振动和波动计算题及答案
大学物理 振动与波、波动光学练习题
![大学物理 振动与波、波动光学练习题](https://img.taocdn.com/s3/m/ca0652f9767f5acfa1c7cdcd.png)
06振动与波、波动光学练习题 一、选择题 1 一物体作简谐振动,振动方程为)4cos(πω+=t A y在4T t =(T 为周期)时刻,物体的加速度为 [ ]2222321)(,321)(,221)(,221)(ωωωωA D A C A B A A -- 2 两个质点各自作简谐振动,它们的振幅相同、周期相同,第一个质点的振动方程为)cos(1αω+=t A y 。
当第一个质点从相对平衡位置的正位移处回到平衡位置时,第二个质点正在最大位移处,则第二个质点的振动方程为 [ ])cos()(),23cos()()2cos()(),2cos()(2222παωπαωπαωπαω++=-+=-+=++=t A y D t A y C t A y B t A y A 3一质点沿y 轴作简谐振动,振动方程为)SI (),32cos(1042παπ++⨯=-t y ,从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为[ ]s 61)(s,31)(s,21)(s,41)(s,81)(E D C B A 4 已知两个简谐振动曲线如图所示,1x 相位比2x 的相位 [ ]ππππ超前,落后,超前,落后)()(2)(2)(D C B A5题图 7题图5 一质点作简谐振动,周期为T 。
质点由平衡位置向X 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的时间为 [ ],8)(6)(12)(4)(T D T C T B T A ,,, 6 在下面几种说法中,正确的说法是: [ ](A )波源不动时,波源的振动周期与波动的周期在数值上是不同的,(B )波源振动的速度与波速相同,(C) 在波传播方向上的任一质点的振动相位总是比波源的相位滞后,(D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前。
7一平面简谐波,沿X 轴负方向传播,角频率为ω,波速为u 。
设4T t =时刻的波形如图所示,则该波的表达式为: [ ]])(cos[)(),(cos )(]21)(cos[)(),(cos )(πωωπωω++=+=+-=-=ux t A y D u x t A y G u x t A y B ux t A y A 8 当机械波在媒质中传播时,一媒质质元的最大变形量发生在 [ ](A)媒质质元离开其平衡位置最大位移处,(B )媒质质元离开其平衡位置)2/2(A 处,(C )媒质质元在其平衡位置处,(D )媒质质元离开其平衡位置A/2处(A 是振动振幅)。
第5章振动和波动习题解答
![第5章振动和波动习题解答](https://img.taocdn.com/s3/m/ef62582604a1b0717ed5dd63.png)
第5章 振动和波动5-1 一个弹簧振子 m=:0.5kg , k=50N ;'m ,振幅 A = 0.04m ,求 (1) 振动的角频率、最大速度和最大加速度;(2) 振子对平衡位置的位移为 x = 0.02m 时的瞬时速度、加速度和回复力; (3) 以速度具有正的最大值的时刻为计时起点,写出振动方程。
频率、周期和初相。
A=0.04(m) 二 0.7(rad/s) 二-0.3(rad)⑷10.11(Hz) T 8.98(s)2 n、5-3证明:如图所示的振动系统的振动频率为1 R +k 2式中k 1,k 2分别为两个弹簧的劲度系数,m 为物体的质量V max 二 A =10 0.04 = 0.4(m/s) a max 二 2A =102 0.04 =4(m/s 2) ⑵设 x =Acos(,t :;;■『),贝Ud x vA sin(,t 「)dtd 2xa一 dt 2--2Acos(「t 亠 ^ ) - - 2x当 x=0.02m 时,COS (;:, t :忙)=1/ 2, sin( t 「)= _、一3/2,所以 v ==0.2、.3 ==0.346(m/s) 2a = -2(m/s )F 二 ma = -1(N)n(3)作旋转矢量图,可知:2x =0. 0 4 c o st(1 0)25-2弹簧振子的运动方程为 x =0.04cos(0.7t -0.3)(SI),写出此简谐振动的振幅、角频率、严...U ・」|1岛解:以平衡位置为坐标原点,水平向右为 x 轴正方向。
设物体处在平衡位置时,弹簧 1的伸长量为Xg ,弹簧2的伸长量为x 20,则应有_ k ] X ]0 ■木2乂20 = 0当物体运动到平衡位置的位移为 X 处时,弹簧1的伸长量就为x 10 X ,弹簧2的伸长量就为X 20 -X ,所以物体所受的合外力为F - -k i (X io X )k 2(X 20 -x)- -(匕 k 2)x2d x (k i k 2)dt 2 m上式表明此振动系统的振动为简谐振动,且振动的圆频率为5-4如图所示,U 形管直径为d ,管内水银质量为 m ,密度为p 现使水银面作无阻尼 自由振动,求振动周期。
大学物理题库-振动与波动
![大学物理题库-振动与波动](https://img.taocdn.com/s3/m/5cdf9666fe4733687e21aaef.png)
振动与波动题库一、选择题(每题3分)1、当质点以频率ν 作简谐振动时,它的动能的变化频率为( )(A ) 2v(B )v (C )v 2 (D )v 42、一质点沿x 轴作简谐振动,振幅为cm 12,周期为s 2。
当0=t 时, 位移为cm 6,且向x 轴正方向运动。
则振动表达式为( ) (A))(3cos 12.0ππ-=t x (B ))(3cos 12.0ππ+=t x (C ))(32cos 12.0ππ-=t x (D ))(32cos 12.0ππ+=t x3、 有一弹簧振子,总能量为E ,如果简谐振动的振幅增加为原来的两倍,重物的质量增加为原来的四倍,则它的总能量变为 ( )(A )2E (B )4E (C )E /2 (D )E /4 4、机械波的表达式为()()m π06.0π6cos 05.0x t y +=,则 ( ) (A) 波长为100 m (B) 波速为10 m·s-1(C) 周期为1/3 s (D) 波沿x 轴正方向传播 5、两分振动方程分别为x 1=3cos (50πt+π/4) ㎝ 和x 2=4cos (50πt+3π/4)㎝,则它们的合振动的振幅为( )(A) 1㎝ (B )3㎝ (C )5 ㎝ (D )7 ㎝6、一平面简谐波,波速为μ=5 cm/s ,设t= 3 s 时刻的波形如图所示,则x=0处的质点的振动方程为 ( )(A) y=2×10-2cos (πt/2-π/2) (m)(B) y=2×10-2cos (πt + π) (m)(C) y=2×10-2cos(πt/2+π/2) (m)(D) y=2×10-2cos (πt -3π/2) (m)7、一平面简谐波,沿X 轴负方向 传播。
x=0处的质点的振动曲线如图所示,若波函数用余弦函数表示,则该波的初位相为( ) (A )0 (B )π (C) π /2 (D) - π /28、有一单摆,摆长m 0.1=l ,小球质量g 100=m 。
医用物理学题库-振动波动声波
![医用物理学题库-振动波动声波](https://img.taocdn.com/s3/m/40417b9d250c844769eae009581b6bd97f19bc22.png)
医用物理学题库(2023秋季学期)第一部分振动与波动一、选择题1.弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示.若0t =时,振子在负的最大位移处,则初相为(A)0.(B)π.(C)/2π.(D)-/2π.2.一质量为m 的物体和劲度系数为k 的轻弹簧组成的振动系统,若以物体通过-1/2振幅且向负方向运动为计时时刻,该系统的振动方程为(A)2)3x A π=+.(B)1)3x A π=+.(C)1)3x A π=+.(D)2)3x A π=+.3.图中所画的是两个简谐振动的振动曲线.若这两个简谐振动可叠加,则合成的余弦振动的初相为(A)32π.(B)π.(C)12π.(D)0.4.0t =时,振子在位移为/2A 处,且向负方向运动,则初相的旋转矢量为5.一个质点作简谐运动,振幅为A ,在起始时刻质点的位移为-2A ,且向x 轴正方向运动,代表此简谐运动的旋转矢量为6.一物体作简谐振动,振动方程为cos(4x A t πω=+.在/4t T =(T 为周期)时刻,物体的加速度为(A)222A ω-.(B)222A ω.(C)232A ω-.(D)232A ω.7.一物体作简谐振动,振动方程为1cos()4x A t ωπ=+.在/2t T =(T 为周期)时刻,物体的加速度为(A)222A ω-.(B)222A ω.(C)232A ω-.(D)232A ω.8.已知某简谐运动的振动曲线如图所示,则此简谐运动的运动方程为(A)222cos[]33x t ππ=-.(B)222cos[]33x t ππ=+.(C)422cos[]33x t ππ=-.(D)422cos[]33x t ππ=+.9.一质点作简谐振动,已知振动周期为T ,则其振动动能变化的周期是(A)4T .(B)2T .(C)T .(D)2T .10.一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的(A)14.(B)12.(C)12.(D)34.11.一质点作简谐振动,已知振动频率为f ,则振动动能的变化频率是(A)4f .(B)2f .(C)f .(D)2f .12.两个同振动方向、同频率、振幅均为A 的简谐运动合成后,振幅为2A ,则这两个简谐运动的相位差为(A)3π.(B)2π.(C)π.(D)2π13.右图中所画的是两个简谐振动的振动曲线.这两个简谐振动的相位相差为(A)3π.(B)2π.(C)π.(D)014.两个同振动方向、同频率、振幅均为A 的简谐运动合成后,振幅仍为A ,则这两个简谐运动的相位差为(A)60 .(B)90 .(C)120 .