(完整版)初中数学《几何最值问题》典型例题

合集下载

初二几何最值问题练习题

初二几何最值问题练习题

初二几何最值问题练习题1. 直线段问题已知一条直线上有三个点A(-2, -1), B(1, 2), C(3, 5),求该直线上与x 轴的交点D,使得线段AD + BD + CD的长度最小。

解答:首先,我们知道直线与x轴的交点的y坐标为0,所以设交点为D(x, 0)。

根据直线的斜率公式可得直线的斜率为k=(y2-y1)/(x2-x1)。

因此,点A到D的距离为AD的长度为√((x+2)^2+(-1-0)^2)。

同理,点B到D的距离为BD的长度为√((x-1)^2+(2-0)^2)。

点C到D的距离为CD的长度为√((x-3)^2+(5-0)^2)。

所以,线段AD + BD + CD的长度为L = √((x+2)^2+(-1-0)^2) + √((x-1)^2+(2-0)^2) + √((x-3)^2+(5-0)^2)。

为了求得使L最小的x值,我们需要对L进行求导并令导数为0。

首先,我们对L进行求导,得到:L'(x) = (√((x+2)^2+(-1-0)^2)/(x+2) + √((x-1)^2+(2-0)^2)/(x-1) + √((x-3)^2+(5-0)^2)/(x-3)令L'(x) = 0,可以得到方程:(√((x+2)^2+(-1-0)^2)/(x+2) + √((x-1)^2+(2-0)^2)/(x-1) + √((x-3)^2+(5-0)^2)/(x-3) = 0通过数值计算或图像分析,我们可以得到该方程的解为x ≈ 0.82,取到两个临近的整数,可以得到点D的横坐标为1或2。

所以,该直线上与x轴的交点D的横坐标可以取1或2。

如果取x=1,则点D的坐标为D(1, 0);如果取x=2,则点D的坐标为D(2, 0)。

2. 面积问题已知一个矩形的周长为20,我们需要确定矩形的长和宽,使得矩形的面积最大。

解答:设矩形的长为L,宽为W,由题可知周长为20,即2L+2W=20。

为了求得使矩形的面积最大化的长和宽,我们需要求解该矩形的面积S并对S进行求导。

中考数学几何最值问题解法

中考数学几何最值问题解法

中考数学几何最值问题解法一、应用两点之间线段最短的公理(含应用三角形的三边关系)求最值例1. 如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为yxOBA例2. 如图,圆柱底面半径为2cm,高为9cm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,求棉线最短为例3如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M 为EF中点,则AM的最小值为例4如图,两点A、B在直线MN外的同侧,A到MN的距离AC=8,B到MN的距离BD=5,CD=4,P 在直线MN上运动,则|PA-PB|的最大值等于______.例5.一次函数y1=kx-2与反比例函数y2=mx(m<0)的图象交于A,B两点,其中点A的坐标为(-6,2)(1)求m,k的值;(2)点P为y轴上的一个动点,当点P在什么位置时|P A-PB|的值最大?并求出最大值.二、应用垂线段最短的性质求最值:例1.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为例2. 在锐角△ABC中,BC=24,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,则CM+MN的最小值是例3.如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:①△DFE是等腰直角三角形;②四边形CEDF不可能为正方形;③点C到线段EF的最大距离为;④四边形CEDF的面积随点E位置的改变而发生变化.其中正确结论的个数是_例4.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD上滑动,且E、F不与B.C.D重合.(1)证明不论E、F在BC.CD上如何滑动,总有BE=CF;(2)当点E、F在BC.CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.三、应用轴对称的性质求最值:例1.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为_例2. 点A、B均在由面积为1的相同小矩形组成的网格的格点上,建立直角坐标系如图所示.若P是x轴上使得PA PB⋅=_ -的值最大的点,Q是y轴上使得QA十QB的值最小的点,则OP OQ例3. 如图,正方形ABCD中,AB=4,E是BC的中点,点P是对角线AC上一动点,则PE+PB的最小值为_例4.如图,正方形ABCD的边长为4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值是______.例5.如图,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是______例6 如图所示,在边长为2的正三角形ABC中,E、F、G分别为AB、AC、BC的中点,点P为线段EF 上一个动点,连接BP、GP,则△BPG的周长的最小值是 _例7如图,在矩形ABCD中,AB=6,BC=8,点E是BC中点,点F是边CD上的任意一点,当△AEF 的周长最小时,则DF的长为_五、应用其它知识求最值:例1.矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P.Q也随之移动,若限定点P、Q分别在线段AB、AD边上移动,则点A′在BC边上可移动的最大距离为______例2.如图,线段AB的长为4,C为AB上一动点,分别以AC、BC为斜边在AB的同侧作等腰直角△ACD 和等腰直角△BCE,那么DE长的最小值是___ .例3.在Rt△POQ中,OP=OQ=4,M是PQ的中点,把一三角尺的直角顶点放在点M处,以M为旋转中心,旋转三角尺,三角尺的两直角边与△POQ的两直角边分别交于点A、B.(1)求证:MA=MB;(2)连接AB,探究:在旋转三角尺的过程中,△AOB的周长是否存在最小值?若存在,求出最小值;若不存在,请说明理由.例4如图,点C是线段AB上的任意一点(C点不与A、B点重合),分别以AC、BC为边在直线AB的同侧作等边三角形ACD和等边三角形BCE,AE与CD相交于点M,BD与CE相交于点N。

中考数学总复习《几何图形的最值问题》专题训练(附带答案)

中考数学总复习《几何图形的最值问题》专题训练(附带答案)

中考数学总复习《几何图形的最值问题》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________一 单选题1.如图,等腰三角形ABC 的底边BC 长为6 腰AC 的垂直平分线EF 分别交边AC AB 于点E F 若D 为BC 边的中点 M 为线段EF 上一动点 若三角形CDM 的周长的最小值为13 则等腰三角形ABC 的面积为( )A .78B .39C .42D .302.如图,在Rt ABC 和Rt ADE 中,90BAC DAE ∠=∠=︒ 3AC AD == AB =AE =5.连接BD CE 将△ADE 绕点A 旋转一周 在旋转的过程中当DBA ∠最大时 △ACE 的面积为( ).A .6B .62C .9D .92 3.如图,凸四边形ABCD 中,90,90,60,3,3A C D AD AB ∠=︒∠=︒∠=︒== 若点M N 分别为边,CD AD 上的动点 则BMN 的周长最小值为( )A .26B .36C .6D .34.如图,△ACB 中,CA =CB =4 △ACB =90° 点P 为CA 上的动点 连BP 过点A 作AM △BP 于M .当点P 从点C 运动到点A 时 线段BM 的中点N 运动的路径长为( )5.如图,四边形ABCD 是菱形 AB=4 且△ABC=△ABE=60° G 为对角线BD (不含B 点)上任意一点 将△ABG 绕点B 逆时针旋转60°得到△EBF 当AG+BG+CG6.如图,在Rt ABC ∆中,90︒∠=C 4AC = 3BC = 点O 是AB 的三等分点 半圆O 与AC 相切 M N 分别是BC 与半圆弧上的动点 则MN 的最小值和最大值之和是( )A .5B .6C .7D .87.如图,菱形ABCD 的边AB =8 △B =60° P 是AB 上一点 BP =3 Q 是CD 边上一动点 将梯形APQD 沿直线PQ 折叠 A 的对应点A ′.当CA ′的长度最小时 CQ13为PC 的中点.当点P 沿半圆从点A 运动至点B 时 点M 运动的路径长是( )A .224π+B .2πC .422+D .4π二 填空题9.如图,点P 是AOB ∠内任意一点 3cm OP = 点M 和点N 分别是射线OA 和射线OB 上的动点 30AOB ∠=︒ 则PMN 周长的最小值是 .10.△ABC 中,AB =AC =5 BC =6 D 是BC 的中点 E 为AB 上一动点 点B 关于DE 的对称点B '在△ABC 内(不含△ABC 的边上) 则BE 长的范围为 .11.如图,等边三角形ABC 的边BC 上的高为6 AD 是BC 边上的中线 M 是线段AD 上的-一个动点 E 是AC 中点 则EM CM +的最小值为 .12.如图,正△ABC 的边长为2 过点B 的直线l △AB 且△ABC 与△A ′BC ′关于直线l 对称 D 为线段BC ′上一动点 则AD +CD 的最小值是 .13.如图,已知ABC 外心为O 18BC = 60BAC ∠=︒ 分别以AB AC 为腰向形外作等腰直角三角形ABD △与ACE △ 连接BE CD 交于点P 则OP 的最2三解答题17.如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A B C在小正方形的顶点上.(1)在图中画出与ABC关于直线l成轴对称的AB C''.+的长最短.(2)在直线l上找一点P使PB PC18.如图,在△ABC中,AB=AC AD是△ABC底边BC上的中线点P为线段AB 上一点.(1)在AD上找一点E使得PE+EB的值最小;(2)若点P为AB的中点当△BPE满足什么条件时△ABC是等边三角形并说明理由.19.如图,等边ABC的边长为6 AD是BC边上的中线M是AD上的动点E 是AB边上一点若=2AE求EM BM+的最小值.20.如图,等边三角形ABC内接于半径长为2的△O点P在圆弧AB上以2倍速度从B向A运动点Q在圆弧BC上以1倍速度从C向B运动当点P O Q三点处于同一条直线时停止运动.(1)求点Q的运动总长度;(2)若M为弦PB的中点求运动过程中CM的最大值.参考答案: 1.D【分析】连接AD 由于ABC 是等腰三角形 点D 是BC 边的中点 可得AD BC ⊥ 再根据EF 是线段AC 的垂直平分线可知 点C 关于直线EF 的对称点为点A 故AD 的长为CM MD +的最小值 再根据三角形的面积公式即可得出结论.【详解】解:如图:连接AD 交EF 于点MABC 是等腰三角形 点D 是BC 边的中点AD BC ∴⊥ 132CD BC == EF 是线段AC 的垂直平分线∴点C 关于直线EF 的对称点为点A AM CM =∴此时△CDM 的周长最小13CM DM CD AM DM CD AD CD ∴++=++=+=1313310AD CD ∴=-=-=116103022ABC S BC AD ∴=⋅=⨯⨯=△ 故选:D .【点睛】本题考查的是轴对称−最短路线问题 等腰三角形的性质 三角形的面积 熟知等腰三角形三线合一的性质是解答此题的关键.2.A【分析】先分析出D 的轨迹为以A 为圆心AD 的长为半径的圆 当BD 与该圆相切时 △DBA 最大 过C 作CF △AE 于F 由勾股定理及三角函数计算出BD CF 的长 代入面积公式求解即可.【详解】解:由题意知 D 点轨迹为以A 为圆心AD 的长为半径的圆当BD 与D 点的轨迹圆相切时 △DBA 取最大值 此时△BDA =90° 如图所示B B M B M N N B ''''''''''<++B M BM '''= B N BN ''''=BM M N BN B B '''''''∴++>又B B B M MN NB ''''''=++MB MB '= NB NB ''=NB NM BM BM M N BN ''''∴++<++BMN l NB NM BM ∆∴=++时周长最小;连接DB 过点B '作B H DB '''⊥于B D ''的延长线于点H如图示2所示:在Rt ABD 中,3AD = 3AB =∴22223(3)23DB AD AB =+=+=230∴∠=︒530∴∠=︒ DB DB ''=又1260ADC ∠=∠+∠=︒又B DB '''∠660∴∠=︒3HD = Rt △B HB 'B HB '''=5.D【分析】根据“两点之间线段最短” 当G点位于BD与CE的交点处时AG+BG+CG的值最小即等于EC的长.【详解】解:如图△将△ABG绕点B逆时针旋转60°得到△EBF△BE=AB=BC BF=BG EF=AG△△BFG是等边三角形.△BF=BG=FG .△AG+BG+CG=FE+GF+CG.根据“两点之间线段最短”△当G点位于BD与CE的交点处时AG+BG+CG的值最小即等于EC的长过E点作EF△BC交CB的延长线于F△△EBF=180°-120°=60°△BC=4△BF=2 EF=23在Rt△EFC中△EF2+FC2=EC2△EC=43.△△CBE=120°△△BEF=30°△△EBF=△ABG=30°△EF=BF=FGOP ACO是AB的三等分点210=⨯=5338=3与AC相切于点故选B.【点睛】此题主要考查圆与三角形的性质解题的关键是熟知圆的性质及直角三角形的性质.7.B【详解】作CH△AB于H如图.△菱形ABCD的边AB=8 △B=60°△△ABC为等边三角形AB=43AH=BH=4.△CH=32△PB=3 △HP=1.在Rt△CHP中,CP=22=7.(43)1△梯形APQD沿直线PQ折叠A的对应点A′△点A′在以P点为圆心P A为半径的弧上△当点A′在PC上时CA′的值最小△△APQ=△CPQ而CD△AB△△APQ=△CQP△△CQP=△CPQ△CQ=CP=7.故选B.【点睛】本题考查了菱形的性质.解答本题的关键是确定A′在PC上时CA′的长度最小.8.BPMN的周长最小.CD分别交△点P 关于OA 的对称点为C 关于OB 的对称点为D△PM CM OP OC COA POA ==∠=∠,,;△点P 关于OB 的对称点为D△PN DN OP OD DOB POB ==∠=∠,,△3cm OC OD OP ===22260COD COA POA POB DOB POA POB AOB ∠=∠+∠+∠+∠=∠+∠=∠=︒△COD △是等边三角形△()3cm CD OC OD ===.△PMN 的周长的最小值3cm PM MN PN CM MN DN CD =++=++≥=.故答案为:3cm .【点睛】本题主要考查最短路径问题和等边三角形的判定. 作点P 关于OA OB 的对称点C D 是解题的关键所在.10.9552BE << 【分析】首先根据运动特点分析出点B '的运动轨迹在以D 为圆心 BD 为半径的圆弧上 然后分点B '恰好落在AB 边上和点B '恰好落在AC 边上两种情况讨论 分别利用勾股定理以及等腰三角形的性质和判定进行求解和证明即可得出两种临界情况下BE 的长度 从而得出结论.【详解】解:△点B 与B '关于DE 对称△BD B D '= 则点B '的运动轨迹在以D 为圆心 BD 为半径的圆弧上△如图所示 当点B '恰好落在AB 边上时 此时 连接AD 和DE由题意及“三线合一”知 AD BD ⊥ 132BD BC == △在Rt ABD 中,2222534AD AB BD =-=-=此时 根据对称的性质 DE AB ⊥12AB DE AD BD =Rt BDE 中,2295BD DE -=;如图所示 22综上BE长的范围为95 52BE<<故答案为:95 52BE<<.【点睛】本题考查等腰三角形的性质和判定以及勾股定理解直角三角形等能够根据题意准确分析出动点的运动轨迹并构建适当的三角形进行求解是解题关键.11.6【分析】连接BE交AD于M则BE就是EM+CM的最小值通过等腰三角形的“三线合一” 可得BE=AD即可得出结论.【详解】解:连接BE与AD交于点M.△AB=AC AD是BC边上的中线△B C关于AD对称则EM+CM=EM+BM则BE就是EM+CM的最小值.△E是等边△ABC的边AC的中点AD是中线△BE=AD=6△EM+CM的最小值为6故答案为:6.【点睛】此题主要考查了等腰三角形的性质—“三线合一” 等边三角形的性质和轴对称等知识的综合应用解题关键是找到M点的位置.12.4【分析】根据等边三角形的性质及轴对称的性质得到△ABC=△A'B C'=60° A'B=AB=BC=2 证明△CBD△△A'BD得到CD=A'D推出当A D A'三点共线时AD+CD最小此时AD+CD=A'B+AB=4.【详解】解:如图,连接A'D.由ABC的外心为的值最小解直角三角形即可得到结论.【详解】解:ABD与BAD CAE=∠=︒90=∠DAC BAEDAC与BAE中BAEBAE SASDAC∴△()ADC ABE∴∠=∠90PDB PBD∴∠+∠=︒90DPB∴∠=︒P∴在以BC为直径的圆上ABC的外心为O60BAC∠=︒120BOC∴∠=︒如图,当PO BC⊥时OP的值最小18BC=9 BH CH∴==12 OH OB=223BH OB OH OH∴=-=33OH∴=9PH=933OP∴=-.则OP的最小值是933-故答案为:933-.【点睛】本题考查了三角形的外接圆与外心全等三角形的判定和性质等腰直角三角形的性质正确的作出辅助线是解题的关键.14.25【分析】2P A+PB=2(P A+22PB)利用相似三角形构造22PB即可解答.【详解】解:设△O半径为r15.152【分析】如图,连接BP 在BC 上取一点M 使得BM =32 进而证明BPM BCP △∽△,则在点P 运动的任意时刻 均有PM =12PC 从而将问题转化为求PD -PM 的最大值.连接PD 在△PDM 中,PD -PM <DM 故当D M P 共线时 PD -PM =DM 为最大值 勾股定理即可求得DM .【详解】如图,连接BP 在BC 上取一点M 使得BM =3231232BM BP == 3162BP BC == BM BP BP BC∴= PBM CBP ∠=∠∴BPM BCP △∽△12MP BM PC BP ∴== 12MP PC ∴=12PD PC PD MD ∴-=- 在△PDM 中,PD -PM <DM当D M P 共线时 PD -PM =DM 为最大值四边形Rt CDM中,故答案为:15 2【点睛】本题考查了圆的性质的关键.6015-90Rt BDA中,AB由勾股定理得:222BD AB AD =-即:216925144BD =-=△0BD >△=12BD△E 为AD 的中点△1522DE AD == 在Rt BDE 中,=12BD 52DE =由勾股定理得:222BE DE BD =+即:225601+144=44BE = △0BE >△6012BE = 又△DH △AC 且点E 为AD 的中点△52EH = △60156015222BH BE EH -=-=-= 故答案为:60152- 【点睛】本题考查勾股定理解三角形 直径所对的圆周角为直角 直角三角形斜边上的中线等于斜边的一半 隐圆问题的处理等相关知识点 能够判断出从动点的运动轨迹是解题的关键.17.(1)见解析(2)见解析【详解】(1)解:如图,△AB C ''即为所求.(2)如图,点P即为所求.【点睛】本题考查作图-轴对称变换轴对称-最短路线问题熟练掌握轴对称的性质是解答本题的关键.18.(1)见解析;(2)△BPE=90° 理由见解析【分析】(1)根据等腰三角形三线合一的性质可知AD垂直平分BC再根据两点间线段最短的性质连接CP交AD于点E并连接BE即可得解;(2)因为P为AB的中点要使△ABC是等边三角形则需BC=AB根据等腰三角形三线合一的性质所以CP△AB即△BPE=90°.【详解】解:(1)如图,连接CP交AB于点E 则点E为所求;(2)△BPE=90° 理由如下:△△BPE=90°△CP△AB△点P为AB的中点△CP垂直平分AB△CA=CB△AB=AC△AB =AC =BC △△ABC 是等边三角形【点睛】本题主要考查等腰三角形三线合一的性质以及对称 两点间线段最短 线段中垂线定理 熟练掌握这些性质定理是解决本题的关键.19.27【分析】连接CE 与AD 交于点M .则CE 就是BM ME +的最小值 在直角CEF △中,求得CE 的长 即可.【详解】解:连接CE 与AD 交于点M '.△等边ABC 中,AD 是BC 边上的中线△AD 是BC 的中垂线△CE =CM M E ''+=BM ME +的最小值.过点C 作CF AB ⊥△等边ABC 的边长为6 =2AE△==62=4BE AB AE -- 3AF BF == 321EF =-= 226333CF =-= △()2233127CE =+= △BM ME +的最小值为27.【点睛】本题考查了等边三角形的性质 勾股定理 两点间线段最短 连接CE 从而把两线段和的最小值转化为两点间线段最短是本题的关键.20.(1)23π(2)7 1.+【分析】(1)如图,设,COQ 结合题意可得:2BOP 结合正三角形的性质求解60, 再利用弧长公式进行计算即可;(2)解:如图,取作OE BC ⊥于E 三点共线时【详解】()解:如图,设,COQ 结合题意可得:2BOPABC 为等边三角形360120,3BOC120,BOQ而,,P O Q 三点共线1802,BOQ1201802,解得:=60,Q ∴运动的总长度为:6022=.1803)解:如图,取OB 的中点N 连接NM BC ⊥于EM 为PB11,NM OP2△M在以N为圆心半径为1的圆N上运动△当C N M三点共线时CM最大BOC OB OC120,,OBC30,113NK BN BK,,222同理可得:3,BE=则23,BC=333CK23,2222133NC7,22CM CN NM71,△CM的最大值为:7 1.+【点睛】本题考查的是弧长的计算弧与圆心角的关系圆的基本性质正多边形的性质勾股定理的应用熟练的构造辅助圆再求解线段的最大值是解本题的关键.。

