分析】(1)第二周的销售量=400+100x.利润=售价﹣成本价;(2)根据纪念品的进价和售价以及销量分别表示出两周的总利润,进而得出等式求出即可.【解答】解:(1)第二周的销售量为:400+100x=400+100x=400+100×2=600.总利润为:200×(10﹣6)+(8﹣6)×600+200(4﹣6)=1600.答:当单价降低2元时,第二周的销售量为600和售完这批面具的总利润1600;(2)由题意得出:200×(10﹣6)+(10﹣x﹣6)(400+100x)+(4﹣6)[(1000﹣200)﹣(400+100x)]=1300,整理得:x2﹣2x﹣3=0,解得:x1=3;x2=﹣1(舍去),∴10﹣3=7(元).答:第二周的销售价格为7元.【点评】此题主要考查了一元二次方程的应用,根据已知表示出两周的利润是解题关键.25.(8分)(2014•防城港)如图,在正方形ABCD中,点M是BC边上的任一点,连接AM并将线段AM绕M顺时针旋转90°得到线段MN,在CD边上取点P使CP=BM,连接NP,BP.(1)求证:四边形BMNP是平行四边形;(2)线段MN与CD交于点Q,连接AQ,若△MCQ∽△AMQ,则BM与MC存在怎样的数量关系?请说明理由.【分析】(1)根据正方形的性质可得AB=BC,∠ABC=∠C,然后利用“边角边”证明△ABM 和△BCP全等,根据全等三角形对应边相等可得AM=BP,∠BAM=∠CBP,再求出AM⊥BP,从而得到MN∥BP,然后根据一组对边平行且相等的四边形是平行四边形证明即可;(2)根据同角的余角相等求出∠BAM=∠CMQ,然后求出△ABM和△MCQ相似,根据相似三角形对应边成比例可得=,再求出△AMQ∽△ABM,根据相似三角形对应边成比例可得=,从而得到=,即可得解.【解答】(1)证明:在正方形ABCD中,AB=BC,∠ABC=∠C,在△ABM和△BCP中,,∴△ABM≌△BCP(SAS),∴AM=BP,∠BAM=∠CBP,∵∠BAM+∠AMB=90°,∴∠CBP+∠AMB=90°,∴AM⊥BP,∵AM并将线段AM绕M顺时针旋转90°得到线段MN,∴AM⊥MN,且AM=MN,∴MN∥BP,∴四边形BMNP是平行四边形;(2)解:BM=MC.理由如下:∵∠BAM+∠AMB=90°,∠AMB+∠CMQ=90°,∴∠BAM=∠CMQ,又∵∠ABC=∠C=90°,∴△ABM∽△MCQ,∴=,∵△MCQ∽△AMQ,∴△AMQ∽△ABM,∴=,∴=,∴BM=MC.【点评】本题考查了相似三角形的判定与性质,正方形的性质,全等三角形的判定与性质,平行四边形的判定,(1)求出两个三角形全等是解题的关键,(2)根据相似于同一个三角形的两个三角形相似求出△AMQ∽△ABM是解题的关键.26.(10分)(2002•陕西)阅读下面短文:如图①,△ABC是直角三角形,∠C=90°,现将△ABC补成矩形,使△ABC的两个顶点为矩形一边的两个端点,第三个顶点落在矩形这一边的对边上,那么符合要求的矩形可以画出两个矩形ACBD和矩形AEFB(如图②)解答问题:(1)设图②中矩形ACBD和矩形AEFB的面积分别为S1、S2,则S1=S2(填“>”“=”或“<”).(2)如图③,△ABC是钝角三角形,按短文中的要求把它补成矩形,那么符合要求的矩形可以画1个,利用图③把它画出来.(3)如图④,△ABC是锐角三角形且三边满足BC>AC>AB,按短文中的要求把它补成矩形,那么符合要求的矩形可以画出3个,利用图④把它画出来.(4)在(3)中所画出的矩形中,哪一个的周长最小?为什么?【分析】(1)易得原有三角形都等于所画矩形的一半,那么这两个矩形的面积相等.(2)可仿照图2矩形ABFE的画法得到矩形.由于∠C非直角,所以只有一种情况.(3)可让原锐角三角形的任意一边为矩形的一边,另一顶点在矩形的另一边的对边上,可得三种情况.(4)根据三个矩形的面积相等,利用求差法比较三个矩形的周长即可.【解答】解:(1)=(2)1(3)3(4)以AB为边长的矩形周长最小,设矩形BCED,ACHQ,ABGF的周长分别为L1,L2,L3,BC=a,AC=b,AB=c.易得三个矩形的面积相等,设为S,∴L1=+2a;L2=+2b;L3=+2c.∵L1﹣L2=2(a﹣b)而a﹣b>0,ab﹣s>0,ab>0∴L1﹣L2>0,∴L1>L2,同理可得L2>L3∴以AB为边长的矩形周长最小.【点评】注意运用类比的方法画图;要比较两个数或式子的大小,一般采用求差法.27.(10分)(2015•南通)如图,Rt△ABC中,∠C=90°,AB=15,BC=9,点P,Q分别在BC,AC上,CP=3x,CQ=4x(0<x<3).把△PCQ绕点P旋转,得到△PDE,点D落在线段PQ上.(1)求证:PQ∥AB;(2)若点D在∠BAC的平分线上,求CP的长;(3)若△PDE与△ABC重叠部分图形的周长为T,且12≤T≤16,求x的取值范围.【分析】(1)先根据勾股定理求出AC的长,再由相似三角形的判定定理得出△PQC∽△BAC,由相似三角形的性质得出∠CPQ=∠B,由此可得出结论;(2)连接AD,根据PQ∥AB可知∠ADQ=∠DAB,再由点D在∠BAC的平分线上,得出∠DAQ=∠DAB,故∠ADQ=∠DAQ,AQ=DQ.在Rt△CPQ中根据勾股定理可知,AQ=12﹣4x,故可得出x的值,进而得出结论;(3)当点E在AB上时,根据等腰三角形的性质求出x的值,再分0<x≤;<x<3两种情况进行分类讨论.【解答】(1)证明:∵在Rt△ABC中,AB=15,BC=9,∴AC===12.∵==,==,∴=.∵∠C=∠C,∴△PQC∽△BAC,∴∠CPQ=∠B,∴PQ∥AB;(2)解:连接AD,∵PQ∥AB,∴∠ADQ=∠DAB.∵点D在∠BAC的平分线上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,∴AQ=DQ.在Rt△CPQ中,PQ=5x,∵PD=PC=3x,∴DQ=2x.∵AQ=12﹣4x,∴12﹣4x=2x,解得x=2,∴CP=3x=6.(3)解:当点E在AB上时,∵PQ∥AB,∴∠DPE=∠PGB.∵∠CPQ=∠DPE,∠CPQ=∠B,∴∠B=∠PGB,∴PB=PG=5x,∴3x+5x=9,解得x=.①当0<x≤时,T=PD+DE+PE=3x+4x+5x=12x,此时0<T≤;②当<x<3时,设PE交AB于点G,DE交AB于F,作GH⊥FQ,垂足为H,∴HG=DF,FG=DH,Rt△PHG∽Rt△PDE,∴==.∵PG=PB=9﹣3x,∴==,∴GH=(9﹣3x),PH=(9﹣3x),∴FG=DH=3x﹣(9﹣3x),∴T=PG+PD+DF+FG=(9﹣3x)+3x+(9﹣3x)+[3x﹣(9﹣3x)]=x+,此时,<T<18.∴当0<x<3时,T随x的增大而增大,∴T=12时,即12x=12,解得x=1;T=16时,即x+=16,解得x=.∵12≤T≤16,∴x的取值范围是1≤x≤.【点评】本题考查的是几何变换综合题,涉及到勾股定理、相似三角形的判定与性质等知识,在解答(3)时要注意进行分类讨论.。

江苏省无锡大桥中学2015届九年级上期中考试数学试题及答案

江苏省无锡大桥中学2015届九年级上期中考试数学试题及答案

ABCO(第6题图)2014~2015学年度第一学期期中考试初三数学面卷一、选择题1.方程(3)(1)3x x x -+=-的解是( )A .0x =B .3x =C .3x =或1x =-D .3x =或0x =2.若关于x 的方程022=+-n x x 无实数根,则一次函数n x n y --=)1(的图像不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.下列说法:(1)三个点确定一个圆;(2)相等的圆心角所对的弦相等;(3)同弧或等弧所对的圆周角相等;(4)三角形的外心到三角形三条边的距离相等;(5)外心在三角形的一边上的三角形是直角三角形;(6)方程x 2+4x ―1=0的两个实数根的和为4.其中正确的有( ) A .0个 B .1个 C .2个 D .3个 4.三角形的两边长分别为3和6,第三边的长是方程x 2-6x +8=0的一个根,则这个三角形的周长是 ( ) A . 9B . 11C .13D . 11或135. 如图,AB 是⊙O 的直径,AB 垂直于弦CD ,∠BOC =70°,则∠ABD =( ) A .20°B .46°C .55°D .70°6.如图,点O 是△ABC 的内切圆的圆心,若∠A =80°,则∠BOC 为( )A .130°B .100°C .50°D .65°7.关于x 的一元二次方程(a −1)x 2−2x +3=0有实数根,则整数a 的最大值是( )A .2B .1C .0D .−18.在平面直角坐标系中,以点(3,-5)为圆心,r 为半径的圆上有且仅有两点到x 轴所在直线 的距离等于1,则圆的半径r 的取值范围是( ) A .r>4B .0<r<6C .4≤r<6D .4<r<69.如图,P A 切⊙O 于点A ,割线PBC 经过圆心O ,OB =PB =1,OA 绕点O 逆时针方向旋转 60°到OD ,则PD 的长为( )A .7B .231C .5D .22 10.我们知道,一元二次方程21x =-没有实数根,即不存在一个实数的平方等于1-.若我们规定一个新数“i”,使其满足21i =-(即方程21x =-有一个根为i )。

苏科版2015九年级上期中考试数学试题(含答案)

苏科版2015九年级上期中考试数学试题(含答案)

