自动控制原理题海02(含答案)

合集下载

自动控制理论第二章习题答案

自动控制理论第二章习题答案
Q=K P
式中 K 为比例常数, P 为阀门前后的压差。若流量 Q 与压差 P 在其平衡点 (Q0 , P0 ) 附近作微小变化,试导出线性化
方程。 解:
设正常工作点为 A,这时 Q0 = K P0
在该点附近用泰勒级数展开近似为:
y
=
f
(
x0
)
+

df (x) dx

x0
(
x

x0
)
即 Q − Q0 = K1 (P − P0 )
其中 K1
= dQ dP P=P0
=
1K 2
1 P0
2-7 设弹簧特性由下式描述:
F = 12.65 y1.1
其中,是弹簧力;是变形位移。若弹簧在变形位移附近作微小变化,试推导的线性化方程。 解:
设正常工作点为 A,这时 F0
=
12.65
y1.1 0
在该点附近用泰勒级数展开近似为:
2-3 试证明图2-58(a)的电网络与(b)的机械系统有相同的数学模型。
2
胡寿松自动控制原理习题解答第二章
图 2-58 电网络与机械系统
1
解:(a):利用运算阻抗法得: Z1
=
R1
//
1 C1s
=
R1 C1s
R1
+
1 C1s
=
R1 = R1 R1C1s + 1 T1s + 1
Z2
=
R2
+
1 C2s
(C2
+
2C1 )
du0 dt
+ u0 R
=
C1C2 R
d 2ui dt 2

自动控制原理习题及其解答 第二章

自动控制原理习题及其解答 第二章

自动控制原理习题及其解答第一章(略) 第二章例2-1 弹簧,阻尼器串并联系统如图2-1示,系统为无质量模型,试建立系统的运动方程。

解:(1) 设输入为y r ,输出为y 0。

弹簧与阻尼器并联平行移动。

(2) 列写原始方程式,由于无质量按受力平衡方程,各处任何时刻,均满足∑=0F ,则对于A 点有021=-+K K f F F F其中,F f 为阻尼摩擦力,F K 1,F K 2为弹性恢复力。

(3) 写中间变量关系式220110)()(y K F Y Y K F dty y d f F K r K r f =-=-⋅=(4) 消中间变量得 020110y K y K y K dtdy f dt dy f r r=-+- (5) 化标准形 r r Ky dtdyT y dt dy T +=+00 其中:215K K T +=为时间常数,单位[秒]。

211K K K K +=为传递函数,无量纲。

例2-2 已知单摆系统的运动如图2-2示。

(1) 写出运动方程式 (2) 求取线性化方程 解:(1)设输入外作用力为零,输出为摆角θ ,摆球质量为m 。

(2)由牛顿定律写原始方程。

h mg dtd l m --=θθsin )(22其中,l 为摆长,l θ 为运动弧长,h 为空气阻力。

(3)写中间变量关系式)(dtd lh θα= 式中,α为空气阻力系数dtd l θ为运动线速度。

(4)消中间变量得运动方程式0s i n 22=++θθθmg dt d al dtd ml (2-1) 此方程为二阶非线性齐次方程。

(5)线性化由前可知,在θ =0的附近,非线性函数sin θ ≈θ ,故代入式(2-1)可得线性化方程为022=++θθθmg dt d al dtd ml 例2-3 已知机械旋转系统如图2-3所示,试列出系统运动方程。

解:(1)设输入量作用力矩M f ,输出为旋转角速度ω 。

(2)列写运动方程式f M f dtd J+-=ωω式中, f ω为阻尼力矩,其大小与转速成正比。

(精校版)自动控制原理试题库(含答案)

(精校版)自动控制原理试题库(含答案)

(完整word版)自动控制原理试题库(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)自动控制原理试题库(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)自动控制原理试题库(含答案)(word版可编辑修改)的全部内容。

一、填空题(每空 1 分,共15分)1、反馈控制又称偏差控制,其控制作用是通过给定值与反馈量的差值进行的。

2、复合控制有两种基本形式:即按输入的前馈复合控制和按扰动的前馈复合控制。

3、两个传递函数分别为G 1(s)与G 2(s )的环节,以并联方式连接,其等效传递函数为,则G (s)为G1(s )+G2(s )(用G 1(s)与G 2(s) 表示)。

()G s 4、典型二阶系统极点分布如图1所示,则无阻尼自然频率,=nω阻尼比=ξ0.707=该系统的特征方程为 ,2220s s ++=该系统的单位阶跃响应曲线为衰减振荡.5、若某系统的单位脉冲响应为,0.20.5()105t t g t e e --=+则该系统的传递函数G (s )为.1050.20.5s s s s+++6、根轨迹起始于开环极点,终止于开环零点.7、设某最小相位系统的相频特性为,则该系统的开环传递101()()90()tg tg T ϕωτωω--=--函数为。

(1)(1)K s s Ts τ++8、PI 控制器的输入-输出关系的时域表达式是,1()[()()]p u t K e t e t dt T =+⎰其相应的传递函数为,由于积分环节的引入,可以改善系统的稳态性能。

