2020年中考数学复习 动点问题(一)
中考数学动点问题专题讲解(一)(建立动点问题的函数解析式)
所谓【1 】“动点型问题”是指题设图形中消失一个或多个动点,它们在线段.射线或弧线上活动的一类凋谢性标题.解决这类问题的症结是动中求静,灵巧应用有关数学常识解决问题.症结:动中求静.数学思惟:分类思惟函数思惟方程思惟数形联合思惟转化思惟重视对几何图形活动变更才能的考核从变换的角度和活动变更来研讨三角形.四边形.函数图像等图形,经由过程“对称.动点的活动”等研讨手腕和办法,来摸索与发明图形性质及图形变更,在解题进程中渗入渗出空间不雅念和合情推理.选择根本的几何图形,让学生阅历摸索的进程,以才能立意,考核学生的自立探讨才能,促进造就学生解决问题的才能.图形在动点的活动进程中不雅察图形的变更情形,须要懂得图形在不合地位的情形,才干做好盘算推理的进程.在变更中找到不变的性质是解决数学“动点”探讨题的根本思绪,这也是动态几何数学问题中最焦点的数学本质.二期课改后数学卷中的数学压轴性题正慢慢转向数形联合.动态几何.着手操纵.试验探讨等偏向成长.这些压轴题题型繁多.题意创新,目标是考核学生的剖析问题.解决问题的才能,内容包含空间不雅念.应用意识.推理才能等.从数学思惟的层面上讲:(1)活动不雅点;(2)方程思惟;(3)数形联合思惟;(4)分类思惟;(5)转化思惟等.研讨积年来各区的压轴性试题,就能找到本年中考数学试题的热门的形成和命题的动向,它有利于我们教师在教授教养中研讨对策,掌控偏向.只的如许,才干更好的造就学生解题素养,在本质教导的布景下更明白地表现课程尺度的导向.本文拟就压轴题的题型布景和区分度测量点的消失性和区分度小题处理手段提出本身的不雅点.函数揭示了活动变更进程中量与量之间的变更纪律,是初中数学的重要内容.动点问题反应的是一种函数思惟,因为某一个点或某图形的有前提地活动变更,引起未知量与已知量间的一种变更关系,这种变更关系就是动点问题中的函数关系.那么,我们如何树立这种函数解析式呢?下面联合中测验题举例剖析.一.应用勾股定理树立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上活动时,线段GO.GP.GH 中,有无长度保持不变的线段?假若有,请指出如许的线段,并求出响应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的界说域(即自变量x 的取值规模).(3)假如△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上活动时,OP 保持不变,于是线段GO.GP.GH 中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2. (2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中,.∴y =GP=32MP=233631x + (0<x <6). (3)△PGH 是等腰三角形有三种可能情形: ①GP=PH 时,x x =+233631,解得6=x . 经磨练,6=x 是原方程的根,且相符题意.2222233621419x x x MH PH MP +=-+=+=HM NGPOAB图1x y②GP=GH 时,2336312=+x ,解得0=x . 经磨练,0=x 是原方程的根,但不相符题意.③PH=GH 时,2=x .综上所述,假如△PGH 是等腰三角形,那么线段PH 的长为6或2.本专题的重要特点是两个点在活动的进程中,直接或间接地结构了直角三角线,是以可以应用勾股定理去树立函数关系式. 勾股定理是初中数学的重要定理,在应用勾股定理写函数解析式的进程中,主如果找边的等量关系,要擅长发明这种内涵的关系,用代数式去暗示这些边,达到解题的目标. 因为是压轴题,有的先有铺垫,再写解析式;有的写好解析式后,再证实等腰三角形.类似三角形等,还有的再解一些与圆有关的体型. 要卖力体会,达到触类旁通的目标. 1 切记勾股定理:在直角三角形中,两条直角边的平方和等于斜边的平方.例题,扇形中∠AOB=45°,半径OB=2,矩形PQRS 的极点P.S 在半径OA 上,Q 在半径OB 上,R 在弧AB 上,贯穿连接OR. (1) 当∠AOR=30°时,求OP 长(2) 设OP=x,OS=y,求y 与x 的函数关系式及界说域2 在四边形的翻折与扭转中,往往会应用到勾股定理,由此产生些函数解析式的问题,要闇练控制.例题:如图,正方形ABCD 中,AB=6,有一块含45°角的三角板,把45°角的极点放在D 点,将三角板绕着点D 扭转,使这个45°角的双方与线段AB.BC 分离订交于点E.F (点E 与点A.B不重合)(1)从几个不合的地位,分离测量AE.EF.FC的长,从中你能发明AE.EF.FC的数目之间具有如何的关系?并证实你所得到的结论(2)设AE=x,CF=y,求y与x之间的函数解析式,并写出函数的界说域(3)试问△BEF的面积可否为8?假如能,请求出EF的长;假如不克不及,请解释来由.3 在一些特别的四边形中,如矩形.正方形,它们都是直角,菱形的对角线互相垂直,这些都有可能结构直角三角形,可以斟酌用勾股定理写出函数的解析式.例题:如图,在菱形ABCD中,AB=4,∠B=60°,点P是射线BC上的一个动点,∠PAQ=60°,交射线CD于点Q,设点P到点B的距离为x,PQ=y(1)求证:三角形APQ是等边三角形(2)求y关于x的函数解析式,并写出它的界说域(3)假如PD⊥AQ,求BP的值4 作底边上的高,可以结构直角三角形,应用勾股定理写函数的解析式例题:如图,等边△ABC的边长为3,点P.Q分离是AB.BC上的动点(点P.Q与△ABC 的极点不重合),且AP=BQ,AQ.CP订交于点E.(1)如设线段AP为x,线段CP为y,求y关于x的函数解析式,并写出界说域(2)当△CBP的面积是△CEQ的面积的2倍时,求AP的长(3)点P.Q分离在AB.BC上移动进程中,AQ和CP可否互相垂直?如能,请指出P点的地位,请解释来由.5 在解圆的标题时,首选的帮助线是弦心距,它不但可以应用垂径定理,并且结构了直角三角形,为用勾股定理写函数解析式创造了前提.例题:如图,⊙A和⊙B是外离的两圆,两圆的连心线分离交⊙A.⊙B于E.F,点P是线段AB上的一动点(点P不与E.F重合),PC切⊙A于点C,PD切⊙B于点D,已知⊙A的半径为2,⊙B的半径为1,AB=5.(1)如设线段BP的长为x,线段CP的长为y,求y关于x的函数解析式,并写出函数的界说域(2)假如PC=PD,求PB的长(3)假如PC=2PD,断定此时直线CP与⊙B的地位关系,证实你的结论6 强调圆的首选帮助线是弦心距,它不但可以等分弦,并且结构了直角三角形,为解题创建新思绪.例题:如图,在△ABC中,AB=15,AC=20,cotA=2,P是边AB上的一个动点,⊙P的半径为定长. 当点P与点B重应时,⊙P正好与边AC相切;当点P与点B不重合,且⊙P与边AC订交于点M和点N时,设AP=x,MN=y.(1)求⊙P的半径(2)求y关于x的函数解析式,并写出它的界说域(3)当AP=65时,试比较∠CPN与∠A的大小,并解释来由阶梯题组练习1 如图,E是正方形ABCD的边AD上的动点,F是边BC延伸线上的一点,且BF=EF,AB=12,设AE=x,BF=y.(1)当△BEF是等边三角形时,求BF的长;(2)求y与x之间的函数解析式,并写出它的界说域;(3)把△ABE沿着直线BE翻折,点A落在点A′处,试摸索:△A′BF可否为等腰三角形?假如能,请求出AE的长;假如不克不及,请解释来由.2 如图,在△ABC中,∠ACB=90°,∠A=30°,D是边AC上不与点A.C重合的随意率性一点,DE⊥AB,垂足为点E,M是BD的中点.(1)求证:CM=EM;(2)假如BC=3设AD=x,CM=y,求y与x的函数解析式,并写出函数的界说域;(3)当点D在线段AC上移动时,∠MCE的大小是否产生变更?假如不变,求出∠MCE的大小;假如产生变更,解释若何变更.3 ABCD中,对角线AC⊥AB,AB=15,AC=20,点P为射线BC上一动点,AP⊥PM(点M与点B分离在直线AP的两侧),且∠PAM=∠CAD,贯穿连接MD.(1)当点M在 ABCD内时,如图,设BP=x,AP=y,求y关于x的函数关系式,并写出函数界说域;(2)请在备用图中画出相符题意的示意图,并探讨:图中是否消失与△AMD类似的三角形?若消失,请写出并证实;若不消失,请解释来由;(3)当△为等腰三角形时,求BP的长.4 抛物线经由A(2,0).B(8,0).C(0,3316).(4)求抛物线的解析式;(5)设抛物线的极点为P,把△APB翻折,使点Pl落在线段AB上(不与A.B重合),记作P′,折痕为EF,设AP′=x,PE=y,求y关于x的函数关系式,并写出界说域;(6)当点P′在线段AB上活动但不与A.B重应时,可否使△EFP′的一边与x轴垂直?若能,请求出此时点P′的坐标;若不克不及,请你解释来由.5 如图,矩形ABCD中,AD=7,AB=BE=2,点P是EC(包含E.C)上的动点,线段AP的垂直等分线分离交BC.AD于点F.G,设BP=x,AG=y.(4)四边形AFPG是解释图形?请解释来由;(5)求y与x的函数关系式;(6)假如分离以线段GP.DC为直径作圆,且使两圆外切,求x的值.6 在梯形ABCD中,AD//BC,AB⊥AD,AB=4,AD=5,CD=5. E为底边BC上一点,以点E为圆心,BE为半径画⊙E交直线DE于点F.(1) 如图,当点F 在线段DE 上时,设BE=x,DF=y,试树立y 关于x 的函数关系式,并写出自变量x 的取值规模;(2) 当以CD 为直径的⊙O 与⊙E 相切时,求x 的值;(3) 贯穿连接AF.BF,当△ABF 是以AF 为腰的等腰三角形时,求x 的值.7 如图,在正方形ABCD 中,AB=1,弧AC 是以点B 为圆心,AB 长为半径的圆的一段弧,点E 是边AD 上的随意率性一点(点E 与点A.D 不重合),过E 作弧AC 地点圆的切线,交DC 于点F,G 为切点.(1) 当∠DEF=45°时,求证点G 为线段EF 的中点;(2) 设AE=x,FC=y,求y 关于x 的函数解析式,并写出函数的解析式; (3) 将△DEF 沿直线EF 翻折后得△D 1EF,如图2,当EF=65时,评论辩论△AD 1D 与△ED 1F 是否类似,假如类似,请加以证实;假如不类似,只请求写出结论,不请求写出来由.(2003年上海第27题)二.应用比例式树立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC=1,点D,BD=,x CE=y .(1)假如∠BAC=30°,∠DAE=105°,试肯定y 与x 之间的函数解析式;(2)假如∠BAC 的度数为α,∠DAE 的度数为β,当α,β知足如何的关系式时,(1)中y 与x 之间的函数解析式还成立?试解释来由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°. ∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴AC BD CE AB =,∴11x y =, ∴xy 1=. (2)因为∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立, ∴290α-︒=αβ-, 整顿得=-2αβ︒90.当=-2αβ︒90时,函数解析式xy 1=成立.例3(2005年·上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点EP ⊥ED,交射线AB 于点P,交射线CB 于点F.(1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的界说域.(3)当BF=1时,求线段AP 的长.解:(1)贯穿连接OD.依据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP.AEDCB 图2A3(2)3(1)又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE ∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠ADO=90°, ∴OD ∥BC, ∴53x OD =,54xAD =, ∴OD=x 53,AD=x 54. ∴AE=x x 53+=x 58. ∵△ADE ∽△AEP, ∴AE AD AP AE =, ∴x x yx 585458=. ∴x y 516= (8250≤<x ). (3)当BF=1时,①若EP 交线段CB 的延伸线于点F,如图3(1),则CF=4.∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°,∠FPB=∠DPE, ∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE. ∴5-x 58=4,得85=x .可求得2=y ,即AP=2. ②若EP 交线段CB 于点F,如图3(2), 则CF=2. 类似①,可得CF=CE. ∴5-x 58=2,得815=x . 可求得6=y ,即AP=6.综上所述,当BF=1时,线段AP 的长为2或6.本专题探讨在图形的活动变更进程中,消失平行或类似的三角形,应用比例式来树立函数关系式. 难一些的标题个中的一个变量是比例式,一个变量是线段,也是应用类似或平行来结构比例式,从而写出函数的解析式. 作为最后的一道压轴题,一般情形下写出解析式后还会有一个证等腰或类似或相切的标题,可以二次函数专题中的解题思惟进行处理.1 由平行得到比例式,从而树立函数关系式.例题:如图,在△ABC 中,AB=AC=4,BC=21AB,点P 是边AC 上的一个点,AP=21PD,∠APD=∠ABC,贯穿连接DC 并延伸交边AB 的延伸线于点E (1) 求证:AD//BC(2) 设AP=x,BE=y,求y 关于x 的函数解析式,并写出它的界说域(3) 贯穿连接BP,当△CDP 与△CBE 类似时,试断定BP 与DE 的地位关系,并解释来由2 由三角形类似得到比例式,树立函数关系式例题:如图,在正方形ABCD 中,AB=2,E 为线段CD 上一点(点E 与点C.D 不重合),FG 垂直等分AE,且交AE 于F,交AB 延伸线于G,交BC 于H. (1) 证实:△ADE ∽△GFA(2) 设DE=x,BG=y,求y 关于x 的函数解析式及界说域 (3) 当BH=41时,求DE 的长3 在进修应用类似比树立函数的解析式的时刻,初中阶段的常识已经学了许多,对最后的压轴题的分解性的请求已经很高了. 一般会在写解析式前有一些证实或盘算,写好解析式后再来一个证实等腰三角形或圆的地位关系等. 假如可以或许把一道庞杂的压轴题拆分成几道小的标题,各个击破,难题也就变简略了.例题:如图,在Rt △ABC 中,∠C=90°,sinB=54,AC=4;D 是BC 的延伸线上一个动点,∠EDA=∠B,AE//BC.(1) 找出图中的类似三角形,并加以证实(2) 设CD=x,AE=y,求y 关于x 的函数解析式,并写出函数的界说域 (3) 当△ADE 为等腰三角形时,求AE 的长4 适才研讨的写函数解析式都是在几何图形中进行的,下面来看在平面直角坐标系中如何写解析式.例题:如图,在直角坐标系中的等腰梯形AOCD 中,AD//x 轴,AO=CD=5,OC AD =52,cos a=53,P 是线段OC 上的一个动点,∠APQ=∠a,PQ 交射线AD 于点Q,设P 点坐标为(x,0),点Q 到D 的距离为y(1) 求过A.O.C 三点的抛物线解析式 (2) 用含x 的代数式暗示AP 的长 (3) 求y 与x 的函数解析式及界说域(4) △CPQ 与△AOP 可否类似?若能,请求出x 的值,若不克不及,请解释来由5 当一个变量是比例式,另一个变量是一条线段,如何来写函数的解析式呢?可以依据标题标请求,由类似三角形面积的比等于类似比的平方,或类似三角形周长的比等于类似比等树立函数解析式.例题:如图,在平面直角坐标系中,点A 的坐标为(1,0),点 B.C 的坐标分离为(-1,0),C (0,b ),且0<b <3,m 是经由点B.C 的直线,当点C 在线段OC 上移动时,过点A 作AD ⊥m 于点D.(1) 求点D.O 之间的距离 (2) 假如BOCBDAS △△S =ɑ,试求:ɑ与b 的函数关系式及ɑ的取值规模 (3) 当∠ADO 的余切值为2时,求直线m 的解析式 (4)求此时△ABD 与△BOC 重叠部分的面积6 当我们进修到应用类似三角形的类似比来树立函数解析式的时刻,初中阶段的常识已经学得差不久不多了,对于一些貌似很庞杂的图形,只要可以或许分层求解,就能化繁为简.例题:如图,在边长为6的正方形ABCD 的两侧如图作正方形BEFG.正方形DMNK,正好使得N.A.F 三点在一向线上,贯穿连接MF 交线段AD 于点P,贯穿连接NP,设正方形BEFG 的边长为x,正方形DMNK 的边长为y.(1) 求y 关于x 的函数关系式及自变量x 的取值规模 (2) 当△NPF 的面积为32时,求x 的值(3) 以P 为圆心,AP 为半径的圆可以或许与以G 为圆心,GF 为半径的圆相切,若能请求x的值,若不克不及,请解释来由演习:1. 如图,在三角形中,AB=AC=8,BC=10,点D.E 分离在BC.AC 上(点D 不与B.C 重合),且∠ADE=∠B,设BD=x,AE=y.(1) 求y 与x 之间的函数解析式,并写出函数的界说域(2) 点D 在BC 上的活动进程中,△ADE 是否有可能成为一个等腰三角形?若有可能,请求出当△ADE 为等腰三角形时x 的值;如不成能,请解释来由.2. 在△ABC 中,AB=4,AC=5,cosA=53,点D 是边AC 上的点,点E 是边AB 上的点,且知足∠AED=∠A,DE 的延伸线交射线CB 于点F,设AD=x,EF=y. (1) 如图1,用含x 的代数式暗示线段AE 的长(2) 如图1,求y 关于x 的函数解析式及函数的界说域(3) 贯穿连接EC,如图2,求档x 为何值时,△AEC 与△BEF 类似.3. 如图,在矩形ABCD 中,AB=m (m 是大于0的常数),BC=8,E 为线段BC 上的动点(不与B.C 重合).贯穿连接DE,作EF ⊥DE,EF 与射线BA 交于点F,设CE=x,BF=y. (1) 求y 关于x 的函数关系式(2) 若m=8,求x 为何值时,y 的值最大,最大值是若干? (3) 若y=m12,要使△DEF 为等腰三角形,m 的值应为若干?4. 已知在梯形ABCD 中,AD//BA,AD <BC,且BC=6,AB=DC=4,点E 是AB 的中点. (1) 如图,P 为BC 上的一点,且BP=2. 求证:△BEP ∽△CPD;(2) 假如点P 在BC 边上移动(点P 与点B.C 不重合),且知足∠EPF=∠C,PF 交直线CD与点F,同时交直线AD 于点M,那么(3) 当点F 在线段CD 的延伸线上时,设BP=x,DF=y,求y 关于x 的函数解析式,并写出函数的界说域;(4) 当S △DMF =49S △BEP 时,求BP 的长.5. 如图,在四边形ABCD 中,∠B=90°,AD//BC,AB=4,BC=12,点E 在边BA 的延伸线上,AE=2,点F 在BC 边上,EF 与边AD 订交于点G,DF ⊥EF,设AG=x,DF=y. (3) 求y 关于x 的函数解析式,并写出界说域; (4) 当AD=11时,求AG 的长;(5) 假如半径为EG 的⊙E 与半径为FD 的⊙F 相切,求这两个圆的半径.6. 如图,在半径为5的⊙O 中,点A.B 在⊙O 上,∠AOB=90°,点C 是弧AB 上的一个动点,AC与OB 的延伸线订交于点D,设AC=x,BD=y. (1) 求y 关于x 的函数解析式,并写出它的界说域;(2) 若⊙O 1与⊙O 订交于点A.C,且⊙O 1与⊙O 的圆心距为2,当BD=31OB 时,求⊙O 1的半径; (3) 是否消失点C,使得△DCB ∽△DOC ?假如消失,请证实;假如不消失,请扼要解释来由.7. 已知∠ABC=90°,AB=2,BC=3,AD//BC,P 为线段BD 上的动点,点Q 在射线AB 上,且知足PC PQ =ABAD(如图1所示) (1) 当AD=2,且点Q 与点B 重应时(如图2所示),求线段PC 的长; (2) 在图1中,贯穿连接AP. 当AD=23,且点Q 在线段AB 上时,设点B.Q 之间的距离为x,PBCAPQS S △△=y,个中S △APQ 暗示△APQ 的面积,S △PBC 暗示△PBC 的面积,求y 关于x 的函数解析式,并写出函数界说域;(3) 当AD <AB,且点Q 在线段AB 的延伸线上时(如图3所示),求∠QPC 的大小.(2009上海第25题)三.应用求图形面积的办法树立函数关系式例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上活动(与点B.C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的界说域.A(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . ∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . 此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21.例2.【09广东】正方形ABCD 边长为4,M .N 分离是BC .CD 上的两个动点,当M 点在BC 上活动时,保持AM 和MN 垂直. (1)证实:Rt △ABM ∽Rt △MCN ;(2)设BM =x ,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点活动到什么地位时,四边形ABCN 面积最大,并求出最大面积;(3)当M 点活动到什么地位时Rt △ABM ∽Rt △AMN ,求此时x 的值演习1.如图,在△ABC中,BC=8,CA= ,∠C=60°,EF∥BC,点E.F.D分离在AB.AC.BC 上(点E与点A.B不重合),衔接ED.DF.设EF=x,△EFD的面积为y.求出y与x之间的函数表达式,并写出自变量x的取值规模.2.【09福州】如图,已知△ABC是边长为6cm的等边三角形,动点P.Q同时从A.B两点动身,分离沿AB.BC匀速活动,个中点P活动的速度是1cm/s,点Q活动的速度是2cm/s,当点Q到达点C时,P.Q两点都停滞活动,设活动时光为t(s),解答下列问题:(1)当t=2时,断定△BPQ的外形,并解释来由;(2)设△BPQ的面积为S(cm2),求S与t的函数关系式;(3)作QR//BA交AC于点R,贯穿连接PR,当t为何值时,△APR∽△PRQ?3. 【08广东】将两块大小一样含30°角的直角三角板,叠放在一路,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD订交于点E,贯穿连接CD.(1)填空:如图1,AC=,BD=;四边形ABCD是梯形.(2)请写出图1中所有的类似三角形(不含全等三角形).(3)如图2,若以AB地点直线为x轴,过点A垂直于AB的直线为y轴树立如图2的平面直角坐标系,保持ΔABD不动,将ΔABC向x轴的正偏向平移到ΔFGH的地位,FH与BD订交于点P,设AF=t,ΔFBP面积为S,求S与t之间的函数关系式,并写出t的取值值规模.第21页,共22页。