(D)180 .15.两个同周期简谐振动曲线如图所示.1x 的相位比2x 的相位(A)落后2π.(B)超前2π.(C)落后π.(D)超前π.16.若一平面简谐波的表达式为)cos(Cx Bt A y -=,式中A 、B 、C 为正值常量,则(A)波速为C ..(B)周期为1/B .(C)波长为2/C π.(D)角频率为2/B π.17.一横波以速度u 沿x 轴负方向传播,t 时刻波形曲线如图所示,则该时刻(A)A 点相位为π.(B)B 点静止不动.(C)C 点相位为3/2π.(D)D 点向上运动.18.在简谐波传播过程中,沿传播方向相距为12λ(λ为波长)的两点的振动速度必定(A)大小相同,而方向相反.(B)大小和方向均相同..(C)大小不同,方向相同.(D)大小不同,而方向相反.19.以下条件中,不属于两列相干波所必须满足的条件.(A)频率相同.(B)振动方向相同..(C)振幅相同.(D)相位差恒定.20.如图所示,两列波长为λ的相干波在P 点相遇.波在1S 点振动的初相是1φ,1S 到P 点的距离是1r ;波在2S 点的初相是2φ,2S 到P 点的距离是2r ,以k 代表零或正、负整数,则P 点是干涉极大的条件为:(A)21r r k λ-=.(B)212k φφπ-=.(C)21212()/2r r k φφπλπ-+-=.(D)21122()/2r r k φφπλπ-+-=.20.一平面简谐波的表达式为cos(/2) (m)y t x πππ=--,则下列选项中关于该平面波描述正确的是:(A)波长= m λπ.(B)周期2T =s .(C)频率=1νHz .(D)波速2u =m/s.22.如图(a)表示0t =时的简谐波的波形图,波沿x 轴正方向传播,图(b)为一质点的振动曲线.则图(a)中所表示的0x =处质点振动的初相位与图(b)所表示的振动的初相位分别为(A)均为2π(B)均为2π-.(C)2π与2π-.(D)2π-与2π.23.频率为100Hz ,传播速度为300m/s 的平面简谐波,波线上距离小于波长的两点振动的相位差为/3π,则此两点相距(A)2.86m .(B)2.19m .(C)0.5m .(D)0.25m .24.平面简谐机械波在弹性介质中传播时,在传播方向上某介质元在负的最大位移处,则它的能量是(A)动能为零,势能最大(B)动能为零,势能为零(C)动能最大,势能最大(D)动能最大,势能为零25.一平面简谐波在弹性介质中传播,在介质元从最大位移处回到平衡位置的过程中(A)它的势能转换成动能(B)它的动能转换成势能(C)它从相邻的一段介质元中获得能量,其能量逐渐增大(D)它把自己的能量传给相邻的一介质元,其能量逐渐减小26.已知在某一介质中两列相干的平面简谐波的强度之比是421=I I ,则这两列波的振幅之比21A A 是(A)4(B)2(C)16(D)827.人耳能分辨同时传来的不同声音,这是由于(A)波的反射和折射(B)波的干涉(C)波的独立传播特性(D)波的强度不同28.两初相位相同的相干波源,在其叠加区内振幅最小的各点到两波源的波程差等于(A)波长的偶数倍(B)波长的奇数倍(C)半波长的偶数倍(D)半波长的奇数倍29.当超声波经过声阻抗差值较大的介质形成界面时,(A)穿透力增强.(B)分辨率增强.(C)被反射的声能增多.(D)被吸收的声能增多.30.低语时声强为10-⁸W·m -²,飞机发动机的噪声声强为10-¹W·m -²,当其频率为1000Hz 时,则它们的声强级之差为:(A)10-⁶dB.(B)150dB.(C)110dB.(D)70dB.31.一机车汽笛频率为750Hz,机车以时速90公里远离静止的观察者.观察者听到的声音的频率是(设空气中声速为340m·s -¹):(A)810Hz.(B)699Hz.(C)805Hz.(D)695Hz二、填空题1.一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示.若0t =时,振子在负的最大位移处,则初相为_____________;振子在平衡位置向正方向运动,则初相为____________;振子在位移为/2A 处,且向负方向运动,则初相为_____.2.一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点.若0t =时质点过0x =处且朝x 轴负方向运动,则振动的初相位0ϕ=;若0t =时质点处于/2x A =处且向x 轴正方向运动,则振动的初相位0ϕ=.3.在简谐波的一条射线上,相距0.2m 两点的振动相位差为6/π.又知振动周期为0.4s ,则波速为.4.一简谐振动的表达式为cos(3)x A t φ=+,已知0t =时的初位移为0.04m ,初速度为0.09m/s ,则振幅A =_____________,初相φ=________________.5.一弹簧振子,弹簧的劲度系数为k ,重物的质量为m ,则此系统的固有振动周期为.6.当质点以频率ν作简谐振动时,它的动能和势能的变化频率均为,总能量保持不变.7.横波的一个波长指的是波线上相邻两同相点之间的距离;一平面简谐横波的波源简谐运动的周期为T ,则2T 内波形向前推进了个波长.8.已知平面简谐波的表达式为cos()y A Bt Cx =-式中,,A B C 为正值常量,此波的波长是___,波速是______.在波传播方向上相距为d 的两点的振动相位差是________.9.在同一媒质中两列频率相同的平面简谐波的强度之比12/16I I =,则这两列波的振幅之比是12/A A =____________________.10.两相干波源S 1和S 2的振动方程分别是1cos()y A t ωϕ=+和2cos()y A t ωϕ=+.S 1距P 点3个波长,S 2距P 点4.5个波长.设波传播过程中振幅不变,则两波同时传到P 点时的合振幅是________________.11.引起人耳听觉的声波频率范围是(),频率高于20000Hz 的机械波叫(),频率低于20Hz 的机械波叫()。
振动、波动部分答案(新)
![振动、波动部分答案(新)](https://img.taocdn.com/s3/m/7620c5bddd88d0d233d46af0.png)
大学物理学——振动和波振 动班级 学号 姓名 成绩内容提要1、简谐振动的三个判据(1);(2);(3)2、描述简谐振动的特征量: A 、T 、γ;T1=γ,πγπω22==T3、简谐振动的描述:(1)公式法 ;(2)图像法;(3)旋转矢量法4、简谐振动的速度和加速度:)2cos()sin(v00πϕωϕωω++=+-==t v t A dt dx m ; a=)()(πϕωϕωω±+=+=0m 0222t a t cos -dtxd A 5、振动的相位随时间变化的关系:6、简谐振动实例弹簧振子:,单摆小角度振动:,复摆:0mgh dt d 22=+θθJ ,T=2mghJπ 7、简谐振动的能量:222m 21k 21A A Eω==系统的动能为:)(ϕωω+==t sin m 21mv 212222A E K ;系统的势能为:)ϕω+==t (cos k 21kx 21222A E P8、两个简谐振动的合成(1)两个同方向同频率的简谐振动的合成合振动方程为:)(ϕω+=t cos x A其中,其中;。
*(2) 两个同方向不同频率简谐振动的合成拍:当频率较大而频率之差很小的两个同方向简谐运动合成时,其合振动的振幅表现为时而加强时而减弱的现象,拍频:12-γγγ=*(3)两个相互垂直简谐振动的合成合振动方程:)(1221221222212-sin )(cos xy 2y x ϕϕϕϕ=--+A A A A ,为椭圆方程。
练习一一、 填空题1.一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1。
若将此弹簧截去一半的长度,下端挂一质量为m/2的物体,则系统的周期T 2等于 。
2.一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为:A = ;=ω ;=ϕ 。
3.如图,一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,做成一复摆。
已知细棒绕过其一端的轴的转动惯量J =3/2ml ,此摆作微小振动的周期为 。
物体的振动和波动练习题
![物体的振动和波动练习题](https://img.taocdn.com/s3/m/f63ff2740812a21614791711cc7931b765ce7bf4.png)
物体的振动和波动练习题一、选择题1. 下列哪个不属于机械振动的基本特征?A. 振幅B. 周期C. 频率D. 波长2. 以下哪种波不需要介质传播?A. 机械波B. 横波C. 纵波D. 都需要介质传播3. 以下哪个现象不属于机械波传播中的失能?A. 反射B. 折射C. 干涉D. 散射4. 把频率为30Hz的振动用电路方式表示,需要设备的最小档位是A. 10sB. 1sC. 1msD. 1us5. 振幅越大,波的能量传播速度越快,这一说法A. 对B. 错6. 当一个横波传播时,传播介质上的每一个质点的振动方向A. 垂直于波的传播方向B. 与波的传播方向相同C. 与波的传播方向相反D. 与波的振动方向相同7. 下列不属于机械波的是A. 音波B. 光波C. 水波D. 地震波8. 声音能传播的介质是A. 真空B. 水C. 铁D. 木头9. 长度为0.1m的弦上传播的频率为500Hz的波,其波长为A. 10cmB. 20cmC. 40cmD. 50cm10. 一个在弹簧中传播的波,它所具有的振动特点可以用频率 f 表示。
当频率 f 增大时,振动速度将A. 不变B. 增大C. 减小D. 变为零二、填空题1. 机械波在介质中的传播速度与_________、_________有关。
2. 波长和_________成反比。
3. 波的频率和振动的_________有关。
4. 当光束从水中垂直射入空气时,光的_________发生折射。
5. 在两根相互平行的弹簧上各拧一节,右手拇指指向电流的方向,右手四指的弯曲方向表示_________。
三、简答题1. 请简要说明机械波和电磁波的区别。
2. 请解释频率和周期的概念,并写出它们的单位。
3. 什么是衰减? 请说明衰减对波传播的影响。