自动控制原理第二章习题课答案

自动控制原理第二章习题课答案

第二章习题课
(2-8)
2-8 设有一个初始条件为零的系统,系 统的输入、输出曲线如图,求G(s)。
δ (t)
c(t)
T
解: t
δ (t)
c(t)
T
K 0
K 0
t
-TS K K K c(t)= T t- T (t-T) C(s)= Ts2 (1-e ) C(s)=G(S)
第二章习题课
(2-9)
2-9 若系统在单位阶跃输入作用时,已 知初始条件为零的条件下系统的输出响 应,求系统的传递函数和脉冲响应。 -t 1 -2t R ( s )= c(t)=1-e +e r(t)=I(t) s 2+4s+2) (s 1 1 1 解: C(s)= s - s+2 + s+1 = s(s+1)(s+2) 2+4s+2) ( s G(S)=C(s)/R(s) = (s+1)(s+2)
第二章习题课
(2-1b)
2-1(b) 试建立图所示电路的动态微分方 程。 duc CL d2uo duo du L ic= = +C o L 2 R 1 uL= dt R2 dt dt R2 dt + + 2 uo C CL d uoR2 duo uo u u + +C i1= i o i2= R ui=u1+uo 2 dt - R2 R2 dt - 2 输入量为ui,输出量为uo。 duc d(ui-uo) u1=i1R1 ic=C dt = dt diL uo u =L L dt iL=i2= i1=iL+ic R2
2-11(b) 求系统的 传递函数
G3(s) R(s)

自动控制原理课后习题答案.docx

自动控制原理课后习题答案.docx

(西安电子科技大学出版社)习题2-1试列写题2-1图所示各无源网络的微分方程.M 0= 2.39VJ 11= 2.19X 10∙A ,试求在工作点(w 0, i 0}附近方=/(〃,的 规性化方程。

2-7设晶网管三相桥式全控整漉电路的怆入房为控制角α,输出r 为空战整流电压口,它们之间的 关系为 式中,U ⑷是整流电压的理想空竣(«•试推导其线性化方程式.2-8 ∙系统由如下方程祖组成,其中Xr(S)为输入,XKS)为输出,试绘制系统构造图,并求出闭 环传递函数。

2-9系统的微分方程组如下其中r 、K l . K- K 、、/、K 、、T 均为正常数,试建设系统构造图,并求系统的传递函数C(S)/R(s).图2-2图有双M 冷 ⑵(W <»U.之间的关系为i* =l0P(e""∕0.026-l),假设系统工作点在 2-6如题2∙6图所示电路,.极耳啦J4非钻盛曲F ,其电流L 和电压2-10试化简即2-10图所示的系统构造图.并求传递函数C(S)11R(S), K(S) C(S)/ C(S) R(S) 筑书规图所材 Gl C(S) G,卡G 5佛与函数 国S) C(S) G) 5 “七; Hl 弟统 £(S) M(S)2-16零初 设某 2-17 g (t) = 7-5e 6f . 咫2∙ 15图求系统 的传速函数, 始条件下的输出响试求该系统的传递 2-18系统的 W'> I 控制系统构造t f 1*1 2-16 W 系统构造图 R(S) ΛU) 2-15 E(S) C (Λ I I - L_rτ∏J ∙13图 系统G:" r ,(5) E(S)凤 F) R ⑸M ⑸松) ⅛4和脉冲响应函数, 单位脉冲响应为。

(完整版)自动控制原理课后习题及答案

(完整版)自动控制原理课后习题及答案

第一章绪论1-1 试比较开环控制系统和闭环控制系统的优弊端.解答: 1 开环系统(1)长处 :构造简单,成本低,工作稳固。

用于系统输入信号及扰动作用能早先知道时,可获得满意的成效。

(2)弊端:不可以自动调理被控量的偏差。

所以系统元器件参数变化,外来未知扰动存在时,控制精度差。

2闭环系统⑴长处:不论因为扰乱或因为系统自己构造参数变化所惹起的被控量偏离给定值,都会产生控制作用去消除此偏差,所以控制精度较高。

它是一种按偏差调理的控制系统。

在实质中应用宽泛。

⑵弊端:主要弊端是被控量可能出现颠簸,严重时系统没法工作。

1-2什么叫反应?为何闭环控制系统常采纳负反应?试举例说明之。

解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反应。

闭环控制系统常采纳负反应。

由1-1 中的描绘的闭环系统的长处所证明。

比如,一个温度控制系统经过热电阻(或热电偶)检测出目前炉子的温度,再与温度值对比较,去控制加热系统,以达到设定值。

1-3试判断以下微分方程所描绘的系统属于何种种类(线性,非线性,定常,时变)?2 d 2 y(t)3 dy(t ) 4y(t ) 5 du (t ) 6u(t )(1)dt 2 dt dt(2) y(t ) 2 u(t)(3)t dy(t) 2 y(t) 4 du(t) u(t ) dt dtdy (t )u(t )sin t2 y(t )(4)dtd 2 y(t)y(t )dy (t ) (5)dt 2 2 y(t ) 3u(t )dt(6)dy (t ) y 2 (t) 2u(t ) dty(t ) 2u(t ) 3du (t )5 u(t) dt(7)dt解答: (1)线性定常(2)非线性定常 (3)线性时变(4)线性时变(5)非线性定常(6)非线性定常(7)线性定常1-4 如图 1-4 是水位自动控制系统的表示图, 图中 Q1,Q2 分别为进水流量和出水流量。