2020中考数学 几何图形的折叠与动点问题(含答案)
2020中考数学几何图形的折叠与动点问题(含答案)1.如图,在矩形ABCD中,AB=4,AD=9,点E在BC上,CE=4,点F是AD 上的一个动点,若把△BEF沿EF折叠,点B落在点B′处,当点B′恰好落在矩形ABCD的一边上,则AF的长为________.第1题图3或11 32.如图,矩形纸片ABCD中,AB=4,AD=6,点P是边BC上的动点,现将纸片折叠,使点A与点P重合,折痕与矩形边的交点分别为E、F,要使折痕始终与边AB、AD有交点,则BP的取值范围是________.第2题图6-25≤BP≤43.如图,在矩形ABCD中,AB=2,AD=6,E,F分别是线段AD、BC上的点,连接EF,使四边形ABFE为正方形,若点G是AD上的动点,连接FG,将矩形沿FG折叠使得点C落在正方形ABFE的对角线所在的直线上,对应点为P,则线段AP的长为__________.第3题图4或4-224.如图,在四边形ABCD中,AD∥BC(AD<BC),AB与CD不平行,AB=CD=5,BC=12,点E是BC上的动点,将∠B沿着AE折叠,使点B落在直线AD上的点B′处,DB′=1,直线BB′与直线DC交于点H,则DH=________.第4题图5 11或5135.如图,已知AD∥BC,AB⊥BC,AB=8,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC 于点M,N.当点B′分线段MN为3∶5的两部分时,EN的长为________.第5题图355 11或539 136.如图,在矩形纸片ABCD中,AB=6,BC=8,点P是对角线BD上一动点,将纸片折叠,使点C与点P重合,折痕为EF,折痕EF的两端分别在BC、DC边上(含端点),当△PDF为直角三角形时,FC的长为________.第6题图24 7或8 37.如图,正方形的边长为4,E是BC的中点,点P是射线AD上一动点,过P作PF⊥AE于F.若以P、F、E为顶点的三角形与△ABE相似,则P A=________.第7题图2或58.如图,矩形ABCD中,AB=1,AD=2,E是AD中点,点P在射线BD上运动,若△BEP为等腰三角形,则线段BP的长度等于____________.第8题图2或53或6559.如图,在▱ABCD中,∠B=30°,AB=AC,O是两条对角线的交点,过点O作AC的垂线分别交边AD、BC于点E、F;点M是边AB的一个三等分点.则△AOE 与△BMF的面积比为__________.第9题图3∶4或3∶810.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=2,E为斜边AB的中点,点P是射线BC上的一个动点,连接AP、PE,将△AEP沿着边PE折叠,折叠后得到△EP A′,若△EP A′与△ABC的另一个交点为F,当EF=14AB时,则BP的长为________.第10题图2或2311.已知△ABC ,以AB 为直径的⊙O 交AC 于点D ,交BC 于点E ,连接ED ,若ED =EC .(1)求证:AB =AC ;(2)①若AB =4,BC =23,则CD =________; ②当∠A =________时,四边形ODEB 是菱形.第1题图1.(1)证明:∵ED =EC ,∴∠EDC =∠C , ∵∠EDC +∠ADE =180°,∠B +∠ADE =180°, ∴∠EDC =∠B ,∴∠B =∠C , ∴AB =AC ; (2)解:①32; 如解图,连接BD ,第1题解图∵AB 为∵O 的直径,∵BD ∵AC ,设CD =a ,由(1)知AC =AB =4,则AD =4-a ,在Rt∵ABD 中,由勾股定理可得BD 2=AB 2-AD 2=42-(4-a )2, 在Rt∵CBD 中,由勾股定理可得BD 2=BC 2-CD 2=(23)2-a 2, ∵42-(4-a )2=(23)2-a 2,解得a =32,即CD =32. ∵60°.如解图,连接OD 、OE ,∵四边形ODEB 是菱形,∵OB =BE ,又∵OB =OE ,∵∵OBE 是等边三角形,∵∵OBE =60°, ∵OD ∵BE ,∵∵BOD =120°,∵∵A =12∵BOD =60°.12 .如图,在▱ABCD 中,AD =4,AB =5,延长AD 到点E ,连接EC ,过点B 作BF ∥CE 交AD 于点F ,交CD 的延长线于点G .(1)求证:四边形BCEF 是平行四边形;(2)①当DF =______时,四边形BCEF 是正方形; ②当GFGD =________时,四边形BCEF 是菱形.第2题图13. (1)证明:∵四边形ABCD 是平行四边形,∴EF ∥BC . ∵BF ∥CE ,∴四边形BCEF 是平行四边形;(2)解:①1;∵四边形BCEF 是正方形,∵BF =BC =AD =4,∵FBC =∵AFB =90°, ∵AF =AB 2-BF 2=52-42=3. ∵AD =4,∵DF =AD -AF =4-3=1. ∵45. ∵四边形BCEF 是菱形, ∵BF =BC =AD =4.∵四边形ABCD 是平行四边形,∵CD ∵AB , ∵GD AB =GF BF ,即GF GD =BF AB =45.14.如图,AB 是半圆O 的直径,射线AM ⊥AB ,点P 在AM 上,连接OP 交半圆O 于点D ,PC 切半圆O 于点C ,连接BC .(1)求证:BC ∥OP ;(2)若半圆O 的半径等于2,填空:①当AP =________时,四边形OAPC 是正方形;②当AP =________时,四边形BODC 是菱形.第3题图解:(1)证明:连接OC ,AC ,如解图所示, ∵AB 是直径,AM ⊥AB , ∴BC ⊥AC ,AP 是半⊙O 的切线,又∵PC是半⊙O的切线,∴P A=PC,又∵OA=OC,∴OP⊥AC,∴BC∥OP;(2)① 2;② 2 3.∵若四边形OAPC是正方形,则OA=AP,∵OA=2,∵AP=2;∵若四边形BODC是菱形,则CB=BO=OD=DC,∵AB=2OB,∵ACB=90°,∵AB=2BC,∵∵BAC=30°,∵ABC=60°,∵BC∵OP,∵∵AOP=∵ABC=60°,又∵∵OAP=90°,OA=2,∵∵OP A=30°,∵OP=4,∵AP=22222-OAOP=2 3.=4-第3题解图15.如图,在△ABC中,∠ACB=90°,线段BC的垂直平分线DE交BC于点D,交AB于点E,点F在DE的延长线上,AF=CE且F不与E重合.(1)求证:△EF A≌△ACE;(2)填空:①当∠B=_________°时,四边形ACEF是菱形;②当∠B=_________°时,线段AF与AB垂直.第4题图(1)证明:如解图,第4题解图∵ED是BC的垂直平分线,∴EB=EC,ED⊥BC,∴∠3=∠4,∵∠ACB=90°,∴FE∥AC,∴∠1=∠5,∵∠2与∠4互余,∠1与∠3互余,∴∠1=∠2=∠5,∴AE=CE.又∵AF=CE,∴AE=AF,∴∠5=∠F,在△EF A和△ACE中,AF=AE=EC,∠1=∠2=∠5=∠F,∴△EF A≌△ACE.(2)解:① 30;②45.∵∵四边形ACEF是菱形,∵AC=CE,∵CE是Rt∵ABC斜边AB的中线,∵CE=AE=BE,∵AE=AC=CE,∵∵ACE是等边三角形,∵∵1=60°,则∵B=30°,∵当∵B=30°时,四边形ACEF是菱形;∵由(1)知∵EF A∵∵ACE,∵∵AEC=∵EAF,∵AF∥CE,∵AF∵AB,∵CE∵AB,∵CE=EB,∵∵3=∵4=45°,∵当∵B=45°时,线段AF与AB垂直.16.如图,AB是⊙O的直径,E是⊙O外一点,过点E作⊙O的两条切线ED,EB,切点分别为点D,B.连接AD并延长交BE延长线于点C,连接OE.(1)试判断OE与AC的关系,并说明理由;(2)填空:①当∠BAC=_________°时,四边形ODEB为正方形;②当∠BAC=30°时,ADDE的值为________.第5题图5.解:(1)OE∥AC,OE=12AC.理由:连接OD,如解图,第5题解图∵DE,BE是⊙O的切线,∴OD⊥DE,AB⊥BC,∴∠ODE=∠ABC=90°,∵OD=OB,OE=OE,∴Rt△ODE≌Rt△OBE(HL),∴∠1=∠2.∵∠BOD=∠A+∠3,OA=OD,∴∠A=∠3,∴∠2=∠A,∴OE∥AC;∵OA=OB,∴EC=EB,∴OE是△ABC的中位线,∴OE=12AC.(2)①45;②3.∵要使四边形ODEB是正方形,由ED=EB,∵ODE=∵ABC=90°,只需∵DOB =90°,∵∵A=45°;∵过O作OH∵AD于H,∵∵A=30°,OA=OD,∵∵3=∵A=30°,∵OD,∵∵ODE=90°,∵1=∵3=30°,∵OD,∵ADDE=3.17.如图,将⊙O的内接矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连接BC1,∠ACB=30°,AB=1,CC1=x.(1)若点O与点C1重合,求证:A1D1为⊙O的切线;(2)①当x=________时,四边形ABC1D1是菱形;②当x=________时,△BDD1为等边三角形.第6题图(1)证明:∵四边形ABCD为矩形,∴∠D=90°,∵把△ACD沿CA方向平移得到△A1C1D1,∴∠A1D1O=∠D=90°,∴A1D1⊥OD1,∴A1D1为⊙O的切线;(2)解:①1;②2.∵如解图∵,连接AD1,当x=1时,四边形ABC1D1是菱形;第6题解图∵理由:由平移得:AB=D1C1,且AB∵D1C1,∵四边形ABC1D1是平行四边形,∵∵ACB=30°,∵∵CAB=60°,∵AB=1,∵AC=2,∵x=1,∵AC1=1,∵AB=AC1,∵∵AC1B是等边三角形,∵AB=BC1,∵四边形ABC1D1是菱形;∵如解图∵所示,当x=2时,∵BDD1为等边三角形,第6题解图∵则可得BD=DD1=BD1=2,即当x=2时,∵BDD1为等边三角形.。
2020年中考数学专题复习学案:折叠类题目中的动点问题(含答案)
专题:折叠类题目中的动点问题折叠问题是中考的热点也是难点问题,通常与动点问题结合起来,这类问题的题设通常是将某个图形按一定的条件折叠,通过分析折叠前后图形的变换,借助轴对称性质、勾股定理、全等三角形性质、相似三角形性质、三角函数等知识进行解答。
此类问题立意新颖,充满着变化,要解决此类问题,除了能根据轴对称图形的性质作出要求的图形外,还要能综合利用相关数学模型及方法来解答。
类型一、求折叠中动点运动距离或线段长度的最值例1. 动手操作:在矩形纸片ABCD中,AB=3,AD=5. 如图例1-1所示,折叠纸片,使点A落在BC边上的A’处,折痕为PQ,当点A’在BC边上移动时,折痕的端点P、Q也随之移动. 若限定点P、Q分别在AB、AD边上移动,则点A’在BC边上可移动的最大距离为 .图例1-1【答案】2.【解析】此题根据题目要求准确判断出点A'的最左端和最右端位置.当点Q与点D重合时,A'的位置处于最左端,当点P与点B重合时,点A'的位置处于最右端. 根据分析结果,作出图形,利用折叠性质分别求出两种情况下的BA'或CA'的长度,二者之差即为所求.①当点Q与点D重合时,A'的位置处于最左端,如图例1-2所示.确定点A'的位置方法:因为在折叠过程中,A'Q=AQ,所以以点Q为圆心,以AQ长为半径画弧,与BC的交点即为点A'. 再作出∠A'QA的角平分线,与AB的交点即为点P.图例1-2 图例1-3由折叠性质可知,AD= A'D=5,在Rt△A'CD中,由勾股定理得,A C==='4②当点P与点B重合时,点A'的位置处于最右端,如图例1-3所示.确定点A'的位置方法:因为在折叠过程中,A'P=AP,所以以点P为圆心,以AP长为半径画弧,与BC的交点即为点A'. 再作出∠A'PA的角平分线,与AD的交点即为点Q.由折叠性质可知,AB= A'B=3,所以四边形AB A'Q为正方形.所以A'C=BC-A'B=5-3=2.综上所述,点A移动的最大距离为4-2=2.故答案为:2.【点睛】此类问题难度较大,主要考察学生的分析能力,作图能力。
2020年浙江省中考数学题型专练一 动点问题的函数图像含答案
题型一 动点问题的函数图像类型一 判断函数图像(2014.8)1. 如图,AB 是半圆O 的直径,点P 从点O 出发,沿OA →AB ︵→BO 的路径运动一周,设点P 到点O的距离为s ,运动时间为t ,则下列图象能大致地反映s 与t 之间的关系的是( )第1题图2. 如图,在Rt △ABC 中,AC =BC =4 cm ,点D 是AB 的中点,点F 是BC 的中点,动点E 从点C 出发,沿CD →DA 以1 cm/s 的速度运动至点A ,设点E 运动的时间为x s ,△EFC 的面积为y cm 2(当E ,F ,C 三点共线时,设y =0),则y 与x 之间的函数关系的大致图象是( )第2题图3.如图,A 、B 是反比例函数y =k x(k >0)在第一象限图象上的两点,动点P 从坐标原点O 出发,沿图中 箭头所指方向匀速运动,即点P 先在线段OA 上运动,然后在双曲线上由A 到B 运动,最后在线段BO 上运动,最终回到点O .过点P 作PM ⊥x 轴,垂足为点M ,设△POM 的面积为S ,点P 运动时间为t ,则S 关于t 的函数图象大致为( )第3题图4.如图,在菱形ABCD中,∠B=60°,AB=2,动点P从点B出发,以每秒1个单位长度的速度沿折线BA→AC运动到点C,同时动点Q从点A出发,以相同速度沿折线AC→CD运动到点D,当一个点停止运动时,另一个点也随之停止.设△APQ的面积为y,运动时间为x秒,则下列图象能大致反映y与x之间函数关系的是()第4题图5.如图,在矩形ABCD中,对角线AC与BD交于点O,点M为线段AC上一个动点,过点M作EF∥BD 交AD(或DC)于点E,交AB(或BC)于点F,已知AC=5,设AM=x,EF=y,则y关于x的函数图象大致为()第5题图6. (2019衢州)如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C 移动至终点C,设点P经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y与x函数关系的是()第6题图类型二分析函数图像1.如图①,点P从矩形ABCD的顶点B出发,沿射线BC的方向以每秒1个单位长度的速度运动,过点P作PG⊥AP交射线DC于点G.如图②是点P运动时CG的长度y随时间t变化的图象,其中点Q是第一段曲线(抛物线的一部分)的最高点,则AB的长度是()第1题图A. 2B. 3C. 4D. 232.(2019郑州模拟)如图①,四边形ABCD中,AB∥CD,∠B=90°,AC=A D.动点P从点B出发,沿折线B-A-D-C方向以 1 cm/s的速度匀速运动,在整个运动过程中,△BCP的面积S(cm2)与运动时间t(s)的函数图象如图②所示,则AD等于()第2题图A. 5 cmB. 34 cmC. 8 cmD. 2 3 cm3.如图①,菱形ABCD中,∠B=60°,动点P以每秒1个单位的速度自点A出发沿线段AB运动到点B,同时动点Q以每秒2个单位的速度自点B出发沿折线B-C-D运动到点D.图②是点P、Q运动时,△BPQ的面积S随时间t变化关系图象,则a的值是()第3题图A. 2B. 2.5C. 3D. 234.如图①,在正方形ABCD中,动点E从点A出发,沿A-B-C运动,当点E到达点C时停止运动,过点E作EF⊥AE,交CD于点F,设点E运动的路程为x,FC=y(当点A,E重合时,点D,F重合;当点C,E重合时,不妨设y=0),y与x的函数关系的大致图象如图②,当点E在BC上运动时,FC的最大长度是1,则正方形ABCD的面积是()第4题图A. 8B. 12C. 16D. 4.85.如图①,在矩形ABCD中,动点P从点A出发,沿A→B→C运动,设P A=x,点D到直线P A的距离为y,且y关于x的函数图象如图②所示,则当△PCD和△P AB的面积相等时,y的值为.第5题图6.如图①,已知点E,F,G,H是矩形ABCD各边的中点,动点M从点E出发,沿E→F→G匀速运动,设点M运动的路程为x,点M到矩形顶点B的距离为y,如果表示y关于x函数关系的图象如图②所示,那么四边形EFGH的面积是.第6题图参考答案类型一 判断函数图象1. C 【解析】点P 在OA 上从点O 向点A 运动的过程中,s 随着t 的增大而增大,点P 在AB ︵上运动时,s =OP =12AB (定值),点P 在OB 上从点B 向点O 运动的过程中,s 随着t 的增大而减小. 2. A 【解析】∵在Rt △ABC 中,AC =BC =4,∴AB =42,AD =CD =22,CF =2,当点E 在CD 上时,CE =x ,点E 到BC 的距离h 1=22x ,∴y =12×2×22x =22x (0≤x ≤22);当点E 在AD 上时,BE =BD +DE =CD +DE =x ,∴点E 到FC 的距离h 2=22BE =22x ,∴y =12×2×22x =22x (22≤x ≤42). 3. D 【解析】设∠AOM =α,点P 运动的速度为a ,当点P 从点O 运动到点A 的过程中,S =12OM ·PM =12at ·cos α·at ·sin α=12a 2·cos α·sin α·t 2,由于α及a 均为常量,从而可知图象本段应为抛物线,且S 随着t 的增大而增大;当点P 从A 运动到B 时,由反比例函数性质可知△OPM 的面积为12k ,保持不变,本段图象应为与x 轴平行的线段;同理可得,当点P 从B 运动到O 过程中,S 也是t 的二次函数,且S 随着t 的增大而减小.4. B 【解析】∵四边形ABCD 为菱形,且∠B =60°,AB =2,∴当0<t <2时,△APQ 的面积y =12t ·(2-t )·sin60°=-34t 2+32t ,函数图象为开口向下的一段抛物线,且当t =1时,y 最大值为34;当2<t <4时,△APQ 的面积y =12(t -2)·(t -2)·sin60°=34(t -2)2,函数图象为开口向上的一段抛物线,且当t =4时,y 最大值为3,故选B .5. B 【解析】当0≤x ≤2.5时,如解图①,∵四边形ABCD 是矩形,∴OA =OB =OC =OD ,∴∠OAD =∠ODA ,∵EF ∥BD ,∴∠ODA =∠MEA ,∴∠OAD =∠MEA ,∴ME =MA ,同理可得AM =MF ,∴EM =AM =MF ,∴EF =2AM ,即y =2x ;当2.5<x ≤5时,如解图②,由题意知CM =AC -AM =5-x ,∵ME=MC =MF ,∴EF =2MC ,即y =2(5-x )=10-2x .综上所述,y =⎩⎪⎨⎪⎧2x (0≤x ≤2.5)10-2x (2.5<x ≤5).