第一学期初三数学期中考试试卷注意事项:1.本试卷共6页,全卷满分130分,考试时间为120分钟. 2.考生答题全部答在答题卷上,答在本试卷上无效.一、选择题(本大题共10小题,每小题3分,共30分.四个选项中,只有一项是正确的)1.若等腰三角形的两边长为3、6,则它的周长为 ( ) A .12 B .15 C .12或15 D .以上都不对 2.下列说法正确的是 ( ) A .形状相同的两个三角形是全等三角形 B .面积相等的两个三角形是全等三角形 C .三个角对应相等的两个三角形是全等三角形 D .三条边对应相等的两个三角形是全等三角形3.下列四种说法:① 矩形的两条对角线相等且互相垂直;② 菱形的对角线相等且互相平分; ③ 有两边相等的平行四边形是菱形; ④ 有一组邻边相等的菱形是正方形.其中正确的有 ( ) A. 0个 B. 1个 C. 2个 D. 3个 4. 已知一组数据:15,13,16,17,14,则这组数据的极差与方差分别是 ( ) A .4,3 B .3,3C .3,2D .4,25.若1-x 有意义,则x 的取值范围是( )A .x >1B .x ≥1C .x ≤1D .1≠x6. 下列方程是一元二次方程的是 ( )A .2)1(x x x =- B .02=++c bx ax C .01122=++xx D .012=+x 7.下列一元二次方程中,有实数根的是 ( )A .x 2-x +1=0B .x 2-2x+3= 0C .x 2+x -1=0D . x 2+4=0 8.在一幅长为80cm 、宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩 形挂图.如右图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是 ( )A .213014000x x +-=B .2653500x x +-=C .213014000x x --= D .2653500x x --=9.如图,在正方形ABCD 中,AB=3,点P 在BC 上,点Q 在CD 上,若∠PAQ=450,那么△PCQ 的周长为 ( ) A .8 B .7C .6D .510.如图,平行四边形ABCD 中,AB ∶BC =3∶2,∠DAB =60°,E 在AB 上,且AE ∶EB =1∶2,F 是BC 的中点,过D 分别作DP ⊥AF 于P ,DQ ⊥CE 于Q ,则DP ∶DQ 等于 ( )二、填空题(本大题共8小题,每小题2分共16分)11.若等腰三角形的一个角为1000,则其余两个角为_____________.12.如图,AD =AC ,BD =BC ,O 为AB 上一点,那么图中共有 对全等三角形.13.在平行四边形ABCD 中,对角线AC 和BD 相交于O .如果090=∠+∠ADO ABO ,那么平行四边形ABCD 一定是_____形.14.如图,菱形ABCD 中,对角线AC 交BD 于O ,AB =8, E 是CD 的中点,则OE 的长等于 .15.如图,△ABC 中,AB =AC ,DE 垂直平分AB ,BE ⊥AC ,AF ⊥BC ,则∠EFC = °. 16.若一等腰梯形的对角线互相垂直,且它的高为5,则该梯形的面积为________. 17.若关于x 的方程042=+-mx x 有两个相等的实数根,则m =________.18.已知A 、B 、C 三点的坐标分别是(0,0),(5,0),(5,3),且这3点是一个平行四边形的顶点,请写出第四点D 的坐标为 .三、解答题(本大题共10小题,共84分)19.(本题满分8分)计算:(1)21)1(320-++-π (2) 22523352-33)()(+20. (本题满分8分) 解方程:(1)0232=-+x x (用公式法) (2) 01432=-+x x (用配方法)21.(本题满分10分)如图,四边形ABCD 中,对角线AC 与BD 相交于O ,在①AB ∥CD ;②AO =CO ;③AD=BC 中任意选取两个作为条件,“四边形ABCD 是平行四边形”为结论构成命题.(1)以①②作为条件构成的命题是真命题吗?若是,请证明;若不是,请举出反例; (2)写出按题意构成的所有命题中的假命题,并举出反例加以说明.(命题请写成“如果…,那么….”的形式)OD BA22.(本题满分9分)甲、乙两支仪仗队队员的身高(单位:厘米)如下: 甲队:178,177,179,178,177,178,177,179,178,179; 乙队:178,179,176,178,180,178,176,178,177,180; (1)将下表填完整:(2)甲队队员身高的平均数为______厘米,乙队队员身高的平均数为______厘米;(3)你认为哪支仪仗队更为整齐?简要说明理由.23.(本题满分8分)如果一元二次方程ax 2+bx+c=0(a≠0)的两根是x 1、x 2,那么利用公式法写出两个根x 1、x 2,通过计算可以得出:x 1+x 2=ab -,x 1x 2=a c.由此可见,一元二次方程两个根的和与积是由方程的系数决定的.这就是一元二次方程根与系数的关系.请利用上述知识解决下列问题: (1)若方程2x 2-4x-1=0的两根是x 1、x 2,则x 1+x 2=_____,x 1x 2=______.(2)已知方程x 2-4x+c=0的一个根是32+,请求出该方程的另一个根和c 的值.24.(本题满分8分)如图,将矩形ABCD 沿着对角线BD 折叠,使点C 落在C ’,BC 交AD 于E , (1)试判断△BDE 的形状,并说明理由; (2)若AB=3,BC=5,试求△BDE 的面积.25.(本题满分6分)已知关于x 的方程0)21(4)12(2=-++-k x k x 。

江苏省无锡市天一实验学校2015届九年级上期中考试数学试题及答案

江苏省无锡市天一实验学校2015届九年级上期中考试数学试题及答案

无锡市天一实验学校2014年秋学期初三数学期中试卷出卷人:刘军 审卷人:张玲一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把答案直接写在答卷上相应的位置处.........) 1.下列函数关系中,y 是x 的二次函数的是 ………………………………… ( ▲ )A .y = 2x + 3B .y =1+xC .y = x 2 − 1D .y =1x 2+ 1 2.如图,已知⊙O 是正方形ABCD 的外接圆,点E 是︵AD 上任意一点,则∠BEC 的度数为 …………………………………………………………………………………… ( ▲ ) A .30° B. 45° C. 60° D. 90°3.二次函数y = −3x 2 − 6x + 5的图象的顶点坐标是 …………………………… ( ▲ )A .(−1,8)B .(1,8)C .(−1,2)D .(1,−4)4.已知圆锥的底面半径为6cm ,高为8cm ,则这个圆锥的母线长为 ……… ( ▲ ) A .12cm B .10cm C .8cm D .6cm5.把抛物线y = −x 2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为 …………………………………………………………………………… ( ▲ ) A .y = −(x − 1)2 − 3 B .y = −(x + 1)2 − 3 C .y = −(x − 1)2 + 3 D .y = −(x + 1)2 + 36.如图,两个同心圆的半径分别为4cm 和5cm ,大圆的一条弦AB 与小圆相切,则弦AB 的长为 ………………………………………………………………………… ( ▲ ) A .3cm B .4cm C .6cm D .8cm第2题图 第6题图 第9题图7.已知点A 在半径为r 的⊙O 内,点A 与点O 的距离为6,则r 的取值范围是 ( ▲ ) A .r > 6 B .r ≥ 6 C .r < 6 D .r ≤ 6 8.已知二次函数y = −x 2 − 2x + k 的图象经过点A (1,y 1),B (2-,y 2),C (−2,y 3),则下列结论正确的是 ……………………………………………………………… ( ▲ )A .y 1 < y 2 < y 3B .y 2 < y 1 < y 3C .y 3 < y 1 < y 2D .y 1 < y 3 < y 2 9.已知二次函数y = ax 2 + bx + c (a ≠ 0)的图象如图所示,在下列五个结论中:①2a − b < 0;②abc < 0;③a + b + c < 0;④a − b + c > 0;⑤4a + 2b + c > 0.其中错误的有 …………………………………………………………………………… ( ▲ )EDABC O10.如图,在△ABC 中,AB = 10,AC = 8,BC = 6,经过点C 且与AB 相切的动圆与CB 、CA 分别相交于点E 、 F ,则线段EF 长度的最小值是 …………… ( ▲ )A .24B .4.75C .4.8D .5第10题图二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接写在答卷上相应的位置处.........) 11.如图,AB 是半圆的直径,点C 、D 是半圆上两点,∠ABC = 50°,则∠ADC = ▲ . 12.抛物线y = −2x 2 + 8bx + 1的对称轴是直线x = −2,则抛物线的解析式为 ▲ . 13.已知扇形的半径为3 cm ,圆心角为120°,则此扇形的的弧长是 ▲ cm(结果保留π). 14.抛物线y = 2x 2 + 8x + m 与x 轴只有一个公共点,则m 的值为 ▲ .15.如图,在Rt △ABC 中,∠C = 90°,AC = 3,BC = 4,⊙O 为△ABC 的内切圆,点D是斜边AB 的中点,则tan ∠ODA 等于 ▲ .第11题图 第15题图 第17题图16.已知⊙P 的半径为2,圆心P 在抛物线y = −12x 2 + 1上运动,当⊙P 与x 轴相切时,圆心P 的坐标为 ▲ .17.如图,AB 是⊙O 的直径,CD 、EF 是⊙O 的弦,且AB // CD // EF ,AB = 10,CD = 6,EF = 8.则图中阴影部分的面积为 ▲ . 18.已知二次函数y = −x 2 + 2|x |+ 1.如果方程−x 2 + 2|x |+ 1 = k 恰有两个不相等的实数根,那么k 须满足的条件是 ▲ .三、解答题(本大题共10小题,共84分.请在答卷指定区域内作答.........,解答时应写出文字说明、证明过程或演算步骤)19.(本题满分6分)如图,已知⊙O 的半径为R .(1)请用无刻度的直尺、圆规作出已知圆的内接正△ABC ; (只需保留作图痕迹)(2)试求正△ABC 的周长. CAB EF AB OCDEFO第19题图20.(本题满分8分)如图,已知二次函数y = ax 2 − 4x + c 的图象经过点A 和点B . (1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标;(3)若点P (m ,m )在该函数图象上,求m 的值.第20题图21.(本题满分7分)如图,AB 为⊙O 的直径,点C 在⊙O 上,延长BC 至点D ,使DC = CB .延长DA 与⊙O 的另一个交点为E ,连结AC ,CE .(1)求证:∠B =∠D ;(2)若⊙O 的半径为2,AC = 2,求CE 的长.第21题图22.(本题满分6分)如图,已知AB 是⊙O 的弦,OB = 2,∠B = 30°,点C 是弦AB 上任意一点(不与点A 、B 重合),连接CO 并延长CO 交⊙O 于点D ,连接AD . (1)求弦AB 的长;(2)当∠D = 20°时,求∠BOD 的度数.ABCDEOOABD第22题图23.(本题满分8分)如图,已知抛物y = x 2 + bx + c 与x 轴交于点A 、B ,AB = 2,与y 轴交于点C ,对称轴为直线x = 2. (1)求抛物线的函数表述式;(2)设P 为对称轴上一动点,求△APC 周长的最小值;第23题图24.(本题满分8分)如图,AB 是⊙O 的直径,BC 为⊙O 的切线,D 为⊙O 上的一点,CD = CB ,延长CD 交BA 的延长线于点E .(1)求证:CD 为⊙O 的切线;(2)若OF ⊥BD 于点F ,且OF = 1,∠ABD = 30°,求图中阴影部分的面积.(结果保留π)第24题图25.(本题满分9分)某公司在固定线路上运输,拟用运营指数Q 量化考核司机的工作业绩.Q = W + 100,而W 的大小与运输次数n 及平均速度x (km/h)有关(不考虑其他因素),W 由两部分的和组成:一部分与x 的平方成正比,另一部分与x 的n 倍成正比.试行中得到了表中的数据.(1)用含x 和n 的式子表示Q ;(2)若n = 3,要使Q 最大,确定x 的值;(3)设n = 2,x = 40,能否在n 增加m % (m > 0)同时x 减少m %的情况下,而Q 的值仍为420,若能,求出m 的值;若不能,请说明理由. 次数n 2 1速度x 40 60指数Q 420 10026.(本题满分10分)已知抛物线的顶点为(0,4)且与x 轴交于(−2,0),(2,0).(1)直接写出抛物线解析式;(2)如图,将抛物线向右平移k 个单位,设平移后抛物线的顶点为D ,与x 轴的交点为A 、B ,与原抛物线的交点为P .①当直线OD 与以AB 为直径的圆相切于点E 时,求此时k 的值;②是否存在这样的k 的值,使得点O 、P 、D 三点恰好在同一直线上?若存在,求出k 的值;若不存在,请说明理由.xyPE D CBAOxyP DBAO第26题图 备用图27.(本题满分12分)如图,在平面直角坐标系中,四边形OABC 是边长为2的正方形,二次函数y = ax 2 + bx + c 的图象经过点A ,B ,与x 轴分别交于点E ,F ,且点E 的坐标(32,0),以OC 为直径作半圆,圆心为D . (1)求二次函数的解析式;(2)求证:直线BE 是⊙D 的切线;(3)若直线BE 与抛物线的对称轴交点为P ,M 是线段CB 上的一个动点(点M 与点B ,C 不重合),过点M 作MN // BE 交x 轴于点N ,连结PM ,PN ,设CM 的长为t ,△PMN 的面积为S ,求S 与t 的函数关系式,并写出自变量t 的取值范围.问S 是否存在最大值?若存在,求出最大值;若不存在,请说明理由.第27题图 备用图28.(本题满分10分)在半径为2的扇形AOB 中,∠AOB = 90°,P 是OA 延长线上一点,过线段OP 的中点H 作OP 的垂线交弧AB 于点C ,射线PC 交弧AB 于点D ,联结OD .(1)如图,当︵AC = ︵CD 时,求弦CD 的长;(2)如图,当点C 在︵AD 上时,设P A = x ,CD = y ,求y 与x 的函数关系式,并写出x的取值范围;第28题图 备用图AO BDCH PAO B无锡市天一实验学校2014年秋学期初三数学期中考试参考答案一、选择题(本大题共10小题,每小题3分,共30分)题号 12345678910答案CBABDCADBC二、填空题(本大题共8小题,每小题2分,共16分)11. 130° 12. y = −2x 2 − 8x + 113. 2π 14. 815. 2 16. (6 ,−2)17. 12.5π 18. k = 2或k < 1 三、解答题(本大题共10小题,共84分) 19.(本题满分6分) (1)如图,△ABC 就是所求作的三角形. ………………3分(2)过点O 作OD ⊥BC ,垂足为D ,则BD = CD = 12BC在Rt △OCD 中,∠ODC = 90°,∠OCD = 30°,则CD = OC ·cos30° = 23R , ∴BC = 2CD =3R ,∴△ABC 的周长 = 33R . ………………3分 OABCDOABC(1)将A (−1,−1),B (3,−9)代入,得: ⎩⎨⎧-=+--=++912914c a c a ,∴a = 1,c = −6, ∴y = x 2 − 4x − 6 ………………3分(2)对称轴:直线x = 2顶点坐标:(2,−10) ………………2分(3)∵点P (m ,m )在函数图象上, ∴m 2 − 4m − 6 = m∴m = 6或−1. ………………3分21.(本题满分7分)(1)证明:∵AB 为⊙O 的直径, ∴∠ACB =90°, ∴AC ⊥BC , ∵DC =CB ∴AD =AB ,∴∠B =∠D . ………………3分 (2)设BC =x ,则AC =x -2.在Rt △ABC 中,AC 2+BC 2=AB 2, ∴(x -2)2+x 2=4, 解得71,7121-=+=x x (舍去),∵∠B =∠E ,∠B =∠D ,∴∠D =∠E , ∴CD =CE , ∵CD =CB∴CE =CB =1+7. ………………4分 ABCD EO(1)过点O作OE⊥AB于E,则AE=BE=错误!未找到引用源。

