八年级下册数学二次根式重点难点题型全覆盖附详细答案
二次根式知识点及典型例题(含答案)
4、不会比较根式的大小5、不会利用二次根式的非负性6、对最简二次根式的条件掌握不牢八、经典例题例1、求下列各数的平方根与算术平方根( )A.36B.81121 C.2-(5) D.41【答案】A.2=36±(6)∴36的平方根为6±,即6± ∴36的算术平方根为6,即B.2981=11121±()∴81121的平方根为911±,即911±∴81121的算术平方根为911,即911 C.25=25±()∴2-(5)的平方根为5±,即5± ∴2-(5)的算术平方根为5,即D.()241=41±∴41的平方根为 ∴41【解析】一个正数的平方根有两个,它们互为相反数,解答本题注意解题步骤的规范书写,不是完全平方数的正数,它的平方根只能用含有根号的形式表示.练习1、计算:(1 (2)【答案】(1)211=121(2)20.9=0.810.9±表示121的算术平方根,表示0.81的平方根,、的意义是解答本题的关键例2、如果一个正数的平方根为3a-5和2a-10,求这个正数【答案】由题意得,3a-5+2a-10=0得a=3∴3a-5=4∴这个数为24=16【解析】一个正数的平方根有两个,它们互为相反数,而互为相反数的两个数相加为0,故(3a-5)+(2a-10)=0.求出a后,可知3a-5与2a-10的值,在考虑哪个正数的平方根是3a-5,2a-10的值即可。
练习1、x为何值时,下列各式有意义。
【答案】解:A.10x-≥,即1x≥有意义B.10x-≥且0x≥,即01x≤≤有意义C.10x+>,即1x>-D.230x+≥,即x都有意义【解析】a≥例3、【答案】解252736<<<<即56<<的整数部分是5【解析】处在哪两个完全平方数之间.例4、:x y【答案】解:33y-1和互为相反数3y-1∴和1-2x互为相反数3y-1+1-2x=0∴:=3:2x y∴互为相反数,则a和b互为相反数,所以本题中3y-1与1-2x 互为相反数例5、实数0.5的算术平方根等于().D.1 2【答案】C【解析】理解算术平方根的意义,把二次根式化成最简形式是解答本题的关键.例6、的算术平方根是()A. 4±B. 4C. 2±D. 2【答案】D【解析】4的算术平方根,4的算术平方根为2.例7、根据下列运算正确的是()3=2 C. (x+2y)2=x2+2xy+4y2 D. A.x6+x2=x3 B.√−8√18−√8=√2【答案】解:A、本选项不能合并,错误;3=-2,本选项错误;B、√-8C、((x+2y)2=x2+2xy+4y2,本选项错误;D、√18-√8=3√2-2√2=√2,本选项正确.故选D【解析】此题考查了完全平方公式,合并同类项,以及负指数幂,幂的乘方,熟练掌握公式及法则是解本题的关键.例8、)【答案】B综合练习简单1. 式子在实数范围内有意义,则x的取值范围是()A.<1 B.≥1 C.≤-1 D.<-1【答案】B【解析】由二次根式的意义,知:x-1≥0,所以x≥1.2.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠1【答案】D解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选D.【解析】代数式√x有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.x-13.要使式子2-x有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤2【答案】D解:根据题意得,2﹣x≥0,解得x≤2.【解析】根据被开方数大于等于0列式计算即可得解.4. 下列计算正确的是()=√2 D.3+2√2=5√2 A.4√3-3√3=1 B.√2+√3=√5 C.2√12【答案】C【解析】 A、4√3-3√3=√3,原式计算错误,故本选项错误;B、√2与√3不是同类二次根式,不能直接合并,故本选项错误;=√2,计算正确,故本选项正确;C、2√12D、3+2√2≠5√2,原式计算错误,故本选项错误;根据二次根式的化简及同类二次根式的合并,分别进行各选项的判断即可.5. 若,则=【答案】6【解析】原方程变为:,所以,,由得:=3,两边平方,得:=7,所以,原式=7-1=6中等题1.结果是。
八年级数学下册第十六章二次根式知识点梳理(带答案)
八年级数学下册第十六章二次根式知识点梳理单选题1、√2×√8=()A.4√2B.4C.√10D.2√2答案:B分析:直接利用二次根式的乘法运算法则计算得出答案.解:√2×√8=√16=4.故选B.小提示:此题主要考查了二次根式的乘法运算,正确掌握运算法则是解题关键.2、如果最简二次根式√3x−5与√x+3是同类二次根式,那么x的值是()A.1B.2C.3D.4答案:D分析:根据最简二次根式的定义:二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.进行求解即可.∵最简二次根式√3x−5与√x+3是同类二次根式,∴3x−5=x+3,∴x=4,故选:D.小提示:本题考查同类二次根式,熟练掌握同类二次根式的定义是解题的关键.3、二次根式√2x+4中的x的取值范围是()A.x<﹣2B.x≤﹣2C.x>﹣2D.x≥﹣2答案:D分析:根据“二次根式有意义满足的条件是被开方数是非负数”,可得答案.由题意,得2x+4≥0,解得x ≥-2,故选:D .小提示:本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.4、已知a =√5−2,b =2+√5,则a ,b 的关系是( )A .相等B .互为相反数C .互为倒数D .互为有理化因式答案:A分析:求出a 与b 的值即可求出答案.解:∵a =√5−2=√5+2(√5+2)(√5−2)=√5+2,b =2+√5, ∴a =b ,故选:A .小提示:本题考查了分母有理化,解题的关键是求出a 与b 的值,本题属于基础题型.5、已知:a=2−√3,b=2+√3,则a 与b 的关系是( )A .相等B .互为相反数C .互为倒数D .平方相等答案:C 因为a ×b =2−√32+√3=1,故选C.6、计算√8+√18的值等于( ) A .√26B .4√2C .5√2D .2√2+2√3答案:C 分析:根据二次根式的运算法则即可求出答案.解:原式=2√2+3√2=5√2故选C .小提示:本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则.7、已知max {√x,x 2,x}表示取三个数中最大的那个数,例如:当x =9时,max {√x,x 2,x}=max{√9,92,9}=81.当max {√x,x 2,x}=12时,则x 的值为( ) A .−14B .116C .14D .12答案:C分析:利用max {√x,x 2,x}的定义分情况讨论即可求解.解:当max {√x,x 2,x}=12时,x≥0①√x =12,解得:x =14,此时√x >x >x 2,符合题意; ②x 2=12,解得:x =√22;此时√x >x >x 2,不合题意; ③x =12,√x >x >x 2,不合题意; 故只有x =14时,max {√x,x 2,x}=12. 故选:C .小提示:此题主要考查了新定义,正确理解题意分类讨论是解题关键.8、下列各式中,无意义的是( )A .√(−3)2B .√(−3)33C .√−32D .√−(−3)答案:C分析:根据二次根式的被开方数是非负数判断即可.解:A .原式=√9=3,故该选项不符合题意;B .原式=−3,故该选项不符合题意;C .原式=√−9,−9是负数,二次根式无意义,故该选项符合题意;D .原式=√3,故该选项不符合题意;故选:C .小提示:本题考查了二次根式有意义的条件,立方根,掌握二次根式的被开方数是非负数是解题的关键.9、观察下列等式:第1个等式:a 1=1+√2=√2−1, 第2个等式:a 2=√2+√3=√3−√2,第3个等式:a3=√3+2=2−√3,第4个等式:a4=2+√5=√5−2,按照上述规律,计算:a1+a2+a3+⋯+a n=()A.√n+1−1B.√n+1−√n C.√n+1D.√n−1答案:A分析:首先根据题意,可得a1=1+√2=√2−1,a2=√2+√3=√3−√2,a3=√3+2=2−√3,a4=2+√5=√5−2⋯⋯a n=√n+1+√n=√n+1−√n,再相加即可得解.解:第1个等式:a1=1+√2=√2−1,第2个等式:a2=√2+√3=√3−√2,第3个等式:a3=√3+2=2−√3,第4个等式:a4=2+√5=√5−2,……第n个等式:a n=√n+1+√n=√n+1−√n,∴a1+a2+a3+⋯⋯+a n=√2−1+√3−√2+2−√3+⋯+√n+1−√n=√n+1−1,故A正确.故选:A.小提示:本题主要考查了数字的变化规律以及分母有理化,首先要理解题意,找到规律,并进行推导得到答案.10、如图,数轴上的点可近似表示(4√6−√30)÷√6的值是( )A.点A B.点B C.点C D.点D答案:A分析:先化简原式得4−√5,再对√5进行估算,确定√5在哪两个相邻的整数之间,继而确定4−√5在哪两个相邻的整数之间即可.原式=4−√5,由于2<√5<3,∴1<4−√5<2.故选:A.小提示:本题考查实数与数轴、估算无理数的大小,解题的关键是掌握估算无理数大小的方法.填空题11、若a+6√3=(m+n√3)2,当a,m,n均为正整数时,则√a的值为__________.答案:2√7或2√3##2√3或2√7分析:先利用完全平方公式将(m+n√3)2展开,再根据等式左右两边对应项相等得到关于m、n的方程组,进而可求解.解:∵a+6√3=(m+n√3)2=m2+3n2+2√3mn,∴a=m2+3n2,2mn=6,∵a、m、n均为正整数,∴m=1,n=3,或m=3,n=1,当m=1,n=3时,a=12+3×32=28,则√a=√28=2√7;当m=3,n=1时,a=32+3×12=12,则√a=√12=2√3.所以答案是:2√7或2√3.小提示:本题主要考查了完全平方公式在二次根式混合运算中的运用,熟记完全平方公式,以及分类讨论思想的运用,是解答的关键.12、将√45化为最简二次根式,其结果是 __.2答案:3√102分析:将分母有理化后进行化简即可.解:√452=√45×22×2=√3×3×5×22×2=3√102,所以答案是:3√102.小提示:本题考查二次根式的化简,熟练掌握二次根式的化简方法解决本题的关键.13、已知√x+5有意义,如果关于x的方程√x+5+a=3没有实数根,那么a的取值范围是__.答案:a>3.分析:把方程变形为√x+5=3−a,根据方程没有实数根可得3−a<0,解不等式即可.解:由√x+5+a=3得√x+5=3−a,∵√x+5有意义,且√x+5⩾0,∴方程√x+5=3−a没有实数根,即3−a<0,∴a>3,所以答案是:a>3.小提示:本题考查了二次根式的性质,解题关键是利用二次根式的非负性确定a的取值范围.14、如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7,则(1)用含x的式子表示m=___;(2)当y=2时,n的值为_____.答案:32x 11 4分析:(1)根据题意,可以用含x的式子表示出m;(2)根据图形,可以用x的代数式表示出y,列出关于x的分式方程,从而可以求得x的值,进而得到n的值.解:(1)由图可得m=1x +12x=32x,所以答案是:32x;(2)∵y=m+n=(1x +12x)+(12x+3)=2x+3,y=2,∴2x+3=2,解得,x=−2,∴n=12x +3=114,所以答案是:114.小提示:本题考查了分式的加减、解分式方程,解答本题的关键是明确题意,列出相应的代数式及分式方程及求出方程的解.15、√27+√3的结果是_________.答案:4√3分析:直接化简二次根式进而合并得出答案.原式=3√3+√3=4√3.所以答案是:4√3.小提示:此题主要考查了二次根式的加减,正确化简二次根式是解题关键.解答题16、在一个边长为(√3+√5)cm的正方形内部挖去一个边长为(√5−√3)cm的正方形(如图所示),求剩余阴影部分图形的面积.答案:4√15( cm2).分析:用大正方形的面积减去小正方形的面积即可求出剩余部分的面积.解:剩余部分的面积为:(√3+√5)2-(√5-√3)2,=(√3+√5+√5−√3)(√3+√5−√5+√3),=2√5×2√3,=4√15( cm2).小提示:此题考查了二次根式的应用,熟练掌握二次根式的运算法则和平方差公式是解本题的关键.17、计算:(1)(4√12−2√20)−(√48+√5)(2)(√48−√27)÷√3+√6×2√3答案:(1)4√3−5√5(2)1+6√2分析:(1)直接化简二次根式,进而利用二次根式的加减运算法则计算得出答案;(2)直接化简二次根式,再利用二次根式的乘除运算法则计算得出答案.(1)(4√12−2√20)−(√48+√5)=(8√3−4√5)−(4√3+√5)=8√3−4√5−4√3−√5=4√3−5√5(2)(√48−√27)÷√3+√6×2√3=(4√3−3√3)÷√3+6√2=√3÷√3+6√2=1+6√2小提示:此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.18、已知a满足|2021−a|+√a−2022=a.(1)√a−2022有意义,a的取值范围是______;则在这个条件下将|2021−a|去掉绝对值符号可得|2021−a|=______.(2)根据(1)的分析,求a−20212的值.答案:(1)a≥2022;a−2021(2)a−20212=2022分析:(1)先根据二次根式有意义的条件求出a的范围,再根据绝对值的性质化简;(2)去掉绝对值符号,然后根据二次根式的性质求解即可.(1)解:∵√a−2022有意义,∴a−2022≥0,∴a≥2022,∴2021−a<0,∴|2021−a|=a−2021;所以答案是:a≥2022;a−2021;(2)∵|2021−a|+√a−2022=a,∴a−2021+√a−2022=a,∴√a−2022=2021,∴a−2022=20212,∴a−20212=2022.小提示:本题考查了绝对值的意义,二次根式有意义的条件,二次根式的性质与化简,能求出a≥2022是解此题的关键.。
(完整版)八年级下册数学--二次根式知识点整理
二次根式1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。
2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。
如:-2x>4,不等式两边同除以-2得x<-2。
不等式组的解集是两个不等式解集的公共部分。
如{3、分式有意义的条件:分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。
★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。
如25 可以写作 5 。
(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。
(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。
其中a≥0是 a 有意义的前提条件。
(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。
(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。
要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成 2232 。
练习:一、判断下列各式,哪些是二次根式?(1) 6 ;(2)-18 ;(3)x2+1 ;(4)3-8 ;(5)x2+2x+1 ;(6)3|x|;(7)1+2x (x<-12)X≥-2X<5的解集为-2≤x<5。
二、当x 取什么实数时,下列各式有意义?(1)2-5x ;(2)4x 2+4x+1二、二次根式的性质:二次根式的性质符号语言文字语言应用与拓展注意a (a ≥0)的性质a ≥0 (a ≥0)一个非负数的算术平方根是非负数。
(1)二次根式的非负性(a ≥0,a ≥0)应用较多,如:a+1 +b-3 =0,则a+1=0,b-3=0,即a= -1,b=3;又如x-a +a-x ,则x 的取值范围是x-a ≥0,a-x ≥0,解得x=a 。
初二数学二次根式试题答案及解析
初二数学二次根式试题答案及解析1.计算(1)(2)【答案】(1);(2)2.【解析】(1)根据二次根式的乘除法则运算;(2)根据二次根式有意义的条件得到-(a+2)2≥0,得到a=-2,然后把a=-2代入原式进行计算.试题解析:(1)原式===(2)∵-(a+2)2≥0,∴a=-2,原式==3-5+4=2.【考点】二次根式的混合运算.2.计算:【答案】.【解析】先进行二次根式的乘法运算得到原式=3﹣3+2+2+1,然后合并即可.试题解析:原式=3﹣3+2+2+1=.【考点】二次根式的混合运算.3.化简的结果是()A.-3B.3C.±3D.【答案】B.【解析】.故选B.【考点】二次根式化简.4.下列变形中,正确的是………()A.(2)2=2×3=6B.C.D.【答案】D.【解析】A、(2)2=4×3=12,故本选项错误;B、,故本选项错误;C、,故本选项错误;D、,正确.故选D.【考点】二次根式的化简与计算.5.当1≤x≤5时,【答案】4.【解析】根据x的取值范围,可判断出x-1和x-5的符号,然后再根据二次根式的性质和绝对值的性质进行化简.试题解析:∵1≤x≤5,∴x-1≥0,x-5≤0.故原式=(x-1)-(x-5)=x-1-x+5=4.考点: 二次根式的性质与化简.6.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2B.8C.D.【答案】D.【解析】由图表得,64的算术平方根是8,8的算术平方根是.故选D.【考点】算术平方根.7.下列计算正确的是()A.B.C.D.【答案】A.【解析】根据根式运算法则.不是同类项不能合并同类项【考点】根式运算.8.=________________.【答案】6【解析】由题, .,由题, .【考点】二次根式的化简.9.函数中自变量x的取值范围是.【答案】x≥4【解析】二次根式有意义的条件:二次根号下的数为非负数,二次根式才有意义.由题意得,.【考点】二次根式有意义的条件点评:本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成.10.的平方根是()A.4B.±4C.±2D.2【答案】C【解析】一个正数有两个平方根,且它们互为相反数,其中正的平方根叫它的算术平方根.,平方根是±2,故选C.【考点】平方根点评:本题属于基础应用题,只需学生熟练掌握平方根的定义,即可完成.11.函数y=中,自变量x的取值范围是。
八年级下册二次根式知识点总结和练习题及答案
二次根式的知识点汇总知识点一:二次根式的概念形如()的式子叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。
知识点二:取值范围1.二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2.二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义。
知识点三:二次根式()的非负性()表示a的算术平方根,也就是说,()是一个非负数,即0()。
注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。
知识点四:二次根式()的性质()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。
注:二次根式的性质公式()是逆用平方根的定义得出的结论。
上面的公式也可以反过来应用:若,则,如:,.知识点五:二次根式的性质文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。
注:1、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即;若a是负数,则等于a的相反数-a,即;2、中的a的取值范围可以是任意实数,即不论a取何值,一定有意义;3、化简时,先将它化成,再根据绝对值的意义来进行化简。
知识点六:与的异同点1、不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;在中,而中a可以是正实数,0,负实数。
但与都是非负数,即,。
因而它的运算的结果是有差别的,,而2、相同点:当被开方数都是非负数,即时,=;时,无意义,而.知识点七:二次根式的运算(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.ab a·b a≥0,b≥0b ba ab≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律与结合律,乘法对加法的分配律以与多项式的乘法公式,都适用于二次根式的运算.《二次根式》练习题(一)一、选择题(共12分)1.在根式15、22b-a 1b a -、3ab 、631、b a a 221中,最简二次根式有( ) A .1个 B .2个 C .3个 D .4个2.在二次根式32,-256,611,4951和232中,与6是同类根式的有( )A .2个B .3个C .4个D .5个3.在下列各式中,等号不成立的是( )A .a-1=-aaB .2x y =y 4x 2(x >0)C .32a -=a 2a -D .(x+2xy +y)÷(x +y )=x +y 4.在下列各式的化简中,化简正确的有( )①3a =a a ②5x x -x =4x x ③6a2ba=ab 2b 3a ④24+61=106A .1个B .2个C .3个D .4个 5.已知二条线段的长分别为2cm 、3cm ,那么能与它们组成直角三角形的第三条线段的长是( )A .1cmB .5cmC .5cmD .1cm 或5cm6.已知a <0,化简:aa a 22+的结果是 ( )A .1B .-1C .0D .2a二、填空题(每题2分,共20分)7.52-的绝对值是__________,它的倒数__________ 8.当x ___________时,x311--是二次根式. 9.当x ______时,52+x 有意义,若xx-2有意义,则x ______。
八年级数学下册《二次根式》知识点+解题技巧+章节测试(含答案)
五、求值:(每小题 7 分,共 14 分)
3 2
3 2
x3 xy2
25.已知 x=
,y=
,求
的值.
