数学常用公式精致版
常用公式大全
常用公式大全在我们的学习、工作和生活中,公式是一种非常重要的工具,它们能够帮助我们快速、准确地解决各种问题。
下面就为大家介绍一些常见的公式。
数学领域首先是算术方面,加法交换律:a + b = b + a ;加法结合律:(a + b) + c = a +(b + c) 。
乘法交换律:a × b = b × a ;乘法结合律:(a × b) × c = a ×(b × c) ;乘法分配律:a ×(b + c) = a × b + a ×c 。
在几何图形中,三角形的面积公式:S = 1/2 ×底 ×高;长方形的面积公式:S =长 ×宽;正方形的面积公式:S =边长 ×边长;平行四边形的面积公式:S =底 ×高;梯形的面积公式:S =(上底+下底)×高 ÷ 2 ;圆的面积公式:S =π × 半径²;圆的周长公式:C =2 × π × 半径。
在代数中,一元二次方程的求根公式:对于方程 ax²+ bx + c = 0 (a ≠ 0),x =b ± √(b² 4ac) /(2a)。
物理领域在力学中,速度公式:v = s / t (v 表示速度,s 表示路程,t 表示时间);加速度公式:a =(v u) / t (a 表示加速度,v 表示末速度,u 表示初速度);牛顿第二定律:F = ma (F 表示力,m 表示质量,a 表示加速度)。
在电学中,欧姆定律:I = U / R (I 表示电流,U 表示电压,R表示电阻);电功率公式:P = UI (P 表示电功率,U 表示电压,I 表示电流);电功公式:W = Pt = UIt (W 表示电功,P 表示电功率,t 表示时间)。
在热学中,热量计算公式:Q =cmΔt (Q 表示热量,c 表示比热容,m 表示质量,Δt 表示温度变化)。
小学数学公式大全(完整版)
小学数学公式大全1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽S=ab4、正方形的面积=边长×边长S=a.a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径11、长方体的表面积=(长×宽+长×高+宽×高)×212、长方体的体积=长×宽×高V =abh13、正方体的表面积=棱长×棱长×6 S =6a14、正方体的体积=棱长×棱长×棱长V=a.a.a= a15、圆柱的侧面积=底面圆的周长×高S=ch16、圆柱的表面积=上下底面面积+侧面积S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch17、圆柱的体积=底面积×高V=ShV=πr h=π(d÷2) h=π(C÷2÷π) h18、圆锥的体积=底面积×高÷3V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷319、长方体(正方体、圆柱体)的体1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 、正方形C周长S面积a边长周长=边长×4 C=4a 面积=边长×边长S=a×a2 、正方体V:体积a:棱长表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a3 、长方形C周长S面积a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 、长方体V:体积s:面积a:长b: 宽h:高(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积a底h高面积=底×高s=ah7 梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)× h÷28 圆形S面积C周长∏ d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9 圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒积=底面积×高V=Sh第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
数学公式大全.PDF
数学公式大全一、小学数学几何形体周长面积体积计算公式长方形的周长=(长+宽)×2 C=(a+b)×2正方形的周长=边长×4 C=4a长方形的面积=长×宽S=ab正方形的面积=边长×边长S=a.a= a三角形的面积=底×高÷2 S=ah÷2平行四边形的面积=底×高S=ah梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2直径=半径×2 d=2r 半径=直径÷2 r= d÷2圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr圆的面积=圆周率×半径×半径三角形的面积=底×高÷2。