无锡市2015届九年级上期中考试数学试题及答案

无锡市2015届九年级上期中考试数学试题及答案

学校 班级 姓名 考试号………………………………………………………………………………………………………………………………………………………………(第4题图)(第5题图)(第7题图)2014~2015学年第一学期期中试卷初三数学 2014.11(考试时间:120分钟 满分:130分)一.选择题(本大题共10小题,每题3分,共30分.)1.下列方程中,一元二次方程的是…………………………………………………( )A .3x -2x =0 B .x (x -1)=1 C .x 2=(x -1)2 D .ax 2+bx +c =02.若△ABC ∽△DEF ,相似比为1:2.若BC =1,则EF 的长是…………………( )A . 12 B . 1 C . 2 D . 43.原价168元的商品连续两次降价a %后售价为128元,下列方程正确的是…( )A . 128(1+a %)2=168B . 168(1-a 2%)=128C . 168(1-2a %)=128D . 168(1-a %)2=1284.如图,⊙O 的直径CD 垂直弦AB 于点E ,且CE =2,DE =8,则AB 的长为( )A .2B .4C .6D .85.如图,在⊙O 中,AB 是直径,BC 是弦,点P 是 ⌒BC上任意一点.若AB =5,BC =3,则AP 的长不可能为………………………………………………………………( ) A . 3 B . 4 C . 4.5 D . 56.已知扇形的圆心角为45º,半径长为12,则该扇形的弧长为…………………( )A . 34π B . 2π C . 3π D . 12π7.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,连接OC 交⊙O 于点D ,连接BD , ∠C =40º,则∠ABD 的度数是……………………………………………………( ) A . 25º B . 20º C .30º D .15º8.如图,边长为a 的正六边形内有两个三角形(数据如图),则S 阴影S 空白的值为……( )A . 3B . 4C . 5D . 69.如图,已知△ABC 和△ADE 均为等边三角形,D 在BC 上,DE 与AC 相交于点F ,AB =9,BD =3,则CF 等于…………………………………………………………( ) A . 1 B . 2 C . 3 D . 410.如图,Rt △ABC 中,AC ⊥BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AD 交AB 于点E ,M 为AE 的中点,BF ⊥BC 交CM 的延长线于点F ,BD =4,CD =3.下列结论:①∠AED =∠ADC ;②DEDA =12;③AC ·BE =12;④3BF =4AC .其中正确结论的个数有( )(第8题图)(第9题图)FB A CD E M(第10题图)(第15题图)(第14题图)(第16题图)(第17题图)A .1个B .2个C .3个D .4个二.填空题(本大题共10小题,每题2分,共20分.)11.方程x 2=0的解是 .12.一元二次方程(a +1)x 2-ax +a 2=1的一个根为0,则a = .13.若一元二次方程mx 2=n (mn >0)的两个根分别是k +1与2k -4,则nm = .14.如图,已知AB 是△ABC 外接圆的直径,∠A =35º,则∠B 的度数是 . 15.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC .若AD =4,DB =2,则DEBC的值为 .16.如图,AB 、AC 、BD 是⊙O 的切线,P 、C 、D 为切点,如果AB =5,AC =3,则BD 的长为 . 17.如图,△ABC 中,AE 交BC 于点D ,∠C =∠E ,AD :DE =3:5,AE =8,BD =4,则DC 的长等于 .18.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =2,以BC 为直径的半圆交AB 于点D ,P 是 ⌒CD上的一个动点,连接AP ,则AP 的最小值是 .19.如图,A 、B 、C 、D 依次为一直线上4个点,BC =2,△BCE 为等边三角形,⊙O 过A 、D 、E 3点,且∠AOD =120º.设AB =x ,CD =y ,则y 与x 的函数关系式为 .20.如图,在矩形ABCD 中,AD =8,E 是边AB 上一点,且AE =14AB .⊙O 经过点E ,与边CD 所在直线相切于点G (∠GEB 为锐角),与边AB 所在直线交于另一点F ,且 EG :EF =5:2.当边AD 或BC 所在的直线与⊙O 相切时,AB 的长是 .三.解答题(本大题共8小题,共80分. 解答需写出必要的文字说明或演算步骤)21.(16分)解方程:(1)x 2-5x -6=0 (2)2x 2-4x -1=0(3)(x -7)2+2(x -7)=0 (4)(3x +2)2=4(x -3)2(第19题图)(第18题图) (第20题图)C B F E AD G O ·22.(8分)已知关于x 的一元二次方程x 2+2(m +1)x +m 2-1=0. (1)若方程有实数根,求实数m 的取值范围;(2)若方程两实数根分别为x 1、x 2,且满足(x 1-x 2)2=16-x 1x 2,求实数m 的值.23.(8分)如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于点D ,且∠D =2∠A .(1)求∠D 的度数;(2)若CD =2,求BD 的长.24.(10分)如图,在□ABCD 中,过点B 作BE ⊥CD 于E ,F 为AE 上一点,且∠BFE =∠C . (1)求证:△ABF ∽△EAD ;(2)若AB =4,∠BAE =30º,求AE 的长; (3)在(1)(2)的条件下,若AD =3,求BF 的长.25.(8分)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?ACEF DBOABCDP。