4. 什么是驻波? 它是如何形成的?5. 请举例说明机械波的反射和折射现象。
四、计算题1. 一支弦上传播的横波的振动频率为100Hz,波长为0.5m。
振动和波动课后答案
![振动和波动课后答案](https://img.taocdn.com/s3/m/e0d1a895d15abe23482f4d9b.png)
精心整理第5章 振动和波动5-1 一个弹簧振子0.5kg m =,50N m k =,振幅0.04m A =,求 (1) 振动的角频率、最大速度和最大加速度;(2) 振子对平衡位置的位移为x = 0.02m 时的瞬时速度、加速度和回复力;(2) (3) 解:式中解: 以平衡位置为坐标原点,水平向右为x 轴正方向。
设物体处在平衡位置时,弹簧1的伸长量为10x ,弹簧2的伸长量为20x ,则应有当物体运动到平衡位置的位移为x 处时,弹簧1的伸长量就为x x +10,弹簧2的伸长量就为x x -20,所以物体所受的合外力为由牛顿第二定律得 2122d ()d xm k k x t =-+即有 2122()d 0d k k x x t m++= 上式表明此振动系统的振动为简谐振动,且振动的圆频率为 振动的频率为 1212π2πk k mων+== 5-4 如图所示,U 形管直径为d ,管内水银质量为m ,密度为ρ,现使水银面作无阻尼自由振动,求振动周期。
解:以平衡时右液面位置为坐标原点,向上为x 轴正方向,建立坐标系。
右液面偏离原点为至x 时,振动系统所受回复力为:振动角频率 2π2d gmρω=振动周期 222ππmT d gρ= 5-5 如图所示,定滑轮半径为R ,转动惯量为J ,轻弹簧劲度系数为k ,物体质量为m ,现将物体从平衡位置拉下一微小距离后放手,不计一切摩擦和空气阻力。
试证明该系统作简谐振动,并求其作微小振动的周期。
习题5-4解:弹簧、滑轮、物体和地球组成的系统不受外力作用,非保守内力作功之和为零,系统机械能守恒,以物体的平衡位置为坐标原点向下为x 轴正方向,建立坐标系。
设平衡时弹簧伸长0l ,有:0kl mg = (1) 物体位于x 位置时(以原点为重力势能零点): 对上式两边求导:,物体械能于是ω=5-7如图所示,质量为10g的子弹,以01000m sv=速度射入木块并嵌在木块中,使弹簧压缩从而作简谐运动,若木块质量为4.99kg,弹簧的劲度系数为3810N m⨯,求振动的振幅。
第10章 振动与波动(习题与答案)
![第10章 振动与波动(习题与答案)](https://img.taocdn.com/s3/m/ebd7ac02ba1aa8114431d914.png)
第10章 振动与波动一. 基本要求1. 掌握简谐振动的基本特征,能建立弹簧振子、单摆作谐振动的微分方程。
2. 掌握振幅、周期、频率、相位等概念的物理意义。
3. 能根据初始条件写出一维谐振动的运动学方程,并能理解其物理意义。
4. 掌握描述谐振动的旋转矢量法,并用以分析和讨论有关的问题。
5. 理解同方向、同频率谐振动的合成规律以及合振幅最大和最小的条件。
6. 理解机械波产生的条件。
7. 掌握描述简谐波的各物理量的物理意义及其相互关系。
8. 了解波的能量传播特征及能流、能流密度等概念。
9. 理解惠更斯原理和波的叠加原理。
掌握波的相干条件。
能用相位差或波程差概念来分析和确定相干波叠加后振幅加强或减弱的条件。
10. 理解驻波形成的条件,了解驻波和行波的区别,了解半波损失。
二. 内容提要1. 简谐振动的动力学特征 作谐振动的物体所受到的力为线性回复力,即kx F -= 取系统的平衡位置为坐标原点,则简谐振动的动力学方程(即微分方程)为x tx 222d d ω-= 2. 简谐振动的运动学特征 作谐振动的物体的位置坐标x 与时间t 成余弦(或正弦)函数关系,即)cos(ϕ+ω=t A x由它可导出物体的振动速度 )sin(ϕ+ωω-=t A v 物体的振动加速度 )cos(ϕ+ωω-=t A a 23. 振幅A 作谐振动的物体的最大位置坐标的绝对值,振幅的大小由初始条件确定,即2v ω+=2020x A4. 周期与频率 作谐振动的物体完成一次全振动所需的时间T 称为周期,单位时间内完成的振动次数γ称为频率。
周期与频率互为倒数,即ν=1T 或 T1=ν 5. 角频率(也称圆频率)ω 作谐振动的物体在2π秒内完成振动的次数,它与周期、频率的关系为 ωπ=2T 或 πν=ω26. 相位和初相 谐振动方程中(ϕ+ωt )项称为相位,它决定着作谐振动的物体的状态。
t=0时的相位称为初相,它由谐振动的初始条件决定,即0x v ω-=ϕtan应该注意,由此式算得的ϕ在0~2π范围内有两个可能取值,须根据t=0时刻的速度方向进行合理取舍。
大学物理D-06振动和波-参考答案
![大学物理D-06振动和波-参考答案](https://img.taocdn.com/s3/m/0e0ca02f192e45361066f53c.png)
B 2 ;波的周期为 B C lC ;此质元的初相位为
;波长为
2 C
;离波源距离为 l
lC 。
6.1.5 一平面简谐波沿 ox 轴正向传播,波动方程为 y A cos[ (t 振动方程为 为 2 1 二、选择题
x ) ] ,则 x L1 处质点的 u 4
y A cos[ (t
由 t=0 和 t=0.25 时的波形图,得
O
t
x
2 x x 2 10 (t ) ] 0.2 cos[2t x ] (2)波动表式为 y A cos[ ( t ) 0 ] 0.2 cos[ 1 0.6 2 3 2 u
O 点的振动表式为
y 0 | t 0 A cos 0 0 , v 0 | t 0 A sin 0 0 , 0
3 , 4
x1 x3振幅最大 。
2
0 20 , 0 20
5 3 (或 )时, x2 x3振幅最小 4 4
0 , 0 20 84 o 48时, x1 x 2 x3振幅最大 0 0
6.4.2
2
o
4
2
3
4
2
6.2.6 两相干平面简谐波沿不同方向传播,如图所示,波速均为 u 0.40m / s ,其中一列波在 A 点 引 起 的 振 动 方 程 为 y 1 A1 cos( 2 t
2
) ,另一列波在 B 点引起的振动方程为
y 2 A2 cos( 2 t
[ A ] (A)0; (B) /2; (C) ; (D)3 /2。 三、简答题
振动和波动习题
![振动和波动习题](https://img.taocdn.com/s3/m/3a92fcd0d4d8d15abe234ee5.png)
振动习题一、选择题1. 对一个作简谐振动的物体,下面哪种说法是正确的 [ ](A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D) 物体处在负方向的端点时,速度最大,加速度为零。
2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为43π,则t=0时,质点的位置在: [ ](A) 过1x A 2=处,向负方向运动; (B) 过1x A 2=处,向正方向运动;(C) 过1x A 2=-处,向负方向运动;(D) 过1x A 2=-处,向正方向运动。
3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ ](C)(3)题4. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为:[ ]215(A),or ;A;(B),;3326632(C),or ;(D),;4433ππ±±π±±±π±ππ±±π±±±π±5. 一质点沿x 轴作简谐振动,振动方程为 10.04cos(2)3x t ππ=+(SI ),从t = 0时刻起,到质点位置在x = m 处,且向x 轴正方向运动的最短时间间隔为 [ ](A)s 81; (B) s 61; (C) s 41; (D) s 216. 图中所画的是两个简谐振动的振动曲线,这两个简谐振动叠加后合成的余弦振动的初相为 [ ]xtOx 1x 2(A) π23; (B) π; (C) π21 ; (D) 0一、 填空题1. 一简谐振动用余弦函数表示,振动曲线如图所示,则此简谐振动的三个特征量为: , ,2. 一质点作简谐振动,周期为T ,质点由平衡位置到二分之一最大位移处所需要的时间为 ;由最大位移到二分之一最大位移处所需要的时间为 。
振动和波动计算题及答案
![振动和波动计算题及答案](https://img.taocdn.com/s3/m/1ee92c7fa88271fe910ef12d2af90242a895abaa.png)
振动和波动计算题1..一物体在光滑水平面上作简谐振动,振幅是12 cm ,在距平衡位置6cm 处速度是24cm/s ,求(1)周期T ;(2)当速度是12 cm/s 时的位移.解:设振动方程为,则t A x ωcos =t A ωωsin -=v (1)在x = 6 cm ,v = 24 cm/s 状态下有 t ωcos 126=t ωωsin 1224-=解得 ,∴ s 2分3/4=ω72.2s 2/3/2=π=π=ωT (2) 设对应于v =12 cm/s 的时刻为t 2,则由 t A ωωsin -=v 得 ,2sin )3/4(1212t ω⨯⨯-=解上式得1875.0sin 2-=t ω相应的位移为 cm3分8.10sin 1cos 222±=-±==t A t A x ωω2. 一轻弹簧在60 N 的拉力下伸长30 cm .现把质量为4 kg 的物体悬挂在该弹簧的下端并使之静止 ,再把物体向下拉10 cm ,然 后由静止释放并开始计时.求 (1) 物体的振动方程;(2) 物体在平衡位置上方5 cm 时弹簧对物体的拉力;(3) 物体从第一次越过平衡位置时刻起到它运动到上方5 cm 处所需要的最短时间. 解: k = f/x =200 N/m , rad/s2分07.7/≈=m k ω (1) 选平衡位置为原点,x 轴指向下方(如图所示), t = 0时, x 0 = 10A cos φ ,v 0 = 0 = -A ωsin φ. 解以上二式得 A = 10 cm ,φ = 0. 