初中数学-平面几何的最值问题

初中数学-平面几何的最值问题

平面几何的最值问题阅读与思考几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值. 求几何最值问题的基本方法有:1.特殊位置与极端位置法:先考虑特殊位置或极端位置,确定最值的具体数据,再进行一般情形下的推证.2.几何定理(公理)法:应用几何中的不等量性质、定理.3.数形结合法等:揭示问题中变动元素的代数关系,构造一元二次方程、二次函数等.例题与求解【例1】在Rt △ABC 中,CB =3,CA =4,M 为斜边AB 上一动点.过点M 作MD ⊥AC 于点D ,过M 作ME ⊥CB 于点E ,则线段DE 的最小值为 .解题思路:四边形CDME 为矩形,连结CM ,则DE = CM ,将问题转化为求CM 的最小值.【例2】如图,在矩形ABCD 中,AB =20cm ,BC =10cm .若在AC ,AB 上各取一点M ,N ,使BM +MN 的值最小,求这个最小值.ADMN解题思路:作点B 关于AC 的对称点B ′,连结B ′M ,B ′A ,则BM = B ′M ,从而BM +MN = B ′M +MN .要使BM +MN 的值最小,只需使B ′M 十MN 的值最小,当B ′,M ,N 三点共线且B ′N ⊥AB 时,B ′M +MN 的值最小.【例3】如图,已知□ABCD ,AB =a ,BC =b (b a ),P 为AB 边上的一动点,直线DP 交CB 的延长线于Q .求AP +BQ 的最小值.PDA BQ解题思路:设AP =x ,把AP ,BQ 分别用x 的代数式表示,运用不等式以ab b a 222≥+或a +b ≥2ab(当且仅当a =b 时取等号)来求最小值. 【例4】阅读下列材料:问题 如图1,一圆柱的底面半径为5dm ,高AB 为5dm ,BC 是底面直径,求一只蚂蚁从A 点出发沿圆柱表面爬行到C 点的最短路线. 小明设计了两条路线:图2图1摊平沿AB 剪开ACBBA路线1:侧面展开图中的线段AC .如图2所示.设路线l 的长度为l 1,则l 12 =AC 2=AB 2 +BC 2 =25+(5π) 2=25+25π2. 路线2:高线AB 十底面直径BC .如图1所示.设路线l 的长度为l 2,则l 22 = (BC +AB )2=(5+10)2 =225.∵l 12 – l 22 = 25+25π2-225=25π2-200=25(π2-8),∴l 12 >l 22 ,∴ l 1>l 2 . 所以,应选择路线2.(1)小明对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为1分米,高AB 为5分米”继续按前面的路线进行计算.请你帮小明完成下面的计算: 路线1:l 12=AC 2= ;路线2:l 22=(AB +BC )2= .∵ l 12 l 22,∴l 1 l 2 ( 填“>”或“<”),所以应选择路线 (填“1”或“2”)较短.(2)请你帮小明继续研究:在一般情况下,当圆柱的底面半径为r ,高为h 时,应如何选择上面的两条路线才能使蚂蚁从点A 出发沿圆柱表面爬行到C 点的路线最短.解题思路:本题考查平面展开一最短路径问题.比较两个数的大小,有时比较两个数的平方比较简便.比较两个数的平方,通常让这两个数的平方相减.【例5】如图,已知边长为4的正方形钢板,有一个角锈蚀,其中AF =2,BF =1.为了合理利用这块钢板,将在五边形EABCD 内截取一个矩形块MDNP ,使点P 在AB 上,且要求面积最大,求钢板的最大利用率.NMEDAB解题思路:设DN =x ,PN =y ,则S =xy .建立矩形MDNP 的面积S 与x 的函数关系式,利用二次函数性质求S 的最大值,进而求钢板的最大利用率.【例6】如图,在四边形ABCD 中,AD =DC =1,∠DAB =∠DCB =90°,BC ,AD 的延长线交于P ,求AB ·S △P AB 的最小值.1ABD解题思路:设PD =x (x >1),根据勾股定理求出PC ,证Rt △PCD ∽Rt △P AB ,得到PCPACD AB ,求出AB ,根据三角形的面积公式求出y =AB ·S △P AB ,整理后得到y ≥4,即可求出答案.。

初中数学几何最值专题33:点与圆之“一箭穿心”(最全修正版)

初中数学几何最值专题33:点与圆之“一箭穿心”(最全修正版)

初中数学几何最值专题33:点与圆之“一箭穿心”(最全修正版)一箭穿心介绍】本文主要介绍一种几何问题——一箭穿心,即求解一个动点在平面内移动时,与固定点和固定直线的连线长度最短的问题。

例题精讲】例1、在平面直角坐标系中,点A的坐标为(4,0),点B是第一象限内的一个动点并且使∠OBA=90°,点C的坐标为(0,3),则BC的最小值为多少?解析提示:根据勾股定理可得,AB的长度为4,由于∠OBA=90°,所以OB为BC的最小值。

因此,BC的最小值为3.例2、在半圆O的直径AB上,点D到A的距离为20,到B的距离为4,点C在弧BD上移动,求BH的最小值。

解析提示:根据勾股定理可得,AD的长度为20,AB的长度为4,所以BD的长度为√396.由于BCD构成等腰三角形,所以∠BCD=∠CBD,因此BH为CD的中线,所以BH的长度为√196+(√396÷2)²=5.因此,BH的最小值为5.例3、在平面直角坐标系中,已知点A(0,1)、点B(t,1+t)、C(-t,1-t)(t>0),点P在以D(3,3)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则t的最小值是多少?解析提示:根据勾股定理可得,BP²=PC²+BC²。

由于∠BPC=90°,所以BP²=BC²+1.代入坐标可得(t-3)²+(2t-2)²=(t+3)²+(2t)²+1.化简可得t=√2.因此,t的最小值为√2.例4、在平面直角坐标系中,圆心M的坐标为(3,4),⊙M的半径为2,点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为多少?解析提示:根据勾股定理可得,PA²=PM²-AM²,PB²=PM²-BM²。

题型六 几何最值(专题训练)(解析版)

题型六 几何最值(专题训练)(解析版)