2015-2016年江苏省无锡市惠山区九年级上学期期中数学试卷及参考答案

2015-2016年江苏省无锡市惠山区九年级上学期期中数学试卷及参考答案

2015-2016学年江苏省无锡市惠山区九年级(上)期中数学试卷一、选择题(本大题共10题,每小题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的.)1.(3分)锐角30°的正弦值为()A.B.C.D.2.(3分)如图在Rt△ABC中,∠ACB=90°,BC=3,AB=5,则下列结论正确的是()A.sinA=B.tanA=C.cosB=D.tanB=3.(3分)在以下数据75,80,80,85,90中,众数、中位数分别是()A.75,80 B.80,80 C.80,85 D.80,904.(3分)一个不透明的盒子中装一些球(除了颜色外无其他差别),从中随机摸出一个小球,共有3种可能情况:红球,黄球和绿球,则随机摸出一球是红球的概率为()A.0 B.C.D.无法确定5.(3分)点P为半径为3的⊙O上一点,若PQ=3,则点Q与⊙O的位置关系为()A.在⊙O外B.在⊙O上C.在⊙O内D.都有可能6.(3分)在⊙O中,r=13,弦AB=24,则圆心O到AB的距离为()A.5 B.10 C.12 D.137.(3分)下列命题:①三点确定一个圆;②相等的圆心角所对的弦相等;③直径所对的圆周角是直角;④直角三角形的外心是斜边的中点.真命题为()A.①②③④B.②③④C.③④D.①③8.(3分)如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则cos∠AOB=()A.B.C.D.9.(3分)在半径为13的⊙O中,弦AB∥CD,弦AB和CD的距离为7,若AB=24,则CD的长为()A.10 B.4C.10或4D.10或210.(3分)如图,点P是半径为1的⊙A上一点,延长AP到C,使PC=AP,以AC为对角线作▱ABCD.若AB=,则平行四边形ABCD面积的最大值为()A.2 B.2 C.3 D.3二、填空题(本大题共8小题,每小题2分,共计16分.请把答案直接填写在答题卡相应位置上.)11.(2分)已知α为锐角,且tanα﹣1=0,则α=.12.(2分)用单词“happy”中随机抽取一个字母为p的概率为.13.(2分)小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分,80分,90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是分.14.(2分)如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BE=9,BC=12,则cosC=.15.(2分)△ABC中,∠C=90°,AB=3cm,BC=2cm,以A为圆心,以2.3cm为半径作圆,则C点和⊙A的关系是.16.(2分)四边形ABCD为圆O的内接四边形,已知∠BOD=100°,则∠BCD=.17.(2分)已知点P是半径为1的⊙O外一点,PA切⊙O于点A,且PA=1,AB 是⊙O的弦,AB=,连接PB,则PB=.18.(2分)如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG,点F,G分别在AD,BC上,连结OG,DG,若OG⊥DG,且⊙O的半径长为1,则BC+AB的值.三、解答题(本大题共10小题,共计84分.解答需写出必要的文字说明或演算步骤.)19.(8分)计算:(1)+(﹣1)2015﹣|﹣|;(2)2sin30°﹣sin45°.20.(8分)解方程(组):(1)x2﹣2x﹣3=0;(2).21.(8分)如图,在Rt△ABC中,∠C=90°,AB=10,sin∠A=,求BC的长和tan ∠B的值.22.(8分)如图所示,A、B两个旅游点从2011年至2015年“清明小长假”期间的旅游人数变化情况分别用实线和虚线表示,请解答以下问题:(1)B旅游点的旅游人数相对上一年,增长最快的是哪一年?(2)求A、B两个旅游点从2011年到2015年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;(3)A旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A旅游点的最佳接待人数为4万人.A旅游点决定提高门票价格来控制游客数量.已知游客数量y(万人)与门票价格x(元)之间满足函数关系y=5﹣.若要使A旅游点的游客人数不超过4万人,则门票价格至少应提高多少元?23.(8分)一个不透明的口袋中装有4个分别标有数字﹣1,﹣2,3,4的小球,它们的形状、大小完全相同.先从口袋中随机摸出一个小球,记下数字为x;再在剩下的3个小球中随机摸出一个小球,记下数字为y,得到点P的坐标(x,y).(1)请用“列表”或“画树状图”等方法表示出点P(x,y)所有可能的结果;(2)求出点P(x,y)在第一象限或第三象限的概率.24.(8分)如图,AB是⊙O的直径,弦CD与AB相交于点E.(1)若∠CAB=65°,求∠D的度数;(2)若AE=10,EB=2,且∠AEC=30°,求CD的长.25.(8分)如图,兰兰站在河岸上的G点,看见河里有一只小船沿垂直于岸边的方向划过来,此时,测得小船C的俯角是∠FDC=30°,若兰兰的眼睛与地面的距离是1.5米,BG=1米,BG平行于AC所在的直线,迎水坡的坡度i=4:3,坡长AB=10米,求小船C到岸边的距离CA的长?(参考数据:,结果保留两位有效数字)26.(8分)如图1,在Rt△ACB中,∠ACB=90°,AC=3,BC=4,有一过点C的动圆⊙O与斜边AB相切于动点P,连接CP.⊙O的半径为r.(1)当⊙O与直角边AC相切时,如图2所示,求此时⊙O的半径r的长;(2)若弦CP=2.5时,求AP的长;(3)当切点P运动到点B处时,⊙O的半径r有最大值,试求出这个最大值.27.(10分)阅读下面材料:小天在学习锐角三角函数中遇到这样一个问题:在Rt△ABC中,∠C=90°,∠B=22.5°,则tan22.5°=小天根据学习几何的经验,先画出了几何图形(如图1),他发现22.5°不是特殊角,但它是特殊角45°的一半,若构造有特殊角的直角三角形,则可能解决这个问题.于是小天尝试着在CB边上截取CD=CA,连接AD(如图2),通过构造有特殊角(45°)的直角三角形,经过推理和计算使问题得到解决.请回答:tan22.5°=.参考小天思考问题的方法,解决问题:如图3,在等腰△ABC 中,AB=AC,∠A=30°,请借助△ABC,构造出15°的角,并求出该角的正切值.28.(10分)如图,▱ABCD中,A(0,3),C(6,0),∠DCB=45°,点P从点E (﹣4,0)出发,沿x轴向右以每秒1个单位长的速度运动,运动时间为t(秒).(1)D点坐标为.(2)当∠PAB=15°时,求点P的坐标.(3)以点P为圆心,PA长为半径的⊙P随点P的运动而变化,当⊙P与▱ABCD 的边(或边所在的直线)相切时,求t的值.2015-2016学年江苏省无锡市惠山区九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10题,每小题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的.)1.(3分)锐角30°的正弦值为()A.B.C.D.【解答】解:sin30°=.故选:A.2.(3分)如图在Rt△ABC中,∠ACB=90°,BC=3,AB=5,则下列结论正确的是()A.sinA=B.tanA=C.cosB=D.tanB=【解答】解:∵在Rt△ABC中,∠ACB=90°,BC=3,AB=5,∴AC==4,∴sinA==,tanA==,cosB=,tanB=,故选:D.3.(3分)在以下数据75,80,80,85,90中,众数、中位数分别是()A.75,80 B.80,80 C.80,85 D.80,90【解答】解:∵数据75,80,80,85,90中,80出现的次数最多,出现了2次,∴这组数据的众数是80;把数据75,80,80,85,90从小到大排列,可得75,80,80,85,90,所以这组数据的中位数是80.故选:B.4.(3分)一个不透明的盒子中装一些球(除了颜色外无其他差别),从中随机摸出一个小球,共有3种可能情况:红球,黄球和绿球,则随机摸出一球是红球的概率为()A.0 B.C.D.无法确定【解答】解:∵一个不透明的盒子中装一些球(除了颜色外无其他差别),从中随机摸出一个小球,共有3种可能情况:红球,黄球和绿球,但不知各小球的个数;∴随机摸出一球是红球的概率:无法确定.故选:D.5.(3分)点P为半径为3的⊙O上一点,若PQ=3,则点Q与⊙O的位置关系为()A.在⊙O外B.在⊙O上C.在⊙O内D.都有可能【解答】解:∵PQ=OP,OQ的大小不能确定,∴点Q与⊙O的位置关系不能确定.故选:D.6.(3分)在⊙O中,r=13,弦AB=24,则圆心O到AB的距离为()A.5 B.10 C.12 D.13【解答】解:如图所示,过点O作OD⊥AB于点D,∵AB=24,r=13,∴BD=AB=12,OB=r=13,∴OD===5.故选:A.7.(3分)下列命题:①三点确定一个圆;②相等的圆心角所对的弦相等;③直径所对的圆周角是直角;④直角三角形的外心是斜边的中点.真命题为()A.①②③④B.②③④C.③④D.①③【解答】解:①不在同一直线上的三点确定一个圆,故错误,为假命题;②在等圆中相等的圆心角所对的弦相等,故错误,为假命题;③直径所对的圆周角是直角,正确,为真命题;④直角三角形的外心是斜边的中点,正确,为真命题,故选:C.8.(3分)如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则cos∠AOB=()A.B.C.D.【解答】解:根据题意得:OA=OB=AB,∴△OAB是等边三角形,∴∠AOB=60°,∴cos∠AOB=cos60°=.故选:B.9.(3分)在半径为13的⊙O中,弦AB∥CD,弦AB和CD的距离为7,若AB=24,则CD的长为()A.10 B.4C.10或4D.10或2【解答】解:当AB与CD在圆心O的同侧时,如图1所示:过点O作OF⊥CD于点F,交AB于点E,连接OA,OC,∵AB∥CD,OF⊥CD,∴OE⊥AB,∴AE=AB=×24=12,在Rt△AOE中,OE===5,∴OF=OE+EF=5+7=12,在Rt△OCF中,CF===5,∴CD=2CF=2×5=10;当AB与CD在圆心O的异侧时,如图2所示:过点O作OF⊥CD于点F,反向延长交AB于点E,连接OA,OC,∵AB∥CD,OF⊥CD,∴OE⊥AB,∴AE=AB=×24=12,在Rt△AOE中,OE===5,∴OF=EF﹣OE=7﹣5=2,在Rt△OCF中,CF===,∴CD=2CF=2×=2.故CD的长为10或2.故选:D.10.(3分)如图,点P是半径为1的⊙A上一点,延长AP到C,使PC=AP,以AC为对角线作▱ABCD.若AB=,则平行四边形ABCD面积的最大值为()A.2 B.2 C.3 D.3【解答】解:如图1所示:当AC=2为△ABC的底边,△ABC的高线越大则其面积越大,作BE⊥AC于点E,∵BE≤AB,∴当点E与点A重合时,BE=AB,此时底边AC上的高最大,即△ABC的面积最大时,AB⊥AC,如图2,故当AB⊥AC时,▱ABCD的面积最大,∴S=AB•AC=,△ABC∴S▱ABCD=2S△ABC=2,∴▱ABCD面积的最大值为2.故选:B.二、填空题(本大题共8小题,每小题2分,共计16分.请把答案直接填写在答题卡相应位置上.)11.(2分)已知α为锐角,且tanα﹣1=0,则α=45°.【解答】解:∵tanα﹣1=0,α为锐角,∴tanα=1,∴α=45°.故答案为:45°.12.(2分)用单词“happy”中随机抽取一个字母为p的概率为.