控制的目的是保持水位为必定的高度。

自动控制原理第二章习题答案详解

自动控制原理第二章习题答案详解

习题习题2-1 列写如图所示系统的微分方程习题2-1附图习题2-2 试建立如图所示有源RC网络的动态方程习题2-2附图习题2-3 求如图所示电路的传递函数, 并指明有哪些典型环节组成(a)(b)(c)习题2-3附图习题2-4 简化如图所示方块图, 并求出系统传递函数习题2-4附图习题2-5 绘制如下方块图的等效信号流图, 并求传递函数图(a)图(b)习题2-5附图习题2-6 系统微分方程组如下, 试建立对应信号流图, 并求传递函数。

),(d )(d )(),(d )(d ),()()()(),()(),(d )(d )(),()()(54435553422311121t y tt y T t x k t x k tt x t y k t x t x t x t x k t x t x k tt x t x t y t r t x +==--==+=-=τ习题2-7 利用梅逊公式直接求传递函数。

习题2-7附图习题2-8 求如图所示闭环传递函数, 并求(b)中)(s H x 的表达式, 使其与(a)等效。

图(a )图(b)习题2-8附图习题2-9 求如下各图的传递函数(a)(b)(c)习题2-9附图习题2-10 已知某些系统信号流图如图所示, 求对应方块图(a )(b)(c)(d)习题2-10附图习题答案习题2-1答案:解:设外加转矩M 为输入量,转角θ为输出量,转动惯量J 代表惯性负载,根据牛顿定律可得:θθθ1122d d d d k t f M tJ --=式中,1,1,k f 分别为粘性阻尼系数和扭转弹性系数,整理得:M k t f tJ =++θθθ1122d d d d习题2-2答案:解: 设r u 为输入量,c u 为输出量,,,,21i i i 为中间变量,根据运算放大器原理可得:1221d d R u i R u i t u c i r c c ===消去中间变量可得: r c c u R Ru t u C R 122d d -=+ 习题2-3答案: 解: (a)11111111221212211121121120++=+++=+++=+++=Ts Ts s R R R C R s C R R sC R sC R sC sC R R sC R u u i β其中:221121,R R R C R T +==β, 一阶微分环节,惯性环节.(b)21121212111221122011//1R R s C R R R s C R R R sC R R R sC R R u u i+++=++=+= 11111111212121221121111++=+∙++∙+=+++=Ts Ts s C R R R R s C R R R R R R s C R R s C R αα其中 α=+=21211,R R R T C R , 一阶微分环节,惯性环节.(c)s C R s C R s C R s C R s C R sC R R sC sC R u u i 21221122112211220)1)(1()1)(1(1//11+++++=+++= 由微分环节,二阶振荡环节组成。

自动控制原理题海02(含答案)

自动控制原理题海02(含答案)

第二章习题及答案2-1 求下列各拉氏变换式的原函数。

(1) 1)(-=-s e s X s(2) )3()2(1)(3++=s s s s X(3) )22(1)(2+++=s s s s s X 解(1) 1)(-=t e t x(2) 原式 =)3(31241)2(83)2(41)2(2123++++-+++-s s s s s ∴x (t )= 24131834432222++-+-----t t t t e e e t e t (3) 原式 =1)1(1211)1(12121222121222++⋅++++⋅-=++-s s s s s s ss ∴)(t x =)cos (sin 2121t t e t-+- 2-3 试建立图2-2所示各系统的微分方程。

其中外力)(t F ,位移)(t x 和电压)(t u r 为输入量;位移)(t y 和电压)(t u c 为输出量;k (弹性系数),f (阻尼系数),R (电阻),C (电容)和m (质量)均为常数。

解(a )以平衡状态为基点(不再考虑重力影响),对质块m 进行受力分析,如图解2-1(a)所示。

根据牛顿定理可写出22)()(dty d m dt dy f t ky t F =-- 整理得)(1)()()(22t F m t y m k dt t dy m f dt t y d =++(b )如图解2-1(b)所示,取A,B 两点分别进行受力分析。

对A 点有 )()(111dtdydt dx f x x k -=- (1) 对B 点有 y k dtdydt dx f 21)(=- (2) 联立式(1)、(2)可得:dtdx k k k y k k f k k dt dy2112121)(+=++ (c) 应用复数阻抗概念可写出)()(11)(11s U s I csR cs R s U c r ++= (3) 2)()(R s Uc s I =(4)联立式(3)、(4),可解得:CsR R R R Cs R R s U s U r c 212112)1()()(+++=微分方程为:r r c c u CR dt du u R CR R R dt du 121211+=++ (d) 由图解2-1(d )可写出[]Css I s I s I R s U c R R r 1)()()()(++= (5) )()(1)(s RI s RI Css I c R c -= (6) []Css I s I R s I s U c R c c 1)()()()(++= (7) 联立式(5)、(6)、(7),消去中间变量)(s I C 和)(s I R ,可得:1312)()(222222++++=RCs s C R RCs s C R s U s U r c 微分方程为 r r r c c c u RC dt du CR dt du u R C dt du CR dt du 222222221213++=++2-8 已知在零初始条件下,系统的单位阶跃响应为 t te e t c --+-=221)(,试求系统的传递函数和脉冲响应。