2分∴ 振动方程x = 0.1 cos(7.07t ) (SI) 1分 (2) 物体在平衡位置上方5 cm 时,弹簧对物体的拉力 f = m (g -a ),而a = -ω2x = 2.5 m/s 2 ∴ f =4 (9.8-3分(3) 设t 1时刻物体在平衡位置,此时x = 0,即 0 = A cos ω t 1或cos ω t 1 = 0. ∵ 此时物体向上运动, v < 0 ∴ ω t 1 = π/2, t 1= π/2ω1分再设t 2时物体在平衡位置上方5 cm 处,此时x = -5,即-5 = A cos ω t 1,cos ω t 1 =-1/23. 一质点作简谐振动,其振动方程为 (SI))4131cos(100.62π-π⨯=-t x(1) 当x 值为多大时,系统的势能为总能量的一半?(2) 质点从平衡位置移动到上述位置所需最短时间为多少?解:(1) 势能 总能量 221kx W P =221kA E =由题意,, m 2分4/2122kA kx =21024.42-⨯±=±=A x (2) 周期 T = 2π/ω = 6 s从平衡位置运动到 的最短时间 ∆t 为 T /8.2A x ±=∴ ∆t = 0.75 s .3分4. 一质点作简谐振动,其振动方程为x = 0.24 (SI),试用旋转矢量法求出)3121cos(π+πt 质点由初始状态(t = 0的状态)运动到x = -0.12 m ,v < 0的状态所需最短时间∆t .解:旋转矢量如图所示. 图3分由振动方程可得, 1分π21=ωπ=∆31φ s1分667.0/=∆=∆ωφt 5. 两个物体作同方向、同频率、同振幅的简谐振动.在振动过程中,每当第一个物体经过位移为的位置向平衡位置运动时,第二个物体也2/A 经过此位置,但向远离平衡位置的方向运动.试利用旋转矢量法求它们的相位差.解:依题意画出旋转矢量图.3分由图可知两简谐振动的位相差为. 2分π216. 一简谐振动的振动曲线如图所示.求振动方程.解:(1) 设振动方程为)cos(φω+=t A x 由曲线可知 A = 10 cm , t = 0,,φcos 1050=-=x 0sin 100<-=φωv 解上面两式,可得 φ = 2π/3 2分由图可知质点由位移为 x 0 = -5 cm 和v 0 < 0的状态到x = 0和 v > 0的状态所需时间t = 2 s ,代入振动方程得-(SI))3/22cos(100π+=ω则有,∴ ω = 5 π/122分2/33/22π=π+ω故所求振动方程为 (SI)1分)3/212/5cos(1.0π+π=t x 7. 一质点同时参与两个同方向的简谐振动,其振动方程分别为x 1 =5×10-2cos(4t + π/3) (SI) , x 2 =3×10-2sin(4t - π/6) (SI) 画出两振动的旋转矢量图,并求合振动的振动方程. 解: x 2 = 3×10-2 sin(4t - π/6) = 3×10-2cos(4t - π/6- π/2) = 3×10-2cos(4t - 2π/3).作两振动的旋转矢量图,如图所示.图2分由图得:合振动的振幅和初相分别为A = (5-3)cm = 2 cm ,φ = π/3.2分合振动方程为 x = 2×10-2cos(4t + π/3) (SI)1分8. 两个同方向的简谐振动的振动方程分别为x 1 = 4×10-2cos2π (SI), x 2 = 3×10-2cos2π (SI) )81(+t 41(+t 求合振动方程.解:由题意 x 1 = 4×10-2cos (SI))42(π+πtx 2 =3×10-2cos (SI))22(π+πt 按合成振动公式代入已知量,可得合振幅及初相为m22210)4/2/cos(2434-⨯π-π++=A = 6.48×10-2 m 2分=1.12 rad2分)2/cos(3)4/cos(4)2/sin(3)4/sin(4arctgπ+ππ+π=φ合振动方程为x = 6.48×10-2 cos(2πt +1.12) (SI) 1分9. 一平面简谐波沿x 轴正向传播,其振幅为A ,频率为ν ,波速为u .设t = t '时刻的波形曲线如图所示.求(1) x = 0处质点振动方程;(2) 该波的表达式. 解:(1) 设x = 0 处质点的振动方程为)2cos(φν+π=t A y 由图可知,t = t '时1分0)2cos(=+'π=φνt A y1分0)2sin(2d /d <+'ππ-=φννt A t y 所以 ,2分2/2π=+'πφνt t 'π-π=νφ221x = 0处的振动方程为1分]21)(2cos[π+'-π=t t A y νxO ωωπ/3-2π/3A1A2A xu Ot =t ′y(2) 该波的表达式为3分]21)/(2cos[π+-'-π=u x t t A y ν10. 一列平面简谐波在媒质中以波速u = 5 m/s 沿x 轴正向传播,原点O 处质元的振动曲线如图所示.(1) 求解并画出x = 25 m 处质元的振动曲线.(2) 求解并画出t = 3 s 时的波形曲线.解:(1) 原点O 处质元的振动方程为, (SI)2分)2121cos(1022π-π⨯=-t y 波的表达式为, (SI)2分)21)5/(21cos(1022π--π⨯=-x t yx = 25 m 处质元的振动方程为, (SI))321cos(1022π-π⨯=-t y 振动曲线见图 (a)2分(2) t = 3 s 时的波形曲线方程, (SI)2分)10/cos(1022x y π-π⨯=-波形曲线见图2分2×11. 已知一平面简谐波的表达式为 (SI) )37.0125cos(25.0x t y -= (1) 分别求x 1 = 10 m ,x 2 = 25 m 两点处质点的振动方程; (2) 求x 1,x 2两点间的振动相位差;(3) 求x 1点在t = 4 s 时的振动位移.解:(1) x 1 = 10 m 的振动方程为(SI) 1分)7.3125cos(25.010-==t y xx 2 = 25 m 的振动方程为(SI)1分)25.9125cos(25.025-==t y x (2) x 2与x 1两点间相位差∆φ = φ2 - φ1 = -5.55 rad 1分(3) x 1点在t = 4 s 时的振动位移y = 0.25cos(125×4-3.7) m= 0.249 m2分12. 如图,一平面波在介质中以波速u = 20 m/s 沿x 轴负方向传播,已知A 点的振动方程为 (SI).t y π⨯=-4cos 1032(1)以A 点为坐标原点写出波的表达式;(2) 以距A 点5 m 处的B 点为坐标原点,写出波的表达式.t (s)O -2×10-21y (m)234(a)ABxu解:(1) 坐标为x 点的振动相位为 2分)]/([4u x t t +π=+φω)]/([4u x t +π=)]20/([4x t +π=波的表达式为 (SI) 2分)]20/([4cos 1032x t y +π⨯=-(2) 以B 点为坐标原点,则坐标为x 点的振动相位为(SI) 2分]205[4-+π='+x t t φω波的表达式为(SI)2分])20(4cos[1032π-+π⨯=-xt y 13. 一平面简谐波沿x 轴正向传播,其振幅和角频率分别为A 和ω ,波速为u ,设t = 0时的波形曲线如图所示.(1) 写出此波的表达式.(2) 求距O 点分别为λ / 8和3λ / 8 两处质点的振动方程.(3) 求距O 点分别为λ / 8和3λ / 8 两处质点在t = 0时的振动速度.解:(1) 以O 点为坐标原点.由图可知,该点振动初始条件为,0cos 0==φA y0sin 0<-=φωA v 所以π=21φ波的表达式为4分]21)/(cos[π+-=u x t A y ωω(2) 处振动方程为 8/λ=x1分]21)8/2(cos[π+π-=λλωt A y )4/cos(π+=t A ω 的振动方程为8/3λ=x1分]218/32cos[π+-=λλπωt A y )4/cos(π-=t A ω(3))21/2sin(/d d π+π--=λωωx t A t y t = 0,处质点振动速度8/λ=x1分]21)8/2sin[(/d d π+π--=λλωA t y 2/2ωA -= t = 0,处质点振动速度8/3λ=x1分]21)8/32sin[(/d d π+⨯π--=λλωA t y 2/2ωA =14. 如图,一平面简谐波沿Ox 轴传播,波动表达式为 (SI),])/(2cos[φλν+-π=x t A y 求(1) P 处质点的振动方程;(2) 该质点的速度表达式与加速度表达式.xuO yOP解:(1) 振动方程}]/)([2cos{φλν+--π=L t A y P2分])/(2cos[φλν++π=L t A (2) 速度表达式 2分])/(2sin[2φλνπν++π-=L t A P v 加速度表达式1分])/(2cos[422φλνν++ππ-=L t A a P 15. 某质点作简谐振动,周期为2 s ,振幅为0.06 m ,t = 0 时刻,质点恰好处在负向最大位移处,求(1) 该质点的振动方程;(2) 此振动以波速u = 2 m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3) 该波的波长.解:(1) 振动方程(SI) 3分)22cos(06.00π+π=ty )cos(06.0π+π=t (2) 波动表达式3分])/(cos[06.0π+-π=u x t y(SI) ])21(cos[06.0π+-π=x t (3) 波长 m2分4==uT λ16. 如图所示,一平面简谐波沿Ox 轴的负方向传播,波速大小为u ,若P 处介质质点的振动方程为 ,求 )cos(φω+=t A y P(1) O 处质点的振动方程;(2) 该波的波动表达式;(3) 与P 处质点振动状态相同的那些点的位置.解:(1) O 处质点的振动方程为2分](cos[0φω++=uLt A y (2) 波动表达式为 2分])(cos[φω+++=uLx t A y (3)x = -L ± k( k = 1,2,3,…) 1分ωuπ217.如图所示,一平面简谐波沿Ox 轴正向传播,波速大小为u ,若P 处质点的振动方程为 ,求 )cos(φω+=t A y P (1) O 处质点的振动方程;(2) 该波的波动表达式;(3) 与P 处质点振动状态相同的那些质点的位置.