【解答】解:∵单词“happy”中有2个p,∴从单词“happy”中随机抽取一个字母为p的概率为:.故答案为:.13.(2分)小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分,80分,90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是86分.【解答】解:根据题意得:85×+80×+90×=17+24+45=86(分),答:小王的成绩是86分.故答案为:86.14.(2分)如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BE=9,BC=12,则cosC=.【解答】解:∵DE是BC的垂直平分线,∴CE=BE,∴CD=BD,∵BE=9,BC=12,∴CD=6,CE=9,∴cosC===,故答案为.15.(2分)△ABC中,∠C=90°,AB=3cm,BC=2cm,以A为圆心,以2.3cm为半径作圆,则C点和⊙A的关系是点C在圆外.【解答】解:如图所示,∵△ABC中∠C=90°,AB=3cm,BC=2cm,∴AC===,∵2.3>,∴点C在圆外.故答案为:点C在圆外.16.(2分)四边形ABCD为圆O的内接四边形,已知∠BOD=100°,则∠BCD=130°或50°.【解答】解:如图∵弧BAD的度数为100°,∴∠BOD=100°,∴∠BCD=∠BOD=50°,∴∠BAD=180°﹣∠ACD=130°.同理,当点A是优弧上时,∠BAD=50°.故答案为:130°或50°.17.(2分)已知点P是半径为1的⊙O外一点,PA切⊙O于点A,且PA=1,AB 是⊙O的弦,AB=,连接PB,则PB=1或.【解答】解:连接OA,(1)如图1,连接OA,∵OB=AO=1,AB=,∴OB2+OA2=AB2,∴∠AOB=90°,∵PA是⊙的切线,∴∠PAO=90°,∵PA∥OB,∵PA=1,∴PA=OB,∴四边形PAOB是平行四边形,∴PB=OA=1;(2)如图2,连接OA,与PB交于C,∵PA是⊙O的切线,∴OA⊥PA,而PA=AO=1∴OP=;∵AB=,而OA=OB=1,∴AO⊥BO,∴四边形PABO是平行四边形,∴PB,AO互相平分;设AO交PB与点C,即OC=,∴BC=,∴PB=.故答案为:1或.18.(2分)如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG,点F,G分别在AD,BC上,连结OG,DG,若OG⊥DG,且⊙O的半径长为1,则BC+AB的值2+4.【解答】解:如图所示:设圆0与BC的切点为M,连接OM.∵BC是圆O的切线,M为切点,∴OM⊥BC.∴∠OMG=∠GCD=90°.由翻折的性质可知:OG=DG.∵OG⊥GD,∴∠OGM+∠DGC=90°.又∵∠MOG+∠OGM=90°,∴∠MOG=∠DGC.在△OMG和△GCD中,,∴△OMG≌△GCD.∴OM=GC=1.CD=GM=BC﹣BM﹣GC=BC﹣2.∵AB=CD,∴BC﹣AB=2.设AB=a,则BC=a+2.∵圆O是△ABC的内切圆,∴AC=AB+BC﹣2r.∴AC=2a.∴.∴∠ACB=30°.∴,即.解得:a=.∴AB=,BC=AB+2=.所有AB+BC=4.故答案为:4.三、解答题(本大题共10小题,共计84分.解答需写出必要的文字说明或演算步骤.)19.(8分)计算:(1)+(﹣1)2015﹣|﹣|;(2)2sin30°﹣sin45°.【解答】解:(1)原式=2﹣1﹣=﹣1;(2)原式=2×﹣×=1﹣1=0.20.(8分)解方程(组):(1)x2﹣2x﹣3=0;(2).【解答】解:(1)x2﹣2x﹣3=0,(x+1)(x﹣3)=0,x+1=0,x﹣3=0,x1=﹣1,x2=3.(2).②﹣①得,5y=5,解得y=1,把y=1代入①得,x=10,故原方程组的解为.21.(8分)如图,在Rt△ABC中,∠C=90°,AB=10,sin∠A=,求BC的长和tan ∠B的值.【解答】解:在Rt△ABC中,∠C=90°,AB=10,sinA===,∴BC=4,根据勾股定理得:AC==2,则tanB===.22.(8分)如图所示,A、B两个旅游点从2011年至2015年“清明小长假”期间的旅游人数变化情况分别用实线和虚线表示,请解答以下问题:(1)B旅游点的旅游人数相对上一年,增长最快的是哪一年?(2)求A、B两个旅游点从2011年到2015年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;(3)A旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A旅游点的最佳接待人数为4万人.A旅游点决定提高门票价格来控制游客数量.已知游客数量y(万人)与门票价格x(元)之间满足函数关系y=5﹣.若要使A旅游点的游客人数不超过4万人,则门票价格至少应提高多少元?【解答】解:(1)B旅游点的旅游人数相对上一年增长最快的是2014年;(2)==3(万人),==3(万人).S A2=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2,S B2=[(3﹣3)2+(3﹣3)2+(2﹣3)2+(4﹣3)2+(3﹣3)2]=.从2011至2015年清明小长假期间,A、B两个旅游点平均每年的旅游人数均为3万人,但A旅游点较B旅游点的旅游人数波动更大一些;(3)由题意,得5﹣≤4,解得x≥100,x﹣80≥100﹣80=20.答:A旅游点的门票至少要提高20元.23.(8分)一个不透明的口袋中装有4个分别标有数字﹣1,﹣2,3,4的小球,它们的形状、大小完全相同.先从口袋中随机摸出一个小球,记下数字为x;再在剩下的3个小球中随机摸出一个小球,记下数字为y,得到点P的坐标(x,y).(1)请用“列表”或“画树状图”等方法表示出点P (x ,y )所有可能的结果;(2)求出点P (x ,y )在第一象限或第三象限的概率.【解答】解:(1)列表如下:(2)从上面的表格可以看出,所有可能出现的结果共有12种,且每种结果出现的可能性相同,其中点(x ,y )在第一象限或第三象限的结果有4种,所以其的概率==.24.(8分)如图,AB 是⊙O 的直径,弦CD 与AB 相交于点E .(1)若∠CAB=65°,求∠D 的度数;(2)若AE=10,EB=2,且∠AEC=30°,求CD 的长.【解答】解:(1)连接BC ,∵AB 是⊙O 的直径,∴∠ACB=90°,∵∠CAB=65°,∴∠B=25°,∴∠D=∠B=25°;(2)连接OC,过点O作OF⊥CD于点F;∵AE=10,BE=2,∴OC=OA=6,OE=6﹣2=4;∵∠AEC=30°,∴OF=2,由勾股定理得:CF2=OC2﹣OF2,解得:CF=,∴CD=2CF=2.25.(8分)如图,兰兰站在河岸上的G点,看见河里有一只小船沿垂直于岸边的方向划过来,此时,测得小船C的俯角是∠FDC=30°,若兰兰的眼睛与地面的距离是1.5米,BG=1米,BG平行于AC所在的直线,迎水坡的坡度i=4:3,坡长AB=10米,求小船C到岸边的距离CA的长?(参考数据:,结果保留两位有效数字)【解答】解:过点B作BE⊥AC于点E,延长DG交CA于点H,得Rt△ABE和矩形BEHG.,∴BE=8,AE=6.∵DG=1.5,BG=1,∴DH=DG+GH=1.5+8=9.5,AH=AE+EH=6+1=7.在Rt△CDH中,∵∠C=∠FDC=30°,DH=9.5,tan30°=,∴CH=9.5.又∵CH=CA+7,即9.5=CA+7,∴CA≈9.435≈9.4(米).答:CA的长约是9.4米.26.(8分)如图1,在Rt△ACB中,∠ACB=90°,AC=3,BC=4,有一过点C的动圆⊙O与斜边AB相切于动点P,连接CP.⊙O的半径为r.(1)当⊙O与直角边AC相切时,如图2所示,求此时⊙O的半径r的长;(2)若弦CP=2.5时,求AP的长;(3)当切点P运动到点B处时,⊙O的半径r有最大值,试求出这个最大值.【解答】解:(1)如图1,∵在Rt△ACB中,∠ACB=90°,AC=3,BC=4,∴AB==5.∵AC、AP都是圆的切线,圆心在BC上,AP=AC=3,∴PB=2,过P作PQ⊥BC于Q,过O作OR⊥PC于R,∵PQ∥AC,∴===,∴PQ=,BQ=,∴CQ=BC﹣BQ=,∴PC==,∵点O是CE的中点,∴CR=PC=,∴∠PCE=∠PCE,∠CRO=∠CQP,∴△COR∽△CPQ,∴=,即=,解得r=;(2)如图2,过C作CD⊥AB于D,∴CD==2.4,∴AD==1.8,PD==0.7,∴AP1=AD﹣P1D=1.1;AP2=AD+P2D=2.5;(3)如图3,当P与B重合时,圆最大.O在BC的垂直平分线上,过O作OD⊥BC于D,由BD=BC=2,∵AB是切线,∴∠ABO=90°,∴∠ABD+∠OBD=∠BOD+∠OBD=90°,∴∠ABC=∠BOD,∴=sin∠BOD=sin∠ABC==,∴OB=,即半径最大值为.27.(10分)阅读下面材料:小天在学习锐角三角函数中遇到这样一个问题:在Rt△ABC中,∠C=90°,∠B=22.5°,则tan22.5°=﹣1小天根据学习几何的经验,先画出了几何图形(如图1),他发现22.5°不是特殊角,但它是特殊角45°的一半,若构造有特殊角的直角三角形,则可能解决这个问题.于是小天尝试着在CB边上截取CD=CA,连接AD(如图2),通过构造有特殊角(45°)的直角三角形,经过推理和计算使问题得到解决.请回答:tan22.5°=﹣1.参考小天思考问题的方法,解决问题:如图3,在等腰△ABC 中,AB=AC,∠A=30°,请借助△ABC,构造出15°的角,并求出该角的正切值.【解答】解:如图2,设CD=CA=a,则AD=a,∵∠B=22.5°,∠ADC=45°,∴∠DAB=22.5°,∴∠DAB=∠B,∴DB=DA=a,∴BC=BD+CD=(+1)a,在Rt△ABC中,tanB===﹣1,即tan22.5°=﹣1;故答案为﹣1;﹣1;如图3,延长BA到D,使AD=AB,则AB=AD=AC,∴∠D=∠ACD,∵∠CAB=∠D+∠ACD=30°,∴∠D=15°,作CH⊥AB于H,设CH=x,则AC=2x,AH=x,∴AD=AC=2x,∴DH=AD+AH=(2+)x,在Rt△DCH中,tanD===2﹣,即tan15°=2﹣.28.(10分)如图,▱ABCD中,A(0,3),C(6,0),∠DCB=45°,点P从点E (﹣4,0)出发,沿x轴向右以每秒1个单位长的速度运动,运动时间为t(秒).(1)D点坐标为(3,3).(2)当∠PAB=15°时,求点P的坐标.(3)以点P为圆心,PA长为半径的⊙P随点P的运动而变化,当⊙P与▱ABCD 的边(或边所在的直线)相切时,求t的值.【解答】解:(1)过点D作DF⊥BC于点F,∵∠DCB=45°,∴∠CDB=45°,∴DB=FC,∵A(0,3),C(6,0),∴DB=FC=3,∴AD=BO=3,此时F,B重合,∴D(3,3);故答案为:(3,3);(2)当P点在B点左侧,且∠P′AB=15°时,由题意可得:AO=BO=3,∴∠OAB=45°,∵∠P′AB=15°,∴∠OAP′=30°,∴tan30°=,∴OP′=AO×=,∴P′(,0),当P点在B点右侧,且∠P″AB=15°时,由题意可得:AO=BO=3,∴∠OAB=45°,∵∠P″AB=15°,∴∠OAP″=60°,∴tan60°==,∴OP″=3,∴P″(3,0),综上所述:P′(,0)或P″(3,0);(3)①当⊙P与AB相切时,此时PA=AB=3,则PE=1,故t=1,②当⊙P与AD相切时,此时P与O重合,则t=4,③如图备用图:当⊙P与CD相切时,过P作PM⊥CD于点M,PA2=32+(t﹣4)2,PM2=[(10﹣t)]2,则:32+(t﹣4)2=(10﹣t)2,解得:t=﹣2±3(负值舍去),∴t=3﹣2.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。