自动控制原理考试试卷及答案

自动控制原理考试试卷及答案

自动控制原理考试试卷及答案一、选择题(每题2分,共20分)1. 下列哪项不是自动控制系统的基本组成部分?A. 控制器B. 被控对象C. 执行机构D. 操作人员答案:D2. 在自动控制系统中,下列哪项属于反馈环节?A. 控制器B. 执行机构C. 被控对象D. 反馈元件答案:D3. 下列哪种控制方式属于闭环控制?A. 比例控制B. 积分控制C. 微分控制答案:D4. 下列哪种控制方式属于开环控制?A. 比例控制B. 积分控制C. 微分控制D. 比例-积分控制答案:A5. 在自动控制系统中,下列哪种控制规律不会产生稳态误差?A. 比例控制B. 积分控制C. 微分控制D. 比例-积分-微分控制答案:B6. 下列哪种控制方式适用于一阶惯性环节?A. 比例控制B. 积分控制C. 微分控制答案:A7. 在自动控制系统中,下列哪种环节不会产生相位滞后?A. 比例环节B. 积分环节C. 微分环节D. 比例-积分环节答案:A8. 下列哪种控制方式可以使系统具有较好的稳定性和快速性?A. 比例控制B. 积分控制C. 微分控制D. 比例-积分-微分控制答案:D9. 在自动控制系统中,下列哪种环节可以使系统具有较好的阻尼效果?A. 比例环节B. 积分环节C. 微分环节D. 比例-积分环节答案:C10. 下列哪种控制方式可以使系统具有较好的跟踪性能?A. 比例控制B. 积分控制C. 微分控制D. 比例-积分-微分控制答案:D二、填空题(每题2分,共20分)1. 自动控制系统的基本组成部分有:控制器、被控对象、执行机构、________。

答案:反馈元件2. 在自动控制系统中,反馈环节的作用是________。

答案:减小系统的稳态误差3. 闭环控制系统的特点有:________、________、________。

答案:稳定性好、快速性好、准确性高4. 开环控制系统的缺点有:________、________、________。

自动控制原理试题及答案[2]

自动控制原理试题及答案[2]

自动控制原理试题及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(自动控制原理试题及答案(word 版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为自动控制原理试题及答案(word版可编辑修改)的全部内容。

自动控制原理:参考答案及评分标准一、 单项选择题(每小题1分,共20分)1。

系统和输入已知,求输出并对动态特性进行研究,称为( C )A.系统综合B.系统辨识C.系统分析D.系统设计2. 惯性环节和积分环节的频率特性在( A )上相等。

A 。

幅频特性的斜率 B.最小幅值 C.相位变化率 D.穿越频率3. 通过测量输出量,产生一个与输出信号存在确定函数比例关系值的元件称为( C )A.比较元件B.给定元件 C 。

反馈元件 D 。

放大元件4. ω从0变化到+∞时,延迟环节频率特性极坐标图为( A )A.圆 B 。

半圆 C 。

椭圆 D.双曲线5. 当忽略电动机的电枢电感后,以电动机的转速为输出变量,电枢电压为输入变量时,电动机可看作一个( B )A 。

比例环节 B.微分环节 C.积分环节 D 。

惯性环节6. 若系统的开环传 递函数为2)(5 10+s s ,则它的开环增益为( C ) A.1 B 。

2 C.5 D 。

107. 二阶系统的传递函数52 5)(2++=s s s G ,则该系统是( B ) A 。

临界阻尼系统 B.欠阻尼系统 C 。

过阻尼系统 D 。

零阻尼系统8。

若保持二阶系统的ζ不变,提高ωn ,则可以( B )A.提高上升时间和峰值时间B.减少上升时间和峰值时间C 。

提高上升时间和调整时间 D.减少上升时间和超调量9。

自动控制原理课后习题答案第二章

自动控制原理课后习题答案第二章
图2-6控制系统模拟电路
解:由图可得
联立上式消去中间变量U1与U2,可得:
2-8某位置随动系统原理方块图如图2-7所示。已知电位器最大工作角度,功率放大级放大系数为K3,要求:
(1) 分别求出电位器传递系数K0、第一级与第二级放大器得比例系数K1与K2;
(2) 画出系统结构图;
(3) 简化结构图,求系统传递函数。
证明:(a)根据复阻抗概念可得:
即 取A、B两点进行受力分析,可得:
整理可得:
经比较可以瞧出,电网络(a)与机械系统(b)两者参数得相似关系为
2-5 设初始条件均为零,试用拉氏变换法求解下列微分方程式,并概略绘制x(t)曲线,指出各方程式得模态。
(1)
(2)
2-7由运算放大器组成得控制系统模拟电路如图2-6所示,试求闭环传递函数Uc(s)/Ur(s)。
2-10试简化图2-9中得系统结构图,并求传递函数C(s)/R(s )与C(s)/N(s)。
图2-9 题2-10系统结构图
分析:分别假定R(s)=0与N(s)=0,画出各自得结构图,然后对系统结构图进行等效ቤተ መጻሕፍቲ ባይዱ换,将其化成最简单得形式,从而求解系统得传递函数。
解:(a)令N(s)=0,简化结构图如图所示:
可求出:
令R(s)=0,简化结构图如图所示:
所以:
(b)令N(s)=0,简化结构图如下图所示:
所以:
令R(s)=0,简化结构图如下图所示:
2-12 试用梅逊增益公式求图2-8中各系统信号流图得传递函 数C(s)/R(s)。
图2-11 题2-12系统信号流图
解:
(a)存在三个回路:
存在两条前向通路:
所以:
(3)简化后可得系统得传递函数为