解:(1) O 处质点振动方程2分])(cos[0φω++=uLt A y (2) 波动表达式 2分])(cos[φω+--=uLx t A y (3) (k = 0,1,2,3,…) 1分ωuk L x L x π±=±=218. 图示一平面余弦波在t = 0 时刻与t = 2 s 时刻的波形图.已知波速为u ,求 (1) 坐标原点处介质质点的振动方程;(2) 该波的波动表达式.解:(1) 比较t = 0 时刻波形图与t = 2 s 时刻波形图,可知此波向左传播.在t = 0时刻,O 处质点,φcos 0A =,φωsin 00A -=<v 故2分π-=21φ又t = 2 s ,O 处质点位移为)214cos(2/π-π=νA A 所以, ν = 1/16 Hz 2分振动方π-π=π-21441ν程为(SI) 1分)218/cos(0π-π=t A y(2) 波速 u = 20 /2 m/s = 10 m/s波长 λ = u /ν = 160 m 2分波动表达式(SI) 3分]2116016(2cos[π-+π=x t A y 19. 如图所示,两相干波源在x 轴上的位置为S 1和S 2,其间距离为d = 30 m ,S 1位于坐标原点O .设波只沿x 轴正负方向传播,单独传播时强度保持不变.x 1 = 9 m 和x 2 = 12 m 处的两点是相邻的两个因干涉而静止的点.求两波的波长和两波源间最小相位差.解:设S 1和S 2的振动相位分别为φ 1和φ 2.在x 1点两波引起的振动相位差]2[]2[1112λφλφx x d π---π-π+=)12(K 即①2分π+=-π--)12(22)(112K x d λφφ在x 2点两波引起的振动相位差]2[]2[2122λφλφx x d π---π-π+=)32(K 即②3分π+=-π--)32(22)(212K x d λφφ②-①得π=-π2/)(412λx x m2分6)(212=-=x x λ由①2分π+=-π+π+=-)52(22)12(112K x d K λφφ当K = -2、-3时相位差最小1分π±=-12φφ20. 两波在一很长的弦线上传播,其表达式分别为:(SI))244(31cos 1000.421t x y -π⨯=- (SI))244(31cos 1000.422t x y +π⨯=-求: (1) 两波的频率、波长、波速; (2) 两波叠加后的节点位置; (3) 叠加后振幅最大的那些点的位置.解:(1) 与波动的标准表达式 对比可得:)/(2cos λνx t A y -π= ν = 4 Hz , λ = 1.50 m , 各1分波速 u = λν = 6.00 m/s 1分(2) 节点位置)21(3/4π+π±=πn x m , n = 0,1,2,3, … 3分)21(3+±=n x (3) 波腹位置π±=πn x 3/4 m , n = 0,1,2,3, …2分 4/3n x ±=21. 设入射波的表达式为 ,在x = 0处发生反射,反射点为一固定)(2cos 1Ttx A y +π=λ端.设反射时无能量损失,求 (1) 反射波的表达式; (2) 合成的驻波的表达式;(3) 波腹和波节的位置.解:(1) 反射点是固定端,所以反射有相位突变π,且反射波振幅为A ,因此反射波的表达式为 3分])//(2cos[2π+-π=T t x A y λ(2) 驻波的表达式是 21y y y +=3分)21/2cos()21/2cos(2π-ππ+π=T t x A λ (3) 波腹位置:, 2分π=π+πn x 21/2λ, n = 1, 2, 3, 4,… λ)21(21-=n x波节位置:2分π+π=π+π2121/2n x λ, n = 1, 2, 3, 4,…λn x 21=22. 如图所示,一平面简谐波沿x 轴正方向传播,BC 为波密媒质的反射面.波由P 点反射,= 3λ /4, = λ /6.在t = 0时,O 处质点的合振动是经过平衡位置向负方向运OP DP 动.求D 点处入射波与反射波的合振动方程.(设入射波和反射波的振幅皆为A ,频率为ν.)解:选O 点为坐标原点,设入射波表达式为2分])/(2cos[1φλν+-π=x t A y 则反射波的表达式是2分](2cos[2π++-+-π=φλνxDP OP t A y 合成波表达式(驻波)为2分)2cos()/2cos(2φνλ+ππ=t x A y 在t = 0时,x = 0处的质点y 0 = 0, ,0)/(0<∂∂t y 故得2分π=21φ因此,D 点处的合成振动方程是2分22cos()6/4/32cos(2π+π-π=t A y νλλλt A νπ=2sin 323. 如图,一角频率为ω ,振幅为A 的平面简谐波沿x 轴正方向传播,设在t = 0时该波在原点O 处引起的振动使媒质元由平衡位置向y 轴的负方向运动.M 是垂直于x 轴的波密媒质反射面.已知OO '= 7 λ /4,PO '= λ /4(λ为该波波长);设反射波不衰减,求: (1) 入射波与反射波的表达式;; (2) P 点的振动方程.解:设O 处振动方程为)cos(0φω+=t A y 当t = 0时,y 0 = 0,v 0 < 0,∴π=21φ∴)21cos(0π+=t A y ω2分故入射波表达式为2分)22cos(x t A y λωπ-π+=在O ′处入射波引起的振动方程为)4722cos(1λλω⋅π-π+=t A y )cos(π-=t A ω由于M 是波密媒质反射面,所以O ′处反射波振动有一个相位的突变π.∴ 2分)cos(1π+π-='t A y ωt A ωcos =反射波表达式 )](2cos[x O O t A y -'π-='λω)]47(2cos[x t A -π-=λλω2分]22cos[π+π+=x t A λω合成波为 y y y '+=22cos[π+π-=x t A λω22cos[π+π++x t A λω 2分)2cos(2cos 2π+π=t x A ωλ将P 点坐标 代入上述方程得P 点的振动方程λλλ234147=-=x2分2cos(2π+-=t A y ω。
振动和波动习题
![振动和波动习题](https://img.taocdn.com/s3/m/532834eaba1aa8114531d9e6.png)
振动和波动习题(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--振动习题 一、选择题1. 对一个作简谐振动的物体,下面哪种说法是正确的 [ ](A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D) 物体处在负方向的端点时,速度最大,加速度为零。
2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为43π,则t=0时,质点的位置在: [ ](A) 过1x A 2=处,向负方向运动; (B) 过1x A 2=处,向正方向运动; (C) 过1x A 2=-处,向负方向运动;(D) 过1x A 2=-处,向正方向运动。
3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ ](C)(3)题4. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: [ ]215(A),or ;A;(B),;3326632(C),or ;(D),;4433ππ±±π±±±π±ππ±±π±±±π±5. 一质点沿x 轴作简谐振动,振动方程为 10.04cos(2)3x t ππ=+(SI ),从t = 0时刻起,到质点位置在x = m 处,且向x 轴正方向运动的最短时间间隔为 [ ](A) s 81; (B) s 61; (C) s 41; (D) s 216. 图中所画的是两个简谐振动的振动曲线,这两个简谐振动叠加后合成的余弦振动的初相为 [ ]xtOx 1x 2(A) π23; (B) π; (C) π21 ; (D) 0一、 填空题 1. 一简谐振动用余弦函数表示,振动曲线如图所示,则此简谐振动的三个特征量为: , ,2. 一质点作简谐振动,周期为T ,质点由平衡位置到二分之一最大位移处所需要的时间为 ;由最大位移到二分之一最大位移处所需要的时间为 。
大学物理期末复习题---填空-计算题
![大学物理期末复习题---填空-计算题](https://img.taocdn.com/s3/m/8da0d5d16aec0975f46527d3240c844768eaa076.png)
第4章 振动与波动填空题(1)一质点在X 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取作坐标原点。
若t =0时质点第一次通过x =-2cm 处且向x 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为__ __s 。
[答案:23s ](2)一水平弹簧简谐振子的振动曲线如题4.2(2)图所示。
振子在位移为零,速度为-ωA 、加速度为零和弹性力为零的状态,对应于曲线上的____________点。
振子处在位移的绝对值为A 、速度为零、加速度为-ω2A 和弹性力为-KA 的状态,则对应曲线上的____________点。
习题4.2(2) 图[答案:b 、f ; a 、e](3)一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点,已知周期为T ,振幅为A 。
(a )若t=0时质点过x=0处且朝x 轴正方向运动,则振动方程为x=___________________。
(b )若t=0时质点过x=A/2处且朝x 轴负方向运动,则振动方程为x=_________________。
[答案:cos(2//2)x A t T ππ=−; cos(2//3)x A t T ππ=+](4)一横波的波动方程是))(4.0100(2sin 02.0SI x t y −=π,则振幅是____,波长是____,频率是____,波的传播速度是____。
[答案:0.02;2.5;100;250/m m Hz m s ](5)产生机械波的条件是 和 。
[答案:波源;有连续的介质](6)两列波叠加产生干涉现象必须满足的条件是 , 和 。