2015年江苏省无锡市初三中考真题数学试卷(有答案)

2015年江苏省无锡市初三中考真题数学试卷(有答案)

精品文档实用文档2015年无锡市中考数学试题一、选择題1. -3的倒数是A. 3B. 土3C. |D. 一;2. 函Sty=y/^4中自变暈x 的取值范围是A. x>4B. Q4C. xW4D. xH43. 今年江苏省参加高号的人数约为393 000人.这个数据用科学记数法可表示为()A. 393X 1()3 B- 393X103C. 3 93X1O 5D. 3 93X 1()64. 方程 2x-l=3x+2的解为()A. x=lB. x=-lC. x=3D. x=-35. 若点A(3, — 4)、B(-2, m)在同一个反比例函数的图像上.则m 的偵为()A. 6B. -6C. 12D. -126. 下列图形中,是轴对称图形但不是中心对称图形的是()A.等边三角形B,平行四边形 C,矩形D ・圆7. 0145。

的債为()A.!B. 1C.牛D.8. 八边形的内角和为()A. 180°B. 360°C. 1080°D. 1440°9. 如图的正方体众了的外表面上画冇3条粗黑线,将这个正方体盒子的表面展开(外表而朝展开图可能是(10. 如图,RtAAB 。

中・匕ACB = 90°, AC = 3, BC=4.将边AC 沿CE 翻折, 使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延 长线上的点B 处,两条折痕与斜边AB 分别交于点E 、F.则线段B*F 的长 为 (▲)3 - 4,A. $B. $C. jD. 2 二、壊空题11.分解因式,3—导=fl(第9第)C.A. B.精品文档实用文档易題斥第一时间提供Word 版中考真11答案及解析 一次函数y=2x-6的图像与x 轴的交点坐标为,如图,已知矩形ABCD 的对角絞长为8cm, E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,则四边形EFGH 的周长等于 cm.16. 某种蕴菜按品质分成三个等级销碍,销传情况如卜表:则侔出蔬菜的平均単价为元/千克.17. 己知:如图,AD 、BE 分別是八同。

2015年期中考试九年级试题及答案

2015年期中考试九年级试题及答案

2015-2016学年度第一学期九年级期中考试数 学 试 题(分值:120分 考试时间:90分钟)(出题学校: 义和镇中心学校 出题教师: 吴翠婵 )一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.如图,所给图形中是中心对称图形但不是轴对称图形的是().A B C D2.下列关于x 的方程有实数根的是( ). A. 210x x -+= B.210x x ++= C.(1)(2)0x x -+= D.2(1)10x -+=3.如图,四边形ABCD 内接于⊙O ,若它的一个外角∠DCE =70°,则∠BOD 等于( ). A . 35° B .70° C .110° D .140°(第3题)4. 若三角形的两边长分别是3和4,第三边长是方程x 2-12x +35=0的根,则该三角形的周长为( ). A.14 B.12 C .12 或14 D.以上都不对5.“河口是我家,文明靠大家”。

自我区开展整治“六乱”行动以来,我区学生更加自觉遵守交通规则。

某校学生小明每天骑自行车上学时,都要经过一个十字路口,该十字路口有红,黄,绿三色交通信号灯,他在路口遇到红灯的概率为13,遇到黄灯的概率为19,那么他遇到绿灯的概率为( ). A .13 B .23 C .49 D .596.将函数y =2x 2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是( ). A .y =2(x -1)2-3 B .y =2(x -1)2+3 C .y =2(x +1)2-3 D .y =2(x +1)2+37.如图,⊙O 的弦AB 垂直半径OC 于点D ,∠CBA =30°,OC =33cm ,则弦AB 的长为( ). A .9cm B .33cm C .29cm D .233cm(第7题) 8.一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为( ).A .1.5B .2C .2.5D .39.如图,R t A B C 绕O 点逆时针旋转90°得Rt BDE ,其中AC=3,DE=5,∠ABD=∠ACB=∠BED=90°,则OC 的长为( ). A.52+B. C.3+ D.4(9题图) (10题图) 10.如图,在平面直角坐标系中,抛物线212y x =经过平移得到抛物线2122y x x =-,其对称轴与两段抛物线所围成的阴影部分的面积为( ).A .4B .6C .8D .16二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分.11.已知一个正六边形内接于⊙O ,如果⊙O 的半径为4cm ,那么这个正六边形的面积为 cm 2. 12.桶里原有质地均匀、形状大小完全一样的6个红球和4个白球,小红不慎遗失了其中2个红球,现在从桶里随机摸出一个球,则摸到白球的概率________. 13.如果点P 关于x 轴的对称点p 1的坐标是(2,3),那么点p 关于原点的对称点p 2的坐标是 _________ .14.某小区2015年屋顶绿化面积为2000平方米,计划2017年屋顶绿化面积要达到2880平方米,如果每年屋顶绿化面积的增长率相同,那么这个增长率是_________. 15.如图所示是抛物线224y x bx b =++- 的图像,那么b 的值是__________.(15题图) (16题图) (17题图)16.如图,△COD 是△AOB 绕点O 顺时针旋转40°后得到的图形,若点C 恰好落在AB 上,且∠AOD 的度数为90°,则∠B 的度数是_________.17.如图,点A 、B 、C 都在⊙O 上,如果∠AOB +∠ACB =84°,那么∠ACB 的大小是_______. 18.若二次函数26y x x c =-+的图象经过123(1,),(2,),(3)A y B y C y - 三点,则关于y 1,y 2,y 3 的大小关系是_____________.三、解答题:本大题共7小题,共58分.解答要写出必要的文字说明、证明过程或演算步骤. 19.(8分)解下列方程(1)2210x x --= (2)25(32)4(23)x x x -=-20.(7分) 如图,在边长为1的正方形组成的网格中,△AOB 的顶点均在格点上,点A ,B 的坐标分别是A (3,2),B (1,3).△AOB 绕点O 逆时针旋转90°后得到△A 1 OB 1 . (1)画出旋转后的图形; (2)点B 1 的坐标为 ;(3)在旋转过程中,点A 经过的路径为弧AA 1 ,那么弧AA 1 的长为多少?(第20题)21.(10分)为了了解同学们课外阅读的情况,现对初三某班进行了“你最喜欢的课外书籍类别”的问卷调查。

江苏省无锡市2015年中考数学试题(解析版)

江苏省无锡市2015年中考数学试题(解析版)

江苏省无锡市2015年中考数学试卷一、选择题1.(2分)(2015•无锡)﹣3的倒数是()的倒数是2.(2分)(2015•无锡)函数y=中自变量x的取值范围是()3.(2分)(2015•无锡)今年江苏省参加高考的人数约为393000人,这个数据用科学记数法可表示为()4.(2分)(2015•无锡)方程2x﹣1=3x+2的解为()5.(2分)(2015•无锡)若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为(),把,,=66.(2分)(2015•无锡)下列图形中,是轴对称图形但不是中心对称图形的是()7.(2分)(2015•无锡)tan45°的值为()B8.(2分)(2015•无锡)八边形的内角和为()9.(2分)(2015•无锡)如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()B10.(2分)(2015•无锡)如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE 翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()BAE,在AC AB,=,,=.二、填空题11.(2分)(2015•无锡)分解因式:8﹣2x2=2(2+x)(2﹣x).12.(2分)(2015•无锡)化简得.故答案为:.13.(2分)(2015•无锡)一次函数y=2x﹣6的图象与x轴的交点坐标为(3,0).14.(2分)(2015•无锡)如图,已知矩形ABCD的对角线长为8cm,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长等于16cm.AC BD15.(2分)(2015•无锡)命题“全等三角形的面积相等”的逆命题是假命题.(填入“真”或“假”)16.(2分)(2015•无锡)某种蔬菜按品质分成三个等级销售,销售情况如表:则售出蔬菜的平均单价为 4.4元/千克.17.(2分)(2015•无锡)已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,则AC的长等于.=6=,即,,故答案为:18.(2分)(2015•无锡)某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:①如果不超过500元,则不予优惠;②如果超过500元,但不超过800元,则按购物总额给予8折优惠;③如果超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款838或910元.480×=600520×=650三、解答题19.(8分)(2015•无锡)计算:(1)(﹣5)0﹣()2+|﹣3|;(2)(x+1)2﹣2(x﹣2).20.(8分)(2015•无锡)(1)解不等式:2(x﹣3)﹣2≤0(2)解方程组:.不等式两边同乘以两边同乘以,得:=∴原方程组的解为:21.(8分)(2015•无锡)已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=B D.22.(8分)(2015•无锡)已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.(1)求BD的长;(2)求图中阴影部分的面积.=5=﹣cm23.(6分)(2015•无锡)某区教研部门对本区初二年级的学生进行了一次随机抽样问卷调查,其中有这样一个问题:老师在课堂上放手让学生提问和表达EA.从不B.很少C.有时D.常常E.总是答题的学生在这五个选项中只能选择一项.如图是根据学生对该问题的答卷情况绘制的两幅不完整的统计图.根据以上信息,解答下列问题:(1)该区共有3200名初二年级的学生参加了本次问卷调查;(2)请把这幅条形统计图补充完整;(3)在扇形统计图中,“总是”所占的百分比为42%.%%=24.(8分)(2015•无锡)(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”或“列表”等方式给出分析过程)(2)如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是(请直接写出结果).=第三次传球后球回到甲手里的概率是,故答案为:.25.(8分)(2015•无锡)某工厂以80元/箱的价格购进60箱原材料,准备由甲、乙两车间全部用于生产A产品.甲车间用每箱原材料可生产出A产品12千克,需耗水4吨;乙车间通过节能改造,用每箱原材料可生产出的A产品比甲车间少2千克,但耗水量是甲车间的一半.已知A产品售价为30元/千克,水价为5元/吨.如果要求这两车间生产这批产品的总耗水量不得超过200吨,那么该厂如何分配两车间的生产任务,才能使这次生产所能获取的利润w最大?最大利润是多少?(注:利润=产品总售价﹣购买原材料成本﹣水费)26.(10分)(2015•无锡)已知:平面直角坐标系中,四边形OABC的顶点分别为O(0,0)、A(5,0)、B(m,2)、C(m﹣5,2).(1)问:是否存在这样的m,使得在边BC上总存在点P,使∠OP A=90°?若存在,求出m 的取值范围;若不存在,请说明理由.(2)当∠AOC与∠OAB的平分线的交点Q在边BC上时,求m的值.,即=1.5,即∠=27.(10分)(2015•无锡)一次函数y=x的图象如图所示,它与二次函数y=ax2﹣4ax+c的图象交于A、B两点(其中点A在点B的左侧),与这个二次函数图象的对称轴交于点C.(1)求点C的坐标;(2)设二次函数图象的顶点为D.①若点D与点C关于x轴对称,且△ACD的面积等于3,求此二次函数的关系式;②若CD=AC,且△ACD的面积等于10,求此二次函数的关系式.xm,x),﹣,得:,﹣)得:=x﹣,=﹣=((得×(),﹣,﹣,﹣)得:,x﹣),﹣,)得:x.28.(10分)(2015•无锡)如图,C为∠AOB的边OA上一点,OC=6,N为边OB上异于点O的一动点,P是线段CN上一点,过点P分别作PQ∥OA交OB于点Q,PM∥OB交OA 于点M.(1)若∠AOB=60°,OM=4,OQ=1,求证:CN⊥O B.(2)当点N在边OB上运动时,四边形OMPQ始终保持为菱形.①问:﹣的值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由.②设菱形OMPQ的面积为S1,△NOC的面积为S2,求的取值范围.﹣的值不发生变化,理由如下:设,得到由相似得比例求出所求式子,,==,)①﹣=,即=,得﹣=,即﹣.OC====﹣,≤.。