自动控制原理第二章课后习题答案(免费)

自动控制原理第二章课后习题答案(免费)

自动控制原理第二章课后习题答案(免费)自动控制原理第二章课后习题答案(免费)离散系统作业注明:*为选做题2-1 试求下列函数的Z 变换(1)()E z L =();n e t a = 解:01()[()]1k k k z E z L e t a z z z aa∞-=====--∑ (2) ();at e t e -= 解:12211()[()][]1...1atakT k aT aT aTaT k z E z L e t L ee z e z e z z e e z∞----------=====+++==--∑2-2 试求下列函数的终值:(1)112();(1)Tz E z z --=-解: 11111()(1)()1lim lim lim t z z Tz f t z E z z---→∞→→=-==∞- (2)2()(0.8)(0.1)z E z z z =--。

解:211(1)()(1)()0(0.8)(0.1)lim lim lim t z z z z f t z E z z z →∞→→-=-==--2-3* 已知()(())E z L e t =,试证明下列关系成立:(1)[()][];n z L a e t E a=证明:()()nn E z e nT z∞-==∑00()()()()[()]n n n n n n z z E e nT e nT a z L a e t a a ∞∞--=====∑∑ (2)()[()];dE z L te t TzT dz=-为采样周期。

证明:11100[()]()()()()()()()()()nn n n n n n n n n L te t nT e nT zTz ne nT z dE z de nT z dz dz e nT n zne nT z ∞∞---==∞-=∞∞----======-=-∑∑∑∑∑所以:()[()]dE z L te t Tzdz=- 2-4 试求下图闭环离散系统的脉冲传递函数()z Φ或输出z 变换()C z 。

自动控制原理第二版课后答案第二章精选全文完整版

自动控制原理第二版课后答案第二章精选全文完整版

x kx ,简记为
y kx 。
若非线性函数有两个自变量,如 z f (x, y) ,则在
平衡点处可展成(忽略高次项)
f
f
z xv
|( x0 , y0 )
x y |(x0 , y0 )
y
经过上述线性化后,就把非线性关系变成了线性 关系,从而使问题大大简化。但对于如图(d)所示的 强非线性,只能采用第七章的非线性理论来分析。对于 线性系统,可采用叠加原理来分析系统。
Eb (s) Kbsm (s)
Js2 m(s) Mm fsm(s)
c
(s)
1
i
m
(s)
45
系统各元部件的动态结构图
传递函数是在零初始条件下建立的,因此,它只 是系统的零状态模型,有一定的局限性,但它有现 实意义,而且容易实现。
26
三、典型元器件的传递函数
1. 电位器
1 2
max
E
Θs
U s
K
U
K E
max
27
2. 电位器电桥
1
2
E
K1p1
K1 p 2
U
Θ 1
s
Θ
K1 p
Θ 2
s
U s
28
3.齿轮
传动比 i N2 N1
G2(s)
两个或两个以上的方框,具有同一个输入信号,并 以各方框输出信号的代数和作为输出信号,这种形
式的连接称为并联连接。
41
3. 反馈连接
R(s)

C(s) G(s)
H(s)
一个方框的输出信号输入到另一个方框后,得 到的输出再返回到这个方框的输入端,构成输 入信号的一部分。这种连接形式称为反馈连接。

自动控制原理答案(第二章)

自动控制原理答案(第二章)

第二章 控制系统的数学模型2-2 试求图示两极RC 网络的传递函数U c (S )/U r (S )。

该网络是否等效于两个RC 网络的串联?()r U s ()c U s R +-+-()a 11c s21c sR ()r U s ()c U s R +-+-()a 11c s21c sR 1()U s --1()U s解答:221221221212111222222121221.1111112211111()111()1()111()()1()111()()()()()11(),,1()1()1()()()c r c c c r r r R C S C S R u s C S C S C S a u s R R C C S R C R C R C S R R C S C S C SR R C S C S u s u s u s u s C S u s b u s R C S u s R C S u s u s u s R C S+++=∙=+++++++++====⨯=+++11221111R C S R C S ⨯++2121211221()1R R C C S R C R C S =+++ 故所给网络与两个RC 网络的串联不等效。

2-4 某可控硅整流器的输出电压U d =KU 2Φcos α式中K 为常数,U 2Φ为整流变压器副边相电压有效值,α为可控硅的控制角,设在α在α0附近作微小变化,试将U d 与α的线性化。