[答案:频率相同,振动方向相同,在相遇点的位相差恒定。
]计算题 振动4.3 质量为kg 10103−⨯的小球与轻弹簧组成的系统,按20.1cos(8)(SI)3x t ππ=+的规律作谐振动,求:(1)振动的周期、振幅和初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等? (3)s 52=t 与s 11=t 两个时刻的位相差;解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,相比较则有:3/2,s 412,8,m 1.00πφωππω===∴==T A 又 πω8.0==A v m 1s m −⋅ 51.2=1s m −⋅2.632==A a m ω2s m −⋅(2) 0.63N m m F ma ==J 1016.32122−⨯==m mv E J 1058.1212−⨯===E E E k p当p k E E =时,有p E E 2=, 即)21(212122kA kx ⋅= ∴ m 20222±=±=A x (3) ππωφ32)15(8)(12=−=−=∆t t4.4 一质量为kg 10103−⨯的物体作谐振动,振幅为cm 24,周期为s 0.4,当0=t 时位移为cm 24+.求:(1)s 5.0=t 时,物体所在的位置及此时所受力的大小和方向; (2)由起始位置运动到cm 12=x 处所需的最短时间; (3)在cm 12=x 处物体的总能量. 解:由题已知 s 0.4,m 10242=⨯=−T A∴ 1s rad 5.02−⋅==ππωT又,0=t 时,0,00=∴+=φA x 故振动方程为m )5.0cos(10242t x π−⨯=(1)将s 5.0=t 代入得0.17m m )5.0cos(102425.0=⨯=−t x πN102.417.0)2(10103232−−⨯−=⨯⨯⨯−=−=−=πωxm ma F方向指向坐标原点,即沿x 轴负向. (2)由题知,0=t 时,00=φ,t t =时 3,0,20πφ=<+=t v A x 故且 ∴ s 322/3==∆=ππωφt (3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为J101.7)24.0()2(10102121214223222−−⨯=⨯⨯⨯===πωA m kA E4.6 题4.6图为两个谐振动的t x −曲线,试分别写出其谐振动方程.习题4.6图解:由题4.6图(a),∵0=t 时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ 即 1s rad 2−⋅==ππωT故 m )23cos(1.0ππ+=t x a 由题4.6图(b)∵0=t 时,35,0,2000πφ=∴>=v A x01=t 时,22,0,0111ππφ+=∴<=v x又 ππωφ253511=+⨯= ∴ πω65=故 m t x b )3565cos(1.0ππ+=波动4.11 沿绳子传播的平面简谐波的波动方程为y =0.05cos(10x t ππ4−),式中x ,y 以米计,t 以秒计.求:(1)绳子上各质点振动时的最大速度和最大加速度;(2)求x =0.2m 处质点在t =1s 时的位相,它是原点在哪一时刻的位相?这一位相所代表的运动状态在t =1.25s 时刻到达哪一点? 解: (1)将题给方程与标准式2cos()y A t x πωλ=−相比,得振幅05.0=A m ,圆频率10ωπ=,波长5.0=λm ,波速2.52u ωλυλπ===1s m −⋅.绳上各点的最大振速,最大加速度分别为ππω5.005.010max =⨯==A v 1s m −⋅222max 505.0)10(ππω=⨯==A a 2s m −⋅(2)2.0=x m 处的振动比原点落后的时间为08.05.22.0==u x s 故2.0=x m ,1=t s 时的位相就是原点(0=x ),在92.008.010=−=t s 时的位相,即 2.9=φπ. 设这一位相所代表的运动状态在25.1=t s 时刻到达x 点,则825.0)0.125.1(5.22.0)(11=−+=−+=t t u x x m4.12 一列平面余弦波沿x 轴正向传播,波速为5m ·s -1,波长为2m ,原点处质点的振动曲线如题4.12图所示.(1)写出波动方程;(2)作出t =0时的波形图及距离波源0.5m 处质点的振动曲线. 解: (1)由题4.14(a)图知,1.0=A m ,且0=t 时,0,000>=v y ,∴230πφ=, 又5.225===λυuHz ,则ππυω52==习题4.12图(a)取 ])(cos[0φω+−=ux t A y , 则波动方程为30.1cos[5()]52x y t ππ=−+m(2) 0=t 时的波形如题4.12(b)图习题4.12图(b) 习题4.12图(c)将5.0=x m 代入波动方程,得该点处的振动方程为50.530.1cos[5]0.1cos(5)52y t t πππππ⨯=−+=+m 如题4.12(c)图所示.第7章静电场7.2 填空题(1)在静电场中,电势不变的区域,场强必定为 。
大学物理 第十章 波动部分习题
![大学物理 第十章 波动部分习题](https://img.taocdn.com/s3/m/c5f76e1486c24028915f804d2b160b4e767f81f0.png)
第十章 波动一、简答题1、什么是波动? 振动和波动有什么区别和联系?答:波动一般指振动在介质中的传播。
振动通常指一个质点在平衡位置附近往复地运动,波动是介质中的无数个质点振动的总体表现。
2、机械波的波长、频率、周期和波速四个量中,(1) 在同一介质中,哪些量是不变的? (2) 当波从一种介质进入另一种介质中,哪些量是不变的?答:(1) 频率、周期、波速、波长 (2)频率和周期3、波动方程⎪⎭⎫ ⎝⎛-=u x cos y t A ω中的u x 表示什么? 如果把它写成⎪⎭⎫ ⎝⎛-=u x cos y ωωt A ,u x ω又表示什么? 答:u x 表示原点处的振动状态传播到x 处所需的时间。
ux ω表示x 处的质点比原点处的质点所落后的相位。
4、波动的能量与哪些物理量有关? 比较波动的能量与简谐运动的能量.答:波的能量与振幅、角频率、介质密度以及所选择的波动区域的体积都有关系。
简谐运动中是振子的动能与势能相互转化,能量保持守恒的过程;而行波在传播过程中某一介质微元的总能量在随时间变化,从整体上看,介质中各个微元能量的变化体现了能量传播的过程。
5. 平面简谐波传播过程中的能量特点是什么?在什么位置能量为最大?答案:能量从波源向外传播,波传播时某一体元的能量不守桓,波的传播方向与能量的传播方向一致,量值按正弦或余弦函数形式变化,介质中某一体元的波动动能和势能相同,处于平衡位置处的质点,速度最大,其动能最大,在平衡位置附近介质发生的形变也最大,势能也为最大。
6. 驻波是如何形成的?驻波的相位特点什么?答案:驻波是两列振幅相同的相干波在同一直线上沿相反方向传播时叠加而成。
驻波的相位特点是:相邻波节之间各质点的相位相同,波节两边质点的振动有的相位差。
7 惠更斯原理的内容是什么?利用惠更斯原理可以定性解释哪些物理现象?答案:介质中任一波振面上的各点,都可以看做发射子波的波源,其后任一时刻,这些子波的包络面就是该时刻的波振面。
振动、波动练习题及答案
![振动、波动练习题及答案](https://img.taocdn.com/s3/m/4032ef220029bd64793e2c65.png)
振动、波动练习题一.选择题1.一质点在X 轴上作简谐振动,振幅A=4cm 。
周期T=2s 。
其平衡位置取作坐标原点。
若t=0时刻质点第一次通过x= -2cm 处,且向X 轴负方向运动,则质点第二次通过x= -2cm 处的时刻为( )。
A 1sB 32s C 34s D 2s2.一圆频率为ω的简谐波沿X 轴的正方向传播,t=0时刻的波形如图所示,则t=0时刻,X 轴上各点的振动速度υ与X 轴上坐标的关系图应( )。
3.图示一简谐波在t=0时刻的波形图,波速υ=200m/s ,则图中O 点的振动加速度的表达式为( )。
)22cos(4.0)2cos(4.0)23cos(4.0)2cos(4.02222ππππππππππππ+-=--=-=-=t a D t a C t a B t a A4.频率为100Hz点振动的相位差为3π,则这两点相距( )。
A 2mB 2.19mC 0.5mD 28.6m5.一平面简谐波在弹性媒质中传播,媒质质元从平衡位置运动到最大位置处的过程中,( )。
A 它的动能转换成势能B 它的势能转换成动能C 它从相邻的一段质元获得能量其能量逐渐增大D 它把自己的能量传给相邻的一段质元,其能量逐渐减小6.在下面几种说法中,正确的说法是:( )。
A 波源不动时,波源的振动周期与波动的周期在数值上是不同的B 波源振动的速度与波速相同C 在波传播方向上的任一质点振动位相总是比波源的位相滞后D 在波传播方向上的任一质点振动位相总是比波源的位相超前7.一质点作简谐振动,周期为T ,当它由平衡位置向X 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为( )。
A 4T B 12T C 6T D 8T8.在波长为λ的驻波中两个相邻波节之间的距离为( )。
A λ B 3λ/4 C λ/2 D λ/49.在同一媒质中两列相干的平面简谐波的强度之比421=I I 是,则两列波的振幅之比是:( ) A=21A A 4 B =21A A 2 C =21A A 16 D =21A A 4110.有二个弹簧振子系统,都在作振幅相同的简谐振动,二个轻质弹簧的劲度系数K 相同,但振子的质量不同。
大学物理振动及波动往年部分试题讲解
![大学物理振动及波动往年部分试题讲解](https://img.taocdn.com/s3/m/bade50064a7302768e993930.png)
1 y 0.1cos(7t ) (SI) 2分 0.12 3
-07级
x
4、试在下图中画出简谐振子的动能,振动势能和 机械能随时间t而变的三条曲线(设t = 0时物体经 过平衡位置).