公式S= a×h÷2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2 内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh 正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π 公式:L=πd=2πr圆的面积=半径×半径×π 公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面×积高。
数学运算公式汇总版
常用数学公式汇总一、基础代数公式1. 平方差公式:(a +b )×(a -b )=a 2-b 22. 完全平方公式:(a±b)2=a 2±2ab +b 2完全立方公式:(a ±b )3=(a±b)(a 2 ab+b 2)3. 同底数幂相乘: a m ×a n =am +n (m 、n 为正整数,a≠0) 同底数幂相除:a m ÷a n =am -n (m 、n 为正整数,a≠0)a 0=1(a≠0)(2)a n =a 1+(n -1)d ;(4)若a,A,b 成等差数列,则:2A =a+b ;(5)若m+n=k+i ,则:a m +a n =a k +a i ;(其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和)5. 等比数列:(1)a n =a 1q -1;(3)若a,G,b 成等比数列,则:G 2=ab ;(4)若m+n=k+i ,则:a m ·a n =a k ·a i ;(5)a m -a n =(m-n)d(6)nm a a =q (m-n) (其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和)6.一元二次方程求根公式:ax 2+bx+c=a(x-x 1)(x-x 2)其中:x 1=a ac b b 242-+-;x 2=aac b b 242---(b 2-4ac ≥0) 根与系数的关系:x 1+x 2=-a b ,x 1·x 2=ac 二、基础几何公式1. 三角形:不在同一直线上的三点可以构成一个三角形;三角形内角和等于180°;三角形中任两 边之和大于第三边、任两边之差小于第三边;(1)角平分线:三角形一个的角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形的角的平分线。
数学所有的公式大全
数学所有的公式大全
以下是一些数学公式:
1. 加法公式:加数+加数=和,和-一个加数=另一个加数。
2. 减法公式:被减数-减数=差,被减数-差=减数,差+减数=被减数。
3. 乘法公式:每份数×份数=总数,总数÷每份数=份数,总数÷份数=每份数。
4. 除法公式:被除数÷除数=商,被除数÷商=除数,商×除数=被除数。
5. 正方体体积和表面积公式:体积V=棱长^3,表面积S=6×棱长^2。
6. 三角形面积公式:面积S=底×高÷2。
7. 圆柱体体积公式:体积V=底面积S×高h。
8. 圆柱体表面积公式:表面积S=2πr^2+2πrh(其中r是底面半径,h是高)。
9. 圆周长公式:周长C=2πr(其中r是半径)。
10. 圆面积公式:面积S=πr^2(其中r是半径)。
11. 指数公式:a^n=b(其中a是底数,n是指数,b是结果)。
12. 对数公式:log_a(b)=n(其中a是底数,b是对数,n是指数)。
13. 三角函数公式:sin(A+B)=sinAcosB+cosAsinB,
cos(A+B)=cosAcosB-sinAsinB等。
14. 代数公式:x^2-bx+c=0(其中x是未知数,b和c是常数)。
15. 几何公式:平行四边形面积S=底×高,梯形面积S=(上底+下底)×高÷2等。
以上是一些常见的数学公式,它们在数学和科学领域中有着广泛的应用。
数学计算公式表大全
数学计算公式表大全一、小学数学计算公式。
1. 加法交换律。
- 公式:a + b=b + a- 示例:3+5 = 5+3=82. 加法结合律。
- 公式:(a + b)+c=a+(b + c)- 示例:(2 + 3)+4=2+(3 + 4)=93. 乘法交换律。
- 公式:a× b = b× a- 示例:2×3=3×2 = 64. 乘法结合律。
- 公式:(a× b)× c=a×(b× c)- 示例:(2×3)×4=2×(3×4)=245. 乘法分配律。
- 公式:a×(b + c)=a× b+a× c- 示例:2×(3 + 4)=2×3+2×4 = 6 + 8=146. 减法的性质。
- 公式:a - b - c=a-(b + c)- 示例:10-3 - 2=10-(3 + 2)=57. 除法的性质。