图① 图②第5题解图6. C 【解析】∵AB =4,点E 是AB 的中点,∴AE =BE =2,当0≤x ≤2时,如解图①,y =S △CPE =12PE·BC=2x,∴此段函数图象是正比例函数的一部分;当2<x≤6时,如解图②,y=S△CPE=S正方形ABCD-S△BCE -S△APE-S△PCD=42-12×4×2-12×2×(x-2)-12×4×[4-(x-2)]=x+2,∴此段函数图象是一次函数的一部分;当6<x≤10时,如解图③,y=S△CPE=12PC·BC=12(10-x)×4=-2x+20,∴此段函数图象是一次函数的一部分,综上所述,根据各段图象及x的取值范围,可得函数图象如选项C所示.图①图②图③第6题解图类型二 分析函数图象1. B 【解析】结合图形分析函数图象可得:当点P 运动到点C 的位置时,CG =0,∴BC =4.当点P运动到线段BC 的中点时,CG =43.∵∠B =90°,∴∠BAP +∠APB =90°,∵PG ⊥AP ,∴∠APG =90°,∴∠APB +∠CPG =90°,∴∠BAP =∠CPG ,又∵∠ABP =∠PCG =90°,∴△ABP ∽△PCG ,∴AB PC =BP CG,当点P 为BC 的中点时,BP =PC =2,∴AB 2=243,解得AB =3. 2. B 【解析】结合图形分析函数图象可得,当t =3时,点P 到达A 处,即AB =3;如解图,过点A作AE ⊥CD 于点E ,则四边形ABCE 为矩形,∵AC =AD ,∴DE =CE =12CD .当S =15时,点P 到达点D 处,则S =12CD ·BC =12·2AB ·BC =3×BC =15,则BC =5,在Rt △ABC 中,由勾股定理得,AD =AC =AB 2+BC 2=34.第2题解图3. D 【解析】由题图②得,t =4时两点停止运动,∴点P 以每秒1个单位的速度从点A 运动到点B 用了4秒,∴AB =4,∵点Q 运动到点C 之前和之后,△BPQ 面积算法不同,即t =2时,S 的解析式发生变化,∴题图②中点M 对应的横坐标为2,此时P 为AB 中点,点C 与点Q 重合,如解图,连接AC ,∵菱形ABCD 中,AB =BC =4,∠B =60°,∴△ABC 是等边三角形,∴CP ⊥AB ,BP =12AB =2,∴CP =BC 2-BP 2=42-22=23,∴a =12BP ·CP =12×2×23=2 3.第3题解图4. C 【解析】如解图,设AB =a ,当点E 在BC 上运动时(不与点B 、C 重合),∵AE ⊥EF ,∴△EFC∽△AEB ,∴EC AB =FC EB ,即2a -x a =y x -a ,∴y =-1a x 2+3x -2a ,-1a <0,当x =-32×(-1a )=32a 时,y 取得最大值,此时点E 为BC 的中点,y =1,把(32a ,1)代入y =-1ax 2+3x -2a ,解得a =4,即AB =4,故正方形ABCD 的面积为4×4=16.第4题解图5. 121313【解析】当P 点在AB 上运动时,D 点到AP 的距离不变,始终是AD 长,从图象可以看出AD =4,当P 点到达B 点时,从图象看出x =3,即AB =3.当△PCD 和△P AB 的面积相等时,P 点在BC 中点处,此时△ADP 面积为12×4×3=6,在Rt △ABP 中,AP =AB 2+BP 2=13,则12AP ·y =6,解得y =121313. 6. 24 【解析】如解图,连接BD ,EG ,FH ,∵点E ,F ,G ,H 是矩形ABCD 各边的中点,∴EF ∥BD ∥GH ,EF =GH =12BD ,∴四边形EFGH 是平行四边形,又∵EF =EH ,∴平行四边形EFGH 是菱形,由题图②得BE =3,点M 运动到点G 时,运动路程为10,又∵EF =FG ,则可知菱形的边长为5,即EF =FG =GH =HE =5,∴AF =4,AD =8,∴S 菱形EFGH =12EG ·FH =24.第6题解图。
(中考数学)动点问题专题训练(含答案)
中考专题训练 动点问题例1. 如图, 在ABC ∆中,AB AC =,AD BC ⊥于点D ,10BC cm =,8AD cm =. 点P 从点B 出发, 在线段BC 上以每秒3cm 的速度向点C 匀速运动, 与此同时, 垂直于AD 的直线m 从底边BC 出发, 以每秒2cm 的速度沿DA 方向匀速平移, 分别交AB 、AC 、AD 于E 、F 、H ,当点P 到达点C 时, 点P 与直线m 同时停止运动, 设运动时间为t 秒(0)t >.(1) 当2t =时, 连接DE 、DF ,求证: 四边形AEDF 为菱形;(2) 在整个运动过程中, 所形成的PEF ∆的面积存在最大值, 当PEF ∆的面积最大时, 求线段BP 的长;(3) 是否存在某一时刻t ,使PEF ∆为直角三角形?若存在, 请求出此时刻t 的值;若不存在, 请说明理由 .【解答】(1) 证明: 当2t =时,4DH AH ==,则H 为AD 的中点, 如答图 1 所示 . 又EF AD ⊥ ,EF ∴为AD 的垂直平分线,AE DE ∴=,AF DF =.AB AC = ,AD BC ⊥于点D ,AD BC ∴⊥,B C ∠=∠.//EF BC ∴,AEF B ∴∠=∠,AFE C ∠=∠,AEF AFE ∴∠=∠,AE AF ∴=,AE AF DE DF ∴===,即四边形AEDF 为菱形 .(2) 解: 如答图 2 所示, 由 (1) 知//EF BC ,AEF ABC ∴∆∆∽, ∴EF AH BC AD =,即82108EF t -=,解得:5102EF t =-. 221155510(10)210(2)10(0)222223PEF S EF DH t t t t t t ∆==-=-+=--+<< , ∴当2t =秒时,PEF S ∆存在最大值, 最大值为210cm ,此时36BP t cm ==.(3) 解: 存在 . 理由如下:①若点E 为直角顶点, 如答图 3①所示,此时//PE AD ,2PE DH t ==,3BP t =.//PE AD ,∴PE BP AD BD =,即2385t t =,此比例式不成立, 故此种情形不存在; ②若点F 为直角顶点如答图 3②所示,此时//PF AD ,2PF DH t ==,3BP t =,103CP t =-.//PF AD ,∴PF CP AD CD =,即210385t t -=,解得4017t =;③若点P 为直角顶点,如答图③所示 .过点E 作EM BC ⊥于点M ,过点F 作FN BC ⊥于点N ,则2EM FN DH t ===,////EM FN AD .//EM AD ,∴EM BM AD BD =,即285t BM =,解得54BM t =, 57344PM BP BM t t t ∴=-=-=. 在Rt EMP ∆中, 由勾股定理得:2222227113(2)()416PE EM PM t t t =+=+=. //FN AD ,∴FN CN AD CD =,即285t CN =,解得54CN t =, 5171031044PN BC BP CN t t t ∴=--=--=-. 在Rt FNP ∆中, 由勾股定理得:22222217353(2)(10)85100416PF FN PN t t t t =+=+-=-+. 在Rt PEF ∆中, 由勾股定理得:222EF PE PF =+, 即:2225113353(10)()(85100)21616t t t t -=+-+ 化简得:21833508t t -=, 解得:280183t =或0t =(舍 去) 280183t ∴=. 综上所述, 当4017t =秒或280183t =秒时,PEF ∆为直角三角形 .例2. 如图, 在同一平面上, 两块斜边相等的直角三角板Rt ABC ∆和Rt ADC ∆拼在一起,使斜边AC 完全重合, 且顶点B ,D 分别在AC 的两旁,90ABC ADC ∠=∠=︒,30CAD ∠=︒,4AB BC cm ==(1) 填空:AD = )cm ,DC = ()cm(2) 点M ,N 分别从A 点,C 点同时以每秒1cm 的速度等速出发, 且分别在AD ,CB 上沿A D →,C B →方向运动, 当N 点运动到B 点时,M 、N 两点同时停止运动, 连接MN ,求当M 、N 点运动了x 秒时, 点N 到AD 的距离 (用 含x 的式子表示)(3) 在 (2) 的条件下, 取DC 中点P ,连接MP ,NP ,设PMN ∆的面积为2()y cm ,在整个运动过程中,PMN ∆的面积y 存在最大值, 请求出y 的最大值 .(参考数据sin 75︒=sin15︒=【解答】解: (1)90ABC ∠=︒ ,4AB BC cm ==,AC ∴===,90ADC ∠=︒ ,30CAD ∠=︒,12DC AC ∴==,AD ∴==;故答案为:,;(2) 过点N 作NE AD ⊥于E ,作NF DC ⊥,交DC 的延长线于F ,如图所示:则NE DF =,90ABC ADC ∠=∠=︒ ,AB BC =,30CAD ∠=︒,45ACB ∴∠=︒,60ACD ∠=︒,180456075NCF ∴∠=︒-︒-︒=︒,15FNC ∠=︒,sinFC FNCNC ∠=,NC x=,FC x∴=,NE DF x∴==+,∴点N到ADx+;(3)sinFN NCFNC ∠=,FN x∴=,P为DC的中点,PD CP∴==PF x∴=PMN∴∆的面积y=梯形MDFN的面积PMD-∆的面积PNF-∆的面积111)) 222x x x x=+-+--+2x x=+,即y是x的二次函数,0<,y∴有最大值,当x==时,y=.例3. 如图,BD 是正方形ABCD 的对角线,2BC =,边BC 在其所在的直线上平移, 将通过平移得到的线段记为PQ ,连接PA 、QD ,并过点Q 作QO BD ⊥,垂足为O ,连接OA 、OP .(1) 请直接写出线段BC 在平移过程中, 四边形APQD 是什么四边形?(2) 请判断OA 、OP 之间的数量关系和位置关系, 并加以证明;(3) 在平移变换过程中, 设OPB y S ∆=,(02)BP x x =……,求y 与x 之间的函数关系式,并求出y 的最大值 .【解答】(1) 四边形APQD 为平行四边形;(2)OA OP =,OA OP ⊥,理由如下:四边形ABCD 是正方形,AB BC PQ ∴==,45ABO OBQ ∠=∠=︒,OQ BD ⊥ ,45PQO ∴∠=︒,45ABO OBQ PQO ∴∠=∠=∠=︒,OB OQ ∴=,在AOB ∆和OPQ ∆中,AB PQABO PQO BO QO=⎧⎪∠=∠⎨⎪=⎩()AOB POQ SAS ∴∆≅∆,OA OP ∴=,AOB POQ ∠=∠,90AOP BOQ ∴∠=∠=︒,OA OP ∴⊥;(3) 如图, 过O 作OE BC ⊥于E .①如图 1 ,当P 点在B 点右侧时,则2BQ x =+,22x OE +=, 1222x y x +∴=⨯,即211(1)44y x =+-, 又02x ……,∴当2x =时,y 有最大值为 2 ;②如图 2 ,当P 点在B 点左侧时,则2BQ x =-,22x OE -=, 1222x y x -∴=⨯ ,即211(1)44y x =--+, 又02x ……,∴当1x =时,y 有最大值为14; 综上所述,∴当2x =时,y 有最大值为 2 .例4. 如图, 在平面直角坐标系中,O 为原点, 四边形ABCO 是矩形, 点A ,C 的坐标分别是(0,2)A 和C ,0),点D 是对角线AC 上一动点 (不 与A ,C 重合) ,连结BD ,作DE DB ⊥,交x 轴于点E ,以线段DE ,DB 为邻边作矩形BDEF .(1) 填空: 点B 的坐标为 ;(2) 是否存在这样的点D ,使得DEC ∆是等腰三角形?若存在, 请求出AD 的长度;若不存在, 请说明理由;(3)①求证:DE DB =; ②设AD x =,矩形BDEF 的面积为y ,求y 关于x 的函数关系式 (可 利用①的结论) ,并求出y 的最小值 .【解答】解: (1) 四边形AOCB 是矩形,2BC OA ∴==,OC AB ==90BCO BAO ∠=∠=︒,B ∴2).故答案为2).(2) 存在 . 理由如下:2OA = ,OC =,tan AO ACO OC ∠== , 30ACO ∴∠=︒,60ACB ∠=︒①如图 1 中, 当E 在线段CO 上时,DEC ∆是等腰三角形, 观察图象可知, 只有ED EC =,30DCE EDC ∴∠=∠=︒,60DBC BCD ∴∠=∠=︒,DBC ∴∆是等边三角形,2DC BC ∴==,在Rt AOC ∆中,30ACO ∠=︒ ,2OA =,24AC AO ∴==,422AD AC CD ∴=-=-=.∴当2AD =时,DEC ∆是等腰三角形 .②如图 2 中, 当E 在OC 的延长线上时,DCE ∆是等腰三角形, 只有CD CE =,15DBC DEC CDE ∠=∠=∠=︒,75ABD ADB ∴∠=∠=︒,AB AD ∴==,综上所述, 满足条件的AD 的值为 2 或(3)①如图 1 ,过点D 作MN AB ⊥交AB 于M ,交OC 于N ,(0,2)A 和C ,0),∴直线AC 的解析式为2y x =+,设(,2)D a +,2DN ∴=+,BM a =90BDE ∠=︒ ,90BDM NDE ∴∠+∠=︒,90BDM DBM ∠+∠=︒,DBM EDN ∴∠=∠,90BMD DNE ∠=∠=︒ ,BMD DNE ∴∆∆∽,∴DE DN BD BM ===②如图 2 中, 作DH AB ⊥于H .在Rt ADH ∆中,AD x = ,30DAH ACO ∠=∠=︒,1122DH AD x ∴==,AH x ==,BH x ∴=, 在Rt BDH ∆中,BD ==,DE ∴==, ∴矩形BDEF的面积为22612)y x x ==-+,即2y x =-+,23)y x ∴=-+,0>,3x ∴=时,y .例5. 已知Rt OAB ∆,90OAB ∠=︒,30ABO ∠=︒,斜边4OB =,将Rt OAB ∆绕点O 顺时针旋转60︒,如图 1 ,连接BC .(1) 填空:OBC ∠= 60 ︒;(2) 如图 1 ,连接AC ,作OP AC ⊥,垂足为P ,求OP 的长度;(3) 如图 2 ,点M ,N 同时从点O 出发, 在OCB ∆边上运动,M 沿O C B →→路径匀速运动,N 沿O B C →→路径匀速运动, 当两点相遇时运动停止, 已知点M 的运动速度为 1.5 单位/秒, 点N 的运动速度为 1 单位/秒, 设运动时间为x 秒,OMN ∆的面积为y ,求当x 为何值时y 取得最大值?最大值为多少?【解答】解: (1) 由旋转性质可知:OB OC =,60BOC ∠=︒,OBC ∴∆是等边三角形,60OBC ∴∠=︒.故答案为 60 .(2) 如图 1 中,4OB = ,30ABO ∠=︒,122OA OB ∴==,AB ==11222AOC S OA AB ∆∴==⨯⨯=BOC ∆ 是等边三角形,60OBC ∴∠=︒,90ABC ABO OBC ∠=∠+∠=︒,AC ∴==2AOC S OP AC ∆∴===.(3)①当803x <…时,M 在OC 上运动,N 在OB 上运动,此时过点N 作NE OC ⊥且交OC 于点E .则sin 60NE ON x =︒= ,11 1.522OMN S OM NE x x ∆∴==⨯ ,2y x ∴=.83x ∴=时,y 有最大值, 最大值=. ②当843x <…时,M 在BC 上运动,N 在OB 上运动 .作MH OB ⊥于H . 则8 1.5BM x =-,sin 60 1.5)MH BM x =︒=- ,212y ON MH x ∴=⨯⨯=+.当83x =时,y 取最大值,y < ③当4 4.8x <…时,M 、N 都在BC 上运动, 作OG BC ⊥于G .12 2.5MN x =-,OG AB ==,12y MN OG ∴== ,当4x =时,y 有最大值, 最大值=,综上所述,y 有最大值, .。
2020年九年级数学中考复习:二次函数压轴动点问题
二次函数动点问题以不变应万变 一题多问 多题归一类型一 定点问题类型二 抛物线动点存在性问题 ———线段和差问题类型三 抛物线动点存在性问题———等腰三角形存在性问题 类型四 抛物线动点存在性问题———三角形面积最大值类型五 抛物线动点存在性问题 ——— 四边形面积最大值 类型六 抛物线动点存在性问题——— 特殊角度问题类型七 抛物线动点存在性问题———直角三角形存在性问题 类型八 抛物线动点存在性问题——— 相似三角形存在性问题 类型九 抛物线动点存在性问题———平行四边形存在性问题 类型十 抛物线动点存在性问题———梯形存在性问题题干:抛物线32-x y 2-=x 与y 轴交于点B ,与x 轴交于C,D (C 在D 点的左侧),点A 为顶点 。
类型一定点问题(直接三角形判定,两点之间距离公式,勾股定理的运用)(1)判定三角形ABD的形状?并说明理由。
【通法:运用两点间的距离公式,求出该三角形各边的长】(两点之间距离公式,相似三角形的判定)(2)三角形ABD与三角形BOD是否相似?说明理由。
【通法:用两点间的距离公式分别两个三角形的各边之长,再用相似的判定方法】类型二抛物线动点存在性问题———线段和差问题(3)在x轴上是否存在点P,使PB+PA最短?若存在求出点P的坐标,并求出最小值。
若不存在,请说明理由。
【通法:在两定点中任选一个点(为了简单起见,常常取轴上的点),求出该点关于题中的动点运动所经过的那条直线的对称点的坐标,再把此对称点与余下定点相连】(4)在y轴上是否存在点P,使三角形PAD的周长最小?若存在,求出点P的坐标,并求出周长的最小值;若不存在,请说明理由。
【通法:注意到AD是定线段,其长度是个定值,因此只需PA+PD最小】(5)在直线BC上是否存在点P,使三角形PAD的周长最小?若存在,求出点P的坐标,并求出周长的最小值;若不存在,请说明理由。
(6)在y轴上是否存在点P,使PAPD-最大?若存在,求出点P的坐标,并求出PAPD-的最大值;若不存在,请说明理由。
中考数学常见题型几何动点问题
中考数学压轴题型研究(一)——动点几何问题例1:在△ABC 中,∠B=60°,BA=24CM,BC=16CM, (1)求△ABC 的面积;(2)现有动点P 从A 点出发,沿射线AB 向点B 方向运动,动点Q 从C 点出发,沿射线CB 也向点B 方向运动。
如果点P 的速度是4CM/秒,点Q 的速度是2CM/秒,它们同时出发,几秒钟后,△PBQ的面积是△ABC 的面积的一半?(3)在第(2)问题前提下,P ,Q 两点之间的距离是多少?例2: ()已知正方形ABCD 的边长是1,E 为CD 边的中点, P 为正方形ABCD 边上的一个动点,动点P 从A 点出发,沿A →B → C →E 运动,到达点E.若点P 经过的路程为自变量x ,△APE 的面积为函数y ,(1)写出y 与x 的关系式 (2)求当y =13时,x 的值等于多少?例3:如图1 ,在直角梯形ABCD 中,∠B=90°,DC ∥AB ,动点P 从B 点出发,沿梯形的边由B →C → D → A 运动,设点P 运动的路程为x ,△ABP 的面积为y , 如果关于x 的函数y 的图象如图2所示 ,那么△ABC 的面积为( )A .32B .18C .16D .10ACB By例4:直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.例5:已知:等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在ABC △的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M N 、分别作AB 边的垂线,与ABC △的其它边交于P Q 、两点,线段MN 运动的时间为t 秒.(1)线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形?并求出该矩形的面积; (2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围.例6:如图(3),在梯形ABCD 中,906DC AB A AD ∠==∥,°,厘米,4DC =厘米,BC 的坡度34i =∶,动点P 从A 出发以2厘米/秒的速度沿AB 方向向点B 运动,动点Q 从点B 出发以3厘米/秒的速度沿B C D →→方向向点D 运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止.设动点运动的时间为t秒.(1)求边BC 的长;(2)当t 为何值时,PC 与BQ 相互平分;图(3)BC PQBA MN(3)连结PQ ,设PBQ △的面积为y ,探求y 与t 的函数关系式,求t 为何值时,y 有最大值?最大值是多少?二、利用函数与方程的思想和方法将所解决图形的性质(或所求图形面积)直接转化为函数或方程。
2020年广东中考数学压轴题:动点