3 2
3 2
x4 y 2x3y2 x2 y3
x
2x x2 a2
1
26.当 x=1- 2 时, 求
+
+
的值.
x2 a2 x x2 a2 x2 x x2 a2
x2 a2
六、解答题:(共 20 分)
=______.
ab c2d 2
1
1
12.比较大小:- _________- .
27
43
13.化简:(7-5
2
2018
) ·(-7-5
2
2017
) =______________.
14.若
x 1+
y
3
2
2
=0,则(x-1) +(y+3) =____________.
15.x,y 分别为 8- 11 的整数部分和小数部分,则 2xy-y2=____________.
四、巧配方,独占鳌头
例 4. 计算 分析:因为
都有意义,所以
所以
所以
解:原式
五、整体代入,别开生面
例 5. 已知
,求下列各式的值。
(1)
(2)
分析:根据 x、y 值的特点,可以求得
,如果能将所求的值的
式子变形为关于
或 xy 的式子,再代入求值要比直接代入求值简单得多。
解:因为 所以 (1)
(2) (也可以将
1
32
2、【提示】
=
=-( 3 +2).【答案】×.
32 34
3、【提示】 (x 1)2 =|x-1|, ( x 1)2 =x-1(x≥1).两式相等,必须 x≥1.但等式左边 x 可取任
最新人教版八年级数学下册 二次根式知识点归纳及题型总结
最新人教版八年级数学下册二次根式知识点归纳及题型总结二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.二次根式的定义:形如$\sqrt{a}$($a\geq 0$)的式子叫做二次根式。
2.二次根式的双重非负性:$\sqrt{a}\geq 0$,即一个非负数的算术平方根是一个非负数。
3.二次根式的同底同指数相加减:$\sqrt{a}+\sqrt{b}=\sqrt{a+b}$,$\sqrt{a}-\sqrt{b}=\sqrt{a-b}$。
4.积的算术平方根的性质:$\sqrt{ab}=\sqrt{a}\cdot\sqrt{b}$。
5.商的算术平方根的性质:$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$($b\neq 0$)。
6.若$a\geq 0$,则$\sqrt{a^2}=|a|$。
知识点二、二次根式的运算1.二次根式的乘除运算1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号。
2) 注意每一步运算的算理。
3) 乘法公式的推广:$(\sqrt{a}\pm\sqrt{b})^2=a+b\pm2\sqrt{ab}$。
2.二次根式的加减运算:先化简,再运算。
3.二次根式的混合运算1) 明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里。
2) 整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用。
例题:1.下列各式中一定是二次根式的是()。
A。
$-3$;B。
$x$;C。
$x^2+1$;D。
$x-1$2.$x$取何值时,下列各式在实数范围内有意义。
1)$\sqrt{-15+x}$;(2)$\frac{1}{\sqrt{x+4}}$3)$\sqrt{x+4}+\sqrt{2x+1}$;(4)$\sqrt{x+1}-\sqrt{x}$5)$3-\sqrt{x+1}$;(6)$\frac{2x}{\sqrt{x+1}}$7)若$x(x-1)=\frac{1}{4}$,则$x$的取值范围是()。
初二数学下册(人教版)第十六章二次根式16.1知识点总结含同步练习及答案
− − 1 2
)
C.√6 D.√8
B.√4
答案: C 解析: A 中被开方数含有分母,不是最简二次根式;B 中被开方数含有小数,不是最简二次根式;D 中
被开方数含有因数 25,能开方,所以不是最简二次根式,C 是最简二次根式.
− − − − 2. 若使二次根式 √− x − 2 在实数范围内有意义,则 x 的取值范围是 (
A.x ⩾ 2
答案: A
)
D.x ⩽ 2
B.x > 2
C.x < 2
− − − − 3. 二次根式 √− x − 1 中字母 x 的取值范围是 (
A.x < 1
答案: D
)
C.x > 1 D.x ⩾ 1
B.x ⩽ 1
4. 已知实数 a 在数轴上的位置如图所示,则化简 |1 − a| + √a2 的结果为 (
− −
⎧ a, ⎩
最简二次根式与同类二次根式 一个二次根式满足被开方数不含有分母,且不含有能开得尽方的因数或因式,叫做最简二次根 式(simplest quadratic radical). 几个二次根式化为最简二次根式后,如果它们被开方数相同,就把这几个二次根式叫做同类二次 根式.
−a,
a > 0, a 次根式满足被开方数不含有分母,且不含有能开得尽方的因数或因式.
√
下列根式中,与 √2 是同类二次根式的是( ) − A. √6 B. √8 C. √9 D. √− 12 解:B.
四、课后作业
(查看更多本章节同步练习题,请到快乐学)
1. 下列二次根式中,最简二次根式是 ( A.√
− −
).
A.1
答案: A
B.−1
2020年春季人教版 八年级下数学第16章二次根式(知识点总结+例题+练习+答案)(含答案)
第16章二次根式一、二次根式的概念核心提要1.二次根式的定义:形如________(其中a≥0)的式子叫做二次根式.2.与二次根式相关的概念:(1)若x2=a,则________是________的平方根;(2)a(a≥0)表示________的算术平方根.知识点1:平方根与算术平方根1.填空:(1)9的平方根是________;(2)25的算术平方根是________;(3)0的算术平方根是________;(4)a(a≥0)的算术平方根是________.知识点2:二次根式的定义2.下列式子中是二次根式的是()A.7B.3 7C.x D.-7知识点3:二次根式有意义的条件3.式子1x-1在实数范围内有意义,则x的取值范围是()A.x<1B.x≤1 C.x>1D.x≥1 4.当x是怎样的实数时,下列各式在实数范围内有意义?(1)x+1;(2)2x;变式1填空:(1)5的平方根是________;(2)11的算术平方根是________;(3)-3________平方根是(填“有”或“没有”);(4)a(a≥0)的平方根是________.变式2下列式子:①12;②-3;③-x2+1;④327;⑤(-3)2是二次根式的有()A.①③B.①③⑤C.①②③D.①②③⑤变式3式子x-1 x-2在实数范围内有意义,则x的取值范围是()A.x≥1B.x≥1且x≠2 C.x>1D.x≤1且x≠2变式4当x是怎样的实数时,下列各式在实数范围内有意义?(1)3-x;(2)-4x;基础巩固1.下列各式①12;②2x;③x2+y2;④-5;⑤35,其中二次根式的个数有()A.1个B.2个C.3个D.4个2.下列式子在实数范围内有意义,则x的取值范围是x≥3的是()A.2x-3B.1x-3C.x-3D.x-3 3.若使二次根式2x-6有意义,则x的取值范围是________ 4.若|3-a|+2+b=0,则a+b的值是________.5.若式子4-x-x-3有意义,求x的取值范围.6.若式子11-3a有意义,求a的取值范围.能力提升7.下列式子没有意义的是()A.-3B.0C.2D.(-1)28.若代数式11-x在实数范围内有意义,则x的取值范围是()A.x≥0B.x≥1C.x≠1D.x≥0 且x≠1 9.若a为实数,则下列各式中一定有意义的是()A.a+3B.a2+3C.a2-3D.a a2+310.一个面积为18 cm2的矩形,它的长与宽之比为3∶2,求它的长与宽各是多少?培优训练11.若y=x-3+3-x3,求(x+y)y的值.二、二次根式的性质核心提要二次根式的性质:1.(a)2=________(a≥0).2.a2=________.知识点1:(a)2=a(a≥0)1.计算:(1)(3)2=________;(2)(7)2=________;(3)(4)2=________;(4)(0.3)2=________;(5)(13)2=________;(6)(23)2=________.知识点2:a2=a(a≥0)(一般地a2=|a|)2.计算:(1)42=________;(2)(-3)2=________;(3)(13)2=________;(4)(-0.2)2=________.知识点3:双非负性a≥0(a≥0)3.已知实数x、y满足(5-x)2+y+6=0,求代数式(x+y)2 001的值.变式1计算:(1)(5)2=________;(2)(8)2=________;(3)(34)2=________;(4)(0.6)2=________;(5)(24)2=________;(6)(-32)2=________.变式2计算:(1)112=________;(2)(-7)2=________;(3)(-1.2)2=________;(4)(-13)2=________.变式3已知1+a+||b-7=0,求a+b的值.基础巩固1.计算(-4)2的结果是()A.-4B.4C.±4D.162.二次根式(3-2)2的值等于()A.3-2B.2-3C.±(3-2)D.2+3 3.当x<5时, (x-5)2的值是()A.x-5B.5-x C.5+x D.-5-x 4.计算:(1)(9)2=________;(2)-(5)2=________;(3)32=________;(4)-(-34)2=________;5.若a、b、c分别是三角形的三边长,化简: (a+b-c)2+ (b-c-a)2+ (b+c-a)26.若(m+1)2+n-2=0,求代数式m+n的值.能力提升7.计算:(1-2)(1+2)=________.8.若(x-1)2=1-x,则x的取值范围是________.9.在实数范围内分解因式:x2-2=_____________.10.实数a在数轴上的位置如图所示,化简:(a-1)2+a.培优训练11.已知x=1-2,y=1+2,求x2+y2-xy-2x+2y的值.三、二次根式的乘法核心提要二次根式的乘法公式a·b=________(a≥0,b≥0).知识点:a×b=ab(a≥0,b≥0)1.计算:(1)5×6;(2)12×8.2.计算:(1)32×23;(2)212×(-3);(3)a3·a;(4)x3·2 x.3.计算:ab·bc·cd·da.变式1计算:(1)3×5; (2)13×27.变式2 计算: (1)23×276; (2)2a7×(-14a );(3)(5+3)(5-3); (4)()2-32. 变式3 计算:115×23×(-1210).巩固练习1.计算3×2的结果( ). A .5 B .6 C .23D .322.一个矩形的长和宽分别是36、23,则它的面积是( ) A .203B .182C.172D.1623.化简x-1x,正确的是()A.-x B.xC.--x D.-x4.已知7·a的积是一个整数,则正整数a的最小值是()A.7B.2C.19D.55.若一个长方体的长为3 6 cm,宽为2 3 cm,高为 2 cm,则它的体积为________ cm3.6.计算:(1)2a·8a(a≥0)=________;(2)43×(-12)=________.(3)54×64125=________.(4)-8x3×63x=________.7.如图,在△ABC中,AD△BC于点D,BC=42,AD=2,求△ABC的面积.8.把代数式(a-1)11-a中的a-1移到根号内,则这个代数式等于()A.-1-a B.a-1C.1-a D.-a-1 9.化简:(1)0.4×(- 3.6)=________;(2)(3+22)99(3-22)100=________.10.计算:ab·5ab·(-ba)·(-1ab).培优训练11.已知x=3-2,求代数式(x+1)2+2(x+1)+1的值.四、积的算术平方根核心提要积的算术平方根ab=________(a≥0,b≥0).(此公式用于化简二次根式)知识点:ab=a·b(a≥0,b≥0)1.化简:(1)4=________;25=________;81=________;(2)9×16=________;32×72=________;(3)4×5=________;16×3=________;(4)8=________;24=________;32=________;4a=________.2.化简:(1) 1 000=________;(2)9a3=________;(3)5×15=________;(4)4a2b=________;(5)3a·6a=________;(6)2y 3·8y=________. 3.设正方形的边长为a ,面积为S . (1)如果a =2 5 cm ,则S =________cm 2; (2)如果S =32 cm 2,则a =________cm ; (3)如果S =50 cm 2,则a =________cm. 变式1化简:(1)9=________;16=________; 64=________;(2) 32×52=________;36×4=________;(3)4×16=________;3×49=________; (4)12=________;18=________; 60=________;36b =________. 变式2化简:(1)25b 3=________; (2)10a ·5a =________; (3)28×(-36)=________; (4)-16a 2b 3c =________; (5)2×23×12=________; (6)133x 2y 3·12x 2y=________.变式3已知非负实数a、b、c满足a2+b2=c2.(1)如果a=3,b=5,则c=________;(2)如果c=12,b=10,则a=________;(3)如果a=32,b=3,则c=________.基础巩固-32×3的计算结果是()1.二次根式()A.33B.-33C.3D.92.若a<0,b>0,则-a3b化简得()A.-a-ab B.