人教版四年级下册数学第一单元四则运算教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一单元“四则运算”
一、教学目标
1.使学生进一步掌握含有两级运算的运算顺序,正确计算三步式题。
2.让学生经历探索和交流解决实际问题的过程中,感受解决问题的一些策略和方法,学会用两、三步计算的方法解决一些实际问题。
3.使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。
二、编写特点
1.解决问题与四则混合运算的顺序的梳理有机结合起来。
本单元在整理教学混合运算顺序时,是结合解决问题进行的。目的是使学生在解决一个个实际问题的过程中,进一步掌握分析解决问题的策略和方法,同时体会运算顺序规定的必要性,从而系统地掌握混合运算的顺序。
2.为学生提供自主探索与合作交流的情境和空间。
本单元是从解决问题的角度教学整理四则混合运算的顺序,其中的问题是需要两、三步计算解决的问题。教材创设了热闹的滑雪场情境,由此生出一系列的情境串,引出相应的4个例题。每个例题都呈现了学生交流不同的解题思路,以及整理混合运算的画面,以鼓励学生在已有的知识基础上,积极思考,主动解决问题。
三、学情分析:
学生在原来的学习过程中已遇到过本单元的题目,对学生来说有很多学生已经知道了其中的运算顺序,本单元是从解决问题的角度教学整理四则混合运算的顺序,其中的问题是需要两、三步计算解决的问题。教材创设了热闹的滑雪场情境,由此生出一系列的情境串,引出相应的4个例题。每个例题都呈现了学生交流不同的解题思路,以及整理混合运算的画面,以鼓励学生在已有的知识基础上,积极思考、归纳,主动解决问题。
四、教学建议
1.将探求解题思路过程与理解运算顺序有机结合起来。
本单元是让学生在经历解决问题的过程中,感受混合运算顺序规定的必要性,掌握混合运算的顺序。因此,教学时,要充分利用教材提供的生动情境,放手让学生独立思考,自主探索,并在合作交流的基础上形成解决问题的步骤和方法,先求什么?用什么方法计算?再求什么?又用什么方法计算?最后求什么?用什么方法计算?使解题的步骤与运算的顺序结合起来。当学生列出综合算式后,还要追问每步算式列出的依据及表示的实际意义,促进学生正确地概括出混合运算的运算顺序。
2.帮助学生逐步掌握解决问题的步骤和策略。
本单元混合运算的顺序是结合解决问题进行的,其中解决问题的步骤和策略又是重点和难点之一。教学时,要注意加强数量关系的分析,在叙述解题思路时,要引导学生透过数看到量,用量的关系来描述解题思路。如,可引导学生这样描述思路“先算出每天接待多少人,再计算6天接待多少人。”不要停留在“先用987÷3,再乘6”的描述方式上。可能开始学生不习惯,但要逐步培养这种分析方法。
加、减法的定义及各部分间的关系
一、教学目标
(一)知识与技能
结合具体情境通过对算式变换的比较,理解和掌握加、减法的意义和各部分之间的关系。
(二)过程与方法
在探索加、减法各部分之间的关系的过程中,发展抽象、概况的能力,进一步建立代数的思想。
(三)情感态度和价值观
在用抽象文字表示加、减法各部分间的关系的过程中,感受数学的内在逻辑性,体会数学的价值。
二、教学重难点
教学重点:理解和掌握加减法各部分之间的关系。
教学难点:表示加、减法各部分间的关系。
三、教学准备
课件、学习单。
四、教学过程
(一)创设情境,提出问题
1.师:同学们,你们知道中国新世纪四大工程之一,被誉为“天路”的工程是什么吗?预设:生:青藏铁路
2.师:青藏铁路的建设创造了很多高海拔地区铁路建设的奇迹,今天这节课我们就从数学的角度一起走近青藏铁路。
(出示主题图)
3.师:你能根据图中
的信息提出什么数学问题
吗?
预设:
生1:西宁到拉萨的铁
路长多少千米?
生2:格力木到拉萨的
铁路长多少千米?
生3:西宁到格里木的铁路长多少千米?
(随着学生提出问题,课件随机显示)
(二)自主探究,加减定义
1.师:同学们提出的问题能够解决吗?我们先来看看第一个问题,请每个同学自己动手试一试。
2.学生独立解题
3.汇报交流,展示解题过程:
预设:814+1142=1956
4.师:为什么用加法计算?
预设:
生:把两段合在一起计算。
5.师:你还能提出什么用加法计算的问题吗?
(学生提出数学问题)
6.师:用你自己的话说一说什么是加法?
预设:
生:把两个数合并成一个数的运算叫加法。
(板书:加法定义)
7.师:你知道加法算式中这些数都叫什么名字吗?
介绍加法算式各部分名称(加数+加数=和)
8.师:刚才同学们还提出了两个问题,他们能解决吗?请大家试一试,看看谁的速度快。
9.学生列式计算。
(2)1956-814=1142
(3)1956-1142=814
10.师:同学们计算的真快,没看到大家列竖式呀,你们是怎样计算的?
预设:
生:参考加法算式解可以。
11.师:为什么用减法计算?
预设:
生:因为知道了两段的和求一段就可以减去另一段。
12.师:你能提出一个用减法解决的实际问题吗?
13.师:请你用自己的话说一说什么是减法?
预设:
生:已知两个数的和与其中一个加数,求另一个加数的运算叫减法。
(板书:减法定义)
14.师:你知道减法算式中这些数又叫什么名字吗?
介绍减法算式各部分名称(被减数-减数=差)
(三)小组交流,明确关系
1.师:观察黑板上的算式,你有什么发现?
预设:数都一样,运算不同
2.师:我们能根据一个加法算式很快的写出两个减法算式,加、减法各部分到底有怎样的关系?看来我们这节课除了要知道什么是加、减法,还需要研究