E
E
t 0 T T 为简谐振动的周期 T/2
机械能 势能 动能
t
0
T/2
-05级
T
[动能、势能曲线各2分,机械能曲线1分]
一、选择题类
1. 一个弹簧振子和一个单摆(只考虑小幅度摆动),在地 面上的固有振动周期分别为T1和T2,将它们拿到月球上 去,相应的周期分别为 T1 和 T2 。则有 (A) T1 > T1且 T2 > T2. (B) T1 < T1且 T2 < T2 .
(D) T1= T1且 T2> T2.
解:(1)以O为坐标原点,由图可知,该点振动的 初始条件为: y0=Acos=0,v0=-Asin <0 所以
波的表达式为
=/2
y=Acos[t- x/u+/2]
ห้องสมุดไป่ตู้
(2) x=/8处的振动方程为 y=Acos[t-/8u+/2]=Acos[t-T/8+/2] = Acos[t+/4]
2 A 2
x=3/8处的质点振动速度为v=-Asin2(1/4-3/8)=
-03级
2 A 2
2.(本题10分) 一列平面简谐波在媒质中以波速u=5m/s沿 x轴正向传播,原点O处质元的振动曲线如图 所示. (1)求解并画出x=25m处质元的振动曲线.
(2)求解并画出t=3s的波形曲线. 解:(1)原点O处质元的振动方程为:
dy/dt=Aωcosωt (2)物体的速度与坐标的函数关系式为 v= .
波动与振动-答案和解析
![波动与振动-答案和解析](https://img.taocdn.com/s3/m/33c8fbc3cc22bcd126ff0c6b.png)
1. 一简谐振动的表达式为)3cos(ϕ+=t A x ,已知0=t 时的初位移为, 初速度为s -1,则振幅A = ,初相位 = 解:已知初始条件,则振幅为:(m )05.0)309.0(04.0)(222020=-+=-+=ωv x A 初相: οο1.1439.36)04.0309.0(tg )(tg 1001或-=⨯-=-=--x v ωϕ因为x 0 > 0, 所以ο9.36-=ϕ2. 两个弹簧振子的的周期都是, 设开始时第一个振子从平衡位置向负方向运动,经过后,第二个振子才从正方向的端点开始运动,则这两振动的相位差为 。
解:从旋转矢量图可见,t = s 时,1A ρ与2A ρ反相,即相位差为。
3. 一物块悬挂在弹簧下方作简谐振动,当这物块的位移等于振幅的一半时,其动能是总能量的 (设平衡位置处势能为零)。
当这物块在平衡位置时,弹簧的长度比原长长l ∆,这一振动系统的周期为解:谐振动总能量221kA E E E p k =+=,当A x 21=时4)2(212122EA k kx E p ===,所以动能E E E E p k 43=-=。
物块在平衡位置时, 弹簧伸长l ∆,则l k mg ∆=,lmgk ∆=, 振动周期gl km T ∆==ππ224. 上面放有物体的平台,以每秒5周的频率沿竖直方向作简谐振动,若平台振幅超过 ,物体将会脱离平台(设2s m 8.9-⋅=g )。
解:在平台最高点时,若加速度大于g ,则物体会脱离平台,由最大加速度g A v A a m ===22)2(πω 得最大振幅为(m)100.11093.9548.94232222--⨯≈⨯=⨯==ππv g A 5. 一水平弹簧简谐振子的振动曲线如图所示,振子处在位移零、速度为A ω-、加速度为零和弹性力为零的状态,对应于曲线上的 点。
振子处在位移的绝对值为A 、速度为零、加速度为-2A 和弹性力-kA 的状态,对应于曲线的 点。
物理中的振动与波动测试题
![物理中的振动与波动测试题](https://img.taocdn.com/s3/m/8a8e68d46429647d27284b73f242336c1eb930b5.png)
物理中的振动与波动测试题在物理学的广阔天地中,振动与波动是两个极为重要的概念。
它们不仅在理论上具有深刻的意义,而且在实际生活中也有着广泛的应用。
接下来,让我们通过一系列的测试题来深入探究这两个有趣的物理现象。
一、选择题1、一个质点做简谐振动,其位移随时间的变化规律为$x =5\sin(2\pi t +\frac{\pi}{4})$(单位:cm),则该质点振动的周期为()A $\frac{1}{2}$ sB 1 sC 2 sD 4 s2、关于机械波,下列说法正确的是()A 机械波在传播过程中,各质点的振动频率相同B 机械波在传播过程中,各质点的振动速度相同C 机械波在传播过程中,介质中的质点随波迁移D 机械波在传播过程中,波的传播速度由波源决定3、一列横波沿 x 轴正方向传播,某时刻的波形如图所示。
此时质点 P 的运动方向是()(插入一个波形图)A 沿 y 轴正方向B 沿 y 轴负方向C 沿 x 轴正方向D 沿 x 轴负方向4、两列频率相同的波发生干涉时,加强区和减弱区相互间隔分布。
对于其中某一点(不是波峰和波谷的交点),下列说法正确的是()A 该点一定是振动加强点B 该点的位移一定最大C 该点的振幅一定最大D 该点的振动频率一定最大二、填空题1、一弹簧振子做简谐运动,振幅为 4 cm,周期为 05 s,则振子从平衡位置运动至最大位移处的时间为_____s。
2、已知一列横波在某时刻的波形曲线为正弦曲线,其波长为 20 m,波速为 10 m/s,则该波的频率为_____Hz,周期为_____s。
3、两列相干波源的振动方向相同,频率均为 50 Hz,在同一均匀介质中传播,波速为 10 m/s。
两波源相距 15 m,则在两波源连线的中点处,是_____(填“加强区”或“减弱区”)。
三、计算题1、一个做简谐运动的物体,其振动方程为$x = 10\cos(10\pi t +\frac{\pi}{3})$(单位:cm),求:(1)物体的振幅、周期和频率;(2)物体在 t = 01 s 时的位移。
第七章 振动和波 题库含答案-大学复习资料
![第七章 振动和波 题库含答案-大学复习资料](https://img.taocdn.com/s3/m/cd67cf11360cba1aa811dade.png)
第七章 振动和波 题库及答案一、单选题1、作简谐振动的物体运动至平衡位置向正方向运动时,其位移x 、速度υ、加速度a 为 [设振动方程为x =A cos(ωt+φ)] ()。
A) x =0, υ=0, a =0 B) x =0, υ=ωA , a =0 C) x =A , υ=ωA , a =ω2A D) x = –A , υ= –ωA , a =0 答案: B知识点: 7.1、简谐振动、简谐振动方程 难度: 1 提示:无题解:作简谐振动的物体运动至平衡位置时,其位移x =0、向正方向运动的速度υ=ωA 、加速度a =0,所以B 答案是正确的。
2、一质点作简谐振动,振动方程为x =A cos(ωt +ϕ),当时间t =T / 2(T 为周期)时,质点的速度为 ()。
A) -A ωcos ϕ B) -A ωsin ϕ C) A ωcos ϕ D) A ωsin ϕ 答案: D知识点:7.1、简谐振动、简谐振动方程 难度: 2 提示:无题解:质点作简谐振动的速度方程为)sin(ϕωω+=t A -υ,将t =T / 2代入得ϕωϕωϕωωsin )πsin()2sin(A A -TA -υ=+=+=所以D 答案是正确的。
3、一质点作水平方向的简谐振动,设其向右运动为正方向。
当质点在平衡位置开始向右运动,则初位相为()。
A) 0 B) 2πC) 2π-D) 3π答案: C知识点: 7.1、描述简谐振动的物理量 难度: 2 提示:无题解:设简谐动方程为)cos(ϕω+=t A x , t =0时ϕcos 0A = 0cos =ϕ 2π±=ϕ因为 0sin 0sin 0<>-=ϕϕωA υ 所以 2π-=ϕ 所以C 答案是正确的。
4、一质量为m 的物体,以速度υ(t ) = υ0sin ωt 的规律振动,则振动系统的总机械能为()。
A)221ωm B) ω 20m υ C)2021m υ D)t m υω sin 21220 答案: C知识点: 7.1、简谐振动的能量 难度: 2提示:因物体的速度按υ(t ) = υ0sin ωt 的规律振动,所以物体的振动为简谐振动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.如图,一平面简谐波沿Ox轴传播,波动表达式为yAcos[2(tx/)](SI),
求
(1)P处质点的振动方程;
(2)该质点的速度表达式与加速度表达式.