-a abC.a-ab D.a ab3.化简:(1)24=________;(2)28=________;(3)45=________;(4)72=________;(5)25a2(a>0)=________;(6)80ab3(a>0,b>0)=________.4.已知x>0,y>0,则xy2·x2y=________.5.化简:(a2-b2)(a4-b4)(b<a<0)得_______________.6.计算:(1)32×224;(2)214x·4xy.7.如图,在Rt△ABC中,△C=90°,BC=12,AC=18.求△ABC 的面积.能力提升8.已知12n是正整数,则满足条件的最小正整数n为()A.2B.3C.4D.59.计算:(1)62+82=________;(2)132-52=________;(3)4-2=________.10.先化简,再求值:x+2x-1÷(x+1-3x-1),其中x=3+2.培优训练11.先化简,再求值:(a2-b2a2-2ab+b2+ab-a)÷b2a2-ab,其中a、b满足1+a+||b-3=0.五、二次根式的除法核心提要1.二次根式的除法法则为:ab=________(a≥0,b>0).2.最简二次根式同时满足下列条件:(1)________________________________________;(2)________________________________________.知识点1:二次根式的除法1.计算:(1)186;(2)8a÷2a.知识点2:化成最简二次根式2.将下列式子化成最简二次根式:(1)3100;(2)11336;(3)13; (4)35.知识点3:二次根式的乘除混合运算 3.计算:34÷112×24. 变式1 计算:(1)455; (2)243.变式2 将下列式子化成最简二次根式:(1)225; (2)112;(3)123; (4)a 1a变式3 计算:20×3515÷(-6).基础巩固1.下列二次根式是最简二次根式的是( ) A .12B .0.2C .2D .202.化简-32×27的结果是( )A .-23B .-23C .-66D .-23.能使等式x x -2=x x -2成立的x 的取值范围是( ) A .x ≠2 B .x ≥0 C .x >2D .x ≥24.若长方形的宽为 2 cm ,面积为2 6 cm 2,则长方形的长为________.5.计算: (1)(-113)÷554;(2)512×34÷52;(3)12÷227×18.能力提升6.如果ab>0,a+b<0,那么下面各式:△ab=ab,△ab·ba=1,△ab÷ab=-b,其中正确的是()A.△△B.△△C.△△D.△△△7.计算:(1)6-33=________;(2)233-1=________.8.先化简,再求值:a2+3aa2+4a+4÷a+3a+2-2a+2,其中a=2-2.培优训练9.小芳在学习了ab=ab后,认为ab=ab也成立,因此她认为一个化简过程:-20-5=-20-5=-5×4-5=-5×4-5=4=2是正确的.△你认为她的化简对吗?如果不对,请写出正确的化简过程;△说明ab=ab成立的条件.六、二次根式的加减法核心提要1.同类二次根式:把几个二次根式化成____________后,如果被开方数(即根号下的数或式)________,则这几个二次根式叫做同类二次根式.2.二次根式加减时,先将二次根式化为_______________,再将______________的二次根式进行合并.知识点:二次根式的加减1.计算:(1)4a-3a=________;(2)5a+6ab-a+2ab=________;(3)32-22=________;(4)5ab-3ab=________.2.计算:(1)35+2-25-32;(2)3-12+18.3.计算:22-23+12.变式1计算:(1)5xy+6xy=________;(2)3x+5xy-4x-xy=________;(3)66-6+26=________;(4)7x-x=________.变式2计算:(1)37-28+7;(2)36-2+24+8.变式3计算:a+a4-2a1a.基础巩固1.计算27-3的结果是()A.24B.26C.3D.232.下列根式中,与18为同类二次根式的是()A.2B.3C.5D.63.如果等腰三角形的底边长为8,腰长为18,则其周长为________.4.计算:(1)3-32+33+2;(2)16b-25b;(3) (48+20)+(12-5);(4)28+1417-700.能力提升5.已知2a -3+5=25,则a 的值是( ) A .2 B .3 C .4D .56.若3的整数部分为x ,小数部分为y ,则3x -y 的值是( ) A .33-3 B .3 C .1D .37.若x =12(a +b ),y =12(a -b ),则x +y 的值为________.8.若对实数a ,b ,c ,d 规定运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,则⎪⎪⎪⎪⎪⎪⎪⎪12-38=________.9.计算:(48-418)-(313-20.5).培优训练10.已知x=1+3,求x2-x+1的值.七、二次根式的混合运算核心提要二次根式的混合运算顺序:先算________,再算________,最后算________,有括号先算括号里面的.知识点1:化成最简二次根式1.化简:(1)8=________;(2)32=________;4(5)35=________;(6)2a=________.知识点2:二次根式的混合运算2.计算:(1)3×15=________;(2)363=________;(3)12+3=________;(4)28-63=________.3.计算:13×(212-75).4.若x=2+1,求x2-2x+1的值.变式1化简:(1)27=________;(2)40=________;(3)18a2=________;(4)17=________;168变式2计算:(1)2×98=________;(2)40÷5=________;(3)2+18=________;(4)27-75=________.变式3计算:(248-327)÷ 3.变式4若m=2+3,n=2-3,求mn2+m2n的值.巩固练习1.下列运算错误的是()A.2+3=5B.2×3=6C.8÷2=2D.(-2)2=22.估计32×12+20的运算结果应在( ) A .6到7之间 B .7到8之间 C .8到9之间D .9到10之间3.计算5×153的结果是________.4.一个矩形的长和宽分别为12 cm 和27 cm ,则这个矩形的周长为___________.5.计算:(1)(12+58)×3;(2)(48+36)÷27;(3)3+33;(4)(3+2)2-(3+22)(3-22).能力提升6.计算:(2+1)2 018×(2-1)2 019.7.如图,在Rt△ABC中,△C=90°,CD△AB于D.AC=3+1,BC=3-1,AB=22,求CD的长.8.如图所示,在Rt△ABC中,△B=90°,AB=6厘米,BC=12厘米,点P从点B开始沿BA边以1厘米/秒的速度向A移动;同时,点Q也从点B开始沿BC边以2厘米/秒的速度向点C移动.问:几秒后△PBQ的面积为24平方厘米?(结果用最简二次根式表示)第十六章二次根式第1课时二次根式的概念【核心提要】1.a2.(1)x a (2)a【典例精讲】1.±3 5 0a2.A 3.C4.(1)x ≥-1 (2)x ≥0【变式训练】1.±511 没有 ±a 2.B 3.B4.(1)x ≤3 (2)x ≤0【基础巩固】1.B 2.D3.x ≥3 4.1 5.3≤x ≤4 6.a <13【能力提升】7.A 8.D 9.B10.长3 3 cm 宽2 3 cm【培优训练】11.1第2课时 二次根式的性质【核心提要】1.a 2.|a |【典例精讲】1.(1)3 (2)7 (3)4 (4)0.3 (5)13(6)12 2.(1)4 (2)3 (3)13(4)0.2 3.-1 【变式训练】1.(1)5 (2)8 (3)34(4)0.6 (5)16 (6)18 2.(1)11 (2)7 (3)1.2 (4)133.6 【基础巩固】1.B 2.B 3.B4.(1)9 (2)-5 (3)3 (4)-345.a +b +c 6.1【能力提升】7.-18.x ≤1 9.(x +2)(x -2) 10.1【培优训练】11.7+42第3课时 二次根式的乘法【核心提要】ab【典例精讲】1.(1)30 (2)2 2.(1)66 (2)-12(3)a 2 (4)2x 3.1【变式训练】1.(1)15 (2)32.(1)3 (2)-2a(3)-4 (4)5-263.-6【基础巩固】1.B 2.B 3.C 4.A5.366.(1)4a (2)-4 (3)45 (4)-4x7.4【能力提升】8.A 9.(1)-1.2 (2)3-22 10.5【培优训练】11.3第4课时 积的算术平方根【核心提要】a ·b【典例精讲】1.(1)2 5 9 (2)12 21 (3)25 43 (4)22 26 42 2a2.(1)1010 (2)3a a (3)53(4)2a b (5)3a 2 (6)4y3.(1)20 (2)42 (3)52【变式训练】1.(1)3 4 8 (2)15 12 (3)8 73(4)23 32 215 6b 2.(1)5b b (2)5a 2 (3)-243(4)-4ab bc (5)122 (6)2x 2y3.(1)34 (2)211 (3)33【基础巩固】1.A 2.A3.(1)26 (2)27 (3)35 (4)62 (5)5a (6)4b 5ab4.xy xy5.(b 2-a 2)a 2+b 26.(1)243 (2)2x y7.36【能力提升】8.B9.(1)10 (2)12 (3)1410.1x -2 33【培优训练】11.a b -33第5课时 二次根式的除法【核心提要】 1.a b2.(1)被开方数中不含能开得尽方的因数或因式(2)被开方数中不含分母【典例精讲】1.(1)3 (2)22.(1)310 (2)76 (3)33 (4)1553.66【变式训练】1.(1)3 (2)222.(1)25 (2)62 (3)36 (4)a 3.-32【基础巩固】1.C 2.C 3.C4.2 3 cm5.(1)-6105 (2)324(3)2 【能力提升】6.解析:∵ab >0,a +b <0,∴a <0,b <0.①a b =a b,被开方数应≥0,a ,b 不能作被开方数,(故①错误), ②a b ·b a =1,a b ·b a =ab =a b ×b a =1=1,(故②正确), ③ab ÷a b =-b ,ab ÷a b =ab ÷ab -b =ab ×-b ab=-b ,(故③正确). 故选:B. 7.(1)2-1 (2)3+3 8.1-22【培优训练】9.解:①化简不对,正确过程为-20-5=205=5×45=4=2; ②∵0作除数无意义,∴a b =a b 成立的条件:a ≥0,b >0. 第6课时 二次根式的加减法【核心提要】1.最简二次根式,相同2.最简二次根式,被开方数相同【典例精讲】1.(1)a (2)4a +8ab (3)2 (4)2ab 2.(1)5-22 (2)-3+323.223【变式训练】1.(1)11xy (2)-x +4xy (3)76(4)6x2.(1)27(2)56+23.-a 2【基础巩固】1.D 2.A3.824.(1)43-22(2)-b(3)63+5(4)-67【能力提升】5.C 6.C7.a8.529.33【培优训练】10.解:∵x=1+3,∴x2-x+1=(1+3)2-(1+3)+1=1+23+3-1-3+1=3+4;第7课时二次根式的混合运算【核心提要】乘方乘除加减【典例精讲】1.(1)22(2)42(3)2a6(4)3 2(5)155(6)2aa2.(1)35(2)23(3)33(4)-7 3.-1 4.2【变式训练】1.(1)33(2)210(3)3a2(4)7 7(5)22 (6)324 2.(1)32(2)22 (3)42 (4)-233.-1 4.4【基础巩固】1.A 2.C 3.5 4.10 3 cm 5.(1)6+106 (2)43+2 (3)3+1 (4)4+26 【能力提升】6.2-17.22【培优训练】8.解:设t 秒后△PBQ 的面积等于24平方厘米,根据题意得: 12×2t ×t =24, 解得:t 1=-26(不合题意舍去),t 2=2 6.答:26秒后△PBQ 的面积等于24平方厘米.。
初二数学下册(人教版)第十六章二次根式16.2-16.3知识点总结含同步练习及答案
高考不提分,赔付1万元,关注快乐学了解详情。
③ 将原有无理数的分子化为有理数的过程,也就是将分子中的根号化去,叫做分子有理化.
1 ⋅ (√2 − √5 ) 1 1 ⋅ √3 1 √3 √5 − √2 = = , = = ; 3 √2 + √5 3 (√2 + √5 ) ⋅ (√2 − √5 ) √3 √3 ⋅ √3 (√2 − √3 )(√2 + √3 ) √2 − √3 = 1 . √3 − √2
B.减号 C.乘号 D.除号
2. 在算式 (− A.加号
答案: D 解析:
)
当填入加号时,(− 当填入减号时,(−
2√3 √3 √3 ; ) + (− )=− 3 3 3 √3 √3 ) − (− ) = 0; 3 3 ) ( )
(
当填入乘号时,(− 当填入除号时,(−
(
1 √3 √3 ) × (− )= ; 3 3 3 √3 √3 ) ÷ (− ) = 1. 3 3
− − − ,则下列表示正确的是 ( 4. 设 √2 = a , √3 = b ,用含 a , b 的式子表示 √− 0.54
A.0.3ab
答案: A 解析:
B.3ab
C.0.1ab 2
D.0.1a2 b
− − − = √− − − − − − − − − − − − × √2 × √3 = 0.3 × √2 ×√3 = 0.3ab .故选 A. √− 0.54 0.09 × 2− × 3 = √− 0.09
化简 √a3 (a > 0). − − 解:√a3 = ∣a∣√a = a√a . 化简 √(a − b)2 + a (a < b).