解答:.202002020cos (sin )()...sin sin )d u ku ku ku ku φφφφαααααααα=--+∆=-⋅∆=-d d 线性化方程:u 即u (2-9系统的微分方程组为12112323223()()()()()()()()()()()()x t r t c t dx t T K t x t dtx t x t K c t dc t T c t K x t dt =-=-=-+=式中1T 、2T 、1K 、2K 、3K 均为正的常数,系统地输入量为()r t ,输出量为()c t ,试画出动态结构图,并求出传递函数()()C s R s 。

自动控制原理第五版课后答案完整版2

自动控制原理第五版课后答案完整版2

第 一 章1-1 图1-2是液位自动控制系统原理示意图。

在任意情况下,希望液面高度c 维持不变,试说明系统工作原理并画出系统方块图。

图1-2 液位自动控制系统解:被控对象:水箱;被控量:水箱的实际水位;给定量电位器设定水位r u (表征液位的希望值r c );比较元件:电位器;执行元件:电动机;控制任务:保持水箱液位高度不变。

工作原理:当电位电刷位于中点(对应r u )时,电动机静止不动,控制阀门有一定的开度,流入水量与流出水量相等,从而使液面保持给定高度r c ,一旦流入水量或流出水量发生变化时,液面高度就会偏离给定高度r c。

当液面升高时,浮子也相应升高,通过杠杆作用,使电位器电刷由中点位置下移,从而给电动机提供一定的控制电压,驱动电动机,通过减速器带动进水阀门向减小开度的方向转动,从而减少流入的水量,使液面逐渐降低,浮子位置也相应下降,直到电位器电刷回到中点位置,电动机的控制电压为零,系统重新处于平衡状态,液面恢复给定高度r c。

反之,若液面降低,则通过自动控制作用,增大进水阀门开度,加大流入水量,使液面升高到给定高度r c。

系统方块图如图所示:1-10 下列各式是描述系统的微分方程,其中c(t)为输出量,r (t)为输入量,试判断哪些是线性定常或时变系统,哪些是非线性系统?(1)222)()(5)(dt t r d tt r t c ++=;(2))()(8)(6)(3)(2233t r t c dt t dc dt t c d dt t c d =+++;(3)dt t dr t r t c dt t dc t )(3)()()(+=+; (4)5cos )()(+=t t r t c ω;(5)⎰∞-++=t d r dt t dr t r t c ττ)(5)(6)(3)(;(6))()(2t r t c =;(7)⎪⎩⎪⎨⎧≥<=.6),(6,0)(t t r t t c解:(1)因为c(t)的表达式中包含变量的二次项2()r t ,所以该系统为非线性系统。

自动控制原理参考答案

自动控制原理参考答案

自动控制原理参考答案自动控制原理是现代工程技术中的重要学科,它研究如何利用各种控制器、传感器和执行器等设备,通过对系统的测量、分析和反馈,实现对系统的自动调节和控制。

在工业生产、交通运输、航空航天、能源管理等领域都有广泛的应用。

一、自动控制原理的基本概念1. 控制系统:由被控对象、传感器、控制器和执行器组成的整体系统,用于实现对被控对象的控制和调节。

2. 反馈控制:通过对被控对象输出进行测量和比较,将误差信号反馈给控制器,调节控制器的输出信号,使系统达到稳定状态。

3. 开环控制:控制器的输出信号不依赖于被控对象的反馈信号,只根据预先设定的控制规律进行调节。

4. 闭环控制:控制器的输出信号依赖于被控对象的反馈信号,通过比较反馈信号和设定值,调节控制器的输出信号,实现对系统的自动调节和控制。

二、自动控制原理的基本原理1. 反馈原理:根据被控对象输出与设定值之间的差异,通过比较和反馈,调节控制器的输出信号,使系统达到稳定状态。

2. 控制器的选择:根据被控对象的特性和控制要求,选择合适的控制器类型,如比例控制器、积分控制器、微分控制器等。

3. 信号处理:对传感器采集到的信号进行放大、滤波、线性化等处理,以提高信号的准确性和稳定性。

4. 系统建模:通过数学建模的方法,将被控对象抽象成数学模型,用于分析和设计控制系统。

三、自动控制原理的应用案例1. 工业生产:在工厂生产线上,通过自动控制系统对生产过程中的温度、压力、流量等参数进行监测和调节,提高生产效率和产品质量。

2. 交通运输:在交通信号灯控制系统中,通过自动控制原理对交通流量进行监测和调节,实现交通信号的自动切换,提高交通效率和安全性。

3. 航空航天:在飞机和火箭等航空航天器中,通过自动控制系统对飞行姿态、推力、舵面等参数进行控制和调节,确保飞行安全和航行稳定。

4. 能源管理:在能源发电和供应系统中,通过自动控制系统对电压、频率、负载等参数进行监测和调节,实现能源的高效利用和供应稳定。

自动控制原理习题及答案

自动控制原理习题及答案

1. 采样系统结构如图所示,求该系统的脉冲传递函数。

答案:该系统可用简便计算方法求出脉冲传递函数。

去掉采样开关后的连续系统输出表达式为对闭环系统的输出信号加脉冲采样得再对上式进行变量替换得2. 已知采样系统的结构如图所示,,采样周期=0.1s。

试求系统稳定时K的取值范围。

答案:首先求出系统的闭环传递函数。

由求得,已知T=0.1s,e-1=0.368,故系统闭环传递函数为,特征方程为D(z)=1+G(z)=z2+(0.632K-1.368)z+0.368=0将双线性变换代入上式得+1 4 +( 7 -0.632K)=0要使二阶系统稳定,则有K>0,2.736-0.632K>0故得到K的取值范围为0<K<4.32。