题型六几何最值(专题训练)1.如图,△ABC 中,AB =AC =10,tanA =2,BE ⊥AC 于点E ,D 是线段BE 上的一个动点,则CD BD +的最小值是( )【答案】B【详解】如图,作DH ⊥AB 于H ,CM ⊥AB 于M .∵BE ⊥AC ,∴∠AEB=90°,∵tanA=BE AE=2,设AE=a ,BE=2a ,则有:100=a 2+4a 2,∴a 2=20,∴,∴,∵AB=AC ,BE ⊥AC ,CM ⊥AB ,∴(等腰三角形两腰上的高相等))∵∠DBH=∠ABE ,∠BHD=∠BEA ,∴sin DH AE DBH BD AB Ð===,∴BD ,∴BD=CD+DH ,∴CD+DH ≥CM ,∴BD ≥∴BD 的最小值为故选B .2.如图,在Rt ABC D 中,90°Ð=C ,4AC =,3BC =,点O 是AB 的三等分点,半圆O 与AC 相切,M ,N 分别是BC 与半圆弧上的动点,则MN 的最小值和最大值之和是( )A .5B .6C .7D .8【答案】B【详解】如图,设⊙O 与AC 相切于点D ,连接OD ,作OP BC ^垂足为P 交⊙O 于F ,此时垂线段OP 最短,PF 最小值为OP OF -,∵4AC =,3BC =,∴5AB =∵90OPB °Ð=,∴OP ACP ∵点O 是AB 的三等分点,∴210533OB =´=,23OP OB AC AB ==,∴83OP =,∵⊙O 与AC 相切于点D ,∴OD AC ^,∴OD BC ∥,∴13OD OA BC AB ==,∴1OD =,∴MN 最小值为85133OP OF -=-=,如图,当N 在AB 边上时,M 与B 重合时,MN 经过圆心,经过圆心的弦最长,MN 最大值1013133=+=,513+=633,∴MN 长的最大值与最小值的和是6.故选B .3.如图,在矩形纸片ABCD 中,2AB =,3AD =,点E 是AB 的中点,点F 是AD 边上的一个动点,将AEF V 沿EF 所在直线翻折,得到'A EF V ,则'A C 的长的最小值是( )A B .3C 1-D 1-【答案】D【详解】以点E 为圆心,AE 长度为半径作圆,连接CE ,当点A'在线段CE 上时,A'C 的长取最小值,如图所示,根据折叠可知:1A'E AE AB 12===.在Rt BCE V 中,1BE AB 12==,BC 3=,B 90Ð=o ,CE \==,A'C \的最小值CE A'E 1=-=.故选D .4.如图,四边形ABCD 是菱形,AB=4,且∠ABC=∠ABE=60°,G 为对角线BD (不含B 点)上任意一点,将△ABG 绕点B 逆时针旋转60°得到△EBF ,当AG+BG+CG 取最小值时EF 的长( )A .B .C .D .【答案】D【详解】解:如图,∵将△ABG 绕点B 逆时针旋转60°得到△EBF ,∴BE=AB=BC ,BF=BG ,EF=AG ,∴△BFG 是等边三角形.∴BF=BG=FG ,.∴AG+BG+CG=FE+GF+CG .根据“两点之间线段最短”,∴当G 点位于BD 与CE 的交点处时,AG+BG+CG 的值最小,即等于EC 的长,过E 点作EF ⊥BC 交CB 的延长线于F ,∴∠EBF=180°-120°=60°,∵BC=4,∴BF=2,,在Rt △EFC 中,∵EF 2+FC 2=EC 2,∴.∵∠CBE=120°,∴∠BEF=30°,∵∠EBF=∠ABG=30°,∴EF=BF=FG ,∴EF=13故选:D .5.如图,Rt ABC △中,AB BC ^,6AB =,4BC =,P 是ABC △内部的一个动点,且满足90PAB PBA °Ð+Ð=,则线段CP 长的最小值为________.【答案】2:【详解】∵∠PAB+∠PBA=90°∴∠APB=90°∴点P 在以AB 为直径的弧上(P 在△ABC 内)设以AB 为直径的圆心为点O ,如图接OC ,交☉O 于点P ,此时的PC 最短∵AB=6,∴OB=3∵BC=4∴5OC ===∴PC=5-3=26.如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE=1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .【分析】同样是作等边三角形,区别于上一题求动点路径长,本题是求CG 最小值,可以将F 点看成是由点B 向点A 运动,由此作出G 点轨迹:考虑到F 点轨迹是线段,故G 点轨迹也是线段,取起点和终点即可确定线段位置,初始时刻G 点在1G 位置,最终G 点在2G 位置(2G 不一定在CD 边),12G G 即为G点运动轨迹.CG 最小值即当CG ⊥12G G 的时候取到,作CH ⊥12G G 于点H ,CH 即为所求的最小值.根据模型可知:12G G 与AB 夹角为60°,故12G G ⊥1EG .过点E 作EF ⊥CH 于点F ,则HF=1G E =1,CF=1322CE =,所以CH=52,因此CG 的最小值为52.GA B CDE F27.如图,矩形ABCD 中,4AB =,6BC =,点P 是矩形ABCD 内一动点,且D D =PAB PCD S S ,则PC PD +的最小值为_____.【答案】【详解】ABCD Q 为矩形,AB DC\=又=V V Q PAB PCDS S \点P 到AB 的距离与到CD 的距离相等,即点P 线段AD 垂直平分线MN 上,连接AC ,交MN 与点P ,此时PC PD +的值最小,且PC PD AC +=====故答案为:8.如图,在△ABC 中,∠ACB =90°,∠A =30°,AB =5,点P 是AC 上的动点,连接BP ,以BP 为边作等边△BPQ ,连接CQ ,则点P 在运动过程中,线段CQ 长度的最小值是2______.【答案】54.【详解】解:如图,取AB的中点E,连接CE,PE.∵∠ACB=90°,∠A=30°,∴∠CBE=60°,∵BE=AE,∴CE=BE=AE,∴△BCE是等边三角形,∴BC=BE,∵∠PBQ=∠CBE=60°,∴∠QBC=∠PBE,∵QB=PB,CB=EB,∴△QBC≌△PBE(SAS),∴QC=PE,∴当EP⊥AC时,QC的值最小,在Rt△AEP中,∵AE=52,∠A=30°,∴PE=12AE=54,∴CQ的最小值为54.故答案为:549.如图,在正方形ABCD 中,AB =8,AC 与BD 交于点O ,N 是AO 的中点,点M 在BC 边上,且BM =6.P 为对角线BD 上一点,则PM ﹣PN 的最大值为 .【答案】2【分析】作以BD 为对称轴作N 的对称点N',连接PN',MN',依据PM ﹣PN =PM ﹣PN'≤MN',可得当P ,M ,N'三点共线时,取“=”,再求得//AN CN BM CM ==31,即可得出PM ∥AB ∥CD ,∠CMN'=90°,再根据△N'CM 为等腰直角三角形,即可得到CM =MN'=2.【解答】解:如图所示,作以BD 为对称轴作N 的对称点N',连接PN',MN',根据轴对称性质可知,PN =PN',∴PM ﹣PN =PM ﹣PN'≤MN',当P ,M ,N'三点共线时,取“=”,∵正方形边长为8,∴AC =2AB =28,∵O 为AC 中点,∴AO =OC =24,∵N 为OA 中点,∴ON =22,∴ON'=CN'=22,∴AN'=26,∵BM =6,∴CM =AB ﹣BM =8﹣6=2,∴//AN CN BM CM ==31∴PM ∥AB ∥CD ,∠CMN'=90°,∵∠N'CM =45°,∴△N'CM 为等腰直角三角形,∴CM =MN'=2,即PM ﹣PN 的最大值为2,故答案为:2.【点评】本题主要考查了正方形的性质以及最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.10.如图,ABC V 是等边三角形,6AB =,N 是AB 的中点,AD 是BC 边上的中线,M 是AD 上的一个动点,连接,BM MN ,则BM MN +的最小值是________.【答案】【分析】根据题意可知要求BM+MN 的最小值,需考虑通过作辅助线转化BM ,MN 的值,从而找出其最小值,进而根据勾股定理求出CN ,即可求出答案.【解析】解:连接CN ,与AD 交于点M ,连接BM .(根据两点之间线段最短;点到直线垂直距离最短),AD 是BC 边上的中线即C 和B 关于AD 对称,则BM+MN=CN ,则CN 就是BM+MN 的最小值.∵ABC V 是等边三角形,6AB =,N 是AB 的中点,∴AC=AB=6,AN=12AB=3, CN AB ^,∴CN ====即BM+MN的最小值为故答案为:【点睛】本题考查的是轴对称-最短路线问题,涉及到等边三角形的性质,勾股定理,轴对称的性质,等腰三角形的性质等知识点的综合运用.11.如图,在中,∠ACB=90°,BC=12,AC=9,以点C 为圆心,6为半径的圆上有一个动点D .连接AD 、BD 、CD ,则2AD+3BD 的最小值是 .【分析】首先对问题作变式2AD+3BD=233AD BD æö+ç÷èø,故求23AD BD +最小值即可.考虑到D 点轨迹是圆,A 是定点,且要求构造23AD ,条件已经足够明显.当D 点运动到AC 边时,DA=3,此时在线段CD 上取点M 使得DM=2,则在点D 运动过程中,始终存在23DM DA =.ABC D A BCD问题转化为DM+DB 的最小值,直接连接BM ,BM 长度的3倍即为本题答案.12.如图,四边形ABCD 中,AB ∥CD ,∠ABC =60°,AD =BC =CD =4,点M 是四边形ABCD 内的一个动点,满足∠AMD =90°,则点M 到直线BC 的距离的最小值为_____.【答案】2-【解析】【分析】取AD 的中点O ,连接OM ,过点M 作ME ⊥BC 交BC 的延长线于E ,点点O 作OF ⊥BC 于F ,交CD 于G ,则OM+ME ≥OF .求出OM ,OF 即可解决问题.【详解】解:取AD 的中点O ,连接OM ,过点M 作ME ⊥BC 交BC 的延长线于E ,点点O 作OF ⊥BC 于F ,交CD 于G ,则OM+ME ≥OF .∵∠AMD=90°,AD=4,OA=OD,∴OM=12AD=2,∵AB∥CD,∴∠GCF=∠B=60°,∴∠DGO=∠CGE=30°,∵AD=BC,∴∠DAB=∠B=60°,∴∠ADC=∠BCD=120°,∴∠DOG=30°=∠DGO,∴DG=DO=2,∵CD=4,∴CG=2,∴OG=,GF,OF=,∴ME≥OF﹣OM=﹣2,∴当O,M,E共线时,ME的值最小,最小值为2.【点睛】本题考查解直角三角形,垂线段最短,直角三角形斜边中线的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.13.如图,四边形ABCD是菱形,A B=6,且∠ABC=60° ,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM 的最小值为________.【答案】【详解】将△BMN 绕点B 顺时针旋转60度得到△BNE ,∵BM=BN ,∠MBN=∠CBE=60°,∴MN=BM ∵MC=NE ∴AM+MB+CM=AM+MN+NE .当A 、M 、N 、E 四点共线时取最小值AE .∵AB=BC=BE=6,∠ABH=∠EBH=60°,∴BH ⊥AE ,AH=EH ,∠BAH=30°,∴BH=12AB=3,BH=AE=2AH=故答案为14.如图,在矩形ABCD 中,E 为AB 的中点,P 为BC 边上的任意一点,把PBE △沿PE 折叠,得到PBE △,连接CF .若AB =10,BC =12,则CF 的最小值为_____.【答案】8【解析】【分析】点F 在以E 为圆心、EA 为半径的圆上运动,当E 、F 、C 共线时时,此时FC 的值最小,根据勾股定理求出CE ,再根据折叠的性质得到BE =EF =5即可.【详解】解:如图所示,点F在以E为圆心EA为半径的圆上运动,当E、F、C共线时时,此时CF的值最小,根据折叠的性质,△EBP≌△EFP,∴EF⊥PF,EB=EF,∵E是AB边的中点,AB=10,∴AE=EF=5,∵AD=BC=12,∴CE=13,∴CF=CE﹣EF=13﹣5=8.故答案为8.【点睛】本题考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用,灵活应用相关知识是解答本题的关键.15、如图,△ABC中,∠BAC=30°且AB=AC,P是底边上的高AH上一点.若AP+BP+CP的最小值为,则BC=_____.-【详解】如图将△ABP绕点A顺时针旋转60°得到△AMG.连接PG,CM.∵AB=AC ,AH ⊥BC ,∴∠BAP=∠CAP ,∵PA=PA ,∴△BAP ≌△CAP (SAS ),∴PC=PB ,∵MG=PB ,AG=AP ,∠GAP=60°,∴△GAP 是等边三角形,∴PA=PG ,∴PA+PB+PC=CP+PG+GM ,∴当M ,G ,P ,C 共线时,PA+PB+PC 的值最小,最小值为线段CM 的长,∵AP+BP+CP 的最小值为,∴,∵∠BAM=60°,∠BAC=30°,∴∠MAC=90°,∴AM=AC=2,作BN ⊥AC 于N .则BN=12AB=1,,,∴16.如图所示,30AOB Ð=o ,点P 为AOB Ð内一点,8OP =,点,M N 分别在,OA OB 上,求PMN D 周长的最小值_____.【答案】PMN D 周长的最小值为8【详解】如图,作P 关于OA 、OB 的对称点12P P 、,连结1OP 、2OP ,12PP 交OA 、OB 于M 、N ,此时PMN D 周长最小,根据轴对称性质可知1PM PM =,2P N PN =,1212PM N PM M N PN PP \D =++=,且1A O P A O P Ð=Ð,2BO P BO P Ð=Ð,12260POP AOB Ð=Ð=°,128O P O P O P ===,12PPO D 为等边三角形,1218PP OP ==即PMN D 周长的最小值为8.17.在正方形ABCD 中,点E 为对角线AC (不含点A )上任意一点,AB=;(1)如图1,将△ADE 绕点D 逆时针旋转90°得到△DCF ,连接EF ;①把图形补充完整(无需写画法); ②求2EF 的取值范围;(2)如图2,求BE+AE+DE 的最小值.【答案】(1)①补图见解析;②2816EF ££;(2)2+【详解】(1)①如图△DCF 即为所求;②∵四边形ABCD 是正方形,∴BC =AB =,∠B =90°,∠DAE =∠ADC =45°,∴AC AB =4,∵△ADE 绕点D 逆时针旋转90°得到△DCF ,∴∠DCF =∠DAE =45°,AE =CF ,∴∠ECF =∠ACD +∠DCF =90°,设AE =CF =x ,EF 2=y ,则EC =4−x ,∴y =(4−x )2+x 2=2x 2−8x +160(0<x ≤4).即y =2(x −2)2+8,∵2>0,∴x =2时,y 有最小值,最小值为8,当x =4时,y 最大值=16,∴8≤EF 2≤16.(2)如图中,将△ABE 绕点A 顺时针旋转60°得到△AFG ,连接EG ,DF .作FH ⊥AD 于H .由旋转的性质可知,△AEG 是等边三角形,∴AE =EG ,∵DF ≤FG +EG +DE ,BE =FG ,∴AE +BE +DE 的最小值为线段DF 的长.在Rt △AFH 中,∠FAH =30°,AB ==AF ,∴FH =12AF ,AH ,在Rt △DFH 中,DF ==2+,∴BE +AE +ED 的最小值为2.。

几何最值36问(附详解)

几何最值36问(附详解)
【答案】83
C
【解析】如图,取△AEF 的外心 O,连接 OA、OF、OE,
则 OA=OE=OF,且∠FOE=2∠FAE=60°,
∴△OEF 为等边三角形,
过 O 作 OG⊥EF 于点 G,交 AB 于点 H,
F
G
E
设 EF=2x,则 HD=GE=x,AH=4-x,而 OA=2x,
由“斜垂大法”可知 OA≥AH,
Q
∴PQ= 2PF,∴PQ+PD≥DQ=4,
∴ 2PF+PD=PQ+PD≥DQ=4.
F
或由托勒密不等式可得:
P
PF·AD+AF·PD≥AP·DF,而 AD= 2AF= 2DF,
∴ 2PF+PD≥AP=4.
A
B
D
(14)若∠CAE=30°,AD=4,过 E 作 EF∥AD 交 AC 于点 F,求 EF 的最小值;
【答案】2 6+2 2
C
【解析】如图,把△DPC 绕点 D 顺时针旋转 60°至△DQR,连接 PQ,AR,
则 QR=PC,且△PDQ 为等边三角形,
∴PQ=PD,
R
Q
∴PA+PD+PC=PA+PQ+QR≥AR,
P
过 R 作 RS⊥AB 于点 S,
则 RS=12RD=2,DS= 3RS=2 3,
A
D
过点 E 作 EG⊥CF 于 G,过点 A 作 AS⊥CF 于 S,则 EG=12CE,
∴AS+EG≤AE,
∴AE-EG≥AS,
I
H
G
∴ID=3 = 43 3,
∴AI=AD-ID=6-43
∴AS=
3
AI=3
2
D
A
∵AD=6,CD=4,

初中数学《几何最值问题》典型例题

初中数学《几何最值问题》典型例题

初中数教《最值问题》典型例题之阳早格格创做一、办理几许最值问题的常常思路 二面之间线段最短;曲线中一面与曲线上所有面的连线段中,垂线段最短;三角形二边之战大于第三边或者三角形二边之好小于第三边(沉适时与到最值)是办理几许最值问题的表里依据,根据分歧特性转移是办理最值问题的闭键.通过转移缩小变量,背三个定理靠拢从而办理问题;间接调用基础模型也是办理几许最值问题的下效脚法. 几许最值问题中的基础模型举例二、典型题型1.如图:面P 是∠AOB 内一定面,面M 、N 分别正在边OA 、OB 上疏通,若∠AOB=45°,OP=△PMN 的周少的最小值为.【分解】做P 闭于OA ,OB 的对于称面C ,D .对接OC ,OD .则当M ,N 是CD 与OA ,OB 的接面时,△PMN 的周少最短,最短的值是CD 的少.根据对于称的本量不妨证得:△COD 是等腰曲角三角形,据此即可供解.【解问】解:做P 闭于OA ,OB 的对于称面C ,D .对接OC ,OD .则当M ,N 是CD 与OA ,OB 的接面时,△PMN 的周少最短,最短的值是CD 的少.∵PC 闭于OA 对于称,∴∠COP=2∠AOP ,OC=OP共理,∠DOP=2∠BOP ,OP=OD∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP )=2∠AOB=90°,OC=OD .∴△COD 是等腰曲角三角形. 则.【题后思索】本题考查了对于称的本量,精确做出图形,明白△PMN 周少最小的条件是解题的闭键.2.如图,当四边形PABN 的周少最小时,a=.【分解】果为AB ,PN 的少度皆是牢固的,所以供出PA+NB 的少度便止了.问题便是PA+NB 什么时间最短.把B 面背左仄移2个单位到B′面;做B′闭于x 轴的对于称面B″,对接AB″,接x 轴于P ,从而决定N 面位子,此时PA+NB 最短.设曲线AB″的剖析式为y=kx+b ,待定系数法供曲线剖析式.即可供得a 的值.【解问】解:将N 面背左仄移2单位与P 沉合,面B 背左仄移2单位到B′(2,﹣1),做B′闭于x 轴的对于称面B″,根据做法知面B″(2,1), 设曲线AB″的剖析式为y=kx+b , 则123k bk b=+⎧⎨-=+⎩,解得k=4,b=﹣7.∴y=4x ﹣7.当y=0时,x=74,即P (74,0),a=74. 故问案挖:74.【题后思索】考查闭于X 轴的对于称面,二面之间线段最短等知识.3.如图,A、B二面正在曲线的二侧,面A到曲线的距离AM=4,面B到曲线的距离BN=1,且MN=4,P为曲线上的动面,|PA﹣PB|的最大值为.【分解】做面B于曲线l的对于称面B′,则PB=PB′果而|PA﹣PB|=|PA ﹣PB′|,则当A,B′、P正在一条曲线上时,|PA﹣PB|的值最大.根据仄止线分线段定理即可供得PN战PM的值而后根据勾股定理供得PA、PB′的值,从而供得|PA﹣PB|的最大值.【解问】解:做面B于曲线l的对于称面B′,连AB′并延少接曲线l 于P.∴B′N=BN=1,过D面做B′D⊥AM,利用勾股定理供出AB′=5∴|PA﹣PB|的最大值=5.【题后思索】本题考查了做图﹣轴对于称变更,勾股定理等,死知“二面之间线段最短”是解问此题的闭键.4.动脚支配:正在矩形纸片ABCD中,AB=3,AD=5.如图所示,合叠纸片,使面A降正在BC边上的A′处,合痕为PQ,当面A′正在BC边上移动时,合痕的端面P、Q也随之移动.若规定面P、Q分别正在AB、AD边上移动,则面A′正在BC边上可移动的最大距离为.【分解】本题闭键正在于找到二个极度,即BA′与最大或者最小值时,面P或者Q的位子.经真验没有易创制,分别供出面P与B沉适时,BA′与最大值3战当面Q与D沉适时,BA′的最小值1.所以可供面A′正在BC边上移动的最大距离为2.【解问】解:当面P与B沉适时,BA′与最大值是3,当面Q与D沉适时(如图),由勾股定理得A′C=4,此时BA′与最小值为1.则面A′正在BC边上移动的最大距离为3﹣1=2.故问案为:2【题后思索】本题考查了教死的动脚本领及图形的合叠、勾股定理的应用等知识,易度稍大,教死主要缺累动脚支配习惯,单凭设念制成过失.5.如图,曲角梯形纸片ABCD,AD⊥AB,AB=8,AD=CD=4,面E、F分别正在线段AB、AD上,将△AEF沿EF翻合,面A的降面记为P.当P降正在曲角梯形ABCD里里时,PD的最小值等于.【分解】如图,经分解、商量,惟有当曲径EF最大,且面A降正在BD上时,PD最小;根据勾股定理供出BD的少度,问题即可办理.【解问】解:如图,∵当面P降正在梯形的里里时,∠P=∠A=90°,∴四边形PFAE是以EF为曲径的圆内接四边形,∴惟有当曲径EF最大,且面A降正在BD上时,PD最小,此时E与面B沉合;由题意得:PE=AB=8,由勾股定理得:BD2=82+62=80,∴BD=45,∴PD=458 .【题后思索】该命题以曲角梯形为载体,以翻合变更为要领,以考查齐等三角形的判决及其本量的应用为核心构制而成;解题的闭键是抓住图形正在疏通历程中的某一瞬间,动中供静,以静制动.6.如图,∠MON=90°,矩形ABCD的顶面A、B分别正在边OM,ON上,当B正在边ON上疏通时,A随之正在OM上疏通,矩形ABCD 的形状脆持没有变,其中AB=2,BC=1,疏通历程中,面D到面O的最大距离为.【分解】与AB的中面E,对接OD、OE、DE,根据曲角三角形斜边上的中线等于斜边的一半可得OE=AB,利用勾股定理列式供出DE,而后根据三角形任性二边之战大于第三边可得OD过面E时最大.【解问】解:如图,与AB的中面E,对接OD、OE、DE,∵∠MON=90°,AB=2AB=1,∴OE=AE=12∵BC=1,四边形ABCD是矩形,∴AD=BC=1,∴根据三角形的三边闭系,OD <OE+DE , ∴当OD 过面E. 故问案为:.【题后思索】本题考查了矩形的本量,曲角三角形斜边上的中线等于斜边的一半的本量,三角形的三边闭系,勾股定理,决定出OD 过AB 的中面时值最大是解题的闭键.7.如图,线段AB 的少为4,C 为AB 上一动面,分别以AC 、BC 为斜边正在AB 的共侧做等腰曲角△ACD 战等腰曲角△BCE ,那么DE 少的最小值是.【分解】设AC=x ,BC=4﹣x ,根据等腰曲角三角形本量,得出CD=2x ,CD′=2(4﹣x ),根据勾股定理而后用配要领即可供解.【解问】解:设AC=x ,BC=4﹣x ,∵△ABC ,△BCD′均为等腰曲角三角形,∴CD=2x ,CD′=2(4﹣x ),∵∠ACD=45°,∠BCD′=45°,∴∠DCE=90°,∴DE2=CD2+CE2=12x2+12(4﹣x )2=x2﹣4x+8=(x ﹣2)2+4,∵根据二次函数的最值,∴当x 与2时,DE 与最小值,最小值为:4. 故问案为:2.【题后思索】本题考查了二次函数最值及等腰曲角三角形,易度没有大,闭键是掌握用配要领供二次函数最值. 8.如图,菱形ABCD 中,AB=2,∠A=120°,面P ,Q ,K 分别为线段BC ,CD ,BD 上的任性一面,则PK+QK 的最小值为.【分解】根据轴对于称决定最短门路问题,做面P 闭于BD 的对于称面P′,对接P′Q 与BD 的接面即为所供的面K ,而后根据曲线中一面到曲线的所有连线中笔曲线段最短的本量可知P′Q ⊥CD 时PK+QK 的最小值,而后供解即可.【解问】解:如图,∵AB=2,∠A=120°,∴面P′到CD 的距离为∴PK+QK故问案为:【题后思索】本题考查了菱形的本量,轴对于称决定最短门路问题,死记菱形的轴对于称性战利用轴对于称决定最短门路的要领是解题的闭键.9.如图所示,正圆形ABCD 的边少为1,面P 为边BC 上的任性一面(可与B 、C 沉合),分别过B 、C 、D 做射线AP 的垂线,垂脚分别为B′、C′、D′,则BB′+CC′+DD′的与值范畴是.【分解】最先对接AC ,DP .由正圆形ABCD 的边少为1,即可得:S △ADP=12S 正圆形ABCD=12,S △ABP+S △ACP=S △ABC=12S 正圆形ABCD=12,既而可得12AP•(BB′+CC′+DD′)=1,又由即可供得问案.【解问】解:对接AC ,DP .∵四边形ABCD 是正圆形,正圆形ABCD 的边少为1, ∴AB=CD ,S 正圆形ABCD=1,∵S △ADP=12S 正圆形ABCD=12,S △ABP+S △ACP=S △ABC=12S 正圆形ABCD=12,∴S △ADP+S △ABP+S △ACP=1,∴12AP•BB′+12AP•CC′+12AP•DD′=12AP•(BB′+CC′+DD′)=1,则BB′+CC′+DD′=2AP,∵∴当P 与B 沉适时,有最大值2; 当P 与C 沉适时,有最小值∴.故问案为:.【题后思索】此题考查了正圆形的本量、里积及等积变更问题.此题易度较大,解题的闭键是对接AC,DP,根据题意得到.S△ADP+S△ABP+S△ACP=1,既而得到BB′+CC′+DD′=2AP10.如图,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2战1,P、E、F分别是边CD、⊙A战⊙B上的动面,则PE+PF的最小值是.【分解】利用菱形的本量以及相切二圆的本量得出P与D沉适时PE+PF的最小值,从而供出即可.【解问】解:由题意可得出:当P与D沉适时,E面正在AD上,F 正在BD上,此时PE+PF最小,对接BD,∵菱形ABCD中,∠A=60°,∴AB=AD,则△ABD是等边三角形,∴BD=AB=AD=3,∵⊙A、⊙B的半径分别为2战1,∴PE=1,DF=2,∴PE+PF的最小值是3.故问案为:3.【题后思索】此题主要考查了菱形的本量以及相切二圆的本量等知识,根据题意得出P面位子是解题闭键.。