− − −− − 3 1 − + √− −) + (√3 − √5 );(4) ÷ √ ;(3) (√− 12 20 2 18
八年级数学下册第十六章二次根式知识点总结全面整理(带答案)
八年级数学下册第十六章二次根式知识点总结全面整理单选题1、下列二次根式中,最简二次根式是()A.√5B.√4C.√12D.√12答案:A分析:根据最简二次根式的定义,被开方数中不含能开得尽方的因数或因式,被开方数中不含分母,判断即可.解:A、√5是最简二次根式,符合题意;B、√4=2不是最简二次根式,不符合题意;C、√12=2√3不是最简二次根式,不符合题意;D、√12=√22不是最简二次根式,不符合题意;故选:A.小提示:本题考查了最简二次根式,掌握最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式是解题的关键.2、下列计算正确的是()A.√5+√2=√7B.√a2−b2=a−bC.a√x−b√x=(a−b)√x D.√6+√102=√3+√5答案:C分析:根据二次根式的加减法法则、二次根式的化简逐项判断即可得.解:A、√5与√2不是同类二次根式,不能合并,则此项错误,不符合题意;B、√a2−b2=√(a+b)(a−b)≠a−b,则此项错误,不符合题意;C、a√x−b√x=(a−b)√x,则此项正确,符合题意;D、因为2√3+2√5=√12+√20,所以√6+√102≠√3+√5,则此项错误,不符合题意;故选:C.小提示:本题考查了二次根式的加减法、二次根式的化简,熟练掌握运算法则是解题关键. 3、计算:(√5+12−1)⋅√5+12=( )A .0B .1C .2D .√5−12答案:B分析:先将括号内的式子进行通分计算,最后再进行乘法运算即可得到答案. 解:(√5+12−1)⋅√5+12=√5−12⋅√5+12 =5−14=1. 故选:B .小提示:此题主要考查了二次根式的混合运算,熟练掌握运算法则以及乘法公式是解答此题的关键. 4、下列各式中,是二次根式有( )①√7;②√−3;③√103;④√−3−x 2;⑤√a 2+9;⑥√1x 2+1.A .2个B .3个C .4个D .5个 答案:B分析:根据二次根式的概念进行分析判断. 解:①√7是二次根式,②√−3没有意义,不是二次根式, ③√103是三次根式,不是二次根式, ④√−3−x 2没有意义,不是二次根式, ⑤√a 2+9是二次根式, ⑥√1x 2+1是二次根式,∴①⑤⑥是二次根式,共3个,故选:B.小提示:本题考查二次根式的定义,理解二次根式的概念(形如√a,a≥0的式子叫做二次根式)是解题关键.5、计算2√5×3√10=( )A.6√15B.6√30C.30√2D.30√5答案:C分析:根据二次根式的混合运算和根式的性质即可解题.解:2√5×3√10=6√50=30√2,故选C.小提示:本题考查了根式的运算,属于简单题,熟悉根式的性质是解题关键.6、计算√8+√18的值等于()A.√26B.4√2C.5√2D.2√2+2√3答案:C分析:根据二次根式的运算法则即可求出答案.解:原式=2√2+3√2=5√2故选C.小提示:本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则.7、下列计算正确的是()A.√3+√3=√6B.2−√2=√2C.√3×√3=√6D.2÷√2=√2答案:D分析:利用二次根式的运算法则计算.A.应是合并同类二次根式,计算错误;B.这两个数不是同类二次根式不能加减;C.√3×√3=(√3)2计算错误;D.先把分母有理化再计算.解:A、合并同类二次根式应是√3+√3=2√3,故选项错误,不符合题意;;B、不是同类二次根式,不能合并,故选项错误,不符合题意;;C、要注意根式与根式相乘,应等于3,故选项错误,不符合题意;;D、2÷√2=√2√2×√2=2√22=√2,故选项正确,符合题意;;故选:D.小提示:本题考查了二次根式的运算:解题的关键是先把各二次根式化简为最简二次根式,然后进行二次根式的运算,再合并即可.8、下列哪一个选项中的等式不成立?()A.√38=34B.√(−5)6=(−5)6C.√34×510=32×55D.√(−3)4×(−5)8=(−3)2×(−5)4答案:B分析:根据二次根式化简的方法计算,即可.A.√38=√(34)2=34,正确,不符合题意;B.√(−5)6=√56=√(53)2=53,故此选项错误,符合题意;C.√34×510=√(32×55)2=32×55,正确,不符合题意;D.√(−3)4×(−5)8=(−3)2×(−5)4,正确,不符合题意.故答案选:B.小提示:本题考查了二次根式的化简,熟练掌握二次根式的概念以及化简方法,是解决本题的关键.9、估计√12×√13+√10÷√2的运算结果应在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间答案:C分析:先进行二次根式的运算,然后再进行估算.解:原式=2√3×√33+√10÷√2=2+√5,√4<√5<√9,即2<√5<3,4<2+√5<5,故选:C.小提示:题目主要考查二次根式的混合运算及运用“夹逼法”估算无理数的大小,熟练掌握二次根式的混合运算法则是解题关键.10、2,5,m是某三角形三边的长,则√(m−3)2+√(m−7)2等于()A.2m−10B.10−2m C.10D.4答案:D分析:先根据三角形三边的关系求出m的取值范围,再把二次根式进行化解,得出结论.解:∵2,3,m是三角形的三边,∴5−2<m<5+2,解得:3<x<7,∴√(m−3)2+√(m−7)2=m−3+7−m=4,故选:D.小提示:本题考查了二次根式的性质及化简,解题的关键是:先根据题意求出m的范围,再对二次根式化简.填空题11、若3−√2的整数部分为a,小数部分为b,则代数式(2+√2a)⋅b的值是______.答案:2分析:先由1<√2<2得到1<3−√2<2,进而得出a和b,代入(2+√2a)⋅b求解即可.解:∵1<√2<2,∴1<3−√2<2,∵3−√2的整数部分为a,小数部分为b,∴a=1,b=3−√2−1=2−√2.∴(2+√2a)⋅b=(2+√2)×(2−√2)=4−2=2,所以答案是:2.小提示:本题主要考查无理数及代数式化简求值,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法.12、若|x-2y|+√y +2=0,则xy 的值为_______. 答案:8试题解析:根据题意可得:{x −2y =0y +2=0,解得:{x =−4y =−2.∴xy =8.故答案为8. 13、若式子√1−x|x|−2有意义,则实数x 的取值范围是 _____.答案:x ≤1且x ≠-2分析:根据被开方数大于等于0,分母不等于0列式计算即可得解. 解:由题意得,1−x ≥0且|x |-2≠0, 解得x ≤1且x ≠-2. 所以答案是:x ≤1且x ≠-2.小提示:本题考查了代数式有意义:分母不为0;二次根式的被开方数是非负数,解题的关键是明确什么情况下代数式有意义. 14、人们把√5−12这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设a =√5−12,b =√5+12,得ab =1,记S 1=11+a +11+b ,S 2=11+a 2+11+b 2,S 3=11+a 3+11+b 3,…,则S 1+S 2+⋅⋅⋅+S 2022=______. 答案:2022分析:根据异分母分式加法法则分别求出S 1、S 2、 S 3⋯ 、S 10的值,发现结果均为1,依此解答即可. 解:S 1=11+a+11+b=1+b+1+a (1+a)(1+b)=2+a+b 1+a+b+ab =2+a+b 1+a+b+1=2+a+b 2+a+b=1,S 2=11+a 2+11+b 2=1+b 2+1+a 2(1+a 2)(1+b 2)=2+a 2+b 21+a 2+b 2+a 2b 2=2+a 2+b 21+a 2+b 2+1=2+a 2+b 22+a 2+b 2=1, S 3=11+a 3+11+b 3=1+b 3+1+a 3(1+a 3)(1+b 3)=2+a 3+b 31+a 3+b 3+a 3b 3=2+a 3+b 31+a 3+b 3+1=2+a 3+b 32+a 3+b 3=1, S n =11+a n +11+b n =1+b n +1+a n(1+a n )(1+b n )=2+a n +b n1+a n +b n +a n b n =2+a n +b n1+a n +b n +1=2+a n +b n2+a n +b n =1,∴S 1+S 2+⋯+S 2022=1+1+⋯1=2022. 所以答案是:2022小提示:本题考查分式的规律计算,正确掌握异分母分式的加减计算法则及运用规律解决问题是解题的关键. 15、当_____时,式子√x −3+√5−x有意义.答案:3≤x <5.分析:根据二次根式和分式的意义的条件:被开方数大于等于0,分母不等于0,列不等式组求解. 根据题意,得:{x −3≥05−x >0,解得:3≤x <5. 小提示:本题考查了的知识点为:分式有意义,分母不为0;二次根式有意义,被开方数是非负数. 解答题16、已知:线段a 、b 、c 且满足|a −√18|+b 2−4b +4+√c −√50=0.求: (1)a 、b 、c 的值;(2)求(a −c)2+b 2的平方根. 答案:(1)a =3√2,b =2,c =5√2; (2)±2√3分析:(1)根据非负数性质可得a 、b 、c 的值; (2)把a 、b 、c 的值代入计算即可得到答案. (1)解:∵|a −√18|+b 2−4b +4+√c −√50=0, ∴a −√18=0,b 2−4b +4=0,c −√50=0, 即a =3√2,b =2,c =5√2;(2)解:∵a =3√2,b =2,c =5√2, ∴(a −c)2+b 2 =(3√2−5√2)2+22=(−2√22+4)=8+4=12,∵12的平方根是±2√3,∴(a−c)2+b2的平方根是±2√3.小提示:本题主要考查非负数的性质和平方根,根据非负数性质得出相应算式是关键,二次根式的化简与运算是根本技能.17、计算:(1)(√6−2√15)×√3−6√12(2)√23÷√223×√25答案:(1)3√2−6√5−12√3(2)√1010分析:(1)直接利用二次根式的性质计算得出答案;(2)利用二次根式的乘除运算法则及分母有理化计算得出答案.(1)解:(√6−2√15)×√3−6√12=√6×√3−2√15×√3−6√12 =3√2−6√5−12√3;(2)解:√23÷√223×√25=√23÷√83×√25=√23×38×25=√110=√1010.小提示:此题主要考查了二次根式的混合运算,涉及到二次根式的性质、加减乘除相关运算及分母有理化,正确掌握相关运算法则是解题关键.18、计算:(1)(4√12−2√20)−(√48+√5)(2)(√48−√27)÷√3+√6×2√3答案:(1)4√3−5√5(2)1+6√2分析:(1)直接化简二次根式,进而利用二次根式的加减运算法则计算得出答案;(2)直接化简二次根式,再利用二次根式的乘除运算法则计算得出答案.(1)(4√12−2√20)−(√48+√5)=(8√3−4√5)−(4√3+√5)=8√3−4√5−4√3−√5=4√3−5√5(2)(√48−√27)÷√3+√6×2√3=(4√3−3√3)÷√3+6√2=√3÷√3+6√2=1+6√2小提示:此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.。
部编数学八年级下册专题01二次根式化简的四种题型全攻略(解析版)含答案
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!专题01 二次根式化简的四种题型全攻略类型一、利用被开方数的非负性化简二次根式例.= )A .1x ³B .1x ³-C .1x ³或1x £-D .1x ¹±【变式训练1】已知m ,n 为实数,且3n -==________.【详解】依题意可得m -2≥0且2-m ≥0,∴m =2,∴n -3=0∴n =3,=.【变式训练2】已知a ,b ,c 是ABC V ||0b c -=ABC V 的形状是_______.A .3x >B .3x ³C .3x <D .3x £等腰三角形周长.【答案】17【详解】解:由题意得:3030a a -³ìí-³î,解得:a =3,则b =7,若c =a =3时,3+3<7,不能构成三角形.若c =b =7,此时周长为17.类型二、利用数轴化简二次根式例.实数a b c ,,在数轴上的对应点如图所示,化简a b -+-A .b c--B .c b - C .222b c -+D .2b c ++【答案】A 【详解】解:由数轴知:00c b a <,<<,∴0b a -<,∴原式=a b a c----()=a b a c--+-=b c --.故选:A .【变式训练1】已知实数m n、||m n+=_____A.2a b-+B.2a b-C.b-D.b【答案】A【解析】根据数轴上点的位置得:a<0<b,∴a-b<0,则原式=|a|+|a-b|=-a+b-a= -2a+b.故选:A.【变式训练3】已知实数a、b、c.【变式训练4】如图,a ,b ,c 是数轴上三个点A 、B 、C 所对应的实数.试化简:c +.类型三、利用字母的取值范围化简二次根式例1.已知,化简:25m -<<5-=__________.【答案】23m -##32m-+A B C .D .【变式训练2】若35x <<+=_______;【答案】0【解析】由题意可知:3-x ≥0,∴2=3x -=33x x ---=33x x -+-=0故答案为:0.【变式训练4】7=-b .(1)求a 的值;(2)若a 、b 分别为一直角三角形的斜边长和一直角边长,求另一条直角边的长度.类型四、双重二次根式的化简例.阅读下列材料,然后回答问题.一样的式子,其实我们还可以将其进一==1===以上这种化简的步骤叫做分母有理化.(1;(2(2【变式训练1】阅读理解“分母有理化”7==+除此之外,我们也可以用设x =-,>故0x >,由22x =33=+-2=解得x -=【答案】5-【详解】解:设x=>∴0x<∴266x=--+,∴212236x=-´=,∴x=5=-,∴原式55=--=-【变式训练2】先阅读材料,然后回答问题.(1经过思考,小张解决这个问题的过程如下:=①===④在上述化简过程中,第步出现了错误,化简的正确结果为;(2)请根据你从上述材料中得到的启发,化简由于437+=,4312´=,即:227+=, =2====问题:(1=__________=____________﹔(2a ,b (a b >),使a b m +=,ab n =,即22m +=那么便有:=__________.(3(请写出化简过程)【答案】(11+(2)a b ±>;(3【详解】解:(11===+;)a b >;【变式训练4】阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如(231+=,善于思考的小明进行了以下探索:设()2a m =(其中a 、b 、m 、n 均为正整数),则有222a m n =++,∴a =m 2+2n 2,b =2mn .这样小明就找到了一种把部分a 的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若()2a m =,用含m 、n 的式子分别表示a 、b ,得:a = ,b = ;(2)若()2a m +=,且a 、m 、n 均为正整数,求a 的值;(3.课后作业120-=,那么这个等腰三角形的周长为( )A .8B .10C .8或10D .9【答案】B【详解】解:20-=∴40a -=,20b -=,解得4a =,2b =当腰长为2,底边为4时,∵224+=,不满足三角形三边条件,不符合题意;当腰长为4,底边为2时,∵2464+=>,4402-=<,满足三角形三边条件,此时等腰三角形的周长为44210++=.故选:B2.化简二次根式- )A B C .D .【答案】AA .2b c-B .2b a -C .2a b --D .2c b-6.已知x、y为实数,4y+,则x y的值等于______.8a b =+.根据这一性质,我们可以将一些“双重二次根式”去掉一层根号,达到化简效果..解:设24+=(a ,b 为非负有理数),则4a b +=++∴43a b ab +=ìí=î①②由①得,4b a =-,代入②得:()43a a -=,解得11a =,23a =∴13b =,21b =∴224(1+==1==请根据以上阅读理解,解决下列问题:(1)__________;(2)(3)的大小,我们可以把a和b分别平方,∵a2=12,b2=18,则a2<b2,∴a<b.请利用“平方法”解决下面问题:(1)比较c=,d=c d(填写>,<或者=).(2)猜想m=n=+(3)=(直接写出答案).10.(1)已知a 、b 4b =+,求a 、b 的值.(2)已知实数a 满足2021a =,求22021a -的值.。
人教版八年级数学下册 第16章 二次根式重难点解析(含答案)
二次根式重难点解析1.二次根式的定义:一般地,0)a ≥叫做二次根式,可以从以下几个方面理解:(1a 可以是一个非负数,也可以是代数式,这个代数式的值必(2)0)a ≥既是二次根式,又表示非负数a 的算术平方根,0≥.2.二次根式的基本性质: 2(0)a a =≥,该公式也可以倒过来,即2(0)a a =≥,也就是说,可以利用它把任何一个非负数或式子写成一个数或式子的平方的形式.3.积的算术平方根,等于积中各因式的算术平方根的积.4.商的算术平方根,等于被除式的算术平方根除以除式的算术平方根.例1 函数1y x=+x 的取值范围是 . 解:变量x 的取值范围,须使120x -≥(即被开方熟大于或者等于零)且10x +≠(即分母不等于零),即12x ≤且x≠-1. 所以应填12x ≤且x≠-1. 评注:①考虑二次根式有意义;②考虑分式有意义,只有同时有意义,才能求出自变量的取值范围.例2 已知x >2,( ).(A)x-2 (B)x+2 (C)-x-2 (D)2-x解: 选(A)=,∵x >2,=x-2故应选(A)评注:解此类题,被开方数能化成完全平方式的.可根据2(0)a a =≥进行化简.例3 已知a >b,( )(A) -(B)-(C)(D) 解:选(D).评注:理解并熟练运用2(0)a a =≥,化简二次根式时,要判断或讨论根号内字母的符号,然后进行化简.此题也可以根据二次根式化简的法则,采取观察、分析符号两个步骤,运用排除法解答:(1)观察被开方数:由于被开方数中只有平方因式可以从根号内移到根号外,根号内的符号并不发生变化,观察原根式内的符号易知根号内不可能去掉负号,故可排除(B)、(C);(2ab <0,而a >b,故a >0,观察原来根号外为省略的“+”号,应保持正数性,故根号外必为a ,综合可得.例4 若x 、y为实数,且12y x =+解: 由x 的取值范围可知: 22404020x x x ⎧-≥⎪-≥⎨⎪+≠⎩∴x=2,y=1342==. 评注:本题实际是通过题目中的隐含条件:240x -≥,240x -≥,20x +≠,即x 的取值范围,求出x 和y 的值.例5把(a -(a-1)移到根号内得( )(A) (B) (C) (D) 解: 根据二次根式的定义,被开方数11a -≥0,即a-1>0∵(a -=故选(A) 评注:根号外面的因式移到根号内,运用根式化简的逆向思维,即2(0)a a =≥,所以应选判断(a-1)的正负,若为正,则把这个数写成它的平方移到根号内.课堂检测1、 已知y +6,则y x= .2、 已知3x -+y 2+4y =0,求x y z x y z -+++的值.3a 、x 、y 是两两不同的实数,求22223yxy x y xy x +--+的值.4、若实数x 、y 、a ,试问长度分别为x 、y 、a 的三条线段能否组成一个三角形?如果能,请求出该三角形的面积;如果不能,请说明理由.参考答案1、根据二次根式的被开方数是一个非负数,可得3-x ≥0且x -3≥0,即x ≤3且x ≥3,所以x 只能等于3,所以y =6.故y x =63=2.2、本题可变形为3x -+(y +2)20,因为是三个非负数的和为0,所以x -3=0,y +2=0,z -1=0,即x =3,y =-2,z =1,故x y z x y z -+++=3(2)1321--+-+=3.3、由a (x -a )≥0及x -a ≥0得a ≥0;由a (y -a )≥0及a -y ≥0得a ≤0,故a =0,,x =-y ≠0,故原式=2222223y y y y y y ++--=31. 4、由x +y -8≥0,8-x -y ≥0,得x +y ≥8,x +y ≤8.所以8≤x+y ≤8,x +y =8.这时,已知等式即为+=0.因为≥0,,00.从而3x -y -a =0,x -2y +a +3=0.这两个等式相加,得4x -3y =-3.联立x +y =8和4x -3y =-3,得8,43 3.x y x y +=⎧⎨-=-⎩解得3,5.x y =⎧⎨=⎩这时a =3x -y =4.因为x 、y 、a 中的任意两者的值大小第三者的值,所以长度分别为x 、y 、a 的三条线段能组成一个三角形.因为x 2+a 2=y 2,所以长度分别为x 、y 、a 的三条线段能组成一个直角三角形,且两条直角边的长度分别为3、4.所以该三角形的面积值=3×4÷2=6.。
二次根式知识点及题型详解 初中数学 全国通用版 含答案
变式 19 若最简二次根式 + 3与最简二次根式 2 是同类二次根式,则 x 的值为( )
A.x=0
B.x=1
C.x=2
D.x=3
【解析】∵最简二次根式 + 3与最简二次根式 2 是同类二次根式,∴x+3=2x,解得:x=3,选 D.