2020年广东省中考数学压轴题:动点问题如图1,抛物线经过点A (4,0)、B (1,0)、C (0,-2)三点.(1)求此抛物线的解析式;(2)P 是抛物线上的一个动点,过P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以A 、P 、M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的 点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线是有一点D ,使得△DCA 的面积最大,求出点D 的坐标.,图1 满分解答(1)因为抛物线与x 轴交于A (4,0)、B (1,0)两点,设抛物线的解析式为)4)(1(--=x x a y ,代入点C 的 坐标(0,-2),解得21-=a .所以抛物线的解析式为22521)4)(1(212-+-=---=x x x x y . (2)设点P 的坐标为))4)(1(21,(---x x x . ①如图2,当点P 在x 轴上方时,1<x <4,)4)(1(21---=x x PM ,x AM -=4. 如果2==CO AO PM AM ,那么24)4)(1(21=----xx x .解得5=x 不合题意. 如果21==CO AO PM AM ,那么214)4)(1(21=----x x x .解得2=x . 此时点P 的坐标为(2,1).②如图3,当点P 在点A 的右侧时,x >4,)4)(1(21--=x x PM ,4-=x AM . 解方程24)4)(1(21=---x x x ,得5=x .此时点P 的坐标为)2,5(-. 解方程214)4)(1(21=---x x x ,得2=x 不合题意.③如图4,当点P 在点B 的左侧时,x <1,)4)(1(21--=x x PM ,x AM -=4. 解方程24)4)(1(21=---xx x ,得3-=x .此时点P 的坐标为)14,3(--. 解方程214)4)(1(21=---x x x ,得0=x .此时点P 与点O 重合,不合题意. 综上所述,符合条件的 点P 的坐标为(2,1)或)14,3(--或)2,5(-.图2 图3 图4(3)如图5,过点D 作x 轴的垂线交AC 于E .直线AC 的解析式为221-=x y . 设点D 的横坐标为m )41(<<m ,那么点D 的坐标为)22521,(2-+-m m m ,点E 的坐标为)221,(-m m .所以)221()22521(2---+-=m m m DE m m 2212+-=. 因此4)221(212⨯+-=∆m m S DAC m m 42+-=4)2(2+--=m . 当2=m 时,△DCA 的面积最大,此时点D 的坐标为(2,1).图5 图6。
2020年中考数学考前冲刺复习:二次函数的动点问题
2020年中考数学考前冲刺复习:二次函数的动点问题1.如图,在平面直角坐标系中,二次函数y=﹣x2+6x﹣5的图象与x轴交于A、B两点,与y轴交于点C,其顶点为P,连接PA、AC、CP,过点C作y轴的垂线l.(1)P的坐标,C的坐标;(2)直线1上是否存在点Q,使△PBQ的面积等于△PAC面积的2倍?若存在,求出点Q 的坐标;若不存在,请说明理由.2.如图所示,抛物线y=ax2+bx+4的顶点坐标为(3,),与y轴交于点A.过点A作AB∥x轴,交抛物线于点B,点C是第四象限的抛物线上的一个动点,过点C作y轴的平行线,交直线AB于点D.(1)求抛物线的函数表达式;(2)若点E在y轴的负半轴上,且AE=AD,直线CE交抛物线y=ax2+bx+4于点F.①求点F的坐标;②过点D作DG⊥CE于点G,连接OD、ED,当∠ODE=∠CDG时,求直线DG的函数表达式.3.如图,已知抛物线y=﹣x2+x+4,且与x轴相交于A,B两点(B点在A点右侧)与y 轴交于C点.(1)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由.(2)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.4.《函数的图象与性质》拓展学习展示:【问题】如图①,在平面直角坐标系中,抛物线G1:y=ax2+bx+与x轴相交于A(﹣1,0),B(3,0)两点,与y轴交于点C,则a=,b=.【操作】将图①中抛物线G1沿BC方向平移BC长度的距离得到抛物线G2,G2在y轴左侧的部分与G1在y轴右侧的部分组成的新图象记为G,如图②.请直接写出图象G对应的函数解析式.【探究】在图②中,过点C作直线l平行于x轴,与图象G交于D,E两点,如图③.求图象G在直线l上方的部分对应的函数y随x的增大而增大时x的取值范围.【应用】P是抛物线G2对称轴上一个动点,当△PDE是直角三角形时,直接写出P点的坐标.5.如图,已知二次函数y=x2﹣4的图象与x轴交于A,B两点与y轴交于点C,⊙C的半径为,P为⊙C上一动点.(1)点B,C的坐标分别为B,C;(2)当P点运动到(﹣1,﹣2)时,判断PB与⊙C的位置关系,并说出理由;(3)是否存在点P,使得△PBC是以BC为斜边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;(4)连接PB,若E为PB的中点,连接OE,则OE的最大值=.6.如图①,直线与x轴、y轴分别交于A,B两点,将△ABO沿x轴正方向平移后,点A、点B的对应点分别为点D、点C,且四边形ABCD为菱形,连接AC,抛物线y=ax2+bx+c经过A、B、C三点,点P为AC上方抛物线上一动点,作PE⊥AC,垂足为E.(1)求此抛物线的函数关系式;(2)求线段PE长度的最大值;(3)如图②,延长PE交x轴于点F,连接OP,若△OPF为等腰三角形,请直接写出点P 的坐标.7.如图①,直线y=﹣x﹣3分别与x轴、y轴交于点B,C,抛物线y=ax2+bx+c经过B,C 两点,且与x轴的另一交点为A(1,0).(1)求抛物线的函数解析式;(2)如图①,点P在第三象限内的抛物线上.①连接AC,PB,PC,当四边形ABPC的面积最大时,求点P的坐标;②G为x轴上一点,当PG+AG取得最小值时,求点P的坐标;(3)如图②,Q为x轴下方抛物线上任意一点,D是抛物线的对称轴与x轴的交点,直线AQ,BQ分别交抛物线的对称轴于点M,N.问:DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.8.如图,已知抛物线y=ax2+bx+c与直线y=x+相交于A(﹣1,0),B(4,m)两点,抛物线y=ax2+bx+c交y轴于点C(0,﹣),交x轴正半轴于点D,抛物线的顶点为M.(1)求抛物线的表达式及点M的坐标;(2)设P为直线AB下方的抛物线上一动点,当△PAB的面积最大时,求此时△PAB的面积及点P的坐标;(3)Q为x轴上一动点,N是抛物线上一点,当△QMN∽△MAD(点Q与点M对应)时,求点Q的坐标.9.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,﹣3),顶点D的坐标为(1,﹣4).(1)求抛物线的解析式.(2)在y轴上找一点E,使得△EAC为等腰三角形,请直接写出点E的坐标.(3)点P是x轴上的动点,点Q是抛物线上的动点,是否存在点P、Q,使得以点P、Q、B、D为顶点,BD为一边的四边形是平行四边形?若存在,请求出点P、Q坐标;若不存在,请说明理由.10.已知:如图,抛物线y=ax2+4x+c经过原点O(0,0)和点A(3,3),P为抛物线上的一个动点,过点P作x轴的垂线,垂足为B(m,0),并与直线OA交于点C.(1)求抛物线的解析式;(2)当点P在直线OA上方时,求线段PC的最大值.11.如图,二次函数y=+bx+c的图象与x轴交于A(3,0),B(﹣1,0),与y轴交于点C.若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动.(1)直接写出二次函数的解析式;(2)当P,Q运动到t秒时,将△APQ沿PQ翻折,若点A恰好落在抛物线上D点处,求出D点坐标;(3)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为顶点的三角形为等腰三角形?若存在,请直接写出E点坐标;若不存在,请说明理由.12.如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣+bx+c(b,c是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.(1)求该抛物线的解析式;(2)P是抛物线上一动点(不与点A、B重合),①如图2,若点P在直线AB上方,连接OP交AB于点D,求的最大值;②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点F恰好落在y轴上,求出对应的点P的坐标.13.如图1,在平面直角坐标系中,O为原点,抛物线y=ax2+bx+c经过A、B、C三点,且其对称轴为x=1,其中点C(0,),点B(3,0).(1)求抛物线的解析式;(2)①如图(1),点D是直线CB上方抛物线上的动点,当四边形DCAB的面积取最大值时,求点D的坐标;②如图(2),连接CA,在抛物线上有一点M,满足∠MCB=∠ACO,请直接写出点M的横坐标.14.如图,在平面直角坐标系中,已知抛物线C1:y=x2+6x+2的顶点为M,与y轴相交于点N,先将抛物线C1沿x轴翻折,再向右平移p个单位长度后得到抛物线C2,直线l:y=kx+b经过M,N两点.(1)求点M的坐标,并结合图象直接写出不等式x2+6x+2<kx+b的解集;(2)若抛物线C2的顶点D与点M关于原点对称,求p的值及抛物线C2的解析式;(3)若抛物线C1与x轴的交点为E、F,试问四边形EMBD是何种特殊四边形?并说明其理由.15.如图1,已知抛物线y=﹣x2+2x+3与x轴相交于A、B两点(A左B右),与y轴交于点C.其顶点为D.(1)求点D的坐标和直线BC对应的一次函数关系式;(2)若正方形PQMN的一边PQ在线段AB上,另两个顶点M、N分别在BC、AC上,试求M、N两点的坐标;(3)如图2,E是线段BC上的动点,过点E作DE的垂线交BD于点F,求DF的最小值.参考答案1.解:(1)∵y=﹣x2+6x﹣5=﹣(x﹣3)2+4,∴顶点P(3,4),令x=0得到y=﹣5,∴C(0,﹣5).故答案为:(3,4),(0,﹣5);(2)令y=0,x2﹣6x+5=0,解得x=1或5,∴A(1,0),B(5,0),设直线PC的解析式为y=kx+b,则有,解得:,∴直线PC的解析式为y=3x﹣5,设直线交x轴于D,则D(,0),设直线PQ交x轴于E,当BE=2AD时,△PBQ的面积等于△PAC的面积的2倍,∵AD=,∴BE=,∴E(,0)或E′(,0),则直线PE的解析式为y=﹣6x+22,∴Q(,﹣5),直线PE′的解析式为y=﹣x+,∴Q′(,﹣5),综上所述,满足条件的点Q的坐标为:(,﹣5)或(,﹣5).2.解:(1)∵抛物线y=ax2+bx+4的顶点坐标为(3,),∴y=a(x﹣3)2+=ax2﹣6ax+9a+,∴9a+=4,∴a=﹣,∴抛物线解析式为y=﹣x2+x+4;(2)如图1,设C(m,﹣m2+m+4);∵AD=AE,AD∥x轴,CD∥y轴,∴AD=AE=m,∵OA=4,∴OE=m﹣4,∵点E在y轴的负半轴上,∴E(0,4﹣m),设CE的解析式为:y=kx+b,则,解得,∴CE的解析式为:y=(﹣)x+4﹣m,解法一:∴﹣x2+x+4=(﹣)x+4﹣m,∴﹣x2+(m﹣1)x+m=0,x2+(4﹣m)x﹣4m=0,(x+4)(x﹣m)=0,x 1=﹣4,x2=m,∴定点F(﹣4,﹣6);解法二:CE的解析式为:y=(﹣)x+4﹣m=(﹣x﹣1)m+x+4,由画图可知:F是直线CE上的定点,∴﹣x﹣1=0,∴x=﹣4,∴定点F(﹣4,﹣6);②如图2,过E作EH⊥CD于H,交DG于Q,连接OQ,由①知:OE=m﹣4,∵∠DAE=∠ADH=∠EHD=90°,AD=AE,∴四边形AEHD是正方形,∴∠EDH=45°,AD=AE=DH=EH,∵∠ODE=∠CDG,∴∠ODE+∠EDQ=∠EDQ+∠CDG=45°,即∠ODQ=45°,∴∠ADO+∠CDG=45°,在OA的延长线上取AP=QH,连接PD,∵∠PAD=∠QHD=90°,AD=DH,∴△PAD≌△QHD(SAS),∴PD=DQ,∠ADP=∠CDG,AP=QH,∴∠ADP+∠ADO=45°=∠ODQ,∵OD=OD,∴△PDO≌△QDO(SAS),∴OP=OQ,∵EH=DH,∠EHC=∠DHQ,∠GEH=∠CDG,∴△EHC≌△DHQ(ASA),∴CH=QH=﹣(m﹣4)==AP,∴OQ=OP=4+,∵OE=m﹣4,EQ=EH﹣QH=m﹣()=﹣m,在Rt△OEQ中,由勾股定理得:OE2+EQ2=OQ2,∴(m﹣4)2+(﹣)2=(4+)2,m3﹣10m2﹣24m=0,解得:m1=0(舍),m2=12,m3=﹣2(舍),∴D(12,4),Q(6,﹣8),设直线DG的解析式为:y=kx+b,则,解得,∴直线DG的函数表达式为:y=2x﹣20.3.解:(1)当x=0时,y=﹣x2+x+4=4,∴点C的坐标为(0,4).设直线BC的解析式为y=kx+b(k≠0).将B(8,0)、C(0,4)代入y=kx+b,,解得:,∴直线BC的解析式为y=﹣x+4.假设存在,设点P的坐标为(x,﹣x2+x+4)(0<x<8),过点P作PD∥y轴,交直线BC于点D,则点D的坐标为(x,﹣x+4),如图所示.∴PD=﹣x2+x+4﹣(﹣x+4)=﹣x2+2x,∴S△PBC=PD•OB=×8•(﹣x2+2x)=﹣x2+8x=﹣(x﹣4)2+16.∵﹣1<0,∴当x=4时,△PBC的面积最大,最大面积是16.∵0<x<8,∴存在点P,使△PBC的面积最大,最大面积是16.(2)设点M的坐标为(m,﹣m2+m+4),则点N的坐标为(m,﹣m+4),∴MN=|﹣m2+m+4﹣(﹣m+4)|=|﹣m2+2m|.又∵MN=3,∴|﹣m2+2m|=3.当0<m<8时,有﹣m2+2m﹣3=0,解得:m1=2,m2=6,∴点M的坐标为(2,6)或(6,4);当m<0或m>8时,有﹣m2+2m+3=0,解得:m3=4﹣2,m4=4+2,∴点M的坐标为(4﹣2,﹣1)或(4+2,﹣﹣1).综上所述:M点的坐标为(4﹣2,﹣1)、(2,6)、(6,4)或(4+2,﹣﹣1).4.解:【问题】y=ax2+bx+=a(x+1)(x﹣3),解得:a=,b=1,故答案为:﹣,1;【操作】抛物线G1沿BC方向平移BC长度的距离得到抛物线G2,相当于抛物线向左平移3个单位,向上平移个单位,G1:y=ax2+bx+=﹣x2+x+=﹣(x﹣1)2+2,G2:y=﹣(x﹣1+3)2+2+=﹣x2﹣2x+,当x≥0时,y=﹣x2﹣2x+,当x<0时,y=﹣x2+x+;【探究】C点的坐标为(0,).当y=时,,解得:x1=0,x2=2,∴E(2,),当时,,解得:x1=0,x2=﹣4,∴D(﹣4,),∵,,∴抛物线G1的顶点为(1,2),抛物线G2的顶点为(﹣2,),∴﹣4<x<﹣2或0<x<1时,函数y随x的增大而增大;【应用】如图,过点P作x轴的平行线交过点D与x轴的垂线于点M,交过E点与x轴的垂线于点N,设点P(﹣2,m),则EN=﹣m,PN=4,DM=﹣m,PM=2,∵∠EPN+∠MPD=90°,∠MDP+∠DPM=90°,∴∠EPN=∠MDP,∴tan∠EPN=tan∠MDP,即,即,解得:m=±2,故点P的坐标为:.5.解:(1)在y=x2﹣4中,令y=0,则x=±3,令x=0,则y=﹣4,∴B(3,0),C(0,﹣4);故答案为:(3,0),(0,﹣4);(2)如图(2),当P点运动到(﹣1,﹣2)时,即处于点P1位置,此时,P(P1)B与⊙C相切;∵P 1(﹣1,﹣2),而点B 、C 的坐标分别为(3,0)、(0,﹣4), ∴P 1B 2=20,P 1C 2=5,BC 2=25,故P 1B 2+P 1C 2=BC 2, ∴CP 1⊥P 1B , ∴P 1B 与⊙C 相切;(3)存在点P ,使得△PBC 为直角三角形,当PB 与⊙相切时,△PBC 为直角三角形,如图(2), 连接BC , ∵OB =3.OC =4, ∴BC =5, ∵CP 2⊥BP 2,CP 2=,∴BP 2=2,过P 2作P 2E ⊥x 轴于E ,P 2F ⊥y 轴于F , 则△CP 2F ∽△BP 2E ,=,设OF =P 2E =2x ,FP 2=OE =x , ∴BE =3﹣x ,CF =2x ﹣4, ∴=2, ∴x =,2x =,∴FP2=,EP2=,∴P2(,﹣),由(2)知,P1符合条件,即P1(﹣1,﹣2);综上所述:点P的坐标为:(﹣1,﹣2)或(,﹣);(4)如图(3),连接AP,∵OB=OA,BE=EP,∴OE=AP,∴当AP最大时,OE的值最大,∵当P在AC的延长线上时,AP的值最大,最大值=5+,∴OE的最大值为故答案为:.6.解:(1)∵当x=0时,y=2,当y=0时,x=﹣2,∴,∴BC=AB==4,∴,∴,解得,故抛物线的表达式为:y=﹣x2+x+2①;(2)过点P作PH⊥x轴于H,交AC于点G,设直线AC为:y=kx+t,则,解得,∴.设,则,∴=,∵,∴∠BAO=60°,∵四边形ABCD为菱形,∴∠CAD=30°,∴∠PGE=∠AGH=60°,∴,∴===,∵,∴当x=1时,PE最大,最大值为;(3)由(2)知:∠CAD=30°=∠EAF,则∠AFE=90°﹣∠EAF=60°,当△OPF为等腰三角形,则△OPF为等边三角形,则直线OP的倾斜角为60°,设直线OP的表达式为:y=x②,联立①②并解得:x =﹣2±2,∵点P 为AC 上方抛物线上一动点,即﹣2<x <4, 故x =﹣2+2, 故点P (﹣2+2,6﹣2).7.解:(1)在y =﹣x ﹣3中,令x =0,得y =﹣3;令y =0,得x =﹣3. ∴B (﹣3,0),C (0,﹣3).设抛物线的函数解析式为y =a (x +3)(x ﹣1). 将点C (0,﹣3)代入,得a =1. ∴抛物线的函数解析式为y =x 2+2x ﹣3;(2)①如图1,过点P 作PE ⊥x 轴于点E ,交BC 于点F .设点P 的坐标为(t ,t 2+2t ﹣3),则点F 的坐标为(t ,﹣t ﹣3). ∴PF =﹣t ﹣3﹣(t 2+2t ﹣3)=﹣t 2﹣3t .∴S 四边形ABPC =S △BPC +S △ABC =PF •OB +AB •OC =(﹣t 2﹣3t )+6=.∵<0,∴当t =时,S 四边形ABPC 取得最大值.∴此时点P 的坐标为;②如图2,作点P 关于x 轴的对称点P ',PP '交x 轴于点I ,连接AP ,AP ',过点P 作PJ ⊥AP '于点J ,交x 轴于点G .当GJ =AG 时,PG +AG 取得最小值,此时sin ∠GAJ =.∴tan ∠GAJ =.设点P 的坐标为(t ,t 2+2t ﹣3),则PI =﹣t 2﹣2t +3,AI =﹣t +1. 由对称的性质,得∠PAI =∠GAJ , ∴tan ∠PAI =,即.解得t 1=,t 2=1(舍去).∴此时点P 的坐标为;(3)DM +DN 是定值.如图3,过点Q 作QH ⊥x 轴于点H .∵ND ⊥x 轴, ∴QH ∥ND .∴△BQH ∽△BND ,△AMD ∽△AQH . ∴,.设点Q 的坐标为(k ,k 2+2k ﹣3),则HQ=﹣k2﹣2k+3,BH=3+k,AH=1﹣k.∵D是抛物线的对称轴与x轴的交点,∴AD=BD=2.∴,.∴DN=2﹣2k,DM=2k+6.∴DM+DN=2k+6+2﹣2k=8.∴DM+DN是定值,该定值为8.8.解:(1)把点B(4,m)代入y=x+中,得m=,∴B(4,),把点A(﹣1,0)、B(4,)、C(0,﹣)代入抛物线中,得,解得∴抛物线的解析式为y=x2﹣x﹣,∵y=x2﹣x﹣=(x﹣1)2﹣2,∴点M的坐标为(1,﹣2).(2)∵点P为直线AB下方抛物线上一动点,∴﹣1<x<4,如图1所示,过点P作y轴的平行线交AB于点H,设点P的坐标为(m,m2﹣m﹣),则点H(m,m+),S △PAB =•HP •(x B ﹣x A )=•(﹣m 2+m +2)×5=﹣(m ﹣)2+,∵﹣<0,∴当m =时,S 最大,最大为,此时点P (,﹣).(3)如图2所示,令y =0,解得x 1=﹣1,x 2=3, ∴D (3,0),∵M (1,﹣2),A (﹣1,0), ∴△AMD 为等腰直角三角形, 设点N 的坐标为(n ,n 2﹣n ﹣), ∵△QEN ≌△MFQ (AAS ),∴FQ =EN =2,MF =EQ =n 2﹣n ﹣, ∴n 2﹣n ﹣+1=n +2, 解得n =5或﹣1(舍), ∴点Q 的坐标为(7,0),根据对称性可知,点Q 的坐标为(﹣5,0)时也满足条件, ∵△ADM 是等腰直角三角形,∴当点Q 是AD 的中点,N 与A 或D 重合时,△QMN ∽△MAD , 此时Q (1,0)时.综上所述:点Q 的坐标为(7,0)或(﹣5,0)或(1,0). 9.