初中数学几何最值问题(将军饮马、将军过河、费马点、隐圆、瓜豆、胡不归、阿氏圆)

初中数学几何最值问题(将军饮马、将军过河、费马点、隐圆、瓜豆、胡不归、阿氏圆)

1、如图,在直线上找一点P使得PA+PB最小?2、【一定两动之点点】在OA、OB上分别取点M、N,使得△PMN周长最小.B3、【两定两动之点点】在OA、OB上分别取点M、N使得四边形PMNQ的周长最小。

BB4、【一定两动之点线】在OA、OB上分别取M、N使得PM+MN最小。

BB【将军过桥】1.已知将军在图中点A 处,现要过河去往B 点的军营,桥必须垂直于河岸建造,问:桥建在何处能使路程最短?2.已知A 、B 两点,MN 长度为定值,求确定M 、N 位置使得AM +MN +NB 值最小?军营河1.如图,在平面直角坐标系中,矩形ABCD 的顶点B 在原点,点A 、C 在坐标轴上,点D 的坐标为(6,4),E 为CD 的中点,点P 、Q 为BC 边上两个动点,且PQ =2,要使四边形APQE 的周长最小,则点P 的坐示应为______________.x2.如图,矩形ABCD 中,AD =2,AB =4,AC 为对角线,E 、F 分别为边AB 、CD 上的动点,且EF ⊥AC 于点M ,连接AF 、CE ,求AF +CE 的最小值.AB CDEFM几何图形中的将军饮马正方形中的将军饮马1. 如图,正方形ABCD 的边长是4,M 在DC 上,且DM =1, N 是AC 边上的一动点,则△DMN 周长的最小值是___________.NMD CBA2.如图,在Rt △ABO 中,∠OBA =90°,A (4,4),点C 在边AB 上,且AC :CB =1:3,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为( )A .(2,2)B .5(2,5)2C .8(3,8)3D .(3,3)3.如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 在BC 上,BD =3,DC =1,点P 是AB 上的动点,则PC +PD 的最小值为( )PDCBAA .4B .5C .6D .7三角形中的将军饮马1.如图,在等边△ABC 中,AB =6, N 为AB 上一点且BN =2AN , BC 的高线AD 交BC 于点D ,M 是AD 上的动点,连结BM ,MN ,则BM +MN 的最小值是___________.A BCDMN2. 如图,在Rt △ABC 中,∠ACB =90°,AC =6.AB =12,AD 平分∠CAB ,点F 是AC 的中点,点E 是AD 上的动点,则CE +EF 的最小值为( )E AFCDBA .3B .4C .33D .233. 如图,在锐角三角形ABC 中,BC =4,∠ABC =60°, BD 平分∠ABC ,交AC 于点D ,M 、N 分别是BD ,BC 上的动点,则CM +MN 的最小值是( )NMDCBAA .3B .2C .23D .44.如图,△ABC 中,∠BAC =75°,∠ACB =60°,AC =4,则△ABC 的面积为_;点D ,点E ,点F 分别为BC ,AB ,AC 上的动点,连接DE ,EF ,FD ,则△DEF 的周长最小值为 .矩形、菱形中的将军饮马1. 如图,在菱形ABCD 中,AC=BD =6,E 是BC 的中点,P 、M 分别是AC 、AB 上的动点,连接PE 、PM ,则PE +PM 的最小值是( )EPDCBAMA .6 B.C.D .4.52.如图,矩形ABOC 的顶点A 的坐标为(-4,5),D 是OB 的中点,E 是OC 上的一点,当△ADE 的周长最小时,点E 的坐标是( )A .4(0,)3B .5(0,)3C .(0,2)D .10(0,)33.如图,在矩形ABCD 中,AB =6,AD =3,动点P 满足13PAB ABCD S S ∆=矩形,则点P 到A 、B 两点距离之和PA +PB的最小值为( )DCBAPA. B.C.D4.如图,矩形ABCD 中,AB =10,BC =5,点E 、F 、G 、H 分别在矩形ABCD 各边上,且AE =CG ,BF =DH ,则四边形EFGH 周长的最小值为( )H FGEDCB AA.B. C. D.特殊角的对称1. 如图,∠AOB =60°,点P 是∠AOB 内的定点且OPM 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )ABMOPNABC .6D .32. 如图,∠AOB 的边OB 与x 轴正半轴重合,点P 是OA 上的一动点,点N (3,0)是OB 上的一定点,点M 是ON 的中点,∠AOB =30°,要使PM +PN 最小,则点P 的坐标为 .x3. 如图,已知正比例函数y =kx (k >0)的图像与x 轴相交所成的锐角为70°,定点A 的坐标为(0,4),P 为y 轴上的一个动点,M 、N 为函数y =kx (k >0)的图像上的两个动点,则AM +MP +PN 的最小值为____________.求两线段差的最大值问题基本图形解析:在一条直线m 上,求一点P ,使PA 与PB 的差最大; (1)点A 、B 在直线m 同侧:解析:延长AB 交直线m 于点P ,根据三角形两边之差小于第三边,P ’A-P ’B <AB ,而PA —PB=AB 此时最大,因此点P 为所求的点。

(完整版)中考复习:几何图形中的最值问题

(完整版)中考复习:几何图形中的最值问题

中考复习:几何图形中的最值问题几何图形中的最值问题★1.如图,在Rt△ABC中,∠ACB=90°,AB=5,BC=3.若点D是AB边上任意一点,且不与点A、B重合,连接CD.将△BCD沿着CD 所在的直线翻折,使得点B落在点B′处,连接AB′,则AB′的最小值为________.第1题图1【解析】在Rt△ABC中,根据勾股定理可得:AC=AB2-BC2=52-32=4,由对称性可知:BC=B′C=3,∵B′C的长度固定,∴当AB′+B′C的值最小时,AB′的值最小,根据“两点之间,线段最短”可知当A、B′、C三点共线时,AB′最小,∴AB′=AC-B′C=4-3=1. ★2.如图,在菱形ABCD中,AB=43,∠ABC=60°,点M、N分别是BC、CD上任意一点,点P是BD上一点,连接PM、PN,则PM +PN的最小值为________.第2题图第2题解图6【解析】如解图,作点N关于BD对称的点N′,根据菱形的对称性可知点N′在AD上,又由两平行线之间,垂线段最短,过点N′作1 / 7N ′M ⊥BC 于点M ,故MN ′与BD 的交点P 即满足PM +PN 的值最小,故MN ′=AB ·sin ∠ABC =43×32=6.★3.如图,在矩形ABCD 中,AB =9,BC =12,点E 是BC 中点,点F 是边CD 上的任意一点,当△AEF 的周长最小时,则DF 的长为________.第3题图 第3题解图 6 【解析】如解图,作点E 关于直线CD 的对称点E ′,连接AE ′交CD 于点F ,∵在矩形ABCD 中,AB =9,BC =12,点E 是BC 中点,∴BE =CE =CE ′=6,∵AB ⊥BC ,CD ⊥BC ,∴CE ′BE ′=CF AB ,即612+6=CF9,解得CF =3,∴DF =CD -CF =9-3=6.★4.如图,在Rt △ABO 中,∠AOB =90°,AO +BO =5,延长AO 到C ,使OC =3,延长BO 到D ,使OD =4,连接BC 、CD 、DA ,则四边形ABCD 面积的最大值为________.第4题图18 【解析】设OA =x ,OB =y ,∵AO +BO =5,∴x +y =5,∵延中考复习:几何图形中的最值问题 3 / 7 长AO 到C ,OC =3,延长BO 到D ,OD =4,连接BC 、CD 、DA ,∠AOB =90°,∴S 四边形ABCD =S △ACD +S △ABC =12AC ·OD +12AC ·OB =12AC ·(OD +OB )=12AC ·BD =12(x +3)(y +4),∵x +y =5,∴S四边形ABCD =12(x +3)(5-x +4)=12(x +3)(9-x )=-12(x -3)2+18. ∴四边形ABCD 的最大面积为18.★5.如图,已知四边形ABCD ,∠BAD =120°,CB ⊥AB ,CD ⊥AD ,且AB =AD =3,点E 、F 分别是BC 、CD 边上的动点,那么△AEF 周长的最小值是________.第5题图 第5题解图 63 【解析】如解图,延长AB 至点M ,使BM =AB ,延长AD 至点N ,使DN =AD ,连接MN ,交BC 于点E ,交DC 于点F .∵CB ⊥AB ,CD ⊥AD ,∴BC 、CD 是AM 、AN 的垂直平分线,∴AE =ME ,AF =FN .∵△AEF 的周长=AE +EF +AF =ME +EF +FN =MN ,∴此时△AEF 的周长为线段MN 的长.∵AB =AD =3,∴AM =AN =6,∵∠BAD =120°,∴∠M =∠N =30°,∴MN =2AM ·cos30°=12×32=6 3.★6.如图,在Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠P AB=∠PBC,则线段CP长的最小值为________.第6题图第6题解图2【解析】如解图,∵∠P AB=∠PBC,∠ABC=90°,∴∠BAP+∠PBA =90°,∴∠APB=90°,∴点P始终在以AB的中点O为圆心,以OA =OB=OP=12AB=3为半径的圆上,由解图知,只有当在点P在OC 与⊙O的交点处时,PC的长最小.在Rt△OBC中,OC=OB2+BC2=32+42=5,∴P′C=OC-OP′=5-3=2,∴线段CP长的最小值为2.★7.如图,在矩形ABCD中,AD=2,AB=3,点E是AD边的中点,点F是射线AB上的一动点,将△AEF沿EF所在直线翻折得到△A′EF,连接A′C,则A′C的最小值为________.第7题图第7题解图10-1【解析】如解图,∵点E是AD的中点,∴根据翻折性质得中考复习:几何图形中的最值问题 5 / 7 A ′E =AE =DE =12AD =12×2=1,∵点F 为动点,∴随着点F 的运动,点A ′的运动轨迹是以点E 为圆心,AE 为半径在矩形ABCD 内的圆弧,当E 、A ′、C 不在同一直线上时,则CA ′、A ′E 和CE 围成三角形,根据三角形的三边关系,即A ′C >CE -A ′E ,当E 、A ′、C 在同一直线上时,即A ′C =CE -A ′E ,综上所述A ′C ≥CE -A ′E ,∴当E 、A ′、C 在同一直线上时,A ′C 有最小值,∵在Rt △CDE 中,CD =3,DE =1,∴CE =CD 2+DE 2=32+1=10,∴A ′C 的最小值为CE -DE =10-1.★8.如图,正方形ABCD 的边长为4,∠DAC 的平分线交DC 于点E .若点P 、Q 分别是AD 和AE 上的动点,则DQ +PQ 的最小值是________.第8题图 第8题解图 22 【解析】如解图,作D 关于AE 的对称点D ′,DD 交AE 于F ,再过D ′作D ′P ⊥AD 于P ,∵DD ′⊥AE ,∴∠AFD =∠AFD ′,∵AF =AF ,∠DAE =∠CAE ,∴△ADF ≌△AD ′F ,∴AD ′=AD =4,∵D ′与D 关于AE 对称,∴QD =QD ′,∴DQ +PQ =QD ′+PQ =PD ′,∴D ′P ′即为DQ +PQ 的最小值,∵四边形ABCD 是正方形,∴∠DAD ′=45°,∴AP =PD ′,∴在Rt △APD ′中,PD ′2+AP 2=AD ′2,即2P ′D 2=16,∴PD ′=22,即DQ +PQ 的最小值为2 2.★9.如图,点P 为边长为2的正方形ABCD 外一动点,且P A ⊥PB ,连接AC 、PC ,则△P AC 的最大面积为________.第9题图 第9题解图 2+1 【解析】如解图,作出以AB 为直径的⊙O 交线段AC 于点E ,连接PE 、OE 、BE ,由AC 为正方形的对角线及⊙O 的直径为AB ,可得△AEB 为等腰直角三角形,则点E 为AC 的中点,∴S △APC =2S △APE ,∴要使得△APC 的面积最大,只需使得△APE 面积最大即可.∵AE长度为定值,∴只需使△APE 中AE 边上的高最大即可,∵AE =12AC=12AB 2+BC 2=2,OA =OB =OE =1,∴△AOE 是等腰直角三角形,∴Rt △AOE 中,利用等面积法求得AE 边上的高为OA ·OE AE =1×12=22,∴△APE 中AE 边上的高的最大值为1+22,∴△APE 面积的最大值为12×(1+22)×2=22+12,∴△P AC 的最大面积为2×(22+12)=2+1.★10.如图,在四边形ABDE 中,C 是BD 边的中点,BD =8,AB =2,中考复习:几何图形中的最值问题DE=8.若∠ACE=135°,则线段AE长度的最大值是________.第10题图10+42【解析】如解图①,分别将△ABC、△CDE沿AC、CE翻折,则点B落到点F处,点D落在点G处,连接AG、FG.由“两点之间线段最短”可知AG≤AF+FG,AE≤AG+EG,∴AE≤AF+FG+EG,∴如解图②所示,当点A、F、G、E四点共线时,AE最大,此时,AE=AF+FG+EG,由翻折可证△ACB≌△ACF,∴CB=CF,AB=AF,∠ACB=∠ACF.同理,△CDE≌△CGE,CD=CG,DE=GE,∠ECD=∠ECG.∵∠ACE=135°,∴∠ACB+∠ECD=45°=∠ACF+∠ECG,∴∠FCG=90°.又∵BC=DC,∴FC=GC,∴△FCG 是等腰直角三角形.∵BD=8,AB=2,DE=8,∴AF=AB=2,EG =DE=8,由勾股定理得FG=42+42=42,∴AE=AF+FG+EG =10+4 2.即AE的最大值为10+4 2.第10题解图①第10题解图②7 / 7。