变式 20 若最简二次根式 3 + ,2 4 − 2可以合并,则 m﹣n 的值为 .
变式 2 在式子 − 3.14, 2 + 2, + 5, −3 2, 2 + 1, | |中,是二次根式的有( )
A.3 个
B.4 个
C.5 个
D.6 个
【解析】在所列式子中是二次根式的有 − 3.14, 2 + 2, 2 + 1, | |这 4 个,选 B.
变式 3 下列各式中①3 8;② −( − );③ 2;④ | |+10.1;⑤ 2 + 2 + 1一定是二次根式的有(
【解析】由数轴可知:c<a<0<b,∴a﹣c>0,b﹣c>0, ∴原式=|a|+|a﹣c|+|b﹣c|﹣|b|=﹣a+(a﹣c)+(b﹣c)﹣b=﹣2c.
知识点六 最简二次根式的概念
最简二次根式的条件:(1)被开方数的因数是整数或字母,因式是整式;(2)被开方数中不含有可化为平 方数或平方式的因数或因式.
6
【分析】由题意可知, 3 + 与 2 4 − 2同类二次根式,即被开方数相同,由此可列方程求解.
【解析】根据题意 3m+n=4m﹣2,即﹣m+n=﹣2,所以 m﹣n=2.
【小结】本题考查同类二次根式的概念:化为最简二次根式后,被开方数相同的根式称为同类二次根式;
部编数学八年级下册专题01二次根式的定义及性质(解析版)(重点突围)含答案
专题01 二次根式的定义及性质
【考点导航】
目录
【典型例题】 (1)
【考点一二次根式的定义】 (1)
【考点二二次根式有意义的条件】 (2)
【考点三求二次根式的值】 (3)
【考点四求二次根式中的参数】 (4)
【考点五利用二次根式的性质化简】 (6)
【考点六复合二次根式的化简】 (7)
【过关检测】 (9)
【典型例题】
【考点一二次根式的定义】
【考点二二次根式有意义的条件】
【考点三求二次根式的值】
【变式训练】
【考点四求二次根式中的参数】
【考点五利用二次根式的性质化简】
【考点六复合二次根式的化简】
【过关检测】
1 1 3##
4
3
4
【答案】13。
人教版初中八年级数学下册第十六章《二次根式》知识点总结(含答案解析)(1)
一、选择题1.是同类二次根式的是()A B C D解析:D【分析】将各个二次根式化成最简二次根式后,选被开方数为2的根式即可.【详解】A不符合题意;B不符合题意;,因此选项C不符合题意;是同类二次根式,因此选项D符合题意;故选:D.【点睛】本题考查同类二次根式的意义,将二次根式化成最简二次根式后,被开方数相同的二次根式是同类二次根式.2.下列二次根式中是最简二次根式的是()A BC D A解析:A【分析】利用最简二次根式定义判断即可.【详解】=,故本选项不合题意;2==,故本选项不合题意.故选:A.【点睛】此题考查了最简二次根式,熟练掌握最简二次根式定义是解本题的关键.3.如x为实数,在“1)□x”的“□”中添上一种运算符号(在“+”、“-”、“×”、“÷”中选择),其运算结果是有理数,则x不可能是()A1B1C.D.1-【分析】根据题意,添上一种运算符号后逐一判断即可.【详解】-=,故选项A不符合题意;解:A、1)1)0⨯=,故选项B不符合题意;B、1)1)2C1与C符合题意;+-=,故选项D不符合题意.D、1)(10故选:C.【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键.4.( )A.B.C.D.无法确定A解析:A【分析】满足三角形成立的条件,最后对三边求和即可.【详解】若,则周长为+若=,∴,此三角形不存在,∴这个三角形的周长为故选:A.【点睛】本题考查等腰三角形的性质,涉及化简二次根式,熟练掌握等腰三角形的性质以及三角形成立的条件是解题的关键.5.)A.3 B C D【分析】直接利用倒数的定义分析和二次根式的化简即可得出答案;相乘为1的两个数即为倒数;【详解】.故选:D.【点睛】本题考查了二次根式的化简、倒数的定义,正确化简二次根式是解题的关键;6.下列运算正确的有()个.①6-==7==2=④=⑤=5==A.1 B.2 C.3 D.4A解析:A【分析】根据二次根式的运算法则分别进行计算,计算出正确结果即可作出判断.【详解】①-===①错误.1122==2=,故②错误.=()2222=-2=,故③错误.④==④错误.⑤12=⨯122=⨯24=,故⑤错误.==5=,故⑥正确.∴①②③④⑤⑥中只有⑥1个正确.故选A..【点睛】本题主要考查二次根式的运算,解题的关键是能熟练运用二次根式的性质和运算法则进行计算.7.已知y 3+,则x y 的值为( ). A .43 B .43- C .34 D .34- A 解析:A【分析】由二次根式有意义的条件可得出x 的值,即可得出y 的值,计算出x y 的值即可. 【详解】因为3y =,4040x x -≥⎧∴⎨-≥⎩, ∴x =4,∴y =3, ∴43x y =. 故选:A .【点睛】本题主要考查二次根式有意义的条件,熟记二次根式有意义的条件是解题关键. 8.下列运算正确的是( )A +=B 132= CD .1)1= D 解析:D【分析】根据二次根式运算求解即可.【详解】A. 原式不能合并,不符合题意;B. 原式==C.原式=D. 原式=2−1=1,符合题意,故选:D.【点睛】此题考查了二次根式的混合运算,熟练掌握运算法则是解本题的关键.9. )A B .C D .解析:C【分析】先根据二次根式的性质化简各项,再根据同类二次根式的定义逐项判断即得答案.【详解】解:A 不是同类二次根式,故本选项不符合题意;B 、=C =D 、2=,所以 故选:C .【点睛】本题考查了二次根式的性质和同类二次根式的定义,属于基础题型,熟练掌握上述知识是解题的关键.10. ).A .1x ≤B .1x <C .1≥xD .1x ≠ A解析:A【分析】根据被开方数大于等于0列式计算即可得解.【详解】10x -≥,解得,1x ≤.故选:A .【点睛】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义. 二、填空题11.在2y x =-中,x 的取值范围是:______________.x≥1且x≠2【分析】根据二次根式有意义的条件可得x-1≥0再根据分式有意义的条件可得x-2≠0再解出x 的值【详解】解:由题意得:x-1≥0且x-2≠0解得:x≥1且x≠2故答案为:x≥1且x≠2【解析:x≥1且x≠2【分析】根据二次根式有意义的条件可得x-1≥0,再根据分式有意义的条件可得x-2≠0,再解出x 的值.【详解】解:由题意得:x-1≥0,且x-2≠0,解得:x≥1且x≠2,故答案为:x≥1且x≠2.【点睛】此题主要考查了二次根式有意义的条件,以及分式有意义的条件,关键是掌握分式有意义,分母不为0;二次根式的被开方数是非负数.12.=_____【分析】先将化为再合并同类二次根式即可【详解】解:=故答案为【点睛】此题考查了二次根式的加减法把化为是解答此题的关键解析:【分析】化为【详解】==.故答案为【点睛】化为13.13aa+==______.【分析】把平方后得到取算数平方根即可求解【详解】∵∴∴(舍负)故答案为:【点睛】此题考查了完全平方公式熟练掌握完全平方公式是解决此题的关键【分析】平方后,得到13a a+=,取算数平方根即可求解. 【详解】 ∵13a a+=,∴212325aa =++=+=,∴=.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解决此题的关键.14.=______;【分析】根据二次根式的乘法运算法则计算即可【详解】故答案为:【点睛】本题主要考查了二次根式的乘法运算熟练掌握二次根式的乘法运算法则是解题的关键【分析】根据二次根式的乘法运算法则计算即可.【详解】==.. 【点睛】本题主要考查了二次根式的乘法运算,熟练掌握二次根式的乘法运算法则是解题的关键.15.若112a -=1114a a ⎛⎫ ⎪⎝⎭-+的值为_________.【分析】先将变形为再把代入求值即可【详解】解:的值为故答案为:【点睛】此题考查了完全平方公式熟练掌握完全平方公式及其变形是解答此题的关键解析:2【分析】先将1114a a ⎛⎫ ⎪⎝⎭-+变形为2112a ⎛⎫- ⎪⎝⎭,再把112a -= 【详解】解:112a -=1114a a ⎛⎫ ⎪⎝⎭∴-+ 2114a a =-+ 2112a ⎛=⎫ ⎪⎝⎭- 2= 2=,1114a a ⎛⎫ ⎪⎝⎭∴-+的值为2. 故答案为:2.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式及其变形是解答此题的关键.16.已知4y x =+,当x 分别取1,2,3,⋯,99时,所对应的y 值的总和是___.105【分析】先化简二次根式求出y 的表达式再将x 的取值依次代入然后求和即可得【详解】解:①当时此时②当时此时当分别取12399时故答案为:105【点睛】本题考查了二次根式的化简求值绝对值运算等知识点 解析:105【分析】先化简二次根式求出y 的表达式,再将x 的取值依次代入,然后求和即可得.【详解】解:434y x x x =+=--+,①当3x 时,|3|3x x -=-,此时43472y x x x x =+=--+=-, 1x =,725y x =-=,2x =,723y x =-=,3x =,721y x =-=,②当3x >时,33x x -=-,此时4341y x x x =-+=--+=,∴当x 分别取1,2,3,⋯,99时,4y x =+,5311(993)105=+++⨯-=.故答案为:105.【点睛】本题考查了二次根式的化简求值、绝对值运算等知识点,掌握二次根式的化简方法是解题关键.17.计算:2=______.【分析】先将化成再运用平方差公式计算从而可得解【详解】解:===故答案为:【点睛】此题主要考查了二次根式的混合运算熟练运用乘法公式是解答此题的关键【分析】先将2化成,再运用平方差公式计算,从而可得解.【详解】解:2==22⎡⎤-⎣⎦=【点睛】此题主要考查了二次根式的混合运算,熟练运用乘法公式是解答此题的关键.18.=________.【分析】先根据二次根式的性质化简再合并即可【详解】解:故答案为:【点睛】本题考查了二次根式的性质和二次根式的加减运算属于基础题目熟练掌握基本知识是解题关键解析:2【分析】先根据二次根式的性质化简,再合并即可.【详解】==【点睛】本题考查了二次根式的性质和二次根式的加减运算,属于基础题目,熟练掌握基本知识是解题关键.19.()992002011(0.25)2232(2)22-⨯--+--÷-⨯+=∣∣_________【分析】分别利用积的乘方逆运算绝对值的性质有理数的运算法则二次根式的性质计算各项即可求解【详解】解:故答案为:【点睛】本题考查实数的混合运算掌握积的乘方逆运算绝对值的性质有理数的运算法则二次根式的性解析:π7-【分析】分别利用积的乘方逆运算、绝对值的性质、有理数的运算法则、二次根式的性质计算各项,即可求解.【详解】解:()992002011(0.25)2232(2)22-⨯--+--÷-⨯∣∣ ()9910011(0.25)491π35222⎛⎫=-⨯-+--⨯-⨯+- ⎪⎝⎭ ()991(0.254)410π4532⎛⎫=-⨯⨯-+-⨯-+- ⎪⎝⎭()14π32255=-⨯-++- π7=-,故答案为:π7-.【点睛】本题考查实数的混合运算,掌握积的乘方逆运算、绝对值的性质、有理数的运算法则、二次根式的性质是解题的关键.20.1=-==,请从上述等式找出规律,并利用规律计算++⋅⋅⋅++=_________.2006【分析】所求代数式第一个括号内可由已知的信息化简为:然后利用平方差公式计算【详解】解:原式故答案为:2006【点睛】本题考查了数字型规律二次根式的混合运算解答此类题目的关键是认真观察题中式子解析:2006【分析】 所求代数式第一个括号内可由已知的信息化简为:,然后利用平方差公式计算.【详解】解:1===⋯ ∴原式==20082=-2006=.故答案为:2006.【点睛】本题考查了数字型规律,二次根式的混合运算,解答此类题目的关键是认真观察题中式子的特点,找出其中的抵消规律.三、解答题21.先化简,再求值:(221111a a a++--)÷a ,其中a . 解析:211a -,1 【分析】 将括号中的第一项分母分解因式,第二项提取−1,找出最简公分母,通分后利用同分母分式的加法法则计算,同时根据除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,合并约分后得到最简结果,然后将a 的值代入即可求出原式的值.【详解】 (221111a a a++--)÷a =[(1)(1)(1)(1211)a a a a a a ++-+-+-]1a⨯ =21111()(1)a a a a a +-+--⨯ =211a -,当a =1121=-. 【点睛】 此题主要考查了分式的混合运算以及化简求值问题,二次根式的混合运算,选择正确的计算方法,首先进行通分降低了计算量是解决问题的关键.22.已知a ,b ,c 满足2|(0a c =.试问以a ,b ,c 为边能否构成三角形?若能,求出其周长;若不能,请说明理由.解析:能构成三角形,其周长为【分析】利用已知条件以及绝对值的性质确定a ,b ,c 的值即可,根据三角形的三边关系判断能构成三角形,然后再求周长即可.【详解】解:能构成三角形,理由:∵2|(0a c =,∴=0,(b-5)2=0,,∴a,b =5,c ;∵5,∴能构成三角形,周长为:+5.【点睛】本题主要考查了绝对值;二次根式;非负数的性质,关键是掌握绝对值、算术平方根和偶次幂具有非负性.23.计算:101|(2)2π-⎛⎫--+ ⎪⎝⎭.解析:1.【分析】利用二次根式的性质、绝对值的性质和负整数指数幂、零指数幂逐项计算即可求解.【详解】101|(2)2π-⎛⎫--+ ⎪⎝⎭12=+-+1=.【点睛】本题考查实数的混合运算,掌握二次根式的性质、绝对值的性质和负整数指数幂是解题的关键.24.计算:(1(2)2⎫+⎪⎪⎝⎭解析:(1+;(2).【分析】(1)先化简二次根式,再合并同类二次根式;(2)用单项式乘多项式的法则进行二次根式的混合运算.【详解】解:(1(2)32⎛⎫+ ⎪ ⎪⎝⎭=32=3+【点睛】本题考查二次根式的化简、二次根式的混合运算等知识,是基础考点,难度较易,掌握相关知识是解题关键.25.计算:(1101|3|(2)2π-⎛⎫--+ ⎪⎝⎭;(2)22)++.解析:(14;(2)10-【分析】(1)先化简二次根式,化去绝对值,零次幂,负指数运算,再合并同类项与同类二次根式即可(2)利用平方差公式与完全平方公式展开,再计算平方,合并同类项即可.【详解】(1101|3|(2)2π-⎛⎫--+ ⎪⎝⎭,=312+,4.(2)22)++,=2222-+,=523-+-,=10-【点睛】本题考查二次根式的混合计算,掌握二次根式化简方法,绝对值,零次幂,负指数,乘法公式等知识,并会用它们解决问题是关键.26.011(3)()3π--+.解析:2+【分析】直接利用二次根式的性质以及零指数幂的性质、负整数指数幂的性质分别化简得出答案.【详解】解:原式=13+=2+【点睛】此题主要考查了二次根式的性质以及零指数幂的性质、负整数指数幂的性质,正确化简各数是解题关键.27.先化简,再求值:(1)221241442a a a a a a a -+⎛⎫⎛⎫-÷- ⎪ ⎪-+-⎝⎭⎝⎭,其中2a =-(2)225525x x x x x x ⎛⎫-÷ ⎪---⎝⎭,从不等式组23,212,x x --≤⎧⎨<⎩的解集中选取一个你认为符合题意的x 的值代入求值.解析:(1)()212a -,13;(2)x+5,当x=1时,原式=6 【分析】(1)先计算异分母分式减法,同时将除法化为乘法,再计算乘法,最后将a 的值代入计算即可;(2)先化简分式,再求出不等式组的解集,将适合的x 值代入计算.【详解】(1)原式=()2(1)(2)(2)42a a a a a a a a --+-⋅-- =()2442aa a a a -⋅-- =()212a -,当2a ==13; (2)原式=2(5)(5)52x x x x x+-⋅- =x+5, 解不等式组23212x x --≤⎧⎨<⎩,得56x -≤<, ∵x ≠-5,5,0,∴当x=1时,原式=1+5=6【点睛】此题考查分式的化简求值,二次根式的运算,解不等式组,分式的混合运算,正确掌握分式的混合运算的顺序及法则是解题的关键.28.(1)计算:))2221-.(2)先化简,再求值:221193x x x +⎛⎫÷- ⎪-+⎝⎭,其中3x =+.解析:(1)7-+;(2)13x -,2. 【分析】 (1)利用平方差公式和完全平方式展开,再进行根式的加减运算即可求出答案. (2)先将进行因式分解和括号内的通分运算,再将除法变为乘法即可化简,将3x =【详解】(1)原式()22)51=---.3451=--+.7=-+(2)原式()()2313333x x x x x x ++⎛⎫=÷- ⎪+-++⎝⎭. ()()22333x x x x x ++=÷+-+. ()()23332x x x x x ++=⋅+-+.13x =-.当3x =+2===. 【点睛】 本题考查二次根式的混合运算和分式的化简求值,掌握各运算的运算顺序和方法是解答本题的关键.。
初二二次根式所有知识点总结和常考题提高难题压轴题练习含答案解析)
初二二次根式所有知识点总结和常考题知识点:1、二次根式: 形如)0(≥a a 的式子。