解:(1)∵抛物线的顶点为(1,﹣4),∴设抛物线的解析式为y=a(x﹣1)2﹣4,将点C(0,﹣3)代入抛物线y=a(x﹣1)2﹣4中,得a﹣4=﹣3,∴a=1,∴抛物线的解析式为y=a(x﹣1)2﹣4=x2﹣2x﹣3;(2)由(1)知,抛物线的解析式为y=x2﹣2x﹣3,令y=0,则x2﹣2x﹣3=0,∴x=﹣1或x=3,∴B(3,0),A(﹣1,0),令x=0,则y=﹣3,∴C(0,﹣3),∴AC=,设点E(0,m),则AE=,CE=|m+3|,∵△ACE是等腰三角形,∴①当AC=AE时,=,∴m=3或m=﹣3(点C的纵坐标,舍去),∴E(3,0),②当AC=CE时,=|m+3|,∴m=﹣3±,∴E(0,﹣3+)或(0,﹣3﹣),③当AE=CE时,=|m+3|,∴m=﹣,∴E(0,﹣),即满足条件的点E的坐标为(0,3)、(0,﹣3+)、(0,﹣3﹣)、(0,﹣);(3)如图,存在,∵D(1,﹣4),∴将线段BD向上平移4个单位,再向右(或向左)平移适当的距离,使点B的对应点落在抛物线上,这样便存在点Q,此时点D的对应点就是点P,∴点Q的纵坐标为4,设Q(t,4),将点Q的坐标代入抛物线y=x2﹣2x﹣3中得,t2﹣2t﹣3=4,∴t=1+2或t=1﹣2,∴Q(1+2,4)或(1﹣2,4),分别过点D,Q作x轴的垂线,垂足分别为F,G,∵抛物线y=x2﹣2x﹣3与x轴的右边的交点B的坐标为(3,0),且D(1,﹣4),∴FB=PG=3﹣1=2,∴点P的横坐标为(1+2)﹣2=﹣1+2或(1﹣2)﹣2=﹣1﹣2,即P(﹣1+2,0)、Q(1+2,4)或P(﹣1﹣2,0)、Q(1﹣2,4).10.解:(1)把O(0,0),A(3,3)代入得:,解得:,则抛物线解析式为y=﹣x2+4x;(2)设直线OA解析式为y=kx,把A(3,3)代入得:k=1,即直线OA解析式为y=x,∵PB⊥x轴,∴P,C,B三点纵坐标相等,∵B(m,0),∴把x=m代入y=x中得:y=m,即C(m,m),把x=m代入y=﹣x2+4x中得:y=﹣m2+4m,即P(m,﹣m2+4m),∵P在直线OA上方,∴PC=﹣m2+4m﹣m=﹣m2+3m(0<m<3),当m=﹣=时,PC取得最大值,最大值为=.11.解:(1)∵二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),∴,解得,∴二次函数的解析式为;(2)如图,D点关于PQ与A点对称,过点Q作FQ⊥AP于F,∵AP=AQ=t,AP=DP,AQ=DQ,∴AP=AQ=QD=DP,∴四边形AQDP为菱形.∵FQ∥OC,∴,∴,∴,,∴.∵DQ=AP=t,∴.∵D在二次函数上,∴,∴,或t=0(与A重合,舍去),∴;(3)存在满足条件的点E,点E的坐标为(﹣,0)或(﹣,0)或(﹣1,0)或(7,0).如图,过点Q作QD⊥OA于D,此时QD∥OC,∵A(3,0),B(﹣1,0),C(0,﹣4),O(0,0),∴AB=4,OA=3,OC=4,∴,AQ=4.∵QD∥OC,∴,∴,∴,.①作AQ的垂直平分线,交x轴于E,此时AE=EQ,即△AEQ为等腰三角形.设AE=x,则EQ=x,DE=|AD﹣AE|=|﹣x|,∴在Rt△EDQ中,(﹣x)2+()2=x2,解得x=,∴OA﹣AE=3﹣=﹣,∴E(﹣,0),点E在x轴的负半轴上;②以Q为圆心,AQ长半径画圆,交x轴于E,此时QE=QA=4,∵ED=AD=,∴AE=,∴OA﹣AE=3﹣=﹣,∴E(﹣,0);③当AE=AQ=4时,∵OA﹣AE=3﹣4=﹣1,或OA+AE=7,∴E(﹣1,0)或(7,0).综上所述,存在满足条件的点E,点E的坐标为(﹣,0)或(﹣,0)或(﹣1,0)或(7,0).12.解:(1)直线y=x+4与坐标轴交于A、B两点,当x=0时,y=4,x=﹣4时,y=0,∴A(﹣4,0),B(0,4),把A,B两点的坐标代入抛物线解析式得,解得,∴抛物线的解析式为;(2)①如图1,作PF∥BO交AB于点F,∴△PFD∽△OBD,则,∵OB=4为定值,∴当PF取最大值时,有最大值,设P(x,),其中﹣4<x<0,则F(x,x+4),∴PF==,∵﹣<0且对称轴是直线x=﹣2,∴当x=﹣2时,PF有最大值,此时PF=2,∴;②∵点C(2,0),∴CO=2,如图2,点F在y轴上时,过点P作PH⊥x轴于H,在正方形CPEF中,CP=CF,∠PCF=90°,∵∠PCH+∠OCF=90°,∠PCH+∠HPC=90°,∴∠HPC=∠OCF,在△CPH和△FCO中,∠HPC=∠OCF,∠PHC=∠COF,PC=FC,∴△CPH≌△FCO(AAS),∴PH=CO=2,∴点P的纵坐标为2,∴,解得,,∴,.13.解:(1)由题意得:,解得:,故抛物线的解析式是:①;(2)①设直线BC的解析式为y=kx+.∵直线BC过点B(3,0),∴0=3k+,则k=,故直线BC解析式为y=x+.设直线m解析式为,且直线m∥直线BC,当直线m与抛物线只有一个交点时,点D到BC的距离最远,此时△BCD取最大值,故四边形DCAB有最大值.令,∴,△=(﹣3)2﹣4××(3b﹣3)=0时,直线m与抛物线有唯一交点,解之得:,则直线m的表达式为:y=﹣x+②,联立①②并解得,∴D;②存在,点M的横坐标为或;符合条件的直线有两条:CM1和CM2(分别在CB的上方和下方),(Ⅰ)∵在Rt△ACO中,∠ACO=30°,在Rt△COB中,∠CBO=30°,∴∠BCM1=∠BCM2=15°,∵在△BCE中,∠BCE=∠BEC2=15°,∴BC=BE=,则E(,0),设直线CE解析式为:,∴,解之得:k=,∴直线CE解析式为:,∴,解得:x1=0,x2=2﹣1;(Ⅱ)∵在Rt△OCF中,∠CBO=30°,∠BCF=15°,∴在Rt△COF中,∠CFO=45°,∴OC=OF=,∴F(,0),∴直线CF的解析式为③,联立①③并解得:x3=0(舍去),,即点M的横坐标为:或.14.解:(1)令y=x2+6x+2中x=0,则y=2,∴N(0,2);∵y=x2+6x+2=(x+2)2﹣4,∴M(﹣2,﹣4).观察函数图象,发现:当﹣2<x<0时,抛物线C1在直线l的下方,∴不等式x2+6x+2<kx+b的解集为﹣2<x<0;(2)∵y=x2+6x+2抛物线C1:的顶点为M(﹣2,﹣4),沿x轴翻折后的对称点坐标为(﹣2,4).∵抛物线C2的顶点与点M关于原点对称,∴抛物线C2的顶点坐标为(2,4),∴p=2﹣(﹣2)=4.∵抛物线C2与C1开口大小相同,开口方向相反,∴抛物线C2的解析式为y=﹣(x﹣2)2+4=﹣x2+6x﹣2;(3)令y=x2+6x+2=0,则x=﹣2,即点E、F的坐标分别为(﹣2﹣,0)、(﹣2+,0),点M(﹣2,﹣4);同理点A、B、D的坐标分别为(2﹣,0)、(2+,0)、(2,4),由点的对称性知,DM、EB相互平分,故四边形EMBD是平行四边形,经验证该四边形不是矩形、菱形,故四边形EMBD是平行四边形.15.解:(1)y=﹣x2+2x+3,令x=0,则y=3,令y=0,则x=﹣1或3,故点A、B、C的坐标分别为:(﹣1,0)、(3,0)、(0,3),则函数的对称轴为x=1,故点D(1,4);设直线BC的表达式为:y=kx+b,则,解得,故一次函数的表达式为:y=﹣x+3;(2)如图1,由点A、C的坐标,同理可得直线AC的表达式为:y=3x+3,设点M(m,﹣m+3),点N(n,3n+3),由题意得:NP=MQ=PQ,即m﹣n=﹣m+3=3n+3,解得:m=,n=﹣,故M(,),N(,);(3)如图2,当以DF为直径的圆与BC有公共点,即圆相切于直线BC时,DF最小,设以DF为直径的圆的圆心为R,半径为r,∵圆相切于直线BC,故ER⊥BC,由点C、D的坐标知,直线CD的倾斜角为45°,而直线BC与x轴负半轴的夹角为45°,故直线CD与BC的夹角为90°,即CD⊥BC,由点B、C、D的坐标知,BD==,同理CD=,∴ER∥CD,故△BER∽△BCD,即,则,解得:r=,DF最小值为2r==.。
2020中考数学-动点问题专题训练(含答案)
中考专题训练 动点问题例1. 如图, 在ABC ∆中,AB AC =,AD BC ⊥于点D ,10BC cm =,8AD cm =. 点P 从点B 出发, 在线段BC 上以每秒3cm 的速度向点C 匀速运动, 与此同时, 垂直于AD 的直线m 从底边BC 出发, 以每秒2cm 的速度沿DA 方向匀速平移, 分别交AB 、AC 、AD 于E 、F 、H ,当点P 到达点C 时, 点P 与直线m 同时停止运动, 设运动时间为t 秒(0)t >.(1) 当2t =时, 连接DE 、DF ,求证: 四边形AEDF 为菱形;(2) 在整个运动过程中, 所形成的PEF ∆的面积存在最大值, 当PEF ∆的面积最大时, 求线段BP 的长;(3) 是否存在某一时刻t ,使PEF ∆为直角三角形?若存在, 请求出此时刻t 的值;若不存在, 请说明理由 .【解答】(1) 证明: 当2t =时,4DH AH ==,则H 为AD 的中点, 如答图 1 所示 . 又EF AD ⊥Q ,EF ∴为AD 的垂直平分线,AE DE ∴=,AF DF =.AB AC =Q ,AD BC ⊥于点D ,AD BC ∴⊥,B C ∠=∠.//EF BC ∴,AEF B ∴∠=∠,AFE C ∠=∠,AEF AFE ∴∠=∠,AE AF ∴=,AE AF DE DF ∴===,即四边形AEDF 为菱形 .(2) 解: 如答图 2 所示, 由 (1) 知//EF BC ,AEF ABC ∴∆∆∽, ∴EF AH BC AD =,即82108EF t -=,解得:5102EF t =-. 221155510(10)210(2)10(0)222223PEF S EF DH t t t t t t ∆==-=-+=--+<<g g , ∴当2t =秒时,PEF S ∆存在最大值, 最大值为210cm ,此时36BP t cm ==.(3) 解: 存在 . 理由如下:①若点E 为直角顶点, 如答图 3①所示,此时//PE AD ,2PE DH t ==,3BP t =.//PE AD Q ,∴PE BP AD BD =,即2385t t =,此比例式不成立, 故此种情形不存在; ②若点F 为直角顶点如答图 3②所示,此时//PF AD ,2PF DH t ==,3BP t =,103CP t =-.//PF AD Q ,∴PF CP AD CD =,即210385t t -=,解得4017t =;③若点P 为直角顶点,如答图③所示 .过点E 作EM BC ⊥于点M ,过点F 作FN BC ⊥于点N ,则2EM FN DH t ===,////EM FN AD .//EM AD Q ,∴EM BM AD BD=,即285t BM =,解得54BM t =, 57344PM BP BM t t t ∴=-=-=. 在Rt EMP ∆中, 由勾股定理得:2222227113(2)()416PE EM PM t t t =+=+=. //FN AD Q ,∴FN CN AD CD=,即285t CN =,解得54CN t =, 5171031044PN BC BP CN t t t ∴=--=--=-. 在Rt FNP ∆中, 由勾股定理得:22222217353(2)(10)85100416PF FN PN t t t t =+=+-=-+. 在Rt PEF ∆中, 由勾股定理得:222EF PE PF =+, 即:2225113353(10)()(85100)21616t t t t -=+-+ 化简得:21833508t t -=, 解得:280183t =或0t =(舍 去) 280183t ∴=. 综上所述, 当4017t =秒或280183t =秒时,PEF ∆为直角三角形 .例2. 如图, 在同一平面上, 两块斜边相等的直角三角板Rt ABC ∆和Rt ADC ∆拼在一起,使斜边AC 完全重合, 且顶点B ,D 分别在AC 的两旁,90ABC ADC ∠=∠=︒,30CAD ∠=︒,4AB BC cm ==(1) 填空:AD = )cm ,DC = ()cm(2) 点M ,N 分别从A 点,C 点同时以每秒1cm 的速度等速出发, 且分别在AD ,CB 上沿A D →,CB →方向运动,当N 点运动到B 点时,M 、N 两点同时停止运动, 连接MN ,求当M 、N 点运动了x 秒时, 点N 到AD 的距离 (用 含x 的式子表示)(3) 在 (2) 的条件下, 取DC 中点P ,连接MP ,NP ,设PMN ∆的面积为2()y cm ,在整个运动过程中,PMN ∆的面积y 存在最大值, 请求出y 的最大值 .(参考数据sin 75︒=sin15︒=【解答】解: (1)90ABC ∠=︒Q ,4AB BC cm ==,AC ∴== 90ADC ∠=︒Q ,30CAD ∠=︒,12DC AC ∴==AD ∴==故答案为:,(2) 过点N 作NE AD ⊥于E ,作NF DC ⊥,交DC 的延长线于F ,如图所示:则NE DF =,90ABC ADC ∠=∠=︒Q ,AB BC =,30CAD ∠=︒,45ACB ∴∠=︒,60ACD ∠=︒,180456075NCF ∴∠=︒-︒-︒=︒,15FNC ∠=︒,sin FC FNC NC∠=Q ,NC x =,4FC x ∴=,4NE DF x ∴==+ ∴点N 到ADx +; (3)sin FN NCF NC∠=Q ,FN x ∴=, P Q 为DC 的中点,PD CP ∴==4PF x ∴=+ PMN ∴∆的面积y =梯形MDFN 的面积PMD -∆的面积PNF -∆的面积111))222x x x =++-2784x x =++ 即y 是x 的二次函数,Q 08<, y ∴有最大值,当7x ==时,y=例3. 如图,BD 是正方形ABCD 的对角线,2BC =,边BC 在其所在的直线上平移, 将通过平移得到的线段记为PQ ,连接PA 、QD ,并过点Q 作QO BD ⊥,垂足为O ,连接OA 、OP .(1) 请直接写出线段BC 在平移过程中, 四边形APQD 是什么四边形?(2) 请判断OA 、OP 之间的数量关系和位置关系, 并加以证明;(3) 在平移变换过程中, 设OPB y S ∆=,(02)BP x x =剟,求y 与x 之间的函数关系式,并求出y 的最大值 .【解答】(1) 四边形APQD 为平行四边形;(2)OA OP =,OA OP ⊥,理由如下:Q 四边形ABCD 是正方形,AB BC PQ ∴==,45ABO OBQ ∠=∠=︒,OQ BD ⊥Q ,45PQO ∴∠=︒,45ABO OBQ PQO ∴∠=∠=∠=︒,OB OQ ∴=,在AOB ∆和OPQ ∆中,AB PQABO PQO BO QO=⎧⎪∠=∠⎨⎪=⎩()AOB POQ SAS ∴∆≅∆,OA OP ∴=,AOB POQ ∠=∠,90AOP BOQ ∴∠=∠=︒,OA OP ∴⊥;(3) 如图, 过O 作OE BC ⊥于E .①如图 1 ,当P 点在B 点右侧时,则2BQ x =+,22x OE +=, 1222x y x +∴=⨯g ,即211(1)44y x =+-, 又02x Q 剟, ∴当2x =时,y 有最大值为 2 ;②如图 2 ,当P 点在B 点左侧时,则2BQ x =-,22x OE -=, 1222x y x -∴=⨯g ,即211(1)44y x =--+, 又02x Q 剟, ∴当1x =时,y 有最大值为14; 综上所述,∴当2x =时,y 有最大值为 2 .例4. 如图, 在平面直角坐标系中,O 为原点, 四边形ABCO 是矩形, 点A ,C 的坐标分别是(0,2)A 和C 0),点D 是对角线AC 上一动点 (不 与A ,C 重合) ,连结BD ,作DE DB ⊥,交x 轴于点E ,以线段DE ,DB 为邻边作矩形BDEF .(1) 填空: 点B 的坐标为 ;(2) 是否存在这样的点D ,使得DEC ∆是等腰三角形?若存在, 请求出AD 的长度;若不存在, 请说明理由;(3)①求证:DE DB = ②设AD x =,矩形BDEF 的面积为y ,求y 关于x 的函数关系式 (可 利用①的结论) ,并求出y 的最小值 .【解答】解: (1)Q 四边形AOCB 是矩形,2BC OA ∴==,OC AB ==90BCO BAO ∠=∠=︒,B ∴2).故答案为2).(2) 存在 . 理由如下:2OA =Q ,OC =tan AO ACO OC ∠==Q 30ACO ∴∠=︒,60ACB ∠=︒①如图 1 中, 当E 在线段CO 上时,DEC ∆是等腰三角形, 观察图象可知, 只有ED EC =, 30DCE EDC ∴∠=∠=︒,60DBC BCD ∴∠=∠=︒,DBC ∴∆是等边三角形,2DC BC ∴==,在Rt AOC ∆中,30ACO ∠=︒Q ,2OA =,24AC AO ∴==,422AD AC CD ∴=-=-=.∴当2AD =时,DEC ∆是等腰三角形 .②如图 2 中, 当E 在OC 的延长线上时,DCE ∆是等腰三角形, 只有CD CE =,15DBC DEC CDE ∠=∠=∠=︒,75ABD ADB ∴∠=∠=︒,AB AD ∴==综上所述, 满足条件的AD 的值为 2 或(3)①如图 1 ,过点D 作MN AB ⊥交AB 于M ,交OC 于N ,(0,2)A Q 和C 0),∴直线AC 的解析式为23y x =-+,设(,2)3D a a -+,2DN ∴=+,BM a =90BDE ∠=︒Q ,90BDM NDE∴∠+∠=︒,90BDM DBM∠+∠=︒,DBM EDN∴∠=∠,90BMD DNE∠=∠=︒Q,BMD DNE∴∆∆∽,∴23DE DNBD BM+===.②如图 2 中,作DH AB⊥于H.在Rt ADH∆中,AD x=Q,30DAH ACO∠=∠=︒,1122DH AD x∴==,AH x==,2BH x∴=,在Rt BDH∆中,BD==,DE∴==∴矩形BDEF的面积为22612)y x x==-+,即2y=-+23)3y x∴=-+Q03>,3x ∴=时,y .例5. 已知Rt OAB ∆,90OAB ∠=︒,30ABO ∠=︒,斜边4OB =,将Rt OAB ∆绕点O 顺时针旋转60︒,如图 1 ,连接BC .(1) 填空:OBC ∠= 60 ︒;(2) 如图 1 ,连接AC ,作OP AC ⊥,垂足为P ,求OP 的长度;(3) 如图 2 ,点M ,N 同时从点O 出发, 在OCB ∆边上运动,M 沿O C B →→路径匀速运动,N 沿O B C →→路径匀速运动, 当两点相遇时运动停止, 已知点M 的运动速度为1.5 单位/秒, 点N 的运动速度为 1 单位/秒, 设运动时间为x 秒,OMN ∆的面积为y ,求当x 为何值时y 取得最大值?最大值为多少?【解答】解: (1) 由旋转性质可知:OB OC =,60BOC ∠=︒,OBC ∴∆是等边三角形,60OBC ∴∠=︒.故答案为 60 .(2) 如图 1 中,4OB =Q ,30ABO ∠=︒,122OA OB ∴==,AB ==11222AOC S OA AB ∆∴==⨯⨯=g gBOC ∆Q 是等边三角形,60OBC ∴∠=︒,90ABC ABO OBC ∠=∠+∠=︒,AC ∴==27AOC S OP AC ∆∴===.(3)①当803x <…时,M 在OC 上运动,N 在OB 上运动,此时过点N 作NE OC ⊥且交OC 于点E .则sin 60NE ON x =︒=g ,11 1.522OMN S OM NE x x ∆∴==⨯g g ,28y x ∴=.83x ∴=时,y 有最大值, 最大值=. ②当843x <„时,M 在BC 上运动,N 在OB 上运动 .作MH OB ⊥于H . 则8 1.5BM x =-,sin 60(8 1.5)2MH BM x =︒=-g,212y ON MH x ∴=⨯⨯=+.当83x =时,y 取最大值,y < ③当4 4.8x <„时,M 、N 都在BC 上运动, 作OG BC ⊥于G .12 2.5MN x =-,OG AB ==,122y MN OG x ∴==g g ,当4x =时,y 有最大值, 最大值=,综上所述,y 有最大值, .。
2020年广东省中考数学压轴题:动点问题
2020年广东省中考数学压轴题:动点问题例1:如图1,在平面直角坐标系中,双曲线(k ≠0)与直线y =x +2都经过点A (2, m ).(1)求k 与m 的值;(2)此双曲线又经过点B (n , 2),过点B 的直线BC 与直线y =x +2平行交y 轴于点C ,联结AB 、AC ,求△ABC 的面积;(3)在(2)的条件下,设直线y =x +2与y 轴交于点D ,在射线CB 上有一点E ,如果以点A 、C 、E 所组成的三角形与△ACD 相似,且相似比不为1,求点E 的坐标.图1满分解答(1)将点A (2, m )代入y =x +2,得m =4.所以点A 的坐标为(2, 4).将点A (2, 4)代入k y x=,得k =8. (2)将点B (n , 2),代入8y x =,得n =4. 所以点B 的坐标为(4, 2).设直线BC 为y =x +b ,代入点B (4, 2),得b =-2.所以点C 的坐标为(0,-2).由A (2, 4) 、B (4, 2) 、C (0,-2),可知A 、B 两点间的水平距离和竖直距离都是2,B 、C 两点间的水平距离和竖直距离都是4.所以AB=BC=ABC =90°.所以S △ABC =12BA BC ⋅=12⨯8. (3)由A (2, 4) 、D (0, 2) 、C (0,-2),得AD=AC=由于∠DAC +∠ACD =45°,∠ACE +∠ACD =45°,所以∠DAC =∠ACE . 所以△ACE 与△ACD 相似,分两种情况:①如图3,当CE AD CA AC=时,CE =AD= 此时△ACD ≌△CAE ,相似比为1.图2②如图4,当CE ACCA AD ==CE =C 、E 两点间的水平距离和竖直距离都是10,所以E (10, 8).图3图4。