2015-2016学年度第一学期期中质量检测九年级《数学》试题及答案

2015-2016学年度第一学期期中质量检测九年级《数学》试题及答案

2015—2016学年度第一学期期中质量检测九年级数学试题(时间:120分钟,总分120分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.).2.如图,反比例函数y =x(x <0)的图象经过点P , 若矩形的面积是6,则k的值为( )A . -6 B . -5C . 6D . 53.如图所示的几何体是由一个圆柱体和一个长方体组成的,则这个几何体的俯视图是( )A .B .C .D .4.若线段AB=1,点C 是AB 的黄金分割点,且AC>BC,则AC=( )A .012=+)(x B .012=-)(x C .212=+)(x D .212=-)(x 6.从2,3,4,中任意选两个数,记作a 和b ,那么点(a ,b )在函数12y x =图象上的概率是( ) A .12B .13C .14D .167.顺次连接矩形ABCD 各边中点,所得四边形必定是( ) A .邻边不等的平行四边形B . 矩形C .菱形D .正方形8.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x ,下面所列的方程中正确的是( ) A .560(1+x )2=315 B .560(1﹣x )2=315C .560(1﹣2x )2=315D .560(1﹣x 2)=3159.某一时刻甲、乙两木杆的影子长分别是2米和3米,已知乙杆的高度是1.5米,则甲杆的高度是( )第2题图BCAE 1 E 2 E 3D 4D 1D 2 D 315题图DCBAM第12题图第14题图A .1B . 2C .3D .410.若点()()(),,,,,112233x y x y x y 都是反比例函数1y x=-图象上的点,并且123y 0y y <<<,则下列各式正确的是 ( )A .123x x x <<B .132x x x <<C .213x x x <<D .231x x x <<11.如图边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1和S 2,比较S 1与S 2的大小( ). A .S 1> S 2 B .S 1< S 2 C .S 1= S 2 D .不能确定12.如图,平行四边形ABCD 中,M 是BC 的中点,且AM =9,BD =12,AD =10,则□ABCD 的面积是( )A .30B .36C .54D .7213. 如图,在△ABC 中,AB=6,AC=8,BC=10,P 为边BC 上一动点(且点P 不与点B 、C 重合),PE⊥AB于E ,PF⊥AC 于F .则EF 的最小值为( ) A. 4B. 4.8C. 5.2D. 614.如图,已知A 、B 是反比例函数y = kx(k >0,x >0)图象上的两点,BC∥x 轴,交y 轴于点C .动点P 从坐标原点O 出发,沿O→A→B→C 匀速运动,终点为C .过点P 作PM⊥x 轴,PN⊥y 轴,垂足分别为M 、N .设四边形OMPN 的面积为S ,点P 运动的时间为t ,则S 关于t 的函数图象大致为( )15.已知:如图,在Rt△ABC 中,点D1是斜边AB的中点,过1D 作11D E AC ⊥于E 1,连结1BE 交1CD 于2D ;过2D 作第11题图22D E AC ⊥于2E ,连结2BE 交1CD 于3D ;过3D 作33D E AC ⊥于3E ,…,如此继续,可以依次得到点45D D ,,…,n D ,分别记112233BD E BD E BD E ,,,△△△…,n n BD E △的面积为123S S S ,,,…n S .设△ABC 的面积为1,则n S 为( ).A .14n B .141n +C .21(2)n +D .21(1)n +二、填空题(本大题共6个小题,每小题3分,共的横线上.)16.在平面直角坐标系中,反比例函数 y =3x- 图象的两支分别在 象限17.一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有 颗.18.菱形的两条对角线的长是方程x 2-14x+48=0的两根,则菱形的面积是 .19.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好到古城墙CD 的顶端C 处,已知AB⊥BD,CD⊥BD,测得AB=1米,BP=2米,PD=10米,那么该古城墙的高度CD 是 米.20. 如图,△ABC 中,CD⊥AB 于D ,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于 . 21.如图,在菱形ABCD 和菱形BEFG 中,点A 、B 、E 在同一直线上,P 是线段DF 的中点,连接PG ,P C .若∠ABC =60°,AB=3,BE=1,则PG 的长度= .三、解答题第19题图第20题图第21题图22.解下列一元二次方程(7分):(1) 3x 2x 2=- (3)x 2=2x+1 23.(7分)如图,四边形ABCD 是矩形,把矩形沿对角线AC 折叠,点B 落在点E 处,CE 与AD 相交于点O,(1) 求证:EO=DO ; (2)若∠OCD=30°,求△ACO 的面积;AEOCD第23题24.(8分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m 的住房墙,另外三边用25m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m 宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m 2?25.(8分)用4张相同的小纸条做成甲、乙、丙、丁4支签,放在一个盒子中,搅匀后先从盒子中任意抽出1支签(不放回),再从剩下的3支签中任意抽出1支签。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无锡市****中学2014-2015学年第一学期期中考试试卷初三数学(测试时间:120分钟 满分:130分 )一、选择题(每题3分,共30分)1.下列方程是一元二次方程的是…………………………………………………………( )A .3x 2-6x +2B .x 2-y+1=0C .x 2=0D .1x2+ x =22.方程3x 2+4x -2=0的根的情况是………………………………………………………( ) A .两个不相等的实数根 B .两个相等的实数根 C .没有实数根 D .无法确定3.如图,在△ABC 中,DE ∥BC ,若 AD AB = 13,DE =4,则BC 的值为………………………( )A .9B .10C . 11D .12 4.如图,已知∠1=∠2,那么添加下列一个条件后,仍无法..判定△ABC ∽△ADE 的是( ) A .AB AD = AC AE B .AB AD = BC DE C .∠B =∠D D .∠C =∠AED5.如图,在长为100 m ,宽为80 m 的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644m 2,则道路的宽应为多少米?设道路的宽为x m ,则可列方程为 ……………………………………………………………………………( ) A .100×80-100x -80x =7644 B .(100-x )(80-x )+x 2=7644 C .(100-x )(80-x )=7644 D .100x +80x -x 2=76446.已知实数a 、b 满足(a 2+b 2)2-2(a 2+b 2)=8,则a 2+b 2的值为…………………………( )A .-2B .4C .4或-2D .-4或27.如图,⊙O 的半径OA =10cm ,弦AB =16cm ,P 为AB 上一动点,则点P 到圆心O 的最短距离为……………………………………………………………………………………( ) A .4cm B .5cm C .6cm D .7cm8.下列说法中,不正确的是………………………………………………………………( ) A .过圆心的弦是圆的直径 B .等弧的长度一定相等C .周长相等的两个圆是等圆D .同一条弦所对的两条弧一定是等弧9.如图,正方形ABCD 的边长为6,点E 是AB 上的一点,将△BCE 沿CE 折叠至△FCE ,若CF ,CE 恰好与以正方形ABCD 的中心为圆心的⊙O 相切,则折痕CE 的长为…( )A .43B .833 C .5 D .2510.如图,已知在Rt △ABC 中,AB =AC =2,在△ABC 内作第一个内接正方形DEFG ;然后取第3题图CBD AE 第4题图A D BEC2 1 第7题图BAP O 第5题图班级 姓名 考试号GF 的中点P ,连接PD 、PE ,在△PDE 内作第二个内接正方形HIKJ ;再取线段KJ 的中点Q ,在△QHI 内作第三个内接正方形……依次进行下去,则第n 个内接正方形的边长为( )A .23·(12)nB .232·(12)nC .23·(12)n -1D . 232·(12)n -1二、填空题(每空2分,共16分)11.已知x =-1是方程2x 2+x +m =0错误!未找到引用源。