初中数学《几何最值问题》典型例题

初中数学《几何最值问题》典型例题


A 落在 BC 边上的 A′处, P、Q 分别在 AB、AD 边
【分析】 本题关键在于找到两个极端,即 BA′取最大或最小值时,点 P 或 Q 的位置.经实验不难发现,分 别求出点 P 与 B 重合时, BA′取最大值 3 和当点 Q 与 D 重合时, BA′的最小值 1.所以可求点 A′在 BC 边上 移动的最大距离为 2. 【解答】 解:当点 P 与 B 重合时, BA ′取最大值是 3, 当点 Q 与 D 重合时(如图) ,由勾股定理得 A′C=4 ,此时 BA ′取最小值为 1. 则点 A′在 BC 边上移动的最大距离为 3﹣ 1=2 . 故答案为: 2

3
【分析】 如图,经分析、探究,只有当直径 EF 最大,且点 A 落在 BD 上时, PD 最小;根据勾股定理求出 BD 的长度,问题即可解决. 【解答】 解:如图, ∵当点 P 落在梯形的内部时,∠ P=∠ A=90°, ∴四边形 PFAE 是以 EF 为直径的圆内接四边形, ∴只有当直径 EF 最大,且点 A 落在 BD 上时, PD 最小, 此时 E 与点 B 重合; 由题意得: PE =AB =8, 由勾股定理得: BD 2=82+62=80 ,
【题后思考】 本题考查了作图﹣轴对称变换,勾股定理等,熟知
“两点之间线段最短 ”是解答此题的关键.
4.动手操作:在矩形纸片 ABCD 中, AB=3, AD =5.如图所示,折叠纸片,使点
折痕为 PQ,当点 A′在 BC 边上移动时,折痕的端点 P、Q 也随之移动.若限定点
上移动,则点 A′在 BC 边上可移动的最大距离为
1
1
1
1
∵ S△ ADP = S 正方形 ABCD = , S△ABP+ S△ACP =S△ ABC= S 正方形 ABCD = ,

中考数学《几何中的最值问题》专项练习(附答案解析)

中考数学《几何中的最值问题》专项练习(附答案解析)