①二次根式必须满足:含有二次根号“”;被开方数a 必须是非负数。
②非负性2、最简二次根式:满足:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式的二次根式。
3、化最简二次根式的方法和步骤:(1)如果被开方数含分母,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
(2)如果被开方数含能开得尽方的因数或因式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。
3、二次根式有关公式(1))0()(2≥=a a a (2)a a =2(3)乘法公式)0,0(≥≥∙=b a b a ab(4)除法公式)0,0( b a ba b a ≥= 4、二次根式的加减法则:先将二次根式化为最简二次根式,再将被开方数相同的二次根式进行合并。
5、二次根式混合运算顺序:先乘方,再乘除,最后加减,有括号的先算括号里的。
常考题:一.选择题(共14小题)1.下列二次根式中属于最简二次根式的是( ) A .B .C .D .2.式子有意义的x 的取值范围是( )A .x ≥﹣且x ≠1B .x ≠1C .D .3.下列计算错误的是( )A .B .C .D .4.估计的运算结果应在( )A .6到7之间B .7到8之间C .8到9之间D .9到10之间5.如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥6.若=(x+y)2,则x﹣y的值为()A.﹣1 B.1 C.2 D.37.是整数,则正整数n的最小值是()A.4 B.5 C.6 D.78.化简的结果是()A.B.C.D.9.k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n10.实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定11.把根号外的因式移入根号内得()A.B.C.D.12.已知是正整数,则实数n的最大值为()A.12 B.11 C.8 D.313.若式子有意义,则点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限14.已知m=1+,n=1﹣,则代数式的值为()A.9 B.±3 C.3 D.5二.填空题(共13小题)15.实数a在数轴上的位置如图所示,则|a﹣1|+= .16.计算:的结果是.17.化简:(﹣)﹣﹣|﹣3|= .18.如果最简二次根式与是同类二次根式,则a= .19.定义运算“@”的运算法则为:x@y=,则(2@6)@8= .20.化简×﹣4××(1﹣)0的结果是.21.计算:﹣﹣= .22.三角形的三边长分别为,,,则这个三角形的周长为cm.23.如果最简二次根式与能合并,那么a= .24.如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是.(结果保留根号)25.实数p在数轴上的位置如图所示,化简= .26.计算:= .27.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= .三.解答题(共13小题)28.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得= ;参照(四)式得= .(3)化简:+++…+.29.计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.30.先化简,再求值:,其中.31.先化简,再求值:,其中x=1+,y=1﹣.32.先化简,再求值:,其中.33.已知a=,求的值.34.对于题目“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答:+=+=+﹣a=﹣a=;乙的解答:+=+=+a﹣=a=.请你判断谁的答案是错误的,为什么?35.一个三角形的三边长分别为、、(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.36.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.37.已知:,,求代数式x2﹣xy+y2值.38.计算或化简:(1);(2)(a>0,b>0).39.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m,=,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.40.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若a+4=,且a、m、n均为正整数,求a的值?初二二次根式所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共14小题)1.(2005•岳阳)下列二次根式中属于最简二次根式的是()A.B.C. D.【分析】B、D选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.【解答】解:因为:B、=4;C、=;D、=2;所以这三项都不是最简二次根式.故选A.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.2.(2013•娄底)式子有意义的x的取值范围是()A.x≥﹣且x≠1 B.x≠1 C.D.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得,2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1.故选A.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.(2007•荆州)下列计算错误的是()A.B.C.D.【分析】根据二次根式的运算法则分别计算,再作判断.【解答】解:A、==7,正确;B、==2,正确;C、+=3+5=8,正确;D、,故错误.故选D.【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.4.(2008•芜湖)估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间【分析】先进行二次根式的运算,然后再进行估算.【解答】解:∵=4+,而4<<5,∴原式运算的结果在8到9之间;故选C.【点评】本题考查了无理数的近似值问题,现实生活中经常需要估算,“夹逼法”是估算的一般方法,也是常用方法.5.(2011•烟台)如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥【分析】由已知得1﹣2a≥0,从而得出a的取值范围即可.【解答】解:∵,∴1﹣2a≥0,解得a≤.故选:B.【点评】本题考查了二次根式的化简与求值,是基础知识要熟练掌握.6.(2009•荆门)若=(x+y)2,则x﹣y的值为()A.﹣1 B.1 C.2 D.3【分析】先根据二次根式的性质,被开方数大于或等于0,可求出x、y的值,再代入代数式即可.【解答】解:∵=(x+y)2有意义,∴x﹣1≥0且1﹣x≥0,∴x=1,y=﹣1,∴x﹣y=1﹣(﹣1)=2.故选:C.【点评】本题主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.7.(2012秋•麻城市校级期末)是整数,则正整数n的最小值是()A.4 B.5 C.6 D.7【分析】本题可将24拆成4×6,先把化简为2,所以只要乘以6得出62即可得出整数,由此可得出n的值.【解答】解:∵==2,∴当n=6时,=6,∴原式=2=12,∴n的最小值为6.故选:C.【点评】本题考查的是二次根式的性质.本题还可将选项代入根式中看是否能开得尽方,若能则为答案.8.(2013•佛山)化简的结果是()A.B.C.D.【分析】分子、分母同时乘以(+1)即可.【解答】解:原式===2+.故选:D.【点评】本题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.9.(2013•台湾)k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n【分析】根据二次根式的化简公式得到k,m及n的值,即可作出判断.【解答】解:=3,=15,=6,可得:k=3,m=2,n=5,则m<k<n.故选:D【点评】此题考查了二次根式的性质与化简,熟练掌握二次根式的化简公式是解本题的关键.10.(2011•菏泽)实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定【分析】先从实数a在数轴上的位置,得出a的取值范围,然后求出(a﹣4)和(a﹣11)的取值范围,再开方化简.【解答】解:从实数a在数轴上的位置可得,5<a<10,所以a﹣4>0,a﹣11<0,则,=a﹣4+11﹣a,=7.故选A.【点评】本题主要考查了二次根式的化简,正确理解二次根式的算术平方根等概念.11.(2013秋•五莲县期末)把根号外的因式移入根号内得()A.B.C.D.【分析】根据二次根式的性质及二次根式成立的条件解答.【解答】解:∵成立,∴﹣>0,即m<0,原式=﹣=﹣.故选:D.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.二次根式成立的条件:被开方数大于等于0,含分母的分母不为0.12.(2009•绵阳)已知是正整数,则实数n的最大值为()A.12 B.11 C.8 D.3【分析】如果实数n取最大值,那么12﹣n有最小值;又知是正整数,而最小的正整数是1,则等于1,从而得出结果.【解答】解:当等于最小的正整数1时,n取最大值,则n=11.故选B.【点评】此题的关键是分析当等于最小的正整数1时,n取最大值.13.(2005•辽宁)若式子有意义,则点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据二次根式的被开方数为非负数和分母不为0,对a、b的取值范围进行判断.【解答】解:要使这个式子有意义,必须有﹣a≥0,ab>0,∴a<0,b<0,∴点(a,b)在第三象限.故选C.【点评】本题考查二次根式有意义的条件,以及各象限内点的坐标的符号.14.(2013•上城区一模)已知m=1+,n=1﹣,则代数式的值为()A.9 B.±3 C.3 D.5【分析】原式变形为,由已知易得m+n=2,mn=(1+)(1﹣)=﹣1,然后整体代入计算即可.【解答】解:m+n=2,mn=(1+)(1﹣)=﹣1,原式====3.故选:C.【点评】本题考查了二次根式的化简求值:先把被开方数变形,用两个数的和与积表示,然后利用整体代入的思想代入计算.二.填空题(共13小题)15.(2004•山西)实数a在数轴上的位置如图所示,则|a﹣1|+= 1 .【分析】根据数轴上表示的两个数,右边的数总比左边的大,分别得出a﹣1与0,a﹣2与0的关系,然后根据绝对值的意义和二次根式的意义化简.【解答】解:根据数轴上显示的数据可知:1<a<2,∴a﹣1>0,a﹣2<0,∴|a﹣1|+=a﹣1+2﹣a=1.故答案为:1.【点评】本题主要考查了数轴,绝对值的意义和根据二次根式的意义化简.二次根式的化简规律总结:当a≥0时,=a;当a≤0时,=﹣a.16.(2013•南京)计算:的结果是.【分析】先进行二次根式的化简,然后合并同类二次根式即可.【解答】解:原式=﹣=.故答案为:.【点评】本题考查了二次根式的加减运算,属于基础题,关键是掌握二次根式的化简及同类二次根式的合并.17.(2013•泰安)化简:(﹣)﹣﹣|﹣3|= ﹣6 .【分析】根据二次根式的乘法运算法则以及绝对值的性质和二次根式的化简分别化简整理得出即可.【解答】解:(﹣)﹣﹣|﹣3|=﹣3﹣2﹣(3﹣),=﹣6.故答案为:﹣6.【点评】此题主要考查了二次根式的化简与混合运算,正确化简二次根式是解题关键.18.(2006•广安)如果最简二次根式与是同类二次根式,则a= 5 .【分析】根据最简二次根式和同类二次根式的定义,列方程求解.【解答】解:∵最简二次根式与是同类二次根式,∴3a﹣8=17﹣2a,解得:a=5.【点评】此题主要考查最简二次根式和同类二次根式的定义.19.(2007•芜湖)定义运算“@”的运算法则为:x@y=,则(2@6)@8= 6 .【分析】认真观察新运算法则的特点,找出其中的规律,再计算.【解答】解:∵x@y=,∴(2@6)@8=@8=4@8==6,故答案为:6.【点评】解答此类题目的关键是认真观察新运算法则的特点,找出其中的规律,再计算.20.(2014•荆州)化简×﹣4××(1﹣)0的结果是.【分析】先把各二次根式化为最简二次根式,再根据二次根式的乘法法则和零指数幂的意义计算得到原式=2﹣,然后合并即可.【解答】解:原式=2×﹣4××1=2﹣=.故答案为:.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.21.(2014•广元)计算:﹣﹣= ﹣2 .【分析】分别进行分母有理化、二次根式的化简,然后合并求解.【解答】解:==﹣2.故答案为:﹣2.【点评】本题考查了二次根式的加减法,本题涉及了分母有理化、二次根式的化简等运算,属于基础题.22.(2013•宜城市模拟)三角形的三边长分别为,,,则这个三角形的周长为5cm.【分析】三角形的三边长的和为三角形的周长,所以这个三角形的周长为++,化简合并同类二次根式.【解答】解:这个三角形的周长为++=2+2+3=5+2(cm).故答案为:5+2(cm).【点评】本题考查了运用二次根式的加减解决实际问题.23.(2012秋•浏阳市校级期中)如果最简二次根式与能合并,那么a= 1 .【分析】根据两最简二次根式能合并,得到被开方数相同,然后列一元一次方程求解即可.【解答】解:根据题意得,1+a=4a﹣2,移项合并,得3a=3,系数化为1,得a=1.故答案为:1.【点评】本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键.24.(2006•宿迁)如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是2﹣2 .(结果保留根号)【分析】根据题意可知,两相邻正方形的边长分别是和,由图知,矩形的长和宽分别为+、,所以矩形的面积是为(+)•=2+6,即可求得矩形内阴影部分的面积.【解答】解:矩形内阴影部分的面积是(+)•﹣2﹣6=2+6﹣2﹣6=2﹣2.【点评】本题要运用数形结合的思想,注意观察各图形间的联系,是解决问题的关键.25.(2003•河南)实数p在数轴上的位置如图所示,化简=1 .【分析】根据数轴确定p的取值范围,再利用二次根式的性质化简.【解答】解:由数轴可得,1<p<2,∴p﹣1>0,p﹣2<0,∴=p﹣1+2﹣p=1.【点评】此题从数轴读取p的取值范围是关键.26.(2009•泸州)计算:= 2 .【分析】运用二次根式的性质:=|a|,由于2>,故=2﹣.【解答】解:原式=2﹣+=2.【点评】合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.27.(2011•凉山州)已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= 2.5 .【分析】只需首先对估算出大小,从而求出其整数部分a,其小数部分用﹣a表示.再分别代入amn+bn2=1进行计算.【解答】解:因为2<<3,所以2<5﹣<3,故m=2,n=5﹣﹣2=3﹣.把m=2,n=3﹣代入amn+bn2=1得,2(3﹣)a+(3﹣)2b=1化简得(6a+16b)﹣(2a+6b)=1,等式两边相对照,因为结果不含,所以6a+16b=1且2a+6b=0,解得a=1.5,b=﹣0.5.所以2a+b=3﹣0.5=2.5.故答案为:2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.三.解答题(共13小题)28.(2009•邵阳)阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得= ;参照(四)式得= .(3)化简:+++…+.【分析】(1)中,通过观察,发现:分母有理化的两种方法:1、同乘分母的有理化因式;2、因式分解达到约分的目的;(2)中,注意找规律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出现抵消的情况.【解答】解:(1)=,=;(2)原式=+…+=++…+=.【点评】学会分母有理化的两种方法.29.(2014•张家界)计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.【分析】根据零指数幂、负整数指数幂和平方差公式得到原式=5﹣1﹣9+﹣1﹣1+2,然后合并即可.【解答】解:原式=5﹣1﹣9+﹣1﹣1+2=﹣7+3.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂.30.(2009•广州)先化简,再求值:,其中.