2020年中考数学复习专题——平行四边形动点及存在性问题
2020年中考数学复习专题平行四边形动点及存在性问题【例1】正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,DN +MN 的最小值为 。
【练习1】如图,在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA =3,OB =4,D 为边OB 的中点.(1)若E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标; (2)若E 、F 为边OA 上的两个动点,且EF =2,当四边形CDEF 的周长最小时,求点E 、F 的坐标.【例2】 如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 的坐标分别为(10,0),(0,4),点D 是OA 的中点,点P 在BC 上运动,当三角形△ODP 是腰长为5的等腰三角形时,P 的坐标为 ;【练习2】如图,在平面直角坐标系中,AB∥OC,A(0,12),B(a,c),C(b,0),并且a,b满足16b=.一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点B运动;动点Q从点O出发在线段OC上以每秒1个单位长度的速度向点C运动,点P、Q分别从点A、O同时出发,当点P运动到点B时,点Q随之停止运动.设运动时间为t(秒)(1)求B、C两点的坐标;(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P、Q两点的坐标;(3)当t为何值时,△PQC是以PQ为腰的等腰三角形?并求出P、Q两点的坐标.【例3】(1)如图,矩形ONEF的对角线相交于点M,ON、OF分别在x轴和y轴上,O为坐标原点,点E的坐标为(4,3),则点M的坐标为;(2)在直角坐标系中,有A(-1,2),B(3,1),C(1,4)三点,另有一点D与点A、B、C构成平行四边形的顶点,求点D的坐标.【练习3】如图,四边形ABCD 为矩形,C 点在x 轴上,A 点在y 轴上,D 点坐标是(0,0),B 点坐标是(3,4),矩形ABCD 沿直线EF 折叠,点A 落在BC 边上的G 处,E 、F 分别在AD 、AB 上,且F 点的坐标是(2,4). (1)求G 点坐标; (2)求直线EF 解析式;(3)点N 在x 轴上,直线EF 上是否存在点M ,使以M 、N 、F 、G 为顶点的四边形是平行四边形?若存在,请直接写出M 点的坐标;若不存在,请说明理由.【例4】在Rt △ABC 中,∠B =90°,AC =60cm ,∠A =60°,点D 从点C 出发沿CA 方向以4cm /s 的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2cm /s 的速度运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D ,E 运动的时间是ts (0<t 15).过点D 作DF ⊥BC 于点F ,连接DE ,EF . (1)求证:AE =DF ;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,请说明理由;(3)当t 为何值时,△DEF 为直角三角形?请说明理由.xE【练习4】如图,等腰三角形OAB的一边OB在x轴的正半轴上,点A的坐标为(6,8),OA=OB,动点P从原点O出发,在线段OB上以每秒2个单位的速度向点B匀速运动,动点Q从原点O出发,沿y轴的正半轴以每秒1个单位的速度向上匀速运动,过点Q作x轴的平行线分别交OA,AB于E,F,设动点P,Q同时出发,当点P到达点B时,点Q也停止运动,他们运动时间为t秒(0t )(1)点E的坐标为,F的坐标为;(2)当t为何值时,四边形POFE是平行四边形;(3)是否存在某一时刻,使△PEF为直角三角形?若存在,请求出此时t的值;若不存在,请说明理由.【巩固练习】1、菱形ABCD中,AB=2,∠BAD=60°,点E是AB的中点,P一个动点,则PE+PB的最小值为。
2020中考数学复习压轴题《动点问题》专题提升练习%28六大动点必考相关问题%29(无答案)
2020中考数学复习压轴题《动点问题》专题提升练习(六大动点必考相关问题)题型一动点与函数图像关系1. 如图,菱形ABCD 的边长是4厘米,∠B=60°,动点P 以1厘米秒的速度自A 点出发沿AB 方向运动至B 点停止,动点Q 以2厘米/秒的速度自B 点出发沿折线BCD 运动至D 点停止.若点P 、Q 同时出发运动了t 秒,记△BPQ 的面积为S 厘米2,下面图象中能表示S 与t 之间的函数关系的是( )A .B .C .D .2. 如图,已知边长为4的正方形ABCD ,P 是BC 边上一动点(与B 、C 不重合),连结AP ,作PE⊥AP 交∠BCD 的外角平分线于E .设BP=x ,△PCE 面积为y ,则y 与x 的函数关系式是( )A .y=2x+1B .21y x 2x 2=-C .21y 2x x 2=-D .y=2x3. 如图,已知A 、B 是反比例函数y =k x (k >0,x >0)图象上的两点,BC∥x 轴,交y 轴于点C .动点P 从坐标原点O 出发,沿O →A →B →C 匀速运动,终点为C.过点P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形OMPN的面积为S,点P运动的时间为t,则S关于t的函数图象大致为().题型二动点与图形面积问题1. 如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,沿AC 方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是( )A.一直增大B.一直减小C.先减小后增大D.先增大后减小2. 如图1,在矩形ABCD中,动点E从点B出发,沿BADC方向运动至点C处停止,设点E运动的路程为x,△BCE的面积为y,如果y关于x的函数图象如图2所示,则当x=7时,点E应运动到( )A.点C处 B.点D处 C.点B处 D.点A处3. 已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O 顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC=_______°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?题型三动点与等腰三角形问题1. 如图1,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B 出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连结PQ,设运动时间为t(s)(0<t<4),解答下列问题:(1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?(2)如图2,连结PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值;(3)当t为何值时,△APQ是等腰三角形?图1 图22. 如图,已知抛物线与轴交于、两点,与轴交于点,且,设抛物线的顶点为.(1)求抛物线的解析式(2)在抛物线对称轴的右侧的抛物线上是否存在点,使得是等腰三角形?若存在,求出符合条件的点的坐标;若不存在,请说明理由;3.已知:如图,抛物线经过、、三点.求抛物线的函数关系式;若过点的直线与抛物线相交于点,请求出的面积的值;写出二次函数值大于一次函数值的的取值范围;在抛物线上是否存在点使得为等腰三角形?若存在,请指出一共有几个满足条件的点,并求出其中一个点的坐标;若不存在这样的点,请说明理由.题型四动点与线段最值问题1.点P为抛物线上直线AM下方一动点,E为线段AM上一动点,且PE//Y轴,当点P的坐标为多少时,线段PE的长度有最大值?2. 如图1,矩形ABCD中,AB=4, AD=3, M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1) 当AN平分∠MAB时,求DM的长;(2) 连结BN,当DM=1时,求△ABN的面积;(3) 当射线BN交线段CD于点F时,求DF的最大值.图1 备用图3. 如图,顶点为A(, 1)的抛物线经过坐标原点O,与x轴交于点B.(1) 求抛物线对应的二次函数的表达式;(2) 过B作OA的平行线交y轴于点C,交抛物线于点D,求证: △OCD≌△OAB;(3) 在x轴上找一点P,使得△PCD的周长最小,求出点P的坐标.题型五动点与切线问题1. 如图1,抛物线y=-x2+mx+n的图象经过点A(2, 3),对称轴为直线x=1,一次函数y=kx+b的图象经过点A,交x轴于点P,交抛物线于另一点B,点A、 B位于点P的同侧.(1) 求抛物线的解析式;(2) 若PA∶PB=3∶1,求一次函数的解析式;(3) 在(2)的条件下,当k>0时,抛物线的对称轴上是否存在点C,使得☉C同时与x轴和直线AP相切,如果存在,请求出点C的坐标,如果不存在,请说明理由.2. 如图1,在Rt△ABC中,∠ACB=90°, cosB=, BC=3, P是射线AB上的一个动点,以P为圆心、PA为半径的☉P与射线AC的另一个交点为D,直线PD交直线BC于点E.(1) 当PA=1时,求CE的长;(2) 如果点P在边AB上,当☉P与以C为圆心、CE为半径的☉C内切时,求☉P 的半径;(3) 设线段BE的中点为Q,射线PQ与☉P相交于点F,点P在运动过程中,当PE ∥CF时,求AP的长.题型六动点与辅助圆问题1. 如图,B是线段AC的中点,过点C的直线l与AC成50°的角,在直线l上取一点P,使得∠APB=30°,则满足条件的点P的个数是()A.1个 B.2个 C.3个 D.无数个2. 如图,矩形CDEF是由矩形ABCG(AB<BC)绕点C顺时针旋转90°而得,∠APE的顶点在线段BD上移动,则能够使∠APE为直角的点P的个数是_______.3. 如图,已知足球球门宽AB约为52米,一球员从距B点52的C点(点A、B、C均在球场底线上),沿与AC成45°角的CD方向带球.试问,该球员能否在射线CD上找到一点P,使得点P为最佳射门点(即∠APB 最大)?若能找到,求出这时点P与点C的距离;若找不到,请说明理由.。
2020年数学中考重难点突破之几何图形综合题
几何图形综合题类型一动点问题1.如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连接CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC 于点G.(1)求证:△CDE≌△CBF;1时,求CG的长;(2)当DE=2(3)连接AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.第1题图(1)证明:如解图,在正方形ABCD中,DC=BC,∠D=∠CBA=∠CBF=∠DCB= 90°,∴∠1+∠2= 90°,∵CF⊥CE,∴∠2+∠3= 90°,∴∠1= ∠3, 在△CDE 和△CBF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠31BCDC CBF D , ∴△CDE ≌△CBF (ASA );第1题解图(2)解:在正方形ABCD 中,AD ∥BC , ∴△GBF ∽△EAF , ∴AFBFAE BG =, 由(1)知,△CDE ≌△CBF , ∴BF = DE = 12,∵正方形ABCD 的边长为1, ∴AF =AB +BF = 32,AE =AD -DE = 12,∴232121 BG ,∴BG =16,∴CG =BC -BG = 56;(3)解:不能.理由:若四边形CEAG 是平行四边形,则必须满足AE ∥CG ,AE = CG , ∴AD -AE =BC -CG , ∴DE =BG ,由(1)知,△CDE ≌△CBF , ∴DE =BF ,CE =CF ,∴△GBF 和△ECF 是等腰直角三角形, ∴∠GFB = 45°,∠CFE = 45°, ∴∠CF A = ∠GFB +∠CFE = 90°,此时点F 与点B 重合,点D 与点E 重合,与题目条件不符, ∴在点E 运动过程中,四边形CEAG 不能为平行四边形.2.已知四边形ABCD 是菱形,AB = 4,∠ABC = 60°,∠EAF 的两边分别与射线CB ,DC 相交于点E ,F ,且∠EAF = 60°. (1)如图①,当点E 是线段CB 的中点时,直接写出线段AE ,EF ,AF 之间的数量关系;(2)如图②,当点E是线段CB上任意一点时(点E不与点B、C重合),求证:BE=CF;(3)如图③,当点E在线段CB的延长线上,且∠EAB= 15°时,直接写出点F到BC的距离.第2题图(1)解:AE=EF=AF;【解法提示】如解图①,连接AC,第2题解图①∵四边形ABCD 是菱形,∠ABC = 60°, ∴∠BCD = 120°, ∴∠ACE = ∠ACF = 60°,∴AB = BC = AC ,即△ABC 为等边三角形, 又∵∠BAC = ∠1+∠2= 60°, ∠EAF = ∠2+∠3= 60°, ∴∠1= ∠3, 在△ABE 和△ACF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠ACF ABE ACAB 31, ∴△ABE ≌△ACF (ASA ), ∴AE = AF , 又∵∠EAF = 60°, ∴△AEF 为等边三角形,∴AE = EF = AF ;(2)证明:如解图②,连接AC ,由(1)知,AB = AC ,∠ACF = 60°, ∵∠BAC = ∠4+∠5= 60°,∠EAF = ∠5+∠6= 60°, ∴∠4= ∠6, 在△ABE 和△ACF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠ACF ABE ACAB 64, ∴△ABE ≌△ACF (ASA ), ∴BE = CF ;第2题解图②(3)解:点F 到BC 的距离为3- 3.【解法提示】由(2)知,BE = CF ,如解图③,过点A 作AG ⊥CE 于点G ,过点F 作FH ⊥CE 于点H ,第2题解图③∵∠EAB= 15°,∠ABC= 60°,∴∠BAG= 90°-∠ABC= 30°,∴∠EAG= 15°+30°= 45°,∴△AEG为等腰直角三角形,又∵AB= 4,∴AG=AB·cos∠BAG= 4×32= 23,∴BG=AB21= 2,∵EG=AG= 23,∴BE=EG-BG= 23-2,∴CF= 23-2,∵FH⊥CE,∴∠FCH= 180°-∠BCD= 60°,∴FH=CF·sin∠FCH= (23-2)×32= 3-3,∴点F到BC的距离为3- 3.类型二图形形状变化问题3.如图,在四边形ABCD中,点P是AB上一点,点E在射线DP上,且∠BED =∠BAD,连接AE.(1)若AB=AD,在DP上截取点F,使得DF=BE,连接AF,求证:AE=AF;(2)如图②,若四边形ABCD是正方形,点P在AB的延长线上,BE=1,AE=32,求DE的长;(3)如图③,若四边形ABCD是矩形,AD=2AB,点P在AB的延长线上,AE=AE的值.5BE,求DE图①图②图③第3题图(1)证明:∵∠BED=∠BAD,∠BPE=∠DP A,∴∠ABE=∠ADF,∵AB=AD,BE=DF,∴△ABE≌△ADF,∴AE=AF;(2)解:如解图①,延长ED到点F,使得DF=BE,连接AF,第3题解图①∵四边形ABCD是正方形,∴∠BAD=∠BED=∠BEP,∵∠P=∠P,∴∠PBE=∠ADP,∴∠ABE=∠ADF,∵BE=DF,AB=AD,∴△ABE≌△ADF,∴AE=AF,∠BAE=∠F AD,∴∠F AD+∠EAD=∠BAE+∠EAD=90°,∴EF=2AE=32×2=6,∴DE=EF-DF=EF-BE=6-1=5;(3)解:如解图②,过点A作AF⊥AE交ED的延长线于点F,第3题解图②∵四边形ABCD 是矩形,∴∠BAD =∠BED =∠BEP =90°,AB =CD , ∵AF ⊥AE ,∠P =∠P ,∴∠PBE =∠ADP ,∠EAB =90°-∠EAD =∠F AD , ∴∠ABE =180°-∠PBE =180°-∠ADP =∠ADF , ∴△ABE ∽△ADF ,∴AF AE DF BE AD AB ===12, ∴AF =2AE ,DF =2BE ,在Rt △AEF 中,由勾股定理得EF =22AF AE +=22)2(AE AE +=5AE , ∵AE =5BE ,∴EF =5AE =5·5BE =5BE , ∴DE =EF -DF =5BE -2BE =3BE , ∴DEAE=BE BE 35=53.4.如图,在正方形ABCD 中,点E 是BC 的中点,将△ABE 沿AE 折叠后得到△AFE ,点F 在正方形ABCD 的内部,延长AF 交CD 于点G . (1)猜想并证明线段FG 与CG 的数量关系;(2)若将图①中的正方形改成矩形,其它条件不变,如图②,那么线段FG 与CG 之间的数量关系是否改变?请证明你的结论;(3)若将图①中的正方形改成平行四边形,其它条件不变,如图③,那么线段FG 与CG 之间的数量关系是否会改变?请证明你的结论.第4题图解:(1)FG=CG.证明:如解图①,连接EG,第4题解图①∵E是BC的中点,∴BE=CE,∵将△ABE沿AE折叠后得到△AFE,∴BE=EF,∴EF=EC,由折叠的性质得∠B=∠EF A=90°,又∵∠C=∠B,∠EFG=∠EF A,∴∠C=∠EFG=90°.∵EG=EG,∴△ECG≌△EFG(HL),∴FG=CG;(2)数量关系不变:FG=CG.证明:如解图②,连接EG,第4题解图②∵E是BC的中点,∴BE=CE.∵将△ABE沿AE折叠后得到△AFE,∴BE=EF,∴EF=EC.由折叠的性质得∠B=∠EF A=90°,又∵∠C=∠B,∠EFG=∠EF A,∴∠C=∠EFG=90°.∵EG=EG,∴△ECG≌△EFG(HL),∴FG=CG;(3)数量关系不变:FG=CG.证明:如解图③,连接EG、FC,第4题解图③∵E是BC的中点,∴BE=CE.∵将△ABE沿AE折叠后得到△AFE,∴BE=EF,∠B=∠AFE,∴EF=EC,∴∠EFC=∠ECF.∵四边形ABCD为平行四边形,∴∠B=∠D.∵∠ECD=180°-∠D,∠EFG=180°-∠AFE=180°-∠B=180°-∠D,∴∠ECD=∠EFG,∴∠GFC=∠GFE-∠EFC=∠ECG-∠ECF=∠GCF,∴∠GFC=∠GCF,∴FG=CG,即线段FG与CG之间的数量关系不会改变.类型三旋转问题5.如图①,△ABC与△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且点D在AB边上,AB、EF的中点均为O,连接BF、CD、CO.(1)当点C、F、O在同一条直线上时,BF与CD的数量关系是____________;(2)将图①中的Rt△DEF绕点O旋转得到图②,猜想BF=CD是否成立,并说明理由;(3)若△ABC与△DEF都是等边三角形,AB、EF的中点均为点O ,若△BOF 的面积为3,请计算△COD 的面积.第5题图(1)解:BF =CD ;【解法提示】∵O 是等腰直角△DEF 斜边EF 中点, ∴EF ⊥AB ,OD =OF ,∵O 是等腰直角△ABC 斜边AB 中点, ∴CO =BO ,∵在△BOF 和△COD 中,⎪⎩⎪⎨⎧=∠=∠=DO FO COD BOF CO BO , ∴△BOF ≌△COD (SAS ), ∴BF =CD ;(2)解:BF =CD 成立.理由如下: 如解图①,连接OC 、OD .第5题解图①∵△ABC 为等腰直角三角形,点O 为斜边AB 的中点, ∴OB =OC ,∠BOC =90°,∵△DEF 为等腰直角三角形,点O 为斜边EF 的中点, ∴OF =OD ,∠DOF =90°,∵∠BOF =∠BOC +∠COF =90°+∠COF , ∠COD =∠DOF +∠COF =90°+∠COF , ∴∠BOF =∠COD . ∵在△BOF 与△COD 中,⎪⎩⎪⎨⎧=∠=∠=OD OF COD BOF OC OB , ∴△BOF ≌△COD (SAS ), ∴BF =CD ;(3)解:如解图②,连接OC 、OD .第5题解图②∵△ABC 为等边三角形,点O 为边AB 的中点, ∴∠BOC =90°,OCOB=tan 30°=33.∵△DEF 为等边三角形,点O 为边EF 的中点, ∴∠DOF =90°,ODOF=tan 30°=33,∴OC OB =ODOF=33.