中考数学《几何中的最值问题》专项练习(附答案解析)一、单选题1.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC的面积是()A.12 B.24 C.36 D.482.将一张宽为4cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是()A.4cm2B.8cm2C.12cm2D.16cm23.如图,已知直线5-512y x与x轴、y轴分别交于B、C两点,点A是以D(0,2)为圆心,2为半径的⊙D上的一个动点,连接AC、AB,则△ABC面积的最小值是()A.30 B.29 C.28 D.274.如图,∠AOB=45°,点M、N分别在射线OA、OB上,MN=6,△OMN的面积为12,P是直线MN上的动点,点P关于OA对称的点为P1,点P关于OB对称点为P2,当点P在直线NM上运动时,△OP1P2的面积最小值为()A.6 B.8 C.12 D.185.如图,矩形ABCD中,AB=8,AD=4,E为边AD上一个动点,连接BE,取BE的中点G,点G 绕点E逆时针旋转90°得到点F,连接CF,则△CEF面积的最小值是()A.16 B.15 C.12 D.11二、填空题6.如图,在△ABC中,AB=AC,∠BAC=120°,点D为AB边上一点(不与点B重合),连接CD,将线段CD绕点D逆时针旋转90°,点C的对应点为E,连接BE.若AB=6,则△BDE面积的最大值为_________.7.如图,⊙O的直径为5,在⊙O上位于直径AB的异侧有定点C和动点P,已知BC:CA=4:3,点P在半圆弧AB上运动(不与A,B重合),过C作CP的垂线CD交PB的延长线于D点.则△PCD的面积最大为______________.8.已知AB为半圆的直径,AB=2,DA⊥AB,CB⊥AB,AD=1,BC=3,点P为半圆上的动点,则AD,AB,BC,CP,PD围成的图形的面积的最大值是_____.9.如图,在矩形ABCD中,∠ACB=30°,,点E是边BC上一动点(点E不与B,C重合),连接AE,AE的中垂线FG分别交AE于点F,交AC于点G,连接DG,GE.设AG=a,则点G到BC边的距离为_____(用含a的代数式表示),ADG的面积的最小值为_____.10.如图,直线AB交坐标轴于A(-2,0),B(0,-4),点P在抛物线1(2)(4)2y x x=--上,则△ABP面积的最小值为__________.三、解答题11.如图,已知抛物线23y ax bx =++与x 轴交于A 、B 两点,过点A 的直线l 与抛物线交于点C ,其中A 点的坐标是(1,0),C 点坐标是(4,3).(1)求抛物线的解析式;(2)抛物线的对称轴上是否存在点D ,使△BCD 的周长最小?若存在,求出点D 的坐标,若不存在,请说明理由;(3)点P 是抛物线上AC 下方的一个动点,是否存在点p ,使△PAC 的面积最大?若存在,求出点P 的坐标,若不存在,请说明理由.12.已知,如图,矩形ABCD 中,AD =6,DC =7,菱形EFGH 的三个顶点E ,G ,H 分别在矩形ABCD 的边AB ,CD ,AD 上,AH =2,连接CF .(1)当四边形EFGH 为正方形时,求DG 的长;(2)当DG =6时,求△FCG 的面积;(3)求△FCG 的面积的最小值.13.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上的动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.14.已知抛物线y =a (x ﹣1)2过点(3,4),D 为抛物线的顶点.(1)求抛物线的解析式;(2)若点B 、C 均在抛物线上,其中点B (0,1),且∠BDC =90°,求点C 的坐标:(3)如图,直线y =kx +1﹣k 与抛物线交于P 、Q 两点,∠PDQ =90°,求△PDQ 面积的最小值.15.如图,已知二次函数213222y x x =-++的图象交x 轴于A (-1,0),B (4,0),交y 轴于点C ,点P 是直线BC 上方抛物线上一动点(不与B ,C 重合),过点P 作PE ⊥BC ,PF ∥y 轴交BC 与F ,则△PEF 面积的最大值是___________.16.如图,已知点P 是∠AOB 内一点,过点P 的直线MN 分别交射线OA ,OB 于点M ,N ,将直线MN 绕点P 旋转,△MON 的形状与面积都随之变化.(1)请在图1中用尺规作出△MON ,使得△MON 是以OM 为斜边的直角三角形;(2)如图2,在OP 的延长线上截取PC =OP ,过点C 作CM ∥OB 交射线OA 于点M ,连接MP 并延长交OB 于点N .求证:OP 平分△MON 的面积;(3)小亮发现:在直线MN 旋转过程中,(2)中所作的△MON 的面积最小.请利用图2帮助小亮说明理由.17.如图,已知A ,B 是线段MN 上的两点,4MN =,1MA =,1MB >,以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M ,N 两点重合成一点C ,构成ABC ,设AB x =.(1)求x 的取值范围;(2)求ABC 面积的最大值.18.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.19.问题提出(1)如图①,在Rt△ABC中,∠ABC=90°,AB=12,BC=16,则AC=;问题探究(2)如图②,在Rt△ABC中,∠ABC=90°,AC=10,点D是AC边上一点,且满足DA=DB,则CD=;问题解决(3)如图③,在Rt△ABC中,过点B作射线BP,将∠C折叠,折痕为EF,其中E为BC中点,点F在AC边上,点C的对应点落在BP上的点D处,连接ED、FD,若BC=8,求△BCD面积的最大值,及面积最大时∠BCD的度数.20.如图,已知边长为6的菱形ABCD 中,∠ABC =60°,点E ,F 分别为AB ,AD 边上的动点,满足BE AF =,连接EF 交AC 于点G ,CE 、CF 分别交BD 于点M ,N ,给出下列结论:①△CEF 是等边三角形;②∠DFC =∠EGC ; ③若BE =3,则BM =MN =DN ;④222EF BE DF =+; ⑤△ECF .其中所有正确结论的序号是______21.如图,抛物线2y ax bx c =++与坐标轴交于点()()()0, 31,03,0A B E --、、,点P 为抛物线上动点,设点P 的横坐标为t .(1)若点C 与点A 关于抛物线的对称轴对称,求C 点的坐标及抛物线的解析式;(2)若点P 在第四象限,连接PA PE 、及AE ,当t 为何值时,PAE ∆的面积最大?最大面积是多少?(3)是否存在点P ,使PAE ∆为以AE 为直角边的直角三角形,若存在,直接写出点P 的坐标;若不存在,请说明理由.22.如图,在平面直角坐标系xOy 中,抛物线y =ax 2﹣2ax ﹣3a (a <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),经过点A 的直线l :y =kx+b 与y 轴负半轴交于点C ,与抛物线的另一个交点为D ,且CD =4AC .(1)直接写出点A 的坐标,并求直线l 的函数表达式(其中k 、b 用含a 的式子表示);(2)点E 是直线l 上方的抛物线上的动点,若△ACE 的面积的最大值为54,求a 的值; (3)设P 是抛物线的对称轴上的一点,点Q 在抛物线上,当以点A 、D 、P 、Q 为顶点的四边形为矩形时,请直接写出点P 的坐标.23.如图1,抛物线2y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,已知点B 坐标为(3,0),点C 坐标为(0,3).(1)求抛物线的表达式;(2)点P 为直线BC 上方抛物线上的一个动点,当PBC 的面积最大时,求点P 的坐标;(3)如图2,点M 为该抛物线的顶点,直线MD x ⊥轴于点D ,在直线MD 上是否存在点N ,使点N 到直线MC 的距离等于点N 到点A 的距离?若存在,求出点A 的坐标;若不存在,请说明理由.24.如图,已知边长为10的正方形ABCD E ,是BC 边上一动点(与B C 、不重合),连结AE G ,是BC 延长线上的点,过点E 作AE 的垂线交DCG ∠的角平分线于点F ,若FG BG ⊥.(1)求证:ABE EGF ∽△△; (2)若2EC =,求CEF △的面积;(3)请直接写出EC 为何值时,CEF △的面积最大.参考答案与解析一、单选题1.【答案】D【解答】由图2知,AB=BC=10,当BP⊥AC时,y的值最小,即△ABC中,BC边上的高为8(即此时BP=8),即可求解.【解答】解:由图2知,AB=BC=10,当BP⊥AC时,y的值最小,即△ABC中,BC边上的高为8(即此时BP=8),当y=8时,PC===6,△ABC的面积=×AC×BP=×8×12=48,故选:D.【点评】本题是运动型综合题,考查了动点问题的函数图象、解直角三角形、图形面积等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.2.【答案】B【分析】当AC⊥AB时,重叠三角形面积最小,此时△ABC是等腰直角三角形,面积为8cm2.【解答】解:如图,当AC⊥AB时,三角形面积最小,∵∠BAC=90°∠ACB=45°∴AB=AC=4cm,∴S△ABC =12×4×4=8cm2.故选:B.【点评】本题考查了折叠的性质,发现当AC⊥AB时,重叠三角形的面积最小是解决问题的关键.3.【答案】B【分析】过D作DM⊥BC于M,连接BD,则由三角形面积公式得,12BC×DM=12OB×CD,可得DM,可知圆D上点到直线5-512y x的最小距离,由此即可解决问题.【解答】过D作DM⊥BC于M,连接BD,如图,令0y =,则12x =,令0x =,则5y =-,∴B (12,0),C (0,-5),∴OB=12,OC=5,=, 则由三角形面积公式得,12BC ×DM=12OB ×CD , ∴DM=8413, ∴圆D 上点到直线5-512y x =的最小距离是845821313-=, ∴△ABC 面积的最小值是1581329213⨯⨯=. 故选:B .【点评】本题考查了一次函数的应用、勾股定理的应用、圆的有关性质,解此题的关键是求出圆上的点到直线BC 的最大距离以及最小距离.4.【答案】B【分析】连接OP ,过点O 作OH ⊥NM 交NM 的延长线于H .首先利用三角形的面积公式求出OH ,再证明△OP 1P 2是等腰直角三角形,OP 最小时,△OP 1P 2的面积最小.【解答】解:连接OP ,过点O 作OH ⊥NM 交NM 的延长线于H .∵S △OMN =12•MN •OH =12,MN =6,∴OH =4,∵点P 关于OA 对称的点为P 1,点P 关于OB 对称点为P 2,∴∠AOP =∠AOP 1,∠POB =∠P 2OB ,OP =OP 1=OP 2∵∠AOB =45°,∴∠P 1OP 2=2(∠POA+∠POB )=90°,∴△OP 1P 2是等腰直角三角形,∴OP =OP 1最小时,△OP 1P 2的面积最小,根据垂线段最短可知,OP 的最小值为4,∴△OP 1P 2的面积的最小值=12×4×4=8, 故选:B .【点评】本题考查轴对称,三角形的面积,垂线段最短等知识,解题的关键是证明△OP 1P 2是等腰直角三角形,属于中考常考题型.5.【答案】B【分析】过点F 作AD 的垂线交AD 的延长线于点H ,则△FEH ∽△EBA ,设AE=x ,可得出△CEF 面积与x 的函数关系式,再根据二次函数图象的性质求得最小值.【解答】解:过点F 作AD 的垂线交AD 的延长线于点H ,∵∠A=∠H=90°,∠FEB=90°,∴∠FEH=90°-∠BEA=∠EBA ,∴△FEH ∽△EBA ,∴ ,HF HE EF AE AB BE == G 为BE 的中点,1,2FE GE BE ∴==∴ 1,2HF HE EF AE AB BE === 设AE=x , ∵AB 8,4,AD ==∴HF 1,4,2x EH == ,DH AE x ∴==CEF DHFC CED EHF S S S S ∆∆∆∴=+-11111(8)8(4)422222x x x x =++⨯--⨯• 2141644x x x x =+--- 2116,4x x =-+ ∴当12124x -=-=⨯ 时,△CEF 面积的最小值1421615.4=⨯-+= 故选:B .【点评】本题通过构造K 形图,考查了相似三角形的判定与性质.建立△CEF 面积与AE 长度的函数关系式是解题的关键.二、填空题6.【答案】818【分析】作CM ⊥AB 于M ,EN ⊥AB 于N ,根据AAS证得EDN ≌DCM ,得出EN =DM ,然后解直角三角形求得AM =3,得到BM =9,设BD =x ,则EN =DM =9﹣x ,根据三角形面积公式得到S △BDE =12BD EN ⋅=12x (9﹣x )=﹣12(x ﹣4.5)2+818,根据二次函数的性质即可求得. 【解答】解:作CM ⊥AB 于M ,EN ⊥AB 于N ,∴∠EDN +∠DEN =90°,∵∠EDC =90°,∴∠EDN +∠CDM =90°,∴∠DEN =∠CDM , 在EDN 和DCM 中DEN CDM END DMC 90ED DC ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩∴EDN ≌DCM (AAS ),∴EN =DM ,∵∠BAC =120°,∴∠MAC =60°,∴∠ACM =30°,∴AM =12AC =12⨯6=3, ∴BM =AB +AM =6+3=9,设BD =x ,则EN =DM =9﹣x ,∴S △BDE =12BD EN ⋅=12x (9﹣x )=﹣12(x ﹣4.5)2+818, ∴当BD =4.5时,S △BDE 有最大值为818, 故答案为:818. 【点评】此题主要考查旋转综合题、全等三角形的判定及性质、直角三角形的性质和求最值,解题的关键是熟知全等三角形的判定与性质和利用二次函数求最值.7.【答案】503【分析】由圆周角定理可知A P ∠=∠,再由90ACB PCD ∠=∠=︒可证明~ACB PDC ,最后根据相似三角形对应边成比例,及已知条件BC :CA =4:3,结合三角形面积公式解题即可.【解答】AB 为直径,90ACB ∴∠=︒PC CD ⊥,90PCD ∴∠=︒又CAB CPD ∠=∠~ACB PDC ∴AC BC CP CD∴= BC :CA =4:3,43CD PC ∴= 当点P 在弧AB 上运动时,12PCD S PC CD =⋅△ 2142233PCD S PC PC PC ∴=⨯⋅= 当PC 最大时,PCD S 取得最大值而当PC 为直径时最大,22505=33PCD S ∴=⨯. 【点评】本题考查圆周角定理、三角形面积、相似三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.8.【答案】【分析】五边形ABCDP 的面积=四边形ABCD 的面积﹣△CPD 的面积只要求出△CDP 面积的最小值,作EF//CD ,且与⊙O 相切于点P ,连接OP 延长OP 交AD 于H ,易知此时点P 到CD 的距离最小,此时△CDP 的面积最小.【解答】解:∵五边形ABCDP 的面积=四边形ABCD 的面积﹣△CPD 的面积,∴只要求出△CDP 面积的最小值,作EF//CD ,且与⊙O 相切于点P ,连接OP 延长OP 交AD 于H ,易知此时点P 到CD 的距离最小,此时△CDP 的面积最小,易知AD =,∵四边形ABCD 的面积=12(1+3)×2=4=12×1×1+12•AD •OH+12•1•3,∴OH ,∴PH ﹣11,∴△CAD 的面积最小值为2,∴五边形ABCDP 面积的最大值是4﹣(2)=.故答案为.【点评】本题主要考查了求解多边形的面积知识点,结合圆的切线的性质进行求解是解题的重要步骤.9.【答案】42a - 【分析】先根据直角三角形含30度角的性质和勾股定理得AB=2,AC=4,从而得CG 的长,作辅助线,构建矩形ABHM 和高线GM ,如图2,通过画图发现:当GE ⊥BC 时,AG 最小,即a 最小,可计算a 的值,从而得结论.【解答】∵四边形ABCD 是矩形,∴∠B=90°,∵∠ACB=30°,,∴AB=2,AC=4,∵AG=a ,∴CG=4a -,如图1,过G 作MH ⊥BC 于H ,交AD 于M ,Rt△CGH中,∠ACB=30°,∴GH=12CG=42a-,则点G到BC边的距离为42a-,∵HM⊥BC,AD∥BC,∴HM⊥AD,∴∠AMG=90°,∵∠B=∠BHM=90°,∴四边形ABHM是矩形,∴HM=AB=2,∴GM=2﹣GH=422a--=2a,∴S△ADG11222a AD MG=⋅=⨯=当a最小时,△ADG的面积最小,如图2,当GE⊥BC时,AG最小,即a最小,∵FG是AE的垂直平分线,∴AG=EG,∴42aa -=,∴43a =,∴△ADG 的面积的最小值为4233=,故答案为:42a -. 【点评】本题主要考查了垂直平分线的性质、矩形的判定和性质、含30度角的直角三角形的性质以及勾股定理,确定△ADG 的面积最小时点G 的位置是解答此题的关键.10.【答案】152【分析】根据直线AB 交坐标轴于A(-2,0),B(0,-4),计算得直线AB 解析式;平移直线AB 到直线CD ,直线CD 当抛物线相交并只有一个交点P 时,△ABP 面积为最小值,通过一元二次方程和抛物线的性质求得点P 坐标;再利用勾股定理逆定理,证明ABP △为直角三角形,从而计算得到△ABP 面积的最小值.【解答】设直线AB 为y kx b =+∵直线AB 交坐标轴于A(-2,0),B(0,-4)∴024k b b=-+⎧⎨-=⎩ ∴24k b =-⎧⎨=-⎩∴直线AB 为24y x =--如图,平移直线AB 到直线CD ,直线CD 为2y x p =-+当2y x p =-+与抛物线1(2)(4)2y x x =--相交并只有一个交点P 时,△ABP 面积为最小值∴()()21242y x p y x x =-+⎧⎪⎨=--⎪⎩∴22820x x p -+-= ∴()44820p ∆=--=∴72p =∴2210x x -+= ∴1x =将1x =代入1(2)(4)2y x x =--,得32y =∴31,2P ⎛⎫⎪⎝⎭∴()2223451224AP ⎛⎫=++= ⎪⎝⎭2231251424BP ⎛⎫=++=⎪⎝⎭2222420AB∴222AB AP BP +=∴ABP △为直角三角形,90BAP ∠=∴1115=2222ABP AB A S P ⨯=⨯=△ 即△ABP 面积的最小值为152故答案为:152. 【点评】本题考查了二次函数、一次函数、平移、一元二次方程、勾股定理逆定理的知识;解题的关键是熟练掌握二次函数、一次函数、平移、一元二次方程、勾股定理逆定理的性质,从而完成求解.三、解答题11.【答案】(1)抛物线y =x 2-4x +3;(2)D(2,1);(3)点P 的坐标为5(2,3)4- 【分析】(1)(1) 将A 、C 坐标代入即可;(2)由于BC 长度不变, 要周长最小, 就是让DB DC 最小, 而A 、B 关于对称轴对称, 所以AC 就是DB DC 的最小值, 此时D 点就是AC 与抛物线对称轴的交点; 【解答】解:(1)抛物线23y ax bx =++经过点(1,0)A ,点(4,3)C ,∴3016433a bab,解得14a b ==-⎧⎨⎩,所以,抛物线的解析式为243y x x =-+;(2)243(1)(3)yx xx x ,(3,0)∴B ,抛物线的对称轴为2x =;BC 长度不变,BDDC 最小时,BCD ∆的周长最小,A 、B 是关于抛物线对称轴对称的,∴当D 点为对称轴与AC 的交点时,BD DC +最小, 即BCD ∆的周长最小, 如图,∴21x yx ,解得:21x y =⎧⎨=⎩,(2,1)D ∴,∴抛物线对称轴上存在点(2,1)D ,使BCD ∆的周长最小;(3)存在,如图,设过点P 与直线AC 平行线的直线为y x m =+,联立243y x m yx x,消掉y 得,2530x x m ,2(5)41(3)0m ,解得:134m =-, 即134m =-时,点P 到AC 的距离最大,ACP ∆的面积最大, 此时52x =,5133244y , ∴点P 的坐标为5(2,3)4-,设过点P 的直线与x 轴交点为F ,则13(4F ,0), 139144AF, 直线AC 的解析式为1y x =-,45CAB ∴∠=︒,∴点F 到AC 的距离为9292sin 45428AF , 又223(41)32AC ,∴∆的最大面积127ACE=⨯=.28【点评】本题考查了二次函数综合题型,主要考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,利用轴对称确定最短路线问题,联立两函数解析式求交点坐标,利用平行线确定点到直线的最大距离问题,熟悉相关性质是解题的关键.12.【答案】(1)2‘(2)1;(3)(.【分析】(1)当四边形EFGH为正方形时,则易证AHE≌△DGH,则DG=AH=2;(2)过F作FM⊥DC,交DC延长线于M,连接GE,由于AB∥CD,可得∠AEG=∠MGE,同理有∠HEG=∠FGE,利用等式性质有∠AEH=∠MGF,再结合∠A=∠M=90°,HE=FG,可证△AHE≌△MFG,从而有FM=HA=2(即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2),进而可求三角形面积;=7-x,在△AHE中,AE≤AB=7,利用勾股定理可得HE2(3)先设DG=x,由第(2)小题得,S△FCG≤53,在Rt△DHG中,再利用勾股定理可得x2+16≤53,进而可求x,从而可得当时,△GCF的面积最小.【解答】解:(1)∵四边形EFGH为正方形,∴HG=HE,∠EAH=∠D=90°,∵∠DHG+∠AHE=90°,∠DHG+∠DGH=90°,∴∠DGH=∠AHE,∴△AHE≌△DGH(AAS),∴DG=AH=2;(2)过F作FM⊥DC,交DC延长线于M,连接GE,∵AB∥CD,∴∠AEG=∠MGE,∵HE∥GF,∴∠HEG=∠FGE , ∴∠AEH=∠MGF ,在△AHE 和△MFG 中,∠A=∠M=90°,HE=FG , ∴△AHE ≌△MFG (AAS ), ∴FM=HA=2,即无论菱形EFGH 如何变化,点F 到直线CD 的距离始终为定值2, 因此S △FCG =12×FM ×GC=12×2×(7-6)=1; (3)设DG=x ,则由(2)得,S △FCG =7-x , 在△AHE 中,AE ≤AB=7, ∴HE 2≤53, ∴x 2+16≤53,∴x∴S △FCG 的最小值为,此时,∴当时,△FCG 的面积最小为(.【点评】本题属于四边形综合题,考查了矩形、菱形的性质、全等三角形的判定和性质、勾股定理.解题的关键是学会添加常用辅助线,构造全等三角形解决问题. 13.【答案】(1)抛物线的表达式为:223y x x =--;(2)POD S ∆有最大值,当14m =时,其最大值为4916;(3) Q -或(或1122⎛⎫-+- ⎪ ⎪⎝⎭或1322⎛⎫-+ ⎪ ⎪⎝⎭. 【分析】(1)函数的表达式为:y=a (x+1)(x-3),将点D 坐标代入上式,即可求解;(2)设点()2,23P m m m --,求出32OG m =+,根据()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++,利用二次函数的性质即可求解;(3)分∠ACB=∠BOQ 、∠BAC=∠BOQ ,两种情况分别求解,通过角的关系,确定直线OQ 倾斜角,进而求解.【解答】解:(1)函数的表达式为:(1)(3)y a x x =+-,将点D 坐标代入上式并解得:1a =,故抛物线的表达式为:223y x x =--…①;(2)设直线PD 与y 轴交于点G ,设点()2,23P m m m --,将点P 、D 的坐标代入一次函数表达式:y sx t =+并解得,直线PD 的表达式为:32y mx m =--,则32OG m =+,()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++, ∵10-<,故POD S ∆有最大值,当14m =时,其最大值为4916; (3)∵3OB OC ==,∴45OCB OBC ︒∠=∠=,∵ABC OBE ∠=∠,故OBE ∆与ABC ∆相似时,分为两种情况:①当ACB BOQ ∠=∠时,4AB =,BC =,AC =, 过点A 作AH ⊥BC 与点H ,1122ABC S AH BC AB OC ∆=⨯⨯=⨯,解得:AH =, ∴CH则tan 2ACB ∠=,则直线OQ 的表达式为: 2 y x =-…②,联立①②并解得:x =故点Q -或(; ②BAC BOQ ∠=∠时,3tan 3tan 1OC BAC BOQ OA ∠====∠, 则直线OQ 的表达式为: 3 y x =-…③,联立①③并解得:12x -±=,故点1322Q ⎛-- ⎝⎭或⎝⎭;综上,点Q -或(或⎝⎭或⎝⎭. 【点评】本题考查的是二次函数综合运用,涉及到解直角三角形、三角形相似、面积的计算等,其中(3),要注意分类求解,避免遗漏.14.【答案】(1)y =(x ﹣1)2;(2)点C 的坐标为(2,1);(3)1 【分析】(1)将点(3,4)代入解析式求得a 的值即可;(2)设点C 的坐标为(x 0,y 0),其中y 0=(x 0﹣1)2,作CF ⊥x 轴,证△BDO ∽△DCF 得BO DFDO CF=,即1=00x 1y -=()01x 1-,据此求得x 0的值即可得;(3)过点D 作x 轴的垂线交直线PQ 于点G ,则DG =4,根据S △PDQ =12DG •MN 列出关于k 的等式求解可得.【解答】解:(1)将点(3,4)代入解析式,得:4a =4,解得:a =1,所以抛物线解析式为y =(x ﹣1)2; (2)由(1)知点D 坐标为(1,0), 设点C 的坐标为(x 0,y 0),(x 0>1、y 0>0), 则y 0=(x 0﹣1)2,如图1,过点C 作CF ⊥x 轴,∴∠BOD =∠DFC =90°,∠DCF+∠CDF =90°, ∵∠BDC =90°, ∴∠BDO+∠CDF =90°, ∴∠BDO =∠DCF , ∴△BDO ∽△DCF , ∴BO DFDO CF=, ∴1=00x 1y -=()01x 1-,解得:x 0=2,此时y 0=1, ∴点C 的坐标为(2,1).(3)设点P 的坐标为(x 1,y 1),点Q 为(x 2,y 2),(其中x 1<1<x 2,y 1>0,y 2>0), 如图2,分别过点P 、Q 作x 轴的垂线,垂足分别为M 、N , 由y=(x-1)2 ,y=kx+1-k ,得x 2﹣(2+k )x+k =0. ∴x 1+x 2=2+k ,x 1•x 2=k . ∴MN =|x 1﹣x 2|=|2﹣k|.则过点D 作x 轴的垂线交直线PQ 于点G ,则点G 的坐标为(1,1), 所以DG =1,∴S △PDQ =12DG •MN =12×1×|x 1﹣x 2|12|2﹣k|, ∴当k =0时,S △PDQ 取得最小值1.【点评】本题主要考查二次函数的综合问题,解题的关键是熟练掌握待定系数法求函数解析式、相似三角形的判定与性质及一元二次方程根与系数的关系等知识点.15.【答案】45【分析】先证明△PEF ∽△BOC,得出PE EF PF BO OC BC ==,再根据122y x =-+,得出关于x 的二次函数方程,根据顶点坐标公式,求得则△PEF 面积最大值.【解答】解:设213,222P x x x ⎛⎫-++⎪⎝⎭(0<x<4), 抛物线213222y x x =-++与y 轴交于C 点,故C(0,2),∵PF ∥y 轴,PE ⊥BC , ∴∠PFE=∠BCO, 又∵∠PEF=∠BOC=90°, ∴△PEF ∽△BOC, ∴PE EF PF BO OC BC== ,把B(4,0),C(0,2)代入直线BC 的解析式为122y x =-+, 点1,22F x x ⎛⎫-+ ⎪⎝⎭,∴221312(2)22222P F x PF y y x x x x =-=-++--+=-+,∴PE=BO ·PF BC =42212x x -+== , EF=OC ·PFBC=222211122(2)x x x x x x -+-+-== , ∴221(2)1225PEFx x SPE EF -=⋅= =2221(2)(2)42520x x x ⎡⎤-⎢⎥⎡⎤--+⎣⎦⎣⎦=, 当2x =时,PEF S △取值最大,∴PEF S △的最大值为244205=, 故答案为45. 【点评】本题考查了三角形的面积及相似三角形的判定与性质.熟练掌握相似三角形的判定与性质及用含x 的代数式表示出三角形的面积是解题的关键.16.【答案】(1)见解析;(2)见解析;(3)当点P 是MN 的中点时S △MON 最小.理由见解析. 【分析】(1)根据尺规作图,过P 点作PN ⊥OB 于N ,交OA 于点M ; (2)证明三角形全等得P 为MN 的中点,便可得到结论;(3)过点P 作另一条直线EF 交OA 、OB 于点E 、F ,设PF <PE ,与MC 交于于G ,证明△PGM ≌△PFN ,得△PGM 与△PFN 的面积相等,进而得S 四边形MOFG =S △MON . 便可得S △MON <S △EOF ,问题得以解决.【解答】(1)①在OB 下方取一点K ,②以P 为圆心,PK 长为半径画弧,与OB 交于C 、D 两点,③分别以C 、D 为圆心,大于12CD 长为半径画弧,两弧交于E 点, ④作直线PE ,分别与OA 、OB 交于点M 、N ,故△OMN 就是所求作的三角形;(2)∵CM ∥OB ,∴∠C =∠PON ,在△PCM 和△PON 中,C PON PC POCPH OPN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△PCM ≌△PON (ASA ),∴PM =PN ,∴OP 平分△MON 的面积;(3)过点P 作另一条直线EF 交OA 、OB 于点E 、F ,设PF <PE ,与MC 交于于G ,∵CM ∥OB ,∴∠GMP =∠FNP ,在△PGM 和△PFM 中,PMG PNF PM PNMPG NPF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△PGM ≌△PFN (ASA ),∴S △PGM =S △PFN∴S 四边形MOFG =S △MON .∵S 四边形MOFG <S △EOF ,∴S △MON <S △EOF ,∴当点P 是MN 的中点时S △MON 最小.【点评】本题主要考查了图形的旋转性质,全等三角形的性质与判定,三角形的中线性质,关键证明三角形全等.17.【答案】(1)12x <<;(2)2. 【分析】(1)由旋转可得到AC=MA=x ,BC=BN=3-x ,利用三角形三边关系可求得x 的取值范围;(2)过点C 作CD ⊥AB 于D ,设CD=h ,利用勾股定理表示出AD 、BD ,再根据BD=AB-AD 列方程求出h 2,然后求出△ABC 的面积的平方,再根据二次函数的最值问题解答.【解答】解:(1)∵4MN =,1MA =,AB x =,∴413BN x x =--=-.由旋转的性质,得1MA AC ==,3BN BC x ==-,由三角形的三边关系,得31,31,x x x x --<⎧⎨-+>⎩①② 解不等式①得1x >,解不等式②得2x <,∴x 的取值范围是12x <<.(2)如图,过点C 作CD AB ⊥于点D ,设CD h =,由勾股定理,得AD =,BD ==, ∵BD AB AD =-,x =-34=-x ,两边平方整理,得()222832=x x h x -+-.∵ABC 的面积为1122AB CD xh ⋅=, ∴()2222113183222422S xh x x x ⎛⎫⎛⎫==-⨯-+=--+ ⎪ ⎪⎝⎭⎝⎭, ∴当32x =时,ABC 面积最大值的平方为12,∴ABC . 【点评】本题考查了旋转的性质,三角形的三边关系,勾股定理,二次函数的最值问题,(1)难点在于考虑利用三角形的三边关系列出不等式组,(2)难点在于求解利用勾股定理列出的无理方程.18.【答案】(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492. 【分析】(1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =,12PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;(2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出12PM BD =,12PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;(3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论.【解答】解:(1)点P ,N 是BC ,CD 的中点,//PN BD ∴,12PN BD =, 点P ,M 是CD ,DE 的中点,//PM CE ∴,12PM CE =, AB AC =,AD AE =,BD CE ∴=,PM PN ∴=,//PN BD ,DPN ADC ∴∠=∠,//PM CE ,DPM DCA ∴∠=∠,90BAC ∠=︒,90ADC ACD ∴∠+∠=︒,90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒,PM PN ∴⊥,故答案为:PM PN =,PM PN ⊥;(2)PMN ∆是等腰直角三角形.由旋转知,BAD CAE ∠=∠,AB AC =,AD AE =,()ABD ACE SAS ∴∆≅∆,ABD ACE ∴∠=∠,BD CE =, 利用三角形的中位线得,12PN BD =,12PM CE =,PM PN ∴=,PMN ∴∆是等腰三角形,同(1)的方法得,//PM CE ,DPM DCE ∴∠=∠,同(1)的方法得,//PN BD ,PNC DBC ∴∠=∠,DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠,90BAC ∠=︒,90ACB ABC ∴∠+∠=︒,90MPN ∴∠=︒,PMN ∴∆是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,MN ∴最大时,PMN ∆的面积最大,//DE BC ∴且DE 在顶点A 上面,MN ∴最大AM AN =+,连接AM ,AN ,在ADE ∆中,4AD AE ==,90DAE ∠=︒,AM ∴=在Rt ABC ∆中,10AB AC ==,AN =MN ∴=最大,22211114922242PMN S PM MN ∆∴==⨯=⨯=最大. 方法2:由(2)知,PMN ∆是等腰直角三角形,12PM PN BD ==, PM ∴最大时,PMN ∆面积最大,∴点D 在BA 的延长线上,14BD AB AD ∴=+=,7PM ∴=,2211497222PMN S PM ∆∴==⨯=最大. 【点评】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出12PM CE =,12PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大.19.【答案】(1)20;(2)5;(3)S △BCD =16;∠BCD =45°【分析】(1)由勾股定理可求解;(2)由等腰三角形的性质可得∠A =∠DBA ,由余角的性质可得∠DBC =∠C ,可得DB =DC =AD =12AC =5; (3)由中点的性质和折叠的性质可得DE =EC =4,则当DE ⊥BC 时,S △BCD 有最大值,由三角形面积公式和等腰直角三角形的性质可求解.【解答】解:(1)∵∠ABC =90°,AB =12,BC =16,∴20AC ==,故答案为:20;(2)∵DA =DB ,∴∠A =∠DBA ,∵∠ABC =90°∴∠A +∠C =90°,∠ABD +∠DBC =90°,∴∠DBC =∠C ,∴DB=DC,∴DB=DC=AD=12AC=5,故答案为:5;(3)∵E为BC中点,BC=8,∴BE=EC=4,∵将∠C折叠,折痕为EF,∴DE=EC=4,当DE⊥BC时,S△BCD有最大值,S△BCD=12×BC×DE=12×8×4=16,此时∵DE⊥BC,DE=EC,∴∠BCD=45°.故答案为:S△BCD=16;∠BCD=45°.【点评】本题主要考查了勾股定理、直角三角形斜边中线问题以及三角形中的折叠问题;题目较为综合,其中熟练掌握定义定理是解题的关键.20.【答案】①②③⑤【分析】由“SAS”可证△BEC≌△AFC,可得CF=CE,∠BCE=∠ACF,可证△EFC是等边三角形,由三角形内角和定理可证∠DFC=∠EGC;由等边三角形的性质和菱形的性质可求MN=DN=BM=由勾股定理即可求解EF2=BE2+DF2不成立;由等边三角形的性质可得△ECF面积2,则当EC⊥AB时,△ECF【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD=6,∵AC=BC,∴AB=BC=CD=AD=AC,∴△ABC,△ACD是等边三角形,∴∠ABC=∠BAC=∠ACB=∠DAC=60°,∵AC=BC,∠ABC=∠DAC,AF=BE,∴△BEC≌△AFC(SAS)∴CF=CE,∠BCE=∠ACF,∴∠ECF =∠BCA =60°,∴△EFC 是等边三角形,故①正确;∵∠ECF =∠ACD =60°,∴∠ECG =∠FCD ,∵∠FEC =∠ADC =60°,∴∠DFC =∠EGC ,故②正确;若BE =3,菱形ABCD 的边长为6,∴点E 为AB 中点,点F 为AD 中点,∵四边形ABCD 是菱形,∴AC ⊥BD ,AO =CO ,BO =DO ,∠ABO =12∠ABC =30°,∴AO =12AB =3,BO =∴BD =,∵△ABC 是等边三角形,BE =AE =3,∴CE ⊥AB ,且∠ABO =30°,∴BE EM =3,BM =2EM ,∴BM =同理可得DN =∴MN =BD −BM −DN =∴BM =MN =DN ,故③正确;∵△BEC ≌△AFC ,∴AF =BE ,同理△ACE ≌△DCF ,∴AE =DF ,∵∠BAD ≠90°,∴EF 2=AE 2+AF 2不成立,∴EF 2=BE 2+DF 2不成立,故④错误,∵△ECF 是等边三角形,∴△ECF 2, ∴当EC ⊥AB 时,△ECF 面积有最小值,此时,EC =ECF 面积的最小值为4,故⑤正确; 故答案为:①②③⑤.【点评】本题是四边形综合题,考查菱形的性质,全等三角形的判定和性质,等边三角形的判定和性质,勾股定理等知识,熟练掌握性质定理是解题的关键.21.【答案】(1)223;y x x =--(2)当32t =时,S 有最大值278;(3)()()2,5,1,4-- 【分析】(1)根据抛物线上的对称点B 和E ,求出对称轴从而可求出C 点坐标.然后设出抛物线的交点式,再把点A 代入求出a 值即可求出抛物线的解析式;(2)过点P 作y 轴的平行线交AE 于点H ,分别根据抛物线和直线AE 的解析式表示出点P 和点H 的坐标,从而求出线段PH 的长,最后用含t 的式子表示∆APE 的面积,利用二次函数的性质求解;(3)根据两直线垂直时,它们的斜率之积为-1,可求得与直线AE 垂直的直线方程,最后联立方程组可求点P 的坐标.【解答】解:(1)抛物线2y ax bx c =++经过点()()1,03,0,B E -、∴抛物线的对称轴为1,x =点()0,3A -,点()2,3C -抛物线表达式为()()()23123,.y a x x a x x =-+=--33a ∴-=-,解得1,a =∴抛物线的表达式为223;y x x =--()2如图,过点P 作y 轴的平行线交AE 于点H由点,A E 的坐标得直线AE 的表达式为3,y x =-设点()2,23P t t t --,则(),3H t t -()()22213333273233222228PAES PH OE t t t t t t ∆⎛⎫∴=•=--++=-+=--+ ⎪⎝⎭ 当32t =时,S 有最大值278()3直线AE 表达式中的k 值为1,则与之垂直的直线表达式中的k 值为1-① 当90PEA ︒∠=时,直线PE 的表达式为1,y x b =-+将点E 的坐标代人并解得13b =,直线PE 的表达式为3,y x =-+联立得2233y x x y x ⎧=--⎨=-+⎩解得2x =-或3(不合题意,舍去)故点P 的坐标为()2,5-② 当90PAE ︒∠=时,直线PA 的表达式为2,y x b =-+将点A 的坐标代人并解得23b =,直线PE 的表达式为3,y x =--联立得2233y x x y x ⎧=--⎨=--⎩ 解得1x =或0(不合题意,舍去)故点()1,4P -综上,点P 的坐标为()2,5-或(1,-4)【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质;会利用待定系数法求二次函数解析式;会解一元二次方程;理解坐标与图形性质,记住两直线垂直时它们的斜率之积为-1;会利用分类讨论的思想解决数学问题.。