【分析】本题的关键是对整式化简,然后把给定的值代入求值.【解答】解:原式=a2﹣3﹣a2+6a=6a﹣3,当a=时,原式=6+3﹣3=6.【点评】本题主要考查整式的运算、平方差公式等基本知识,考查基本的代数计算能力.注意先化简,再代入求值.31.(2005•沈阳)先化简,再求值:,其中x=1+,y=1﹣.【分析】这是个分式除法与减法混合运算题,运算顺序是先做括号内的减法,此时要注意把各分母先因式分解,确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.【解答】解:原式===;当x=1+,y=1﹣时,原式=.【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.32.(2010•莱芜)先化简,再求值:,其中.【分析】这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式去括号,把除法转换为乘法化简,然后再代入求值.本题注意x﹣2看作一个整体.【解答】解:原式====﹣(x+4),当时,原式===.【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.33.(2008•余姚市校级自主招生)已知a=,求的值.【分析】先化简,再代入求值即可.【解答】解:∵a=,∴a=2﹣<1,∴原式=﹣=a﹣1﹣=a﹣1+=2﹣﹣1+2+=4﹣1=3.【点评】本题考查了二次根式的化简与求值,将二次根式的化简是解此题的关键.34.(2002•辽宁)对于题目“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答:+=+=+﹣a=﹣a=;乙的解答:+=+=+a﹣=a=.请你判断谁的答案是错误的,为什么?【分析】因为a=时,a﹣=﹣5=﹣4<0,所以≠a﹣,故错误的是乙.【解答】解:甲的解答:a=时,﹣a=5﹣=4>0,所以=﹣a,正确;乙的解答:因为a=时,a﹣=﹣5=﹣4<0,所以≠a﹣,错误;因此,我们可以判断乙的解答是错误的.【点评】应熟练掌握二次根式的性质:=﹣a(a≤0).35.(2011•上城区二模)一个三角形的三边长分别为、、(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.【分析】把三角形的三边长相加,即为三角形的周长.再运用运用二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:(1)周长=++==,(2)当x=20时,周长=,(或当x=时,周长=等)【点评】对于第(2)答案不唯一,但要注意必须符合题意.36.(2005•台州)我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.【分析】(1)代入计算即可;(2)需要在括号内都乘以4,括号外再乘,保持等式不变,构成完全平方公式,再进行计算.【解答】解:(1)s=,=;p=(5+7+8)=10,又s=;(2)=(﹣)=,=(c+a﹣b)(c﹣a+b)(a+b+c)(a+b﹣c),=(2p﹣2a)(2p﹣2b)•2p•(2p﹣2c),=p(p﹣a)(p﹣b)(p﹣c),∴=.(说明:若在整个推导过程中,始终带根号运算当然也正确)【点评】考查了三角形面积的海伦公式的用法,也培养了学生的推理和计算能力.37.(2009秋•金口河区期末)已知:,,求代数式x2﹣xy+y2值.【分析】观察,显然,要求的代数式可以变成x,y的差与积的形式,从而简便计算.【解答】解:∵,,∴xy=×2=,x﹣y=∴原式=(x﹣y)2+xy=5+=.【点评】此类题注意变成字母的和、差或积的形式,然后整体代值计算.38.(2010秋•灌云县校级期末)计算或化简:(1);(2)(a>0,b>0).【分析】(1)先化简,再运用分配律计算;(2)先化简,再根据乘除法的法则计算.【解答】解:(1)原式==6﹣12﹣6=6﹣18;(2)原式=﹣×=﹣3a2b2×=﹣a2b.【点评】熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.39.(2013秋•故城县期末)先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m,=,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【解答】解:根据,可得m=13,n=42,∵6+7=13,6×7=42,∴==.【点评】解题关键是把根号内的式子整理为完全平方的形式.40.(2013•黔西南州)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= m2+3n2,b= 2mn ;(2)利用所探索的结论,找一组正整数a、b、m、n填空: 4 + 2 =( 1+ 1 )2;(3)若a+4=,且a、m、n均为正整数,求a的值?【分析】(1)根据完全平方公式运算法则,即可得出a、b的表达式;(2)首先确定好m、n的正整数值,然后根据(1)的结论即可求出a、b的值;(3)根据题意,4=2mn,首先确定m、n的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a的值.【解答】解:(1)∵a+b=,∴a+b=m2+3n2+2mn,∴a=m2+3n2,b=2mn.故答案为:m2+3n2,2mn.(2)设m=1,n=1,∴a=m2+3n2=4,b=2mn=2.故答案为4、2、1、1.(3)由题意,得:a=m2+3n2,b=2mn∵4=2mn,且m、n为正整数,∴m=2,n=1或者m=1,n=2,∴a=22+3×12=7,或a=12+3×22=13.【点评】本题主要考查二次根式的混合运算,完全平方公式,解题的关键在于熟练运算完全平方公式和二次根式的运算法则.。
八年级初二数学 二次根式知识点总结含答案
八年级初二数学 二次根式知识点总结含答案一、选择题1.下列运算正确的是( )A 2=B 5=-C 2=D 012=2.若01x <<=( ). A .2x B .2x - C .2x - D .2x3.下列二次根式中,是最简二次根式的是( )A B C D4.下列式子中,属于最简二次根式的是( )A B C D5.m 能取的最小整数值是( )A .m = 0B .m = 1C .m = 2D .m = 3 6.下列二次根式是最简二次根式的是( )A B C D7.下列运算正确的是( )A .32-=﹣6B 12-C =±2D .=8.下列运算正确的是( ) A .52223-=y yB .428x x x ⋅=C .(-a-b )2=a 2-2ab+b 2D =9.下列各式计算正确的是( )A +=B .26=(C 4=D =10.下列二次根式是最简二次根式的是( )A B C D 11.下列各式成立的是( )A 2B 5=-C xD 6=-12.下列计算正确的是( )A .235+=B .2332-=C .()222=D .393=二、填空题13.设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第二个正方形AEGH ,如此下去…….⑴记正方形ABCD 的边长为11a =,按上述方法所作的正方形的边长依次为234,,,,n a a a a ,请求出234,,a a a 的值;⑵根据以上规律写出n a 的表达式.14.已知3x x+=,且01x <<,则2691x x x =+-______. 15.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b |+2()a b +的结果是_____.16.11882. 17.已知1<x <2,171x x +=-11x x --_____. 18.11122323-=11113-23438⎛⎫= ⎪⎝⎭11114-345415⎛⎫= ⎪⎝⎭据上述各等式反映的规律,请写出第5个等式:___________________________. 19.2121=-+3232=+4343=+20202324320202019+++++……=___________. 20.12a 1-能合并成一项,则a =______.三、解答题21.观察下列各式子,并回答下面问题.(1)试写出第n 个式子(用含n 的表达式表示),这个式子一定是二次根式吗?为什么? (2)你估计第16个式子的值在哪两个相邻整数之间?试说明理由.【答案】(1,该式子一定是二次根式,理由见解析;(215和16之间.理由见解析.【分析】(1)依据规律可写出第n 个式子,然后判断被开方数的正负情况,从而可做出判断;(2)将16n =代入,得出第16,再判断即可.【详解】解:(1该式子一定是二次根式,因为n 为正整数,2(1)0n n n n -=-≥,所以该式子一定是二次根式(215=16=,∴1516<<.15和16之间.【点睛】本题考查的知识点是二次根式的定义以及估计无理数的大小,掌握用“逼近法”估算无理数的大小的方法是解此题的关键.22.先阅读材料,再回答问题:因为)111=1=;因为1=,所以=1== (1= ,= ; (2⋅⋅⋅+的值.【答案】(12)9【分析】(1)仿照例子,由1+=的值;由1+=1的值;(2)根据(1)中的规律可将每个二次根式分母有理化,可转化为实数的加减法运算,再寻求规律可得答案.【详解】解:(1)因为1-=;因为1=1(2⋅⋅⋅+1=+⋅⋅⋅1=1019=-=.【点睛】本题考查了分母有理化,分子分母都乘以分母这两个数的差进行分母有理化是解题关键.23.在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如:2224312111-=-=-+=).善于动脑的小明继续探究:当a b m n 、、、为正整数时,若2a n +=+),则有22(2a m n =+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若2a n =+),请用含有mn 、的式子分别表示a b 、,得:a = ,b = ;(2)填空:13-( - 2;(3)若2a m +=(),且a m n 、、为正整数,求a 的值.【答案】(1)223a m n =+,2b mn =;(2)213--;(3)14a =或46.【解析】试题分析:(1)把等式)2a n +=+右边展开,参考范例中的方法即可求得本题答案;(2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ ,结合a b m n 、、、都为正整数可得:m=2,n=1,这样就可得到:213(1-=-;(3)将()2a m +=+右边展开,整理可得:225a m n =+,62mn =结合a m n 、、为正整数,即可先求得m n 、的值,再求a 的值即可.试题解析:(1)∵2a n =+),∴223a m n +=++,∴2232a m n b mn =+=,;(2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ , ∵a b m n 、、、都为正整数,∴12m n =⎧⎨=⎩或21m n =⎧⎨=⎩ , ∵当m=1,n=2时,223713a m n =+=≠,而当m=2,n=1时,22313a m n =+=, ∴m=2,n=1,∴(2131--;(3)∵222()52a m m n +=+=++∴225a m n =+,62mn = ,又∵a m n 、、为正整数,∴=1=3m n ,, 或者=3=1m n ,,∴当=1=3m n ,时,46a =;当=3=1m n ,,14a =,即a 的值为:46或14.24.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x -【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案.【详解】解:4y x ⎛- ⎝ ((=-(2x =-∵30x -∴ 3,4x y ==当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.25.先化简,再求值:(()69x x x x --+,其中1x =.【答案】化简得6x+6,代入得【分析】根据整式的运算公式进行化简即可求解.【详解】(()69x x x x +--+=22369x x x --++=6x+6把1x =代入原式=61)【点睛】此题主要考查实数的运算,解题的关键熟知整式的运算法则.26.先化简,再求值:2222212⎛⎫----÷ ⎪-+⎝⎭x y x y x x x xy y,其中x y ==. 【答案】原式x y x-=-,把x y ==代入得,原式1=-. 【详解】试题分析:先将括号里面进行通分,再将能分解因式的分解因式,约分化简即可. 试题解析: 2222212⎛⎫----÷ ⎪-+⎝⎭x y x y x x x xy y ()()()222=x y x y x x x x x x y x y -⎛⎫---⋅ ⎪+-⎝⎭ =y x x y x x y---⋅+x y x-=-把x y ==代入得:原式1==-+考点:分式的化简求值.27.在一个边长为(cm 的正方形的内部挖去一个长为()cm ,cm 的矩形,求剩余部分图形的面积.【答案】【解析】试题分析:用大正方形的面积减去长方形的面积即可求出剩余部分的面积.试题解析:剩余部分的面积为:(2﹣()=()﹣(﹣)=(cm 2).考点:二次根式的应用28.(1|5-+;(2)已知实数a 、b 、c 满足|3|a +=,求2(b a +的值.【答案】(1)5;(2)4【分析】(1)先利用二次根式的乘法法则和绝对值的意义计算,再进行回头运算即可;(2)先根据二次根式有意义的条件确定b 的值,再根据非负数的和的意义确定a ,c 的值,然后再计算代数式的值即可.【详解】解:(15-+5)=+5=+5=(2)由题意可知:5050b b -≥⎧⎨-≥⎩, 解得5b =由此可化简原式得,30a +=30a ∴+=,20c -=3a ∴=-,2c =22((534b a ∴+=--=【点睛】可不是考查了二次根式的混合运算以及二次根式的化简求值,熟练掌握运算法则和运算顺序是解答此题的关键.29.已知x²+2xy+y²的值.【答案】16【解析】分析:(1)根据已知条件先计算出x+y=4,再利用完全平方公式得到x²+2xy+y²=(x+y )²,然后利用整体代入的方法计算.本题解析:∵x² +2xy+y² =(x+y)²,∴当∴x²+2xy+y²=(x+y)²=(2−=16.30.(1)计算)(2201113-⎛⎫--•- ⎪⎝⎭(2)已知,,a b c 为实数且2c =2c ab -的值【答案】(1)13;(2)12-【分析】(1)利用完全平方公式、负整数指数幂、零指数幂分别计算再合并即可;(2)先依据二次根式有意义的条件,求得a 、b 、c 的值,然后再代入计算即可.【详解】(1))(2201113-⎛⎫--•- ⎪⎝⎭31=+⨯=4+9=13;(2)根据二次根式有意义的条件可得:∵()2303010a a b ⎧-≥⎪⎪-≥⎨⎪-+≥⎪⎩,∴3a =,1b =-,∴2c =∴(()2223112c ab -=-⨯-=-【点睛】本题主要考查了二次根式的混合运算,二次根式有意义的条件以及二次根式的化简求值,熟练掌握二次根式有意义的条件是解题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由二次根式的性质,二次根式的混合运算,分别进行计算,即可得到答案.【详解】解:AA 错误;B5=,故B错误;C2==,故C 正确;D 01213=+=,故D 错误;故选:C .【点睛】本题考查了二次根式的性质,二次根式的混合运算,立方根,零指数幂,解题的关键是熟练掌握运算法则进行解题.2.D解析:D【分析】根据二次根式的意义先化简各项,再进行分式的加减运算可得出解.【详解】解:∵0<x <1,∴0<x <1<1x , ∴10x x +>,10x x-<.原式=11x x x x +-- =11x x x x++- =2x .故选D .点睛:本题考查了二次根式的性质和绝对值化简,也考查了分式的加减.3.D解析:D【分析】最简二次根式的被开方数中不含能开得尽方的因数或因式,其中小数要转化为分数,分数中分母不可以是二次根式,注意这几点即可得出答案.【详解】ABC 2,不是最简二次根式,故本选项不符合题意;D故选:D .【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式,最简二次根式必须满足两个条件:被开方数中不含能开得尽方的因数或因式;被开方数的因数是整数,因式是整式,本题属于基础题型.4.B解析:B【分析】根据最简二次根式的定义(①被开方数不含有能开得尽方的因式或因数,②被开方数不含有分母,满足以上两个条件的二次根式叫最简二次根式)逐个判断即可.【详解】解:A =2,不是最简二次根式,故本选项错误;BC=D=,不是最简二次根式,故本选项错误;故选:B.【点睛】本题考查了最简二次根式的定义的应用,能熟记最简二次根式的定义是解此题的关键,注意:最简二次根式满足以下两个条件:①被开方数不含有能开得尽方的因式或因数,②被开方数不含有分母.5.B解析:B【分析】根据被开方数大于等于0列式计算即可得解.