∵∠BOF =∠BOC +∠COF =90°+∠COF ,∠COD =∠DOF +∠COF =90°+∠COF , ∴∠BOF =∠COD , 在△BOF 与△COD 中,∵OC OB =OD OF=33,∠BOF =∠COD ,∴△BOF ∽△COD ,∴DC BF =OC OB =OD OF=33.∴COD BOFS S △△=(33)2=13,∵BOF S △=3, ∴COD S △=9.6. 如图,在锐角△ABC 中,AB =4,BC =5,∠ACB =45°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1.(1)如图①,当点C 1在线段CA 的延长线上时,求∠CC 1A 1的度数; (2)如图②,连接AA 1,CC 1.若△ABA 1的面积为4,求△CBC 1的面积; (3)如图③,点E 为线段AB 的中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转过程中,点P 的对应点是点P 1,求线段EP 1长度的最大值与最小值.第6题图解:(1)由旋转的性质可得∠A 1C 1B =∠ACB =45°,BC =BC 1, ∴∠CC 1B =∠C 1CB =45°,∴∠CC 1A 1=∠CC 1B +∠A 1C 1B =45°+45°=90°; (2)∵△ABC ≌△A 1BC 1,∴BA =BA 1,BC =BC 1,∠ABC =∠A 1BC 1,∴11BC BA BC BA =,∠ABC +∠ABC 1=∠A 1BC 1+∠ABC 1, ∴∠ABA 1=∠CBC 1,∴△ABA 1∽△CBC 1. ∴2516542211=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=BC AB S S CBC ABA △△, ∵S △ABA 1=4,∴S △CBC 1=254;(3)如解图①,过点B 作BD ⊥AC ,D 为垂足, ∵△ABC 为锐角三角形,∴点D 在线段AC 上, 在Rt △BCD 中, BD =BC ×sin 45°=522, ①当P 在AC 上运动至垂足点D ,△ABC 绕点B 旋转,使点P 的对应点P 1在线段AB 上时,EP 1最小,最小值为EP 1=BP 1-BE =BD -BE =522-2;②如解图②,当P 在AC 上运动至点C ,△ABC 绕点B 旋转,使点P 的对应点P 1在线段AB 的延长线上时,EP 1最大,最大值为EP 1=BC +BE =2+5=7.第6题解图①第6题解图②7.已知等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕A点旋转时,两边分别交直线BC、CD于点M、N.(1)如图①,当M、N分别在边BC、CD上时,作AE垂直于AN,交CB的延长线于点E,求证:AE=AN;(2)如图②,当M、N分别在边CB、DC的延长线上时,求证:MN+BM=DN;(3)如图③,当M、N分别在边CB、DC的延长线上时,作直线BD交直线AM 于P点,点Q为三角板的另一锐角顶点.若MN=10,CM=8,求AP的长.第7题图(1)证明:∵∠EAB+∠BAN=90°,∠NAD+∠BAN=90°,∴∠EAB=∠NAD,又∵∠ABE=∠D=90°,AB=AD,∴△ABE≌△ADN(ASA),∴AE=AN;(2)证明:如解图①,在ND上截取DG=BM,连接AG、MG.第7题解图①∵AD=AB,∠ADG=∠ABM=90∴△ADG≌△ABM(SAS),∴AG=AM,∠MAB=∠GAD,∵∠BAD=∠BAG+∠GAD=90°,∴∠MAG=∠BAG+∠MAB=90°,∴△AMG为等腰直角三角形,又∠MAN=45°,∴AN⊥MG,∴AN为MG的垂直平分线,∴NM=NG,又∵DN-DG=NG,∴DN-BM=MN,即MN+BM=DN;(3)解:如解图②,连接AC,第7题解图②同(2),证得MN +BM =DN ,∴MN +CM -BC =DC +CN ,又∵在正方形ABCD 中,DC =BC , ∴CM -CN +MN =2BC , 即8-CN +10=2BC ,即CN =18-2BC , 在Rt △MNC 中,根据勾股定理得222CN CM MN +=,即102=82+2CN ,解得CN =6, ∴18-2BC =6,∴BC =12(18-CN )=6,∴AC =62,∵∠BAP +∠BAQ =45°,∠NAC +∠BAQ =45°, ∴∠BAP =∠NAC ,又∵∠ABP =∠ACN =135°, ∴△ABP ∽△ACN , ∴22==AC AB AN AP , 在Rt △AND 中,DN =DC +CN =12, 根据勾股定理得222DN AD AN +==36+144,解得AN =65,∴2256 AP , ∴AP =310.8.如图,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点. (1)观察猜想图①中,线段PM 与PN 的数量关系是 ,位置关系是 ; (2)探究证明把△ADE 绕点A 逆时针方向旋转到图②的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由; (3)拓展延伸把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.第8题图解:(1)PM =PN ,PM ⊥PN ;【解法提示】∵AB =AC ,AD =AE ,∴BD =CE ; ∵点M ,P ,N 分别为DE ,DC ,BC 的中点, ∴PM ∥CE 且PM =21CE ,PN ∥BD 且PN=21BD ;∴PM=PN,∠DPM=∠DCE,∠CNP=∠B,∴∠DPN=∠PNC+∠PCN=∠B+∠PCN.∵∠A=90°,∴∠B+∠ACB=90°,∴∠MPN=∠MPD+∠DPN=∠DCE+∠PCN+∠B=90°,∴PM⊥PN;(2)△PMN为等腰直角三角形.理由如下:由题可知:△ABC和△ADE均为等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAD+∠DAC=∠DAC+∠CAE,∴∠BAD=∠EAC,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE,BD=CE.又∵点M,P,N分别为DE,DC,BC的中点,∴PM是△CDE的中位线,1CE.∴PM∥CE且PM=21BD.同理:PN∥BD且PN=2∴PM=PN,∠MPD=∠ECD,∠PNC=∠DBC.∴∠MPD=∠ECD=∠ACD+∠ACE=∠ACD+∠ABD,∠DPN=∠PNC+∠PCN=∠DBC+∠PCN,∴∠MPN=∠MPD+∠DPN=∠ACD+∠ABD+∠DBC+∠PCN=∠ABC+∠ACB=90°,∴△PMN 为等腰直角三角形;(3)249.【解法提示】∵△PMN 为等腰直角三角形,∴S △PMN =21PM 2, 要使△PMN 的面积最大,即PM 最大.第8题解图由(2)得,PM =21CE ,即当CE 最大时,PM 最大.如解图所示,当点C 、E 在点A 异侧,且在同一直线上时,CE 最大,此时CE =AE +AC =14,则PM 最大值为7,故△PMN 最大面积为S △PMN =21×7×7=249.拓展类型一 折叠问题9.如图,已知一个直角三角形纸片ACB ,其中∠ACB =90°,AC =4,BC =3,E 、F 分别是AC 、AB 边上的点,连接EF .(1)如图①,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且使S 四边形ECBF =3S △EDF ,求AE 的长;(2)如图②,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,且使MF ∥CA .①试判断四边形AEMF 的形状,并证明你的结论; ②求EF 的长.第9题图解:(1)∵折叠后点A 落在AB 边上的点D 处, ∴EF ⊥AB ,△AEF ≌△DEF . ∴S △AEF =S △DEF . ∵S 四边形ECBF =3S △EDF , ∴S 四边形ECBF =3S △AEF . ∵S △ACB =S △AEF +S 四边形ECBF , ∴S △ACB =S △AEF +3S △AEF =4S △AEF . ∴ACBAEFS S △△=14.∵∠EAF =∠BAC ,∠AFE =∠ACB =90°, ∴△AEF ∽△ABC . ∴ACB AEF S S △△=(ABAE )2. ∴(ABAE )2=14.在Rt △ACB 中,∠ACB =90°,AC =4,BC =3, ∴AB 2=AC 2+BC 2,即AB =42+32=5, ∴(5AE )2=14,∴AE =52;(2)①四边形AEMF 是菱形.证明:∵将纸片折叠后点A 落在BC 边上的点M 处, ∴∠CAB =∠EMF ,AE =ME , 又∵MF ∥CA , ∴∠CEM =∠EMF , ∴∠CAB =∠CEM , ∴EM ∥AF ,∴四边形AEMF 是平形四边形, 又AE =ME ,∴四边形AEMF 是菱形;②连接AM ,与EF 交于点O ,如解图,设AE =x ,则AE =ME =x ,EC =4-x ,第9题解图∵∠CEM =∠CAB ,∠ECM =∠ACB =90°, ∴Rt △ECM ∽Rt △ACB , ∴ABEMAC EC =, ∵AB =5, ∴544xx =-,解得x =209.∴AE =ME =209,EC =169. 在Rt △ECM 中,∵∠ECM =90°, ∴CM 2=EM 2-EC 2, 即CM =22EC EM -=(209)2-(169)2=43, ∵四边形AEMF 是菱形,∴OE =OF ,OA =OM ,AM ⊥EF , ∴S 菱形AEMF =4S 三角形AOE =2OE ·AO , 在Rt △AOE 和Rt △ACM 中,∵tan ∠EAO =tan ∠CAM , ∴ACCMAO OE =, ∵CM =43,AC =4,∴AO =3OE , ∴S 菱形AEMF =6OE 2, 又∵S 菱形AEMF =AE ·CM , ∴6OE 2=209×43,解得OE =2109, ∴EF =2OE =4109.拓展类型二 平移问题10.如图①,在Rt △ABC 和Rt △DEF 中,∠BAC =∠EDF =90°,AB =AC ,DE =DF ,点D 在射线AB 上,AB =2DF =6.连接EA ,EC ,交射线AB 于点H ,取CE 的中点G ,连接DG . (1)当点F 与点A 重合时,求DH 的长;(2)如图②,保持△ABC 固定不动,将△DEF 沿射线AB 平移m 个单位长度,判断DG 与EA 的位置关系和数量关系,并说明理由;(3)如图③,继续平移△DEF ,使得△DEF 的一个顶点恰好在直线BC 上,求此时HG 的长.第10题图解:(1)∵∠EDA =∠CAB =90°, ∴DE ∥AC , ∴△DHE ∽△AHC ,∴21===AB DF AC DE AH DH , ∴DH =31AD =31×21AB =1;(2)DG ∥EA ,DG =21EA .理由:由(1)知,△DHE ∽△AHC ,∴21===AC DE HC EH AH DH , ∵点G 是EC 的中点, ∴EH +HG =HC -HG , ∴2HG =HC -EH =EH , ∴21==EH HG AH DH , ∵∠DHG =∠AHE , ∴△DHG ∽△AHE , ∴∠HDG =∠HAE ,21==AH DH AE DG , ∴DG ∥EA ,DG =21EA ;(2)当点D 在直线BC 上时,此时点D 和点B 重合,如解图①, ∵21==AC BE AH BH ,AB =6, ∴BH =2,BE =3, ∴在Rt △BHE 中,由勾股定理得EH =22BH BE +=2223+=13, ∵21==AE DG HE HG , ∴HG =21EH =213; 当点F 在直线BC 上时,此时点F 和点B 重合,如解图②, BE =2DE =32, ∴HG =21EH =223. 综上所述,HG 的长为213或223.图①图②第10题解图31。
2020年中考数学经典题型汇编线段中的动点问题含解析
2020年中考线段中的动点问题经典题型汇编中考复习战略汇集线段中的动点问题1.如线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若点C恰好是AB中点,求DE的长?(2)若AC=4cm,求DE的长.2.点A、B、C所表示的数如图所示,回答下列问题:(1)A、B两点间的距离是多少?(2)若将线段BC向右移动,使B点和A点重合,此时C点表示的数是多少?3.如图,在数轴上有两点A、B,点B在点A的右侧,且AB=10,点A表示的数为﹣6.动点P从点A出发,以每秒4个单位长度的速度沿数轴向右匀速运动.(1)写出数轴上点B表示的数;(2)经过多少时间,线段AP和BP的长度之和为18?4.【分类讨论思想】如图,P是线段AB上任一点,AB=12cm,C、D两点分别从P、B同时向A点运动,且C点的运动速度为2cm/s,D点的运动速度为3cm/s,运动的时间为ts.(1)若AP=8cm,①运动1s后,求CD的长;②当D在线段PB上运动时,试说明AC=2CD;(2)如果t=2s时,CD=1cm,试探索AP的值.5.【分类讨论思想】如图,射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm,点P从点O出发,沿OM方向以1cm/秒的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动,两点同时出发,当点Q运动到点O时,点P、Q停止运动.(1)若点Q运动速度为2cm/秒,经过多长时间P、Q两点相遇?(2)当P在线段AB上且P A=3PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度;6.【分类讨论思想】如图,线段AB=24,动点P从A出发,以每秒2个单位的速度沿射线AB运动,M为AP的中点.(1)出发3秒后,AM=3,PB=18.(不必说明理由)(2)出发几秒后,AP=3BP?(3)当P在AB延长线上运动时,N为BP的中点,下列两个结论:①MA+PN 的值不变;②MN长度不变,选择一个正确的结论,并求出其值.7.【分类讨论思想】已知数轴上A,B两点对应数分别为a和b,且a、b满足等式(a+9)2+|7﹣b|=0,P为数轴上一动点,对应数为x.(1)求线段AB的长.(2)数轴上是否存在P点,使PA=3PB?若存在,求出x的值;若不存在,请说明理由.(3)在(2)的条件下,若点M、点N分别是线段AB,PB的中点,试求线段MN的长.答案与解析49938241.解:(1)∵AB=12cm,点C恰好是AB中点,∴AC=BC=6cm.∵点D、E分别是AC和BC的中点,∴CD=3cm,CE=3cm,∴DE=CD+CE=6cm,即DE的长是6cm;(2)∵AB=12cm,AC=4cm,∴CB=8cm,∵点D、E分别是AC和BC的中点,∴DC=2cm,CE=4cm,∴DE=DC+CE=6cm,即DE的长是6cm.2.解:(1)由图可得,A、B两点间的距离是|2﹣(﹣)|=;(2)由题可得,BC=|﹣﹣(﹣3)|=,当B点和A点重合时,C点表示的数是2﹣=.3.解:(1)数轴上点B表示的数为4.(2)设:经过t秒时间,线段AP和BP的长度之和为18.AP=4t,(i)P在AB中间时:AP+BP=10不可能为18;(ii)P在B的右侧:BP=4t﹣10,4t+4t﹣10=18,t=3.5答:经过3.5s,线段AP和BP的长度之和为18.4.解:(1)①由题意可知CP=2×1=2cm,DB=3×1=3cm.∵AP=8cm,AB=12cm∴PB=AB﹣AP=4cm∴CD=CP+PB﹣DB=2+4﹣3=3cm②∵AP=8,AB=12,∴BP=4,AC=8﹣2t,∴DP=4﹣3t,∴CD=DP+CP=2t+4﹣3t=4﹣t,∴AC=2CD;(2)当t=2时,CP=2×2=4cm,DB=3×2=6cm,当点D在C的右边时,如图所示:由于CD=1cm,∴CB=CD+DB=7cm,∴AC=AB﹣CB=5cm,∴AP=AC+CP=9cm,当点D在C的左边时,如图所示:∴AD=AB﹣DB=6cm,∴AP=AD+CD+CP=11cm综上所述,AP=9或115.解:(1)设经过t秒时间P、Q两点相遇,则t+2t=90,解得t=30,所以经过30秒时间P、Q两点相遇.(2)∵AB=60cm,PA=3PB,∴PA=45cm,OP=65cm.∴点P、Q的运动时间为65秒,∵AB=60cm,AB=20cm,∴QB=20cm或40cm,∴点Q是速度为=cm/秒或=cm/秒.6.解:(1)出发3秒后,AM=2×3÷2=3,PB=24﹣2×3=18.(2)分两种情况:①当点P在线段AB上时,设出发t秒后,AP=2t,BP=24﹣2t,∵AP=3BP,∴2t=3(24﹣2t),解得t=9;②当点P在AB延长线上时,设出发t秒后,AP=2t,BP=2t﹣24,∵AP=3BP,∴2t=3(2t﹣24),解得t=18.故出发9秒或18秒后,AP=3BP.(3)选②;∵PA=2x,AM=PM=x,PB=2x﹣24,PN=PB=x﹣12,∴MN=PM﹣PN=x﹣(x﹣12)=12(定值).①MN+PN=x+x﹣12=2x﹣12(变化).故答案为:3,18.7.解:(1)由(a+9)2+|7﹣b|=0,得a+9=0,7﹣b=0.解得a=﹣9,b=7.线段AB的长为b﹣a=7﹣(﹣9)=16;(2)当P在AB上时,PA+PB=AB,即3PB+PB=AB,即PB=4,7﹣x=4,解得x=3;当P在线段AB的延长线上时,PA﹣PB=AB,3PB﹣PB=AB,PB=8,x=7+8=15;(3)当P在AB上时,如图1;,点M、点N分别是线段AB,PB的中点,得MB=AB=8,BN=PB=2.由线段的和差,得MN=MB﹣NB=8﹣2=6;当P在AB的延长线上时,如图2;,点M、点N分别是线段AB,PB的中点,得MB=AB=8,BN=PB=4.由线段的和差,得MN=MB﹣NB=8+4=12.综上所述:MN的长为6或12.。
2023年中考数学专题复习:二次函数综合压轴题(动点问题)