(完整word版)初中数学《几何最值问题》典型例题

(完整word版)初中数学《几何最值问题》典型例题

初中数学《最值问题》典型例题一、解决几何最值问题的通常思路两点之间线段最短;直线外一点与直线上所有点的连线段中,垂线段最短;三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段.轴对称最值图形lPBANM lBAAPBl 原理两点之间线段最短两点之间线段最短三角形三边关系特征A,B为定点,l为定直线,P为直线l上的一个动点,求AP+BP的最小值A,B为定点,l为定直线,MN为直线l上的一条动线段,求AM+BN的最小值A,B为定点,l为定直线,P为直线l上的一个动点,求|AP-BP|的最大值转化作其中一个定点关于定直线l的对称点先平移AM或BN使M,N重合,然后作其中一个定点关于定直线l的对称点作其中一个定点关于定直线l的对称点折叠最值图形B'NMCAB原理两点之间线段最短特征在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折,B点的对应点为B',连接AB',求AB'的最小值.转化转化成求AB'+B'N+NC的最小值1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为.【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.∵PC关于OA对称,∴∠COP=2∠AOP,OC=OP同理,∠DOP=2∠BOP,OP=OD∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD.∴△COD是等腰直角三角形.则CD=2OC=2×32=6.【题后思考】本题考查了对称的性质,正确作出图形,理解△PMN周长最小的条件是解题的关键.2.如图,当四边形P ABN的周长最小时,a=.【分析】因为AB,PN的长度都是固定的,所以求出P A+NB的长度就行了.问题就是P A+NB什么时候最短.把B点向左平移2个单位到B′点;作B′关于x轴的对称点B″,连接AB″,交x轴于P,从而确定N点位置,此时P A+NB最短.设直线AB″的解析式为y=kx+b,待定系数法求直线解析式.即可求得a的值.【解答】解:将N点向左平移2单位与P重合,点B向左平移2单位到B′(2,﹣1),作B′关于x轴的对称点B″,根据作法知点B″(2,1),设直线AB″的解析式为y=kx+b,则123k bk b=+⎧⎨-=+⎩,解得k=4,b=﹣7.∴y=4x﹣7.当y=0时,x=74,即P(74,0),a=74.故答案填:74.【题后思考】考查关于X轴的对称点,两点之间线段最短等知识.3.如图,A 、B 两点在直线的两侧,点A 到直线的距离AM =4,点B 到直线的距离BN =1,且MN =4,P 为直线上的动点,|P A ﹣PB |的最大值为.D PB′N MA【分析】作点B 于直线l 的对称点B ′,则PB =PB ′因而|P A ﹣PB |=|P A ﹣PB ′|,则当A ,B ′、P 在一条直线上时,|P A ﹣PB |的值最大.根据平行线分线段定理即可求得PN 和PM 的值然后根据勾股定理求得P A 、PB ′的值,进而求得|P A ﹣PB |的最大值.【解答】解:作点B 于直线l 的对称点B ′,连AB ′并延长交直线l 于P . ∴B ′N =BN =1,过D 点作B ′D ⊥AM , 利用勾股定理求出AB ′=5 ∴|P A ﹣PB |的最大值=5.【题后思考】本题考查了作图﹣轴对称变换,勾股定理等,熟知“两点之间线段最短”是解答此题的关键.4.动手操作:在矩形纸片ABCD 中,AB =3,AD =5.如图所示,折叠纸片,使点A 落在BC 边上的A ′处,折痕为PQ ,当点A ′在BC 边上移动时,折痕的端点P 、Q 也随之移动.若限定点P 、Q 分别在AB 、AD 边上移动,则点A ′在BC 边上可移动的最大距离为 .【分析】本题关键在于找到两个极端,即BA ′取最大或最小值时,点P 或Q 的位置.经实验不难发现,分别求出点P 与B 重合时,BA ′取最大值3和当点Q 与D 重合时,BA ′的最小值1.所以可求点A ′在BC 边上移动的最大距离为2.【解答】解:当点P 与B 重合时,BA ′取最大值是3, 当点Q 与D 重合时(如图),由勾股定理得A ′C =4,此时BA ′取最小值为1. 则点A ′在BC 边上移动的最大距离为3﹣1=2. 故答案为:2【题后思考】本题考查了学生的动手能力及图形的折叠、勾股定理的应用等知识,难度稍大,学生主要缺乏动手操作习惯,单凭想象造成错误.5.如图,直角梯形纸片ABCD ,AD ⊥AB ,AB =8,AD =CD =4,点E 、F 分别在线段AB 、AD 上,将△AEF 沿EF 翻折,点A 的落点记为P .当P 落在直角梯形ABCD 内部时,PD 的最小值等于 .【分析】如图,经分析、探究,只有当直径EF最大,且点A落在BD上时,PD最小;根据勾股定理求出BD的长度,问题即可解决.【解答】解:如图,∵当点P落在梯形的内部时,∠P=∠A=90°,∴四边形PF AE是以EF为直径的圆内接四边形,∴只有当直径EF最大,且点A落在BD上时,PD最小,此时E与点B重合;由题意得:PE=AB=8,由勾股定理得:BD2=82+62=80,∴BD=45,∴PD=458 .【题后思考】该命题以直角梯形为载体,以翻折变换为方法,以考查全等三角形的判定及其性质的应用为核心构造而成;解题的关键是抓住图形在运动过程中的某一瞬间,动中求静,以静制动.6.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为.【分析】取AB的中点E,连接OD、OE、DE,根据直角三角形斜边上的中线等于斜边的一半可得OE=AB,利用勾股定理列式求出DE,然后根据三角形任意两边之和大于第三边可得OD过点E时最大.【解答】解:如图,取AB的中点E,连接OD、OE、DE,∵∠MON=90°,AB=2∴OE=AE=12AB=1,∵BC=1,四边形ABCD是矩形,∴AD,∴DE2,根据三角形的三边关系,OD<OE+DE,∴当OD过点E是最大,最大值为2+1.故答案为:2+1.【题后思考】本题考查了矩形的性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系,勾股定理,确定出OD过AB的中点时值最大是解题的关键.7.如图,线段AB的长为4,C为AB上一动点,分别以AC、BC为斜边在AB的同侧作等腰直角△ACD 和等腰直角△BCE,那么DE长的最小值是.【分析】设AC=x,BC=4﹣x,根据等腰直角三角形性质,得出CD=22x,CD′=22(4﹣x),根据勾股定理然后用配方法即可求解.【解答】解:设AC=x,BC=4﹣x,∵△ABC,△BCD′均为等腰直角三角形,∴CD=22x,CD′=22(4﹣x),∵∠ACD=45°,∠BCD′=45°,∴∠DCE=90°,∴DE2=CD2+CE2=12x2+12(4﹣x)2=x2﹣4x+8=(x﹣2)2+4,∵根据二次函数的最值,∴当x取2时,DE取最小值,最小值为:4.故答案为:2.【题后思考】本题考查了二次函数最值及等腰直角三角形,难度不大,关键是掌握用配方法求二次函数最值.8.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK 的最小值为.【分析】根据轴对称确定最短路线问题,作点P关于BD的对称点P′,连接P′Q与BD的交点即为所求的点K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知P′Q⊥CD时PK+QK的最小值,然后求解即可.【解答】解:如图,∵AB=2,∠A=120°,∴点P′到CD的距离为2×33∴PK+QK3故答案为:3.【题后思考】本题考查了菱形的性质,轴对称确定最短路线问题,熟记菱形的轴对称性和利用轴对称确定最短路线的方法是解题的关键.9.如图所示,正方形ABCD的边长为1,点P为边BC上的任意一点(可与B、C重合),分别过B、C、D作射线AP的垂线,垂足分别为B′、C′、D′,则BB′+CC′+DD′的取值范围是.【分析】首先连接AC,DP.由正方形ABCD的边长为1,即可得:S△ADP=12S正方形ABCD=12,S△ABP+S△ACP=S△ABC=12S正方形ABCD=12,继而可得12AP•(BB′+CC′+DD′)=1,又由1≤AP≤2,即可求得答案.【解答】解:连接AC,DP.∵四边形ABCD是正方形,正方形ABCD的边长为1,∴AB=CD,S正方形ABCD=1,∵S△ADP=12S正方形ABCD=12,S△ABP+S△ACP=S△ABC=12S正方形ABCD=12,∴S△ADP+S△ABP+S△ACP=1,∴12AP•BB′+12AP•CC′+12AP•DD′=12AP•(BB′+CC′+DD′)=1,则BB′+CC′+DD′=2 AP,∵1≤AP≤2,∴当P当P与C重合时,有最小值2.∴2≤BB′+CC′+DD′≤2.故答案为:2≤BB′+CC′+DD′≤2.【题后思考】此题考查了正方形的性质、面积及等积变换问题.此题难度较大,解题的关键是连接AC,DP,根据题意得到S△ADP+S△ABP+S△ACP=1,继而得到BB′+CC′+DD′=2 AP.10.如图,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2和1,P、E、F分别是边CD、⊙A 和⊙B上的动点,则PE+PF的最小值是.【分析】利用菱形的性质以及相切两圆的性质得出P与D重合时PE+PF的最小值,进而求出即可.【解答】解:由题意可得出:当P与D重合时,E点在AD上,F在BD上,此时PE+PF最小,连接BD,∵菱形ABCD中,∠A=60°,∴AB=AD,则△ABD是等边三角形,∴BD=AB=AD=3,∵⊙A、⊙B的半径分别为2和1,∴PE=1,DF=2,∴PE+PF的最小值是3.故答案为:3.【题后思考】此题主要考查了菱形的性质以及相切两圆的性质等知识,根据题意得出P点位置是解题关键.。