3. 求下列函数的z变换。

(1). e(t)=te-at答案:e(t)=te-at该函数采样后所得的脉冲序列为e(nT)=nTe-anT n=0,1,2,…代入z变换的定义式可得E(z)=e(0)+P(T)z-1+e(2T)z-2+…+e(n )z-n+…= + e-aT z-1+2Te-2aT z-2+…+n e-naT z-n+…= (e-aT z-1+2e -2aT z-2+…+ne-naT z-n+…)两边同时乘以e-aT z-1,得e-aT z-1E(z)=T(e-2aT z-2+2e-3aT z-3+…+ne-a(n+1)T z-(n+1)+…)两式相减,若|e-aT z-1|<1,该级数收敛,同样利用等比级数求和公式,可得最后该z变换的闭合形式为(2). e( )=答案 e( )=对e( )= 取拉普拉斯变换.得展开为部分分式,即可以得到化简后得(3).答案:将上式展开为部分分式,得查表可得(4).答案:对上式两边进行z变换可得得4. 求下列函数的z反变换(1).答案:由于所以得所以可得(z)的z反变换为e(nT)=10(2n-1)(2).答案:由于所以得所以E(z)的z反变换为e(nT)=-n-1n+2n=2n-n-1(3).答案:由长除法可得E(z)=2z-1-6z-3+10z-5-14z-7+…所以其反变换为e*( )= δ( -T)- δ( - )+1 δ( -5T)-14δ( -7 )+18δ( -9 )+…(4).答案:解法1:由反演积分法,得解法2:由于所以得最后可得z 反变换为5. 分析下列两种推导过程:(1). 令x(k)=k1(k),其中1(k)为单位阶跃响应,有答案:(2). 对于和(1)中相同的(k),有x(k)-x(k-1)=k-(k-1)=1试找出(2)与(1)中的结果为何不同,找出(1)或(2)推导错误的地方。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章习题及答案2-1 求下列各拉氏变换式的原函数。

(1) 1)(-=-s e s X s(2) )3()2(1)(3++=s s s s X (3) )22(1)(2+++=s s s s s X解(1) 1)(-=t e t x (2) 原式 =)3(31241)2(83)2(41)2(2123++++-+++-s s s s s ∴x (t )= 24131834432222++-+-----t t t t e e e t e t (3) 原式 =1)1(1211)1(12121222121222++⋅++++⋅-=++-s s s s s s ss ∴)(t x = )cos (sin 2121t t e t -+-2-3 试建立图2-2所示各系统的微分方程。

其中外力)(t F ,位移)(t x 和电压)(t u r 为输入量;位移)(t y 和电压)(t u c 为输出量;k (弹性系数),f (阻尼系数),R (电阻),C (电容)和m (质量)均为常数。

解(a )以平衡状态为基点(不再考虑重力影响),对质块m 进行受力分析,如图解2-1(a)所示。

根据牛顿定理可写出22)()(dty d m dt dy f t ky t F =-- 整理得)(1)()()(22t F m t y m k dt t dy m f dt t y d =++(b )如图解2-1(b)所示,取A,B 两点分别进行受力分析。

对A 点有 )()(111dtdydt dx f x x k -=- (1) 对B 点有 y k dtdydt dx f 21)(=- (2) 联立式(1)、(2)可得:dtdx k k k y k k f k k dt dy2112121)(+=++ (c) 应用复数阻抗概念可写出)()(11)(11s U s I cs R cs R s U c r ++= (3) 2)()(R s Uc s I = (4) 联立式(3)、(4),可解得: CsR R R R Cs R R s U s U r c 212112)1()()(+++=微分方程为:r r c c u CR dt du u R CR R R dt du 121211+=++ (d) 由图解2-1(d )可写出[]CssI s I s I R s U c R R r 1)()()()(++= (5) )()(1)(s RI s RI Css I c R c -= (6) []Css I s I R s I s U c R c c 1)()()()(++= (7)联立式(5)、(6)、(7),消去中间变量)(s I C 和)(s I R ,可得:1312)()(222222++++=RCs s C R RCs s C R s U s U r c微分方程为 r r r c c c u RC dt du CR dt du u R C dt du CR dt du 222222221213++=++2-8 已知在零初始条件下,系统的单位阶跃响应为 t t e e t c --+-=221)(,试求系统的传递函数和脉冲响应。

解 单位阶跃输入时,有ss R 1)(=,依题意 s s s s s s s s C 1)2)(1(2311221)(⋅+++=+++-=∴ )2)(1(23)()()(+++==s s s s R s C s G []tt e e s s L s G L t k -----=⎥⎦⎤⎢⎣⎡+++-==21142411)()( 2-9 求图2-30所示各有源网络的传递函数)()(s U s U r c 。