的一个根,则m = . 12.已知x =1是一元二次方程x 2+kx -2=0的一根,则方程的另一个根为_ __.13.若3x =2y ,则 2x -yx +3y= ___________.14.如图,AB 是⊙O 的直径,点D 在AB 的延长线上,过点D 作DC 切⊙O 于点C ,若∠A =35°,则∠D =____ ____°.15.如图,△ABC 外接圆的圆心坐标是 .16.如图,在矩形ABCD 中,AD =4,DC =3,将△ADC 绕点A 按逆时针方向旋转到△AEF (点A 、B 、E 同一直线上),则AC 所扫过的面积为 .17.如图,梯形ABCD 中,AB ∥DC ,AB ⊥BC ,AB =2cm ,CD =4cm ,以BC 上一点为圆心的圆经过A 、D 两点,且∠AOD =90 ,则圆心O 到弦AD 的距离是__________. 18.如图,⊙O 的半径为2,AB 、CD 是互相垂直的两条直径,点P 是⊙O 上任意一点,过 点P 作PM ⊥AB 于M ,PN ⊥CD 于N ,点Q 是MN 的中点,当点P 沿着圆周从点D 逆时针方向运动到点C 的过程中,当∠QCN 度数取最大值时,线段CQ 的长为 .三、解答题(本大题共10小题,共84分)19.解方程(本题共4小题,每小题4分,共16分)(1)x 2-2x -99=0 (2)3x 2-6x +1=0(3)x (x +2)=5x +10 (4)(x -2)2=(2x +3)2第14题图 AO B D C 第17题图 第9题图 A B ED CF · O ABCDE F 第16题图 A BPMN O CDQ 第18题图 AB CO y x1 2 3 4 5 6 1 2 3 4 5 6 第15题图 第10题图AB C G P J Q K D H I E F20.(本题满分6分)如图,在方格纸上,△ABC 与△A 1B 1C 1是关于点O 为位似中心的位似图形,它们的顶点都在格点上. (1)画出位似中心O ;(2)求出△ABC 与△A 1B 1C 1的位似比; (3)以O 点为位似中心,再画一个△A 2B 2C 2使它与△ABC 的位似比等于3. 21.(本题满分6分)如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE上一点,且∠AFE=∠B (1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =63,AF =43,求AE 的长.22.(本题满分8分)已知:如图,AB 是⊙O 的直径,点C 、D 为圆上两点,且CB ︵=CD ︵,CF ⊥AB 于点F ,CE ⊥AD的延长线于点E .(1)试说明:DE =BF ; (2)若∠DAB =60°,AB =8,求△ACD 的面积.A BECFDABFDE CO·23.(本题满分8分)定义:如图1,点C 在线段AB 上,若满足AC 2=BC •AB ,则称点C 为线段AB 的 黄金分割点.如图2,△ABC 中,AB =AC =1,∠A =36°,BD 平分∠ABC 交AC 于点D . (1)求证:点D 是线段AC 的黄金分割点; (2)求出线段AD 的长. 24.(本题满分8分)在下图中,每个正方形由边长为1 的小正方形组成:(1)观察图形,请填写下列表格:(2)在边长为n (n ≥1)的正方形中,设黑色小正方形的个数为P 1,白色小正方形的个数 为P 2,问是否存在偶数n ,使P 2=5 P 1?若存在,请求出n 的值;若不存在,请说明理由.正方形边长 1 2 3 4 5 6 7 8 … 黑色小正方形个数1458…25.(本题满分9分)某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元,销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元.(1)第二周单价降低x元后,这周销售的销量为(用x的关系式表示).(2)求这批旅游纪念品第二周的销售价格.26.(本题满分11分)如图,在平面直角坐标系中,已知A(8,0),B(0,6),⊙M经过原点O及点A、B.(1)求⊙M的半径及圆心M的坐标;(2)过点B作⊙M的切线l,求直线l的解析式;(3)∠BOA的平分线交AB于点N,交⊙M于点E,求点N的坐标和线段OE的长.备用图27.(本题满分12分)如图,在矩形ABCD 中,AB =3,BC =4.动点P 从点A 出发沿AC 向终点C 运动,同时动点Q 从点B 出发沿BA 向点A 运动,到达A 点后立刻以原来的速度沿AB 返回.点P ,Q 运动速度均为每秒1个单位长度,当点P 到达点C 时停止运动,点Q 也同时停止.连结PQ ,设运动时间为t (t >0)秒.(1)当点Q 从B 点向A 点运动时(未到达A 点),若△APQ ∽△ABC ,求t 的值; (2)伴随着P ,Q 两点的运动,线段PQ 的垂直平分线为直线l . ①当直线l 经过点A 时,射线QP 交AD 边于点E ,求AE 的长;②是否存在t 的值,使得直线l 经过点B ?若存在,请求出所有t 的值;若不存在,请说明理由.DCB A备用图2DCBA备用图1AB DC P Q ··2014-2015第一学期九年级期中数学试卷参考答案及评分标准一、选择题(每题3分,共30分)1.C . 2.A . 3.D . 4.B . 5.C . 6.B . 7.C . 8.D . 9.A . 10.D . 二、填空题(每空2分,共16分) 11.―1. 12.-2. 13.111. 14.20º. 15.(5,2). 16.6.25π 17.10. 18. 3 .三、解答题(本大题共10小题,共84分) 19.(本题满分16分,每小题4分) (1)x 1=11,x 2=-9 4分 (2)x 1=363+,x 2=363- 4分 (3)x 1=-2,x 2=5 4分 (4) x 1=31-,x 2=-5 4分 20.(本题满分6分)(1).(2分) (2)1:2 (2分) (3) (2分)21.(本题满分6分) 解: (1)证明:∵平行四边形ABCD ,∴AB ∥CD ,AD ∥BC ,∴∠C+∠B=180°,∠ADF=∠DEC .(1分) ∵∠AFD+∠AFE=180°,∠AFE=∠B , ∴∠AFD=∠C . (2分) 在△ADF 与△DEC 中,∴△ADF ∽△DEC .(3分)(2)解:∵平行四边形ABCD ,∴CD=AB=8. 由(1)知△ADF ∽△DEC , ∴,∴DE===12.(5分)在Rt △ADE 中,由勾股定理得:AE===6.(6分)22.(本题满分8分)证明:(1)∵弧CB=弧CD ∴CB=CD ,∠CAE=∠CAB 又∵CF ⊥AB ,CE ⊥AD ∴CE=CF (2分) ∴Rt△C ED ≌Rt △CFB ∴DE=BF ;(4分)(2)∵CE=CF ,∠CAE=∠CAB ∴△CAE ≌△CAF ∵AB 是⊙O 的直径 ∴∠ACB=90°∵∠DAB=60° ∴∠CAB=30°,AB=8 ∴BC=4(6分) ∵CF ⊥AB 于点F ∴∠FCB=30° ∴CF=32,BF=2∴S △ACD =S △ACE -S △CDE =S △ACF -S △CFB=34(8分)23.(本题满分8分) 解:(1) ∵AB=AC, ∠A=36°∴∠ABC=∠C=72° ∵BD 平分∠ABC ∴∠DBC=∠ABD=36° ∴△ABC ∽△BDC(3分)∴AC BC =BC DC∴BC 2=AC •DC 又∵BC=BD=AD∴AC 2=AC •DC∴点D 是线段AC 的黄金分割点(5分) (2)设AD=x∵AC 2=AC •DC ∴x 2=x(1-x) 又∵x>0∴AD=x= 5-12(8分)24.(本题满分8分) (1)( 每空1分) ……………… ……………… ………………(4分) (2)存在 ……………… ……………… ………………(5分) 据题意得:n 2-2n=5×2n ……………… ……………… ………………(7分) 解得:n 1=12 n 2=0(舍去) ……………… ……………… ………………(8分) 25.(本题满分9分) 解:(1)200+50x (2分) (2)由题意得出:200×(10-6)+(10-x -6)(200+50x )+[(4-6)(600-200-(200+50x )]=1250,(5分) 即800+(4-x )(200+50x )-2(200-50x )=1250, 整理得:x 2-2x +1=0,(7分)正方形边长 1 2 3 4 5 6 7 8 …黑色小正方形个数 1 4 5 8 9 12 13 16 …解得:x1=x2=1,(8分),第二周销售的价格为9元.(9分)26.(本题满分11分)解:(1)∵∠AOB=90°,∴AB为⊙M的直径,∵A(8,0),B(0,6),∴OA=8,OB=6,∴AB==10,(1分)∴⊙M的半径为5;圆心M的坐标为((4,3);(3分)(2)点B作⊙M的切线l交x轴于C,如图,∵BC与⊙M相切,AB为直径,∴AB⊥BC,∴∠ABC=90°,∴∠CBO+∠ABO=90°,而∠BAO=∠ABO=90°,∴∠BAO=∠CBO,∴Rt△ABO∽Rt△BCO,∴=,即=,解得OC=,∴C点坐标为(﹣,0),设直线BC的解析式为y=kx+b,把B(0,6)、C点(﹣,0)分别代入,解得,∴直线l的解析式为y=x+6;(6分)(3)作ND⊥x轴,连结AE,如图,∵∠BOA的平分线交AB于点N,∴△NOD为等腰直角三角形,∴ND=OD,∴ND∥OB,∴△ADN∽△AOB,∴ND:OB=AD:AO,∴ND:6=(8﹣ND):8,解得ND=,∴OD=,ON=ND=,∴N点坐标为(,);(8分)∵△ADN∽△AOB,∴ND:OB=AN:AB,即:6=AN:10,解得AN=,∴BN=10﹣=,∵∠OBA=OEA,∠BOE=∠BAE,∴△BON∽△EAN,∴BN:NE=ON:AN,即:NE=:,解得NE=,∴OE=ON+NE=+=7.(11分)27.(本题满分12分)解:(1)∵△APQ∽△ABC ∴AP AQAB AC=,即335t t-=解得98t=3分(2)①如图①,线段PQ的垂直平分线为l经过点A,则AP=AQ,即3-t=t ,∴t=1.5,∴AP=AQ=1.5,过点Q 作QO ∥AD 交AC 于点O , 则,BCQO AB AQ AC AO ==∴52AQ AO AC AB =⋅=, 2=⋅=BC AB AQ OQ ,∴PO=AO -AP=1. 由△AP E ∽△OPQ ,得3,=⋅=∴=OQ OPAP AE OP AP OQ AE . 6分 ②(ⅰ)如图②,当点Q 从B 向A 运动时l 经过点B , BQ =BP =AP =t ,∠QBP =∠QAP∵∠QBP +∠PBC =90°,∠QAP +∠PCB =90°∴∠PBC =∠PCB CP =BP =AP =t∴CP =AP =21AC =21×5=2.5∴t =2.5 9分 (ⅱ)如图③,当点Q 从A 向B 运动时l 经过点B ,BP =BQ =3-(t -3)=6-t ,AP =t ,PC =5-t ,过点P 作PG ⊥CB 于点G ,由△PGC ∽△ABC , 得()t AB AC PC PG BC GC AB PG AC PC -=⋅=∴==553, ()t BC AC PC CG -=⋅=554,B G =4-()t -554=t 54 由勾股定理得222PG BG BP +=,即 ()222553)54()6(⎥⎦⎤⎢⎣⎡-+=-t t t ,解得4514t =. 12分 QP O E D C B A Q P D C BA G Q P DC B A (图①) (图②) (图③)。

相关文档
最新文档