解:(1)振动方程yPAcos{2[t(L)/]}
Acos[2(tL/)]2分
(2)速度表达式vP2Asin[2(tL/)]2分
22AtL
加速度表达式aP4c os2[(/)]1分
t4[t(x/u)]4[t(x/u)]4[t(x/20)]2分
2tx
波的表达式为y310cos4[(/20)](SI)2分
(2)以B点为坐标原点,则坐标为x点的振动相位为
x5
t4[t](SI)2分
20Leabharlann 2x波的表达式为)]y310cos[4(t(SI)2分
20
0.15一平面简谐波沿x轴正向传播,其振幅和角频率分别为A和,波速为u,设t= 0时
(2)质点从平衡位置移动到上述位置所需最短时间为多少?
解:(1)势能
1
2
WPkx总能量
2
E
1
2
2
kA
122
由题意,/4
kxkA,
2
A
2
x4.2410m2分
2
(2)周期T= 2/= 6 s
从平衡位置运动到
A
xt为T/8.
2
∴t= 0.75s.3分
11
4.一质点作简谐振动,其振动方程为x=0.24cos(t)(SI),试用旋转矢量法求出
振动和波动计算题
1..一物体在光滑水平面上作简谐振动,振幅是12 cm,在距平衡位置6 cm处速度是24 cm/s,
求
(1)周期T;
(2)当速度是12 cm/s时的位移.
解:设振动方程为xAcost,则vAsint
(1)在x= 6 cm,v= 24 cm/s状态下有
612cost
2412sint
解得4/3,∴T2/3/2s2.72s2分
(2)求解并画出t= 3 s时的波形曲线.
y(cm)
2
24 O
t(s)
解:(1)原点O处质元的振动方程为
11
2t
y210cos(),(SI)2分
22
11
2tx波的表达式为)
y210cos((/5),(SI)2分
22
x= 25 m处质元的振动方程为
1
2t
y210cos(3),(SI)
2
振动曲线见图(a)2分
2
(2)x/8处振动方程为
1
yAcos[t(2/8)]Acos(t/4)1分
2
x3/8的振动方程为
3/81
yAcos[t2]Acos(t/4)1分
2
1
(3)dy/dtAsin(t2x/)
2
t=0,x/8处质点振动速度
1
dy/dtAsin[(2/8)]2A/21分
2
t=0,x3/8处质点振动速度
1
dy/dtAsin[(23/8)]2A/21分
y = 0.25cos(125×4-3.7) m= 0.249 m2分
0.14如图,一平面波在介质中以波速u= 20 m/s沿x轴负方向传播,已知A点的振动方程为
2(SI).y310cos4t
(1)以A点为坐标原点写出波的表达式;
(2)以距A点5 m处的B点为坐标原点,写出波的表达式.
u
Bx
A
解:(1)坐标为x点的振动相位为
0
解上面两式,可得= 2/32分
由图可知质点由位移为x0=-5 cm和v0< 0的状态到x= 0和v> 0的状态所需时间t= 2s,
代入振动方程得
010cos2(2/3)(SI)
则有22/33/2,∴= 5/122分
故所求振动方程为x0.1cos(5t/122/3)(SI)1分
7.一质点同时参与两个同方向的简谐振动,其振动方程分别为
由图得:合振动的振幅和初相分别为
A=(5-3)cm = 2 cm,=/3.2分-2
合振动方程为x=2×10
cos(4t+/3)(SI)1分
A
1
A
x O
A
2
8.两个同方向的简谐振动的振动方程分别为
-2-2
11
x1=4×10
cos2(t)(SI),x2=3×10cos2(t)(SI)
84
求合振动方程.
-2
(1)物体的振动方程;
(2)物体在平衡位置上方5 cm时弹簧对物体的拉力;
(3)物体从第一次越过平衡位置时刻起到它运动到上方5 cm处所需要的最短时间.
解:k=f/x=200 N/m,
k/m7.07rad/s2分
(1)选平衡位置为原点,x轴指向下方(如图所示),t= 0时,x0=
10Acos,v0= 0 =-Asin.
-2-2
x1=5×10cos(4t+/3)(SI) ,x2=3×10sin(4t-/6)(SI)
画出两振动的旋转矢量图,并求合振动的振动方程.
-2
解:x2=3×10
sin(4t-/6)-2
=3×10cos(4t-/6-/2)
-2cos(4t-2/3).
=3×10
作两振动的旋转矢量图,如图所示.图2分
13.某质点作简谐振动,周期为2s,振幅为0.06m,t= 0时刻,质点恰好处在负向最大位
移处,求
(1)该质点的振动方程;
(2)此振动以波速u= 2 m/s沿x轴正方向传播时,形成的一维简谐波的波动表达式,(以
该质点的平衡位置为坐标原点);
(3)该波的波长.
2t
解:(1)振动方程)
y0.06cos(0.06cos(t)(SI)3分
dy/dt2Asin(2t)01分
1
所以2t/2,2t
2
2分
1
x= 0处的振动方程为yAcos[2(tt)]1分
2
1
(2)该波的表达式为yAcos[2(ttx/u)]3分
2
10.一列平面简谐波在媒质中以波速u= 5 m/s沿x轴正向传播,原点O处质元的振动曲线
如图所示.
(1)求解并画出x= 25 m处质元的振动曲线.
0
2
(2)波动表达式y0.06cos([tx/u)]3分
1
0.16cos[(tx)](SI)
2
(3)波长uT4m2分
14.Oxu如图所示,一平面简谐波沿轴的负方向传播,波速大小为,
若P处介质质点的振动方程为yAcos(t)
P
(1)O处质点的振动方程;
,求
P
Lu
O
x
(2)该波的波动表达式;
(3)与P处质点振动状态相同的那些点的位置.
L
解:(1)O处质点的振动方程为cos[()]
yAt2分
0u
xL
(2)波动表达式为yAcos[(t)]2分
的波形曲线如图所示.
(1)写出此波的表达式.
y
(2)求距O点分别为/ 8和3/ 8两处质点的振动方程.
u(3)求距O点分别为/ 8和3/ 8两处质点在t = 0时的振动速度.
O
x
解:(1)以O点为坐标原点.由图可知,该点振动初始条件为
y0Aco s0,
L
v0Asin0
所以
1
2
P
O
x
1
波的表达式为]
yAcos[t(x/u)4分
(2)求x1,x2两点间的振动相位差;(3)求x1点在t = 4s时的振动位移.
解:(1)x1= 10 m的振动方程为
y
10t
0.13cos(1253.7)
x(SI)1分
x2= 25 m的振动方程为
y
x(SI)1分25125t9.
25125t9.
0.25cos(25)
(2)x2与x1两点间相位差
=2-1=-5.55 rad1分(3)x1点在t= 4 s时的振动位移
(2)t= 3 s时的波形曲线方程
2x
y210cos(/10),(SI)2分
波形曲线见图2分
y(m)
y(m)
-2
2×10
u
O510152025
x(m)
O
-2
-2×10
1
234
t(s)
(b)
(a)
11.已知一平面简谐波的表达式为y0.25cos(125t0.37x)(SI)
(1)分别求x1= 10m,x2= 25 m两点处质点的振动方程;
-2
合振动方程为x=6.48×10
cos(2t+1.12)(SI)1分
9.一平面简谐波沿x轴正向传播,其振幅为A,频率为,波速为u.设t=t'时刻的波形
曲线如图所示.求
(1)x= 0处质点振动方程;
(2)该波的表达式.
解:(1)设x= 0处质点的振动方程为yAcos2(t)
由图可知,t=t'时yAcos(2t)01分
解:由题意x1=4×10cos(2t)(SI)
4
y
-2
x2=3×10
cos(2t)(SI)
2
u
按合成振动公式代入已知量,可得合振幅及初相为
Ot=t′x
2324cos(/2/4)10
22
A4m
-2
=6.48×10
m2分
4sin(/4)3sin(/2)
arctg=1.12 rad2分
4cos(/4)3cos(/2)
23
质点由初始状态(t = 0的状态)运动到x=-0.12m,v< 0的状态所需最短时间t.
解:旋转矢量如图所示.图3分
由振动方程可得