解(a) 根据运算放大器 “虚地”概念,可写出12)()(R R s U s U r c -=(b) 22112211111122)1)(1(111)()(s C C R s C R s C R sC R s C R s C R s U s U r c ++-=+⋅+-=(c) )1(11)()(212122Cs R R R R Cs R Cs R s U s U r c +-=+⋅-=2-10 试用结构图等效化简求图2-33所示各系统的传递函数)()(s R s C 。

解 (a )所以:432132432143211)()(G G G G G G G G G G G G G G s R s C ++++=(b )所以: HG G G s R s C 2211)()(--=(c )所以:32132213211)()(G G G G G G G G G G s R s C +++=(d )所以:2441321232121413211)()(H G G G G G G H G G H G G G G G G G s R s C ++++++=(e )所以:2321212132141)()(H G G H G H G G G G G G s R s C ++++=2-12 试绘制图2-35所示系统的信号流图。

解2-15试绘制图2-36所示信号流图对应的系统结构图。

解2-17试用梅逊增益公式求图2-37所示各系统的闭环传递函数。

解 (a )图中有1条前向通路,4个回路1143211=∆=,G G G G P)(143212434443213332121321L L L L H G G L H G G G G L H G G G L H G G L +++-=∆-==-==,,,则有 2434432133211324321111)()(H G G H G G G G H G G G H G G G G G G P s R s C +-+-=∆∆= (b )图中有2条前向通路,3个回路,有1对互不接触回路,,,,111243213211111H G L G G P G G G P +=-=∆==∆= ,,,3213213332111H H H G G G L H G L H G L -==-= ,21321)(1L L L L L +++-=∆ 则有 33113213213311114332122111)1()()(H G H G H H H G G G H G H G H G G G G G G P P s R s C -+-+++=∆∆+∆= (c )图中有4条前向通路,5个回路,,,,1242321211G G P G P G G P G P ===-= ,,,,,2151242321211G G L G G L G L G G L G L -=-=-=-== ,,)(1143214321L L L L +++-=∆=∆=∆=∆=∆ 则有∆∆+∆+∆+∆=44332211)()(P P P P s R s C 21212121211222111222113121G G G G G G G G G G G G G G G G G G G G G G ++-+-=++++-+++-=(d )图中有2条前向通路,5个回路,,,,112321211=∆==∆=G P G G P,,,,,22135342132212121H G H G L G L G G L H G G L H G L =-=-=-=-= ,)(154321L L L L L ++++-=∆ 则有∆∆+∆=2211)()(P P s R s C 2213321221123211H G H G G G G H G G H G G G G -+++++=(e )图中有2条前向通路,3个回路,有1对互不接触回路,,,,123421321111L G G P G G G P -=∆-==∆= ,,,3232321211H G L H G L H G G L -=-=-= ,21321)(1L L L L L +++-=∆ 则有2132132231211213432122111)1()()(H H G G G H G H G H G G H G G G G G G G P P s R s C +++++-=∆∆+∆= 2-18 已知系统的结构图如图2-38所示,图中)(s R 为输入信号,)(s N 为干扰信号,试求传递函数)()(s R s C ,)()(s N s C 。

解(a )令0)(=s N ,求)()(s R s C 。

图中有2条前向通路,3个回路,有1对互不接触回路。

,,,,H G L G G P G G P 2123121211111+=-=∆==∆= ,,,31321221G G L G G L H G L -=-=-= ,31321)(1L L L L L +++-=∆ 则有HG G G G G G G H G H G G G G G P P s R s C 321312122312122111)1()()(++++++=∆∆+∆=令0)(=s R ,求)()(s N s C 。

有3条前向通路,回路不变。

,,,,11122142111=∆=-=∆-=G G G P L P ,,1331431L G G G P -=∆= ,31321)(1L L L L L +++-=∆ 则有HG G G G G G G H G H G G G G G G G H G P P P s N s C 32131212231421423322111)1(1)()(+++++++--=∆∆+∆+∆= (b )令0)(0)(21==s N s N ,,求 )()(s R s C 。

图中有1条前向通路,1个回路。

,,,,111112)1(212L s s K L s Ks P -=∆++-==∆+=则有)1(2)12()()(11+++=∆∆=K s K KsP s R s C 令0)(0)(2==s N s R ,,求)()(1s N s C 。

图中有1条前向通路,回路不变。

,,111=∆=s P 则有)1(2)12()2()()(111++++=∆∆=K s K s s P s N s C 令0)(0)(1==s N s R ,,求)()(2s N s C 。

图中有1条前向通路,回路不变。

,,12211=∆+-=s KP 则有)1(2)12(2)()(112+++-=∆∆=K s K KP s N s C (c )令0)(=s N ,求)()(s R s C 。

图中有3条前向通路,2个回路。

,,,,,,1113421324321421=∆==∆==∆=G G G P G G P G G P ,,,)(121432421L L G G L G G L +-=∆-=-=20 则有 434242143423322111)()(G G G G G G G G G G G P P P s R s C ++++=∆∆+∆+∆= 令0)(=s R ,求 )()(s N s C 。

相关文档
最新文档