初中几何最值问题含解析

初中几何最值问题含解析
总结:用轴对称进行转化时,通常作定点关于动点所在直线的对称点。
分析务必细致·论证务求严谨
-2-
刻意练习: 1.如左图,梯形 ABCD 中,AD∥BC,∠BAD=90°,AD=1,E 为 AB 的中点,AC 是 ED 的垂直平分线。
(1)求证 DB=DC. (2)在右图的线段 AB 上找出一点 P,使 PC+PD 的值最小,标出点 P 的位置,保留画图痕迹,并求出 PB 的值。
B
P R
O
Q
A
【解析】如图所示,分别作 P 关于 OB、OA 的对称点,连接 P′、P″.∠P′OP″=90°,P′P″=10 2,C△PQR≥P′P″=10 2
P' B
R P
O
Q
A
P''
点评:运用轴对称进行转化,求解 P′P″的长时,学生不容易想到通过连接 OP′、OP″、构造等腰直角三角形求解。
分析务必细致·论证务求严谨
-5-
刻意练习:
1.如图,在锐角△ABC 中,AB=4 2,∠BAC=45°,∠BAC 的平分线交 BC 于点 D,M 和 N 分别是 AD,AB 上的
动点,则 BM+MN 的最小值是
.
C
D M
A
N
B
【答案】4
【解析】作 N 关于 AD 的对称点 N′,BM+MN=BM+MN′≥BH=4
y
C
E
B
y
C
E
B
N
D
N
D
O
M
A
x
O
M
A
x
【答案】(1) y=-43x+25;(2)5+5 37。 【解析】(1)OE=OA=15,OC=9,得 CE=12,BE=3,E(12,9)

几何图形中的最值问题

几何图形中的最值问题

几何图形中的最值问题引言:最值问题可以分为最大值和最小值。

在初中包含三个方面的问题:1.函数:①二次函数有最大值和最小值;②一次函数中有取值范围时有最大值和最小值。

2.不等式: ①如x ≤7,最大值是7;②如x ≥5,最小值是5.3.几何图形: ①两点之间线段线段最短。

②直线外一点向直线上任一点连线中垂线段最短,③在三角形中,两边之和大于第三边,两边之差小于第三边。

一、最小值问题例1. 如图4,已知正方形的边长是8,M 在DC 上,且DM=2,N 为线段AC 上的一动点,求DN+MN 的最小值。

解: 作点D 关于AC 的对称点D /,则点D /与点B 重合,连BM,交AC 于N ,连DN ,则DN+MN 最短,且DN+MN=BM 。

∵CD=BC=8,DM=2, ∴MC=6, 在Rt △BCM 中,BM=6822 =10,∴DN+MN 的最小值是10。

例2,已知,MN 是⊙O 直径上,MN=2,点A 在⊙O 上,∠AMN=300,B 是弧AN 的中点,P 是MN 上的一动点,则PA+PB 的最小值是解:作A 点关于MN 的对称点A /,连A /B,交MN 于P ,则PA+PB 最短。

连OB ,OA /,∵∠AMN=300,B 是弧AN 的中点, ∴∠BOA /=300, 根据对称性可知 ∴∠NOA /=600, ∴∠MOA /=900, 在Rt △A /BO 中,OA /=OB=1, ∴A /B=2 即PA+PB=2图4CDMNMMNB例3. 如图6,已知两点D(1,-3),E(-1,-4),试在直线y=x 上确定一点P ,使点P 到D 、E 两点的距离之和最小,并求出最小值。

解:作点E 关于直线y=x 的对称点M , 连MD 交直线y=x 于P ,连PE , 则PE+PD 最短;即PE+PD=MD 。

∵E(-1,-4), ∴M(-4,-1),过M 作MN ∥x 轴的直线交过D 作DN ∥y 轴的直线于N , 则MN ⊥ND, 又∵D(1,-3),则N(1,-1),在Rt △MND 中,MN=5,ND=2, ∴MD=2522+=29。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学《最值问题》典型例题一、解决几何最值问题的通常思路两点之间线段最短;直线外一点与直线上所有点的连线段中,垂线段最短;三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段.轴对称最值图形lPBANM lBAAPBl 原理两点之间线段最短两点之间线段最短三角形三边关系特征A,B为定点,l为定直线,P为直线l上的一个动点,求AP+BP的最小值A,B为定点,l为定直线,MN为直线l上的一条动线段,求AM+BN的最小值A,B为定点,l为定直线,P为直线l上的一个动点,求|AP-BP|的最大值转化作其中一个定点关于定直线l的对称点先平移AM或BN使M,N重合,然后作其中一个定点关于定直线l的对称点作其中一个定点关于定直线l的对称点折叠最值图形B'NMCAB原理两点之间线段最短特征在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折,B点的对应点为B',连接AB',求AB'的最小值.转化转化成求AB'+B'N+NC的最小值1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为.【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.∵PC关于OA对称,∴∠COP=2∠AOP,OC=OP同理,∠DOP=2∠BOP,OP=OD∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD.∴△COD是等腰直角三角形.则CD=2OC=2×32=6.【题后思考】本题考查了对称的性质,正确作出图形,理解△PMN周长最小的条件是解题的关键.2.如图,当四边形P ABN的周长最小时,a=.【分析】因为AB,PN的长度都是固定的,所以求出P A+NB的长度就行了.问题就是P A+NB什么时候最短.把B点向左平移2个单位到B′点;作B′关于x轴的对称点B″,连接AB″,交x轴于P,从而确定N点位置,此时P A+NB最短.设直线AB″的解析式为y=kx+b,待定系数法求直线解析式.即可求得a的值.【解答】解:将N点向左平移2单位与P重合,点B向左平移2单位到B′(2,﹣1),作B′关于x轴的对称点B″,根据作法知点B″(2,1),设直线AB″的解析式为y=kx+b,则123k bk b=+⎧⎨-=+⎩,解得k=4,b=﹣7.∴y=4x﹣7.当y=0时,x=74,即P(74,0),a=74.故答案填:74.【题后思考】考查关于X轴的对称点,两点之间线段最短等知识.3.如图,A 、B 两点在直线的两侧,点A 到直线的距离AM =4,点B 到直线的距离BN =1,且MN =4,P 为直线上的动点,|P A ﹣PB |的最大值为.D PB′N MA【分析】作点B 于直线l 的对称点B ′,则PB =PB ′因而|P A ﹣PB |=|P A ﹣PB ′|,则当A ,B ′、P 在一条直线上时,|P A ﹣PB |的值最大.根据平行线分线段定理即可求得PN 和PM 的值然后根据勾股定理求得P A 、PB ′的值,进而求得|P A ﹣PB |的最大值.【解答】解:作点B 于直线l 的对称点B ′,连AB ′并延长交直线l 于P . ∴B ′N =BN =1,过D 点作B ′D ⊥AM , 利用勾股定理求出AB ′=5 ∴|P A ﹣PB |的最大值=5.【题后思考】本题考查了作图﹣轴对称变换,勾股定理等,熟知“两点之间线段最短”是解答此题的关键.4.动手操作:在矩形纸片ABCD 中,AB =3,AD =5.如图所示,折叠纸片,使点A 落在BC 边上的A ′处,折痕为PQ ,当点A ′在BC 边上移动时,折痕的端点P 、Q 也随之移动.若限定点P 、Q 分别在AB 、AD 边上移动,则点A ′在BC 边上可移动的最大距离为 .【分析】本题关键在于找到两个极端,即BA ′取最大或最小值时,点P 或Q 的位置.经实验不难发现,分别求出点P 与B 重合时,BA ′取最大值3和当点Q 与D 重合时,BA ′的最小值1.所以可求点A ′在BC 边上移动的最大距离为2.【解答】解:当点P 与B 重合时,BA ′取最大值是3, 当点Q 与D 重合时(如图),由勾股定理得A ′C =4,此时BA ′取最小值为1. 则点A ′在BC 边上移动的最大距离为3﹣1=2. 故答案为:2【题后思考】本题考查了学生的动手能力及图形的折叠、勾股定理的应用等知识,难度稍大,学生主要缺乏动手操作习惯,单凭想象造成错误.5.如图,直角梯形纸片ABCD ,AD ⊥AB ,AB =8,AD =CD =4,点E 、F 分别在线段AB 、AD 上,将△AEF 沿EF 翻折,点A 的落点记为P .当P 落在直角梯形ABCD 内部时,PD 的最小值等于 .【分析】如图,经分析、探究,只有当直径EF最大,且点A落在BD上时,PD最小;根据勾股定理求出BD的长度,问题即可解决.【解答】解:如图,∵当点P落在梯形的内部时,∠P=∠A=90°,∴四边形PF AE是以EF为直径的圆内接四边形,∴只有当直径EF最大,且点A落在BD上时,PD最小,此时E与点B重合;由题意得:PE=AB=8,由勾股定理得:BD2=82+62=80,∴BD=45,∴PD=458 .【题后思考】该命题以直角梯形为载体,以翻折变换为方法,以考查全等三角形的判定及其性质的应用为核心构造而成;解题的关键是抓住图形在运动过程中的某一瞬间,动中求静,以静制动.6.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为.【分析】取AB的中点E,连接OD、OE、DE,根据直角三角形斜边上的中线等于斜边的一半可得OE=AB,利用勾股定理列式求出DE,然后根据三角形任意两边之和大于第三边可得OD过点E时最大.【解答】解:如图,取AB的中点E,连接OD、OE、DE,∵∠MON=90°,AB=2∴OE=AE=12AB=1,∵BC=1,四边形ABCD是矩形,∴AD,∴DE2,根据三角形的三边关系,OD<OE+DE,∴当OD过点E是最大,最大值为2+1.故答案为:2+1.【题后思考】本题考查了矩形的性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系,勾股定理,确定出OD过AB的中点时值最大是解题的关键.7.如图,线段AB的长为4,C为AB上一动点,分别以AC、BC为斜边在AB的同侧作等腰直角△ACD 和等腰直角△BCE,那么DE长的最小值是.【分析】设AC=x,BC=4﹣x,根据等腰直角三角形性质,得出CD=22x,CD′=22(4﹣x),根据勾股定理然后用配方法即可求解.【解答】解:设AC=x,BC=4﹣x,∵△ABC,△BCD′均为等腰直角三角形,∴CD=22x,CD′=22(4﹣x),∵∠ACD=45°,∠BCD′=45°,∴∠DCE=90°,∴DE2=CD2+CE2=12x2+12(4﹣x)2=x2﹣4x+8=(x﹣2)2+4,∵根据二次函数的最值,∴当x取2时,DE取最小值,最小值为:4.故答案为:2.【题后思考】本题考查了二次函数最值及等腰直角三角形,难度不大,关键是掌握用配方法求二次函数最值.8.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK 的最小值为.【分析】根据轴对称确定最短路线问题,作点P关于BD的对称点P′,连接P′Q与BD的交点即为所求的点K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知P′Q⊥CD时PK+QK的最小值,然后求解即可.【解答】解:如图,∵AB=2,∠A=120°,∴点P′到CD的距离为2×33∴PK+QK3故答案为:3.【题后思考】本题考查了菱形的性质,轴对称确定最短路线问题,熟记菱形的轴对称性和利用轴对称确定最短路线的方法是解题的关键.9.如图所示,正方形ABCD的边长为1,点P为边BC上的任意一点(可与B、C重合),分别过B、C、D作射线AP的垂线,垂足分别为B′、C′、D′,则BB′+CC′+DD′的取值范围是.【分析】首先连接AC,DP.由正方形ABCD的边长为1,即可得:S△ADP=12S正方形ABCD=12,S△ABP+S△ACP=S△ABC=12S正方形ABCD=12,继而可得12AP•(BB′+CC′+DD′)=1,又由1≤AP≤2,即可求得答案.【解答】解:连接AC,DP.∵四边形ABCD是正方形,正方形ABCD的边长为1,∴AB=CD,S正方形ABCD=1,∵S△ADP=12S正方形ABCD=12,S△ABP+S△ACP=S△ABC=12S正方形ABCD=12,∴S△ADP+S△ABP+S△ACP=1,∴12AP•BB′+12AP•CC′+12AP•DD′=12AP•(BB′+CC′+DD′)=1,则BB′+CC′+DD′=2 AP,∵1≤AP≤2,∴当P当P与C重合时,有最小值2.∴2≤BB′+CC′+DD′≤2.故答案为:2≤BB′+CC′+DD′≤2.【题后思考】此题考查了正方形的性质、面积及等积变换问题.此题难度较大,解题的关键是连接AC,DP,根据题意得到S△ADP+S△ABP+S△ACP=1,继而得到BB′+CC′+DD′=2 AP.10.如图,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2和1,P、E、F分别是边CD、⊙A 和⊙B上的动点,则PE+PF的最小值是.【分析】利用菱形的性质以及相切两圆的性质得出P与D重合时PE+PF的最小值,进而求出即可.【解答】解:由题意可得出:当P与D重合时,E点在AD上,F在BD上,此时PE+PF最小,连接BD,∵菱形ABCD中,∠A=60°,∴AB=AD,则△ABD是等边三角形,∴BD=AB=AD=3,∵⊙A、⊙B的半径分别为2和1,∴PE=1,DF=2,∴PE+PF的最小值是3.故答案为:3.【题后思考】此题主要考查了菱形的性质以及相切两圆的性质等知识,根据题意得出P点位置是解题关键.。

相关文档
最新文档