【详解】310m-≥,解得13 m≥,所以,m能取的最小整数值是1.故选:B.【点睛】本题考查了二次根式的意义和性质,性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.6.A解析:A【分析】根据最简二次根式的定义即可得.【详解】A是最简二次根式,此项符合题意B=C、当0x<D=不是最简二次根式,此项不符题意故选:A.【点睛】本题考查了最简二次根式的定义,熟记定义是解题关键.7.B解析:B【分析】分别根据负整数指数幂的运算、立方根和算术平方根的定义及二次根式的乘法法则逐一计算可得.【详解】A 、3311228-==,此选项计算错误;B 12=-,此选项计算正确;C 2=,此选项计算错误;D 、,此选项计算错误;故选:B .【点睛】本题考查了负整数指数幂、立方根和算术平方根及二次根式的乘法,熟练掌握相关的运算法则是解题的关键.8.D解析:D【分析】由合并同类项、同底数幂乘法、完全平方公式、以及二次根式的加减运算,分别进行判断,即可得到答案.【详解】解:A 、222523y y y -=,故A 错误;B 、426x x x ⋅=,故B 错误;C 、222()2a b a ab b --=++,故C 错误;D ==D 正确;故选:D .【点睛】本题考查了合并同类项、同底数幂乘法、完全平方公式、以及二次根式的加减运算,解题的关键是熟练掌握运算法则进行解题.9.D解析:D【分析】根据二次根式的运算法则一一判断即可.【详解】AB 、错误,212=(;C ==D ==故选:D .【点睛】本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型.10.B解析:B【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:A、被开方数含分母,故A错误;B、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故B正确;C、被开方数含能开得尽方的因数,故C错误;D、被开方数含分母,故D错误;故选B.【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.11.A解析:A【分析】直接利用二次根式的性质化简求出即可.【详解】解:,正确,故选项A符合题意;=,原选项计算错误,故选项B不符合题意;=,原选项计算错误,故选项C不符合题意;||xD. =,原选项计算错误,故选项D不符合题意.故选:A.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解答此题的关键.12.C解析:C【分析】根据立方根、二次根式的加减乘除运算法则计算.【详解】A、非同类二次根式,不能合并,故错误;B、=C、22=,正确;D故选C.【点睛】本题考查二次根式、立方根的运算法则,熟练掌握基本法则是关键.二、填空题13.(1)a2=,a3=2,a4=2;(2)an=(n为正整数).【解析】(1)∵四边形ABCD是正方形,∴AB=BC=1,∠B=90°.∴在Rt△ABC中,AC===.同理:AE=2,EH=2,解析:(1)a2,a3=2,a4=;(2)a n n为正整数).【解析】(1)∵四边形ABCD是正方形,∴AB=BC=1,∠B=90°.∴在Rt△ABC中,ACAE=2,EH=,…,即a2a3=2,a4=(2)an n为正整数).14..【分析】利用题目给的求出,再把它们相乘得到,再对原式进行变形凑出的形式进行计算.【详解】∵,∴,∴,∴,∵,∴,∴,∴原式.故答案是:.【点睛】本题考查二次根式的运.【分析】,再把它们相乘得到1xx-,再对原式进行变形凑出1xx-的形式进行计算.【详解】3=,∴221239xx=++==,∴17xx+=,∴212725xx=-+=-=,∵01x<<,=,∴1xx=-=-∴原式====..【点睛】本题考查二次根式的运算和乘法公式的应用,解题的关键是熟练运用乘法公式对式子进行巧妙运算.15.﹣2b【解析】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣b|+=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对解析:﹣2b【解析】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a.b都是数轴上的实数,注意符号的变换.16.【解析】【详解】根据二次根式的性质和二次根式的化简,可知==.故答案为.【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.解析:2【解析】【详解】.【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.17.-2【详解】∵x+=7,∴x-1+=6,∴(x-1)-2+=4,即 =4,又∵1<x<2,∴=-2,故答案为-2.【点睛】本题主要考查完全平方式的应用以及二次根式的运算,解题的关键是【详解】∵x+11x-=7,∴x-1+11x-=6,∴(x-1)-2+11x-=4,即2=4,又∵1<x<2,∴,故答案为-2.【点睛】本题主要考查完全平方式的应用以及二次根式的运算,解题的关键是要根据所求的式子对已知的式子进行变形.18.【解析】上述各式反映的规律是(n⩾1的整数),得到第5个等式为: (n⩾1的整数).故答案是: (n⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;=【解析】上述各式反映的规律是=n⩾1的整数),得到第5==n⩾1的整数).=n⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;第二步,找规律,分别比较等式中各部分与序号之间的关系,把其蕴含的规律用含序数的代数式表示出来;第三步,根据找出的规律得出第n个等式.19.2018【分析】先根据已知等式归纳类推出一般规律,再根据二次根式的加减法与乘法运算法则即可得.第1个等式为:,第2个等式为:,第3个等式为:,归纳类推得:第n 个等式为:(其中,解析:2018【分析】先根据已知等式归纳类推出一般规律,再根据二次根式的加减法与乘法运算法则即可得.【详解】第11=,第2=,第3=归纳类推得:第n 1=-n 为正整数),则2020++,2020=+,=, 20202=-,2018=,故答案为:2018.【点睛】本题考查了二次根式的加减法与乘法运算,依据已知等式,正确归纳出一般规律是解题关键.20.4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a 的方程,根据解方程,可得答案.【详解】解:=2,由最简二次根式与能合并成一项,得a-1=3.解【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】能合并成一项,得a-1=3.解得a=4.故答案为:4.【点睛】本题考查同类二次根式和最简二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级下册数学二次根式重点难点题型全覆盖附详细答案一、单选题(共16题;共32分)1.如果最简根式√3a−8与√17−2a是同类二次根式,那么使√4a−2x有意义的x的取值范围是()A. x≤10B. x≥10C. x<10D. x>102.等式成立的条件是().A. B. C. D.3.已知是正整数,则实数n的最大值为()A. 12B. 11C. 8D. 34.要使二次根式√3−2x有意义,则x的取值范围是()A. x⩾32B. x⩽32C. x⩾23D. x⩽235.下列根式中,最简二次根式是()A. √x5B. √12xC. √7x3D. √x2+16.x取什么值时,√4+5x有意义()A. x>45B. x=45C. x≥45D. x≥-457.实数a在数轴上的位置如图所示,则√(a−4)2+ √(a−11)2化简后为()A. 7B. −7C. 2a−15D. 无法确定8.下列二次根式不能与√27合并的是()A. √48B. √18C. √113D. −√759.下列二次根式中, 是最简二次根式的是()A. B. C. D.10.如果 √x−1x−3=√x−1√x−3,x 的取值范围是( )A. 1≤x≤3B. 1<x≤3C. x≥3D. x>3 11.如果 √(2a −1)2=1−2a ,则( )A. a < 12 B. a≤ 12 C. a > 12 D. a≥ 12 12.已知 a =√5−2 , b =√5+2 ,则 √a 2+b 2+7 的值为( )A. 5B. 6C. 3D. 4 13.若 √a(5−a)=√a ·√5−a ,则( )A. a≤5B. a≥0C. 0≤a≤5D. a≥5 14.下列计算正确的是( )A. 3√2⋅4√2=12√2B. √(−9)×(−4)=√−9×√−4=6C. −3√23=√(−3)2×23=√6 D. √132−122=√(13+12)(13−12)=5 15.把二次根式 a√−1a 化简为( )A. −√−aB. √−aC. −√aD. √a 16.有下列各式:① √(−4)⋅(−9)=√−4⋅√−9=6 ;② √(−4)⋅(−9)=√4⋅√9=6 ;③ √52−42=√5+4⋅√5−4=3 ;④ √52−42=√52⋅√42=1 .其中,计算正确的有( ).A. 1个B. 2个C. 3个D. 4个二、填空题(共8题;共8分)17.若x 、y 都为实数,且y =2008√x −5+2007√5−x +1 ,则x 2+y =________. 18.若成立,则x 满足________19.若x <2,则 √x 2−4x +4 ________.20.若|a −2|+√b −3+(c −4)2=0,则a-b+c=________ . 21.已知 √x ﹣ √x =2,则 √x 2+1x 2+14 的值为________.22.下列二次根式,不能与 √12 合并的是________(填写序号即可). ① √48 ; ② -√125 ; ③ √113 ; ④ √32 ; ⑤ √18 .23.已知a ,b ,c 为三角形的三边,则√(a +b −c)2+√(b −c −a)2+√(b +c −a)2 = ________ 。
24.若实数x ,y ,m 满足等式 √3x +5y −3−m +(2x +3y −m)2 =√x +y −2−√2−x −y ,则m+4的算术平方根为 ________.三、计算题(共11题;共135分)25.已知y<√x−2+ √2−x+3,化简|y﹣3|﹣√y2−8y+16.26.计算(1)√18+15√50−4√12(2)√45+√5√5√15×√125(3)(2√3−2)(2√3+2)- (√2−1)2 27.计算:(1)(√6+2√15)×√3−√92×√83(2)|−√−233|−√214−√(−1)20003(3)√18+√6√2(1−√3)0(4)(√24−√12)(√18+√6)+2√12×√34÷5√228.计算:(1)√3(√2−√3)−√24−|√6−3|(2)9√3+7√12−5√48+2√13(3)(2√3−1)(2√3+1)−(1−2√3)229.小明在解决问题:已知a=2+√3,求2a2﹣8a+1的值,他是这样分析与解的:∵a=2+√3= √3(2+√3)(2−√3=2﹣√3∴a﹣2=﹣√3∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1 请你根据小明的分析过程,解决如下问题:(1)化简√2+1+√3+√2+√4+√3+…+√100+√99(2)若a=√2−1,求4a2﹣8a+1的值.30.有这样一类题目:将√a±2√b化简,如果你能找到两个数m,n,使m2+n2=a,且mn= √b,则a±2 √b,变成m2+n2+2mn=(m±n)2开方,从而使得√a±2√b化简.例如:化简√3±2√2因为3±2 √2=1+2±2 √2=12+(√2)2+2 √2=(1+ √2)2,所以√3±2√2= √(1±√2)2=|1± √2|= √2±1.仿照上例化简下列各式:(1)√4+2√3;(2)√13−2√42.31.阅读下面计算过程:√2+1=√2−1)(√2+1)(√2−1)=√2−1;√3+√2=√3−√2)(√3+√2)(√3−√2)=√3−√2;√5+2=√5−2)(√5+2)(√5−2)=√5−2.求:(1)√7+√6的值.(2)√n+1+√n(n为正整数)的值.(3)√2+1√3+√2√4+√3√100+√99的值.32.化简:√7−4√3+ √7+4√3.33.已知a=2+√3,求a2−9a−3−√a2−4a+4a2−2a的值.34.计算:(1)(2√32−√12)×(12√8+√23)(2)(−√3)×(−√6)+|√2−1|+(5-2π)0;(3)|2-√3|+(π-1)0+√122-12-1;(4)( √5-√3+√2)( √5+√3-√2).35.计算(1)√12−√127+√48(2)√24× √13-4× √18×(1- √2)0-( √23)-1(3)(2 √48-3 √27)÷ √3-( √2- √3)2四、解答题(共6题;共42分)36.如果√(a−5)2+│b-2│=0,求以a、b为边长的等腰三角形的周长.37.先阅读下面材料,然后再根据要求解答提出的问题:设a、b是有理数,且满足a+√2b=3−2√2,求b a的值?解: 由题意得: (a−3)+(b+2)√2=0,因为a、b都是有理数,所以a-3、b+2也是有理数,由于√2是无理数,所以a-3=0、b+2=0,所以a=3、b=-2,所以b a=(−2)3=−8,问题: 设x、y都是有理数,且满足x2−2y+√5y=8+4√5,求x+y的值,38.观察下列格式,√5−12-√5−1,√8−22√8−2,√13−32√13−3,√20−42−√20−4…(1)化简以上各式,并计算出结果;(2)以上格式的结果存在一定的规律,请按规律写出第5个式子及结果(3)用含n(n≥1的整数)的式子写出第n个式子及结果,并给出证明的过程.39.若最简二次根式√2a+5a+1与√3b+4a是同类二次根式,求a2016+b2016的值.40.若x,y是实数,且y= √4x−1+ √1−4x+3,求3 √xy的值.41.对于“化简并求值:1a +√1a2+a2−2,其中a= 15”,甲、乙两人的解答不同.甲的解答是:1a + √1a2+a2−2= 1a+ √(1a−a)2= 1a+ 1a﹣a= 2a﹣a= 495;乙的解答是:1a + √1a2+a2−2= 1a+ √(1a−a)2= 1a+a﹣1a=a= 15.(1)________的解答是错误的;(2)错误的解答在于未能正确运用二次根式的性质:________.(3)化简并求值:|1﹣a|+ √1−8a+16a2,其中a=2.五、综合题(共9题;共87分)42.将根号外的数移入根号内并化简:(1);(2)43.【知识链接】有理化因式:两个含有根式的非零代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.例如:√2的有理化因式是√2;1﹣√x2+2的有理化因式是1+ √x2+2.分母有理化:分母有理化又称“有理化分母”,也就是把分母中的根号化去.指的是如果代数式中分母有根号,那么通常将分子、分母同乘以分母的有理化因式,达到化去分母中根号的目的.如:1+√2= √2−1)(√2+1)(√2−1)= √2﹣1,√3+√2= √3−√2)(√3+√2)(√3−√2)= √3﹣√2.(1)【知识理解】填空:2 √x的有理化因式是________;直接写出下列各式分母有理化的结果:①√7+√6=________;②3√2+√17=________.(2)【启发运用】计算:1+√2+√3+√2+2+√3+…+√n+1+√n.44.观察下列等式:①√2+1=√2−1(√2+1)(√2−1)=√2−1;②√3+√2=√3−√2(√3+√2)(√3−√2)=√3−√2;③√4+√3=√4−√3(√4+√3)(√4+√3)=√4−√3;…回答下列问题:(1)仿照上列等式,写出第n个等式:________;(2)利用你观察到的规律,化简:2√3+√11;(3)计算:1+√2√2+√3√3+2…3+√10.45.观察下列各式及其验算过程:√2+23=2 √23,验证:√2+23= √2×3+23= √233=2 √23;√3+38=3 √38,验证:√3+38= √8×3+38= √338=3 √38(1)按照上述两个等式及其验证过程的基本思路,猜想√4+415的变形结果并进行验证.(2)针对上述各式反映的规律,写出用n(n为大于1的整数)表示的等式并给予验证.46.先阅读下列解答过程,然后再解答:形如√m+2√n的化简,只要我们找到两个正数a,b,使a+b=m,ab=n,使得(√a)2+ (√b)2=m,√a×√b=√n,那么便有:√m±2√n=√(√a±√b)2=√a±√b(a>b)例如:化简√7+4√3解:首先把√7+4√3化为√7+2√12,这里m=7,n=12,由于4+3=7,4×3=12,即:(√4)2+(√3)2=7,√4×√3=√12,所以√7+4√3=√7+2√12=(√(√4+√3)2=2+√3。