2023年中考数学专题复习:二次函数综合压轴题(动点问题)1.抛物线2y x bx c =-++与x 轴交于点()10A -,,()30B ,,与y 轴交于点C .(1)求抛物线的解析式;(2)点D 为第一象限内抛物线上的一动点,作DE x ⊥轴于点E ,交BC 于点F ,过点F 作BC 的垂线与抛物线的对称轴、x 轴、y 轴分别交于点G ,N ,H ,设点D 的横坐标为m .①当DF HF +取最大值时,求点F 的坐标;②连接EG ,若45GEH ∠=︒,求m 的值.2.如图,已知抛物线2y x bx c =-++与x 轴交于()1,0A -,()5,0B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求抛物线的解析式;(2)在抛物线的对称轴上存在一点P ,使得PA PC +的值最小,求此时点P 的坐标;(3)点D 是第一象限内抛物线上的一个动点(不与点C 、B 重合),过点D 作DF x ⊥轴于点F ,交直线BC 于点E ,连接BD ,直线BC 把BDF V 的面积分成两部分,若:3:2BDE BEF S S =V V ,请求出点D 的坐标.3.如图1,对于平面内小于等于90︒的MON ∠,我们给出如下定义:若点P 在MON ∠的内部或边上,作PE OM ⊥于点E ,PF ON ⊥于点F ,则将PE PF +称为点P 与MON ∠的“点角距”,记作(),d MON P ∠.如图2,在平面直角坐标系xOy 中,x 、y 正半轴所组成的角为xOy ∠.(1)已知点()5,0A 、点()3,2B ,则(),d xOy A ∠=______ ,(),d xOy B ∠=______.(2)若点P 为xOy ∠内部或边上的动点,且满足(),5d xOy P ∠=,在图2中画出点P 运动所形成的图形.(3)如图3,在平面直角坐标系xOy 中,抛物线212y x mx n =-++经过()5,0A 与点()3,4D 两点,点Q 是A 、D 两点之间的抛物线上的动点(点Q 可与A 、D 两点重合),求当(),d xOD Q ∠取最大值时点Q 的坐标.4.如图,抛物线2134y ax bx =++与x 轴交于点()30A -,和点B ,点D 是抛物线1y 的顶点,过点D 作x 轴的垂线,垂足为点()10C -,.(1)求抛物线1y 所对应的函数表达式;(2)如图1,点M 是抛物线1y 上一点,且位于x 轴上方,横坐标为m ,连接MC ,若MCB DAC ∠=∠,求m 的值;(3)如图2,将抛物线1y 平移后得到顶点为B 的抛物线2y .点P 为抛物线1y 上的一个动点,过点P 作y 轴的平行线,交抛物线2y 于点Q ,过点Q 作x 轴的平行线,交抛物线2y 于点R .当以点P ,Q ,R 为顶点的三角形与ACD V 全等时,请直接写出点P 的坐标.5.如图,抛物线()20y ax bx c a =++≠与x 轴交于A 、B 两点,与y 轴交于点()0,6C ,顶点为D ,且()1,8D .(1)求抛物线的解析式;(2)若在线段BC 上存在一点M ,过点O 作OH OM ⊥交BC 的延长线于H ,且MO HO =,求点M 的坐标;(3)点P 是y 轴上一动点,点Q 是在对称轴上一动点,是否存在点P ,Q ,使得以点P ,Q ,C ,D 为顶点的四边形是菱形?若存在,求出点Q 的坐标;若不存在,请说明理由.6.如图,已知二次函数24y x bx =+-的图像经过点()3,4A -,与x 轴负半轴交于点B ,与y 轴交于点C ,连接AB ,BC .(1)填空:b =______;(2)点P 是直线AB 下方抛物线上一个动点,过点P 作PT x ⊥轴,垂足为T ,PT 交AB 于点Q ,求线段PQ 的最大值;(3)点D 是y 轴正半轴上一点,若∠=∠BDC ABC ,求点D 的坐标.7.如图,抛物线2y x bx c =++(b ,c 是常数)的顶点为C ,与x 轴交于A ,B 两点,()1,0A ,4AB =(1)求该抛物线的解析式;(2)点P 为线段AB 上的动点,过P 作PQ BC ∥交AC 于点Q ,求CPQ V 面积的最大值,并求此时P 点坐标;(3)如图,设抛物线与y 轴交于点D ,平行于BD 的直线MN 交抛物线于点M ,N ,作直线MB ND 、交于点G ,问点G 是否在某一定直线上运动,若在求此直线的解析式,若不在说明理由.8.如图,已知抛物线23y ax bx =+-的图象与x 轴交于点A ()10,和B ()30,,与y 轴交于点C ,D 是抛物线的顶点,对称轴与x 轴交于E .(1)求抛物线的解析式;(2)如图1,在抛物线的对称轴DE 上求作一点M ,使A M C V 的周长最小,M 的坐标__________周长的最小值______.(3)如图2,点P 是x 轴上的动点,过P 点作x 轴的垂线分别交抛物线和直线BC 于F 、G .设点P 的横坐标为m .是否存在点P ,使FG 最长?若存在,求出m 的值;若不存在,请说明理由.9.如图1,抛物线()230y ax bx a =+->交x 轴于点A ,B (点A 在点B 左侧),交y 轴于点C ,且3O B O C O A ==,点D 为抛物线上第四象限的动点.(1)求抛物线的解析式.(2)如图1,直线AD 交BC 于点P ,连接AC BD ,,若ACP △和BDP △的面积分别为1S 和2S ,当12S S -的值最小时,求直线AD 的解析式.(3)如图2,直线BD 交抛物线的对称轴于点N ,过点B 作AD 的平行线交抛物线的对称轴于点M ,当点D 运动时,线段MN 的长度是否会改变?若不变,求出其值;若变化,求出其变化的范围.10.已知抛物线23y ax bx =++(0a ≠)交x 轴于()0A 1,和()30B -,,交y 轴于C .(1)求抛物线的解析式;(2)若M 为抛物线上第二象限内一点,求使MBC V 面积最大时点M 的坐标;(3)若F 是对称轴上一动点,Q 是抛物线上一动点,是否存在F 、Q ,使以B 、C 、F 、Q 为顶点的四边形是平行四边形?若存在,直接写出点Q 的坐标.11.如图,在平面直角坐标系中,二次函数的图象交坐标轴于()20A -,,()40B ,,()08C ,三点,点P 是直线BC 上方抛物线上的一个动点.(1)求这个二次函数的解析式;(2)动点P 运动到什么位置时,PBC V 的面积最大,求此时P 点坐标及PBC V 面积的最大值;(3)在y 轴上是否存在点Q ,使以O ,B ,Q 为顶点的三角形与AOC V 相似?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.12.如图,抛物线2y x bx c =++与x 轴交于()1,0A -,()3,0B 两点,与y 轴交于点C .(1)求该抛物线的解析式;(2)若点E 是线段BC 上的一个动点,平行于y 轴的直线EF 交抛物线于点F ,求FBC V 面积的最大值;(3)设点P 是(1)中抛物线上的一个动点,是否存在满足6PAB S =△的点P ?如果存在,请求出点P 的坐标;若不存在,请说明理由.13.如图,抛物线2y ax bx =+经过()()3,0,2,10A B -两点.(1)求抛物线的解析式;(2)点P 是直线AB 下方抛物线上的一个动点,求PAB V 面积的最大值;(3)点M 是直线AB 上的一个动点,将点M 向左平移3个单位长度得到点N ,设点M 的横坐标为m ,若线段MN 与抛物线只有一个公共点,请直接写出m 的取值范围.14.如图,在平面直角坐标系中,直线122y x =-与x 轴交于点A ,与y 轴交于点C ,抛物线212y x bx c =++经过A ,C 两点,与x 轴的另一交点为点B ,点P 为抛物线上的一个动点.(1)求抛物线的函数表达式;(2)当ACP △的面积与ABC V 的面积相等时,求点P 的坐标;(3)是否存在点P ,使得ACP ABC BAC ∠=∠-∠,若存在,请直接写出点P 的横坐标;若不存在,请说明理由.15.如图,已知拋物线2y ax bx c =++与x 轴交于点()1,0A ,()3,0B -,与y 轴交于点()0,3C -.点P 是抛物线上一动点,且在直线BC 的下方,过点P 作PD x ⊥轴,垂足为D ,交直线BC 于点E .(1)求抛物线的函数解析式;(2)连接CP ,若45CPD ∠=︒,求点P 的坐标;(3)连接BP ,求四边形OBPC 面积的最大值.16.如图,在平面直角坐标系中,抛物线28y x bx =-++与x 轴交于点A ,B ,与y 轴交于点C ,直线y x t =-过点B ,与y 轴交于点D ,点C 与点D 关于x 轴对称.点P 是线段OB 上一动点,过点P 作x 轴的垂线交抛物线于点M ,交直线BD 于点N .(1)求抛物线的解析式;(2)当MDB △的面积最大时,求点P 的坐标;(3)在(2)的条件下,在y 轴上是否存在点Q ,使得以Q ,M ,N ,D 为顶点的四边形是平行四边形,若存在,求出点Q 的坐标;若不存在;说明理由17.如图,抛物线21262y x x =--与x 轴相交于点A 、点B ,与y 轴相交于点C .(1)请直接写出点A ,B ,C 的坐标;(2)若点P 是抛物线BC 段上的一点,当PBC V 的面积最大时求出点P 的坐标,并求出PBC V 面积的最大值.(3)点F 是抛物线上的动点,作FE AC ∥交x 轴于点E ,是否存在点F ,使得以A 、C 、E 、F 为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点F 的坐标;若不存在,请说明理由.18.如图,在平面直角坐标系中,抛物线21=2y x bx c ++经过点()4,0A -,点M 为抛物线的顶点,点B 在y 轴上,直线AB 与抛物线在第一象限交于点()2,6C .(1)求抛物线的解析式;(2)连接OC ,点Q 是直线AC 上不与A 、B 重合的点,若2OAQ OAC S S =V V ,请求出点Q 的坐标;(3)在x 轴上有一动点H ,平面内是否存在一点N ,使以点A 、H 、C 、N 为顶点的四边形是菱形?若存在,直接写出点N 的坐标,若不存在,请说明理由.参考答案:1.(1)223y x x =-++(2)①点F 的坐标为⎝⎭;②1或952.(1)245y x x =-++(2)()2,3P (3)335,24D ⎛⎫ ⎪⎝⎭3.(1)5,5 (3)54,2⎛⎫ ⎪⎝⎭4.(1)21113424y x x =--+(2)2-(3)304⎛⎫ ⎪⎝⎭,或524⎛⎫- ⎪⎝⎭,5.(1)2246y x x =-++ (2)126,55⎛⎫ ⎪⎝⎭(3)(1,8或(1,8或271,4⎛⎫ ⎪⎝⎭6.(1)3-(2)PQ 的最大值是4 (3)50,3⎛⎫ ⎪⎝⎭7.(1)223y x x =+-(2)CPQ V 面积的最大值为2,此时P 点坐标为()1,0-(3)在,3y x =--8.(1)2=+43y x x --(2)()21-,(3)存在,m 的值为329.(1)2=23y x x --(2)22y x =--(3)不变,值为810.(1)223y x x =--+ (2)31524⎛⎫- ⎪⎝⎭, (3)存在,点Q 的坐标为()23-,或()45-,-或()25,-11.(1)228y x x =-++(2)当P 点坐标为()28,时,PBC V 的最大面积为8; (3)存在,点Q 的坐标为()016,或()016-,或()01,或()01-,.12.(1)2=23y x x -- (2)278(3)存在,点P 的坐标为()1或()1或()0,3-或()2,3-13.(1)23y x x =-(2)PAB S V 最大值为1258(3)23m -≤<或34m <<或338m =14.(1)抛物线的函数表达式为213222y x x =-- (2)点P 的坐标为(5,3)P(3)存在,点P 的横坐标为2911或7.15.(1)223y x x =+- (2)(14)--, (3)63816.(1)278y x x =-++(2)()3,0(3)存在,()0,17Q 或()0,33-17.(1)()2,0A -,()6,0B ,()0,6C - (2)点P 的坐标为153,2⎛⎫- ⎪⎝⎭时,PBC S V 有最大值272(3)存在,点F 的坐标为()4,6-或()2+或()2-18.(1)21=22y x x + (2)()8,12或()16,12--(3)()2N +或()2N -或()2,6N -或()4,6-。
2020年中考数学复习之动态问题 专题01 动点问题中的最值、最短路径问题(解析版)(1)
专题01 动点问题中的最值、最短路径问题动点问题是初中数学阶段的难点,它贯穿于整个初中数学,自数轴起始,至几何图形的存在性、几何图形的长度及面积的最值,函数的综合类题目,无不包含其中.其中尤以几何图形的长度及面积的最值、最短路径问题的求解最为繁琐且灵活多变,而其中又有一些技巧性很强的数学思想(转化思想),本专题以几个基本的知识点为经,以历年来中考真题为纬,由浅入深探讨此类题目的求解技巧及方法.一、基础知识点综述1. 两点之间,线段最短;2. 垂线段最短;3. 若A、B是平面直角坐标系内两定点,P是某直线上一动点,当P、A、B在一条直线上时,PA PB 最大,最大值为线段AB的长(如下图所示);(1)单动点模型作图方法:作已知点关于动点所在直线的对称点,连接成线段与动点所在直线的交点即为所求点的位置. 如下图所示,P是x轴上一动点,求P A+PB的最小值的作图.P 是∠AOB 内一点,M 、N 分别是边OA 、OB 上动点,求作△PMN 周长最小值.作图方法:作已知点P 关于动点所在直线OA 、OB 的对称点P ’、P ’’,连接P ’P ’’与动点所在直线的交点M 、N 即为所求.5. 二次函数的最大(小)值()2y a x h k =-+,当a >0时,y 有最小值k ;当a <0时,y 有最大值k .二、主要思想方法利用勾股定理、三角函数、相似性质等转化为以上基本图形解答. (详见精品例题解析)三、精品例题解析例1. (2019·凉山州)如图,正方形ABCD 中,AB =12,AE =3,点P 在BC 上运动(不与B 、C 重合),过点P 作PQ ⊥EP ,交CD 于点Q ,则CQ 的最大值为【答案】4.【解析】解:∵PQ ⊥EP ,∴∠EPQ =90°,即∠EPB +∠QPC =90°, ∵四边形ABCD 是正方形,∴∠B =∠C =90°,∠EPB +∠BEP =90°, ∴∠BEP =∠QPC , ∴△BEP ∽△CPQ ,O∴BE BP CP CQ=,∵AB=12,AE=3,∴BE=9,设CQ=y,BP=x,CP=12-x,(0<x<12)∴912xx y=-,即()()21216499x xy x-==--+,∴当x=6时,y有最大值为4,即CQ的最大值为4.【点睛】此题为“一线三直角模型”,解题方法为相似三角形性质求解,综合利用二次函数的性质求解最值问题.例2.(2019·自贡)如图,已知A、B两点的坐标分别为(8,0),(0,8). 点C、F分别是直线x=-5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取最小值时,tan ∠BAD=()A.817B.717C.49D.59【答案】B.【解析】解:S△ABE=142BE OA BE ⨯⨯=,当BE取最小值时,△ABE面积为最小值. 设x=-5与x轴交于点G,连接DG,因为D为CF中点,△CFG为直角三角形,所以DG=15 2CD=,∴D点的运动轨迹为以G为圆心,以5半径的圆上,如图所示由图可知:当AD 与圆G 相切时,BE 的长度最小,如下图,过点E 作EH ⊥AB 于H , ∵OG =5,OA =8,DG =5,在Rt △ADG 中,由勾股定理得:AD =12, △AOE ∽△ADG ,∴AO ADOE DG=, 求得:OE =103,由OB =OA =8,得:BE =143,∠B =45°,AB=∴EH =BH=23BE =,AH =AB -BH=3, ∴tan ∠BAD=717EH AH ==, 故答案为B .【点睛】此题解题的关键是找到△ABE 面积最小时即是AD 与D 的远动轨迹圆相切的时刻. 进而构造以∠BAD 为内角的直角三角形,利用勾股定理求出边长,代入三角函数定义求解.例3. (2019·南充)如图,矩形硬纸片ABCD 的顶点A 在y 轴的正半轴及原点上滑动,顶点B 在x 轴的正半轴及原点上滑动,点E 为AB 的中点,AB =24,BC =5,给出结论:①点A 从点O 出发,到点B 运动至点O 为止,点E 经过的路径长为12π;②△OAB 的面积的最大值为144;③当OD 最大时,点D 的坐标为)2626125,262625(,其中正确的结论是 (填写序号).【答案】②③.【解析】解:根据题意可知:OE =12AB =12, 即E 的轨迹为以O 为圆心以12为半径的四分之一圆(第一象限的部分), 根据弧长公式,得点E 的路径长为:9012180π⨯⨯=6π,故①错误; 因为AB =24,当斜边AB 上的高取最大值时,△OAB 的面积取最大值,点O 在以AB 为直径的圆上(圆心为E ),当OE ⊥AB 时,斜边AB 上的高最大, 所以△OAB 的面积取最大值为:124122⨯⨯=144,故②正确; 连接OE 、DE ,得:OD ≤OE +DE ,当O 、E 、D 三点共线时取等号, 即OD 的最大值为25,如图,过点D 作DF ⊥y 轴于F ,过点E 作EG ⊥y 轴于G ,25DF OD即:1225EG DF=,512AF ADEG AE==,即:51125AF EG DF==,设DF=x,在Rt△ADF中,由勾股定理得:221255x x⎛⎫+=⎪⎝⎭,解得:x在Rt△ODF中,由勾股定理得:OF即点D的坐标为)2626125,262625(,故③正确.综上所述,答案为:②③.例4.(2019·天津)已知抛物线2y x bx c=-+(b、c为常数,b>0)经过点A(-1,0),点M(m,0)是x轴正半轴上的动点.若点Q(1,2Qb y+2QM+的最小值为4时,求b的值.【答案】见解析.【解析】解:∵2y x bx c=-+经过点A(-1,0),∴1+b+c=0,即21y x bx b=---∵点Q(1,2Qb y+)在抛物线2y x bx c=-+上,∴324Qby=--,即13,224b Q b ⎛⎫+-- ⎪⎝⎭, ∵b >0,∴Q 点在第四象限,222QM AM QM ⎛⎫+=+ ⎪⎝⎭所以只要构造出AM QM ⎫+⎪⎝⎭2QM +的最小值 取N (1,0),连接AN ,过M 作MG ⊥AN 于G ,连接QM ,如图所示,△AGM 为等腰直角三角形,GM AM ,即当G 、M 、Q 三点共线时,GM +MQ 2QM +取最小值, 此时△MQH 为等腰直角三角形,∴QM 324b ⎫+⎪⎭,GM =2AM =)12m +()322=2122244b QM AM QM m ⎛⎫⎤⎫+=++++=⎪⎥⎪⎭⎝⎭⎣⎦ ① ∵QH =MH ,∴324b +=12b m +-,解得:m =124b - ② 联立①②得:m =74,b =4.2QM +的最小值为4时,b =4.2QM +转化为22AM QM ⎛⎫+ ⎪⎝⎭,进而根据两点之间线段最短及等腰三角形性质求解.例5. (2019·舟山)如图,一副含30°和45°角的三角板ABC 和EDF 拼合在个平面上,边AC 与EF 重合,12AC cm =.当点E 从点A 出发沿AC 方向滑动时,点F 同时从点C 出发沿射线BC 方向滑动.当点E 从点A 滑动到点C 时,点D 运动的路径长为 cm ;连接BD ,则△ABD 的面积最大值为 2cm .【答案】- 【解析】解:如图1所示,当E 运动至E ’,F 滑动到F ’时,图1过D ’作D ’G ⊥AC 于G ,D ’H ⊥BC 交BC 延长线于点H , 可得∠E ’D ’G =∠F ’D ’H ,D ’E ’=D ’F ’, ∴Rt △E ’D ’G ≌Rt △F ’D ’H , ∴D ’G =G ’H ,∴D ’在∠ACH 的角平分线上, 即C ,D ,D ’三点共线.通过分析可知,当D ’E ’⊥AC 时,DD ’的长度最大,随后返回初始D 点,如图2所示,D 点的运动路径为D →D ’→D ,行走路线长度为2DD ’;D '图2∵∠BAC =30°,AC =12,DE =CD ∴BC=CD =DE=由图知:四边形E ’CF ’D ’为正方形,CD ’=EF =12,∴DD ’=CD ’-CD=12-,D 点运动路程为2DD ’=24-图3如图3所示,当点D 运动至D ’时,△ABD ’的面积最大,最大面积为:'''''''ABC AE D BD F E CF D S S S S ++-△△△正方形=(((211112222⨯+⨯--⨯⨯=【点睛】准确利用全等、角平分线判定得到D 点的运动轨迹是关键,利用三角函数及勾股定理求解,计算较为繁琐,尤其是利用割补法求解三角形的面积时对学生计算能力要求较高,此题难度较大,新颖不失难度.例6. (2019·巴中)如图,在菱形ABCD 中,连接BD 、AC 交于点O ,过点O 作OH ⊥BC 于点H ,以O为圆心,OH 为半径的半圆交AC 于点M .(1)求证:DC 是圆O 的切线;(2)若AC =4MC ,且AC =8,求图中阴影部分面积;(3)在(2)的前提下,P 是线段BD 上的一动点,当PD 为何值时,PH +PM 的值最小,并求出最小BD'BD'值.【答案】见解析. 【解析】(1)证明: 过点O 作ON ⊥CD 于N ,AC 是菱形ABCD 的对角线, ∴AC 平分∠BCD , ∵OH ⊥BC ,ON ⊥CD , ∴OH =ON ,又OH 为圆O 的半径, ∴ON 为圆O 的半径, 即CD 是圆O 的切线.(2)由题意知:OC =2MC =4,MC =OM =2, 即OH =2,在Rt △OHC 中,OC =2OH , 可得:∠OCH =30°,∠COH =60°, 由勾股定理得:CH==23OCH OMHS S S π-=△阴影扇形(3)作点M 关于直线BD 的对称点M ’,连接M ’H 交BD 于点P ,B D可知:PM=PM’即PH+PM=PH+PM’=HM’,由两点之间线段最短,知此时PH+PM最小,∵OM’=OM=OH,∠MOH=60°,∴∠MM’H=30°=∠HCM,∴HM’=HC=即PH+PM的最小值为在Rt△M’PO及Rt△COD中,OP=OM’tan30°=3,OD=OC tan30°,即PD=OP+OD=B D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生做题前请先回答以下问题
问题1:动点问题的处理框架是什么?
问题2:分析运动过程需要关注四要素是什么?
动点问题(一)
一、单选题(共5道,每道20分)
1.如图,在平行四边形OABC中,顶点O为坐标原点,顶点A在x轴正半轴上,且∠AOC= 60°,OC=2cm,OA=4cm.动点P从点O出发,以1cm/s的速度沿折线OA-AB运动;动点Q从点O同时出发,
以相同的速度沿折线OC-CB运动.当其中一点到达终点B时,另一点也随之停止运动,设运动的时间为t(s).
(1)设△OPQ的面积为S,要求S与t之间的函数关系式,根据表达的不同,t的分段应为( )
A. B.
C. D.
2.(上接第1题)(2)S与t之间的函数关系式为( )
A. B.
C. D.
3.如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,D,E分别是AC,AB的中点,连接
DE.点P从点D出发,沿DE方向以1cm/s的速度向点E匀速运动;点Q从点B同时出发,沿BA方向以2cm/s的速度向点A匀速运动,当点P停止运动时,点Q也随之停止.连接PQ,设运动的时间为t(s),解答下列问题:
(1)当PQ⊥AB时,t的值为( )
A. B.
C.3
D.
4.(上接第3题)(2)当点Q在线段BE上运动时,设五边形PQBCD的面积为,则y与t之间的函数关系式为( )
A. B.
C. D.
5.(上接第3,4题)(3)在(2)的条件下,若存在某一时刻t,使PQ将四边形BCDE
分成面积之比为1:29的两部分,即,则t的值为( )
A.2
B.
C. D.。