- 公式:a÷ b÷ c=a÷(b× c)(b≠0,c≠0)- 示例:12÷2÷3 = 12÷(2×3)=28. 长方形的周长公式。
- 公式:C=(a + b)×2(a为长,b为宽)- 示例:长为5厘米,宽为3厘米的长方形,周长C=(5 + 3)×2=16厘米。
9. 长方形的面积公式。
- 公式:S = a× b- 示例:长为6厘米,宽为4厘米的长方形,面积S=6×4 = 24平方厘米。
10. 正方形的周长公式。
- 公式:C = 4× a(a为边长)- 示例:边长为5厘米的正方形,周长C=4×5=20厘米。
11. 正方形的面积公式。
- 公式:S=a^2- 示例:边长为4厘米的正方形,面积S = 4^2=16平方厘米。
常见数学公式大全
常见数学公式大全一、代数公式1. 二次方程求根公式对于一元二次方程$ax^2+bx+c=0$,求解公式为:$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$2. 双曲函数公式对于双曲正弦函数$\sinh(x)$和双曲余弦函数$\cosh(x)$,它们之间的关系为:$$\cosh^2(x)-\sinh^2(x)=1$$3. 指数函数公式对于指数函数$e^x$,其级数展开式为:$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots =\sum_{n=0}^{\infty}\frac{x^n}{n!}$$二、几何公式1. 三角函数公式对于角度为$\theta$的直角三角形,其三角函数关系如下:- 正弦函数:$\sin(\theta) = \frac{\text{对边}}{\text{斜边}}$ - 余弦函数:$\cos(\theta) = \frac{\text{邻边}}{\text{斜边}}$ - 正切函数:$\tan(\theta) = \frac{\text{对边}}{\text{邻边}}$2. 球体体积公式对于半径为$r$的球体,其体积公式为:$$V = \frac{4}{3}\pi r^3$$三、微积分公式1. 导数定义函数$f(x)$在点$x=a$处的导数定义为:$$f'(a) = \lim_{h\to0}\frac{f(a+h)-f(a)}{h}$$2. 积分基本公式对于函数$f(x)$,其在区间$[a,b]$上的定积分为:$$\int_{a}^{b}f(x)dx$$四、概率统计公式1. 期望值公式随机变量$X$的期望值计算公式为:$$E(X) = \sum{X \cdot P(X)}$$2. 方差公式随机变量$X$的方差计算公式为:$$Var(X) = E(X^2) - [E(X)]^2$$以上是常见数学公式的一部分,仅供参考。
数学公式100个
数学公式100个1.加法交换律:a+b=b+a2.加法结合律:(a+b)+c=a+(b+c)3.减法的性质:a-(b+c)=a-b-c4.乘法交换律:ab=ba5.乘法结合律:(ab)c=a(bc)6.乘法分配律:(a+b)c=ac+bc7.除法的性质:a÷(b ×c)=a÷b÷c8.商不变的规律:被除数和除数同时乘或除以相同的数(0除外),商不变。
9.乘法验算:a÷b=(a ×c)÷(b×c)10.加法验算:a+b=c,则b=c-a11.减法验算:a-b=c,则b=a-c12.除法验算:a÷b=c,则b=a÷c13.分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
14.分数加减法的计算法则:同分母分数相加减,分母不变,只把分子相加减;异分母分数相加减,先通分,再加减。
15.分数化简:分子、分母是互质数的分数叫最简分数,最简分数的分子、分母互质。
16.圆的周长公式:C=2πr17.圆的面积公式:S=πr²18.正方形的周长公式:P=4a19.正方形的面积公式:S=a²20.长方形的周长公式:P=(a+b)×221.长方形的面积公式:S=ab22.三角形的面积公式:S=(底×高)÷223.梯形的面积公式:S=(上底+下底)×高÷224.平行四边形的面积公式:S=ah25.圆柱的侧面积公式:S=ch26.圆柱的表面积公式:S=2πrh+2πr²27.圆柱的体积公式:V=πr²h28.圆锥的体积公式:V=(1/3)πr²h29.长方体的表面积公式:S=(ab+ah+bh)×2 30.长方体的体积公式:V=abc31.正方体的表面积公式:S=6a²32.正方体的体积公式:V=a³33.容积的定义:物体所容纳的空间的大小叫做物体的容积。
数学公式表格大全
数学公式表格大全1.代数公式:- 一次方程:ax + b = 0- 二次方程:ax² + bx + c = 0- 三次方程:ax³ + bx² + cx + d = 0- 四次方程:ax⁴ + bx³ + cx² + dx + e = 0-多项式展开公式:(a+b)ⁿ=aⁿ+nCaⁿ⁻¹b+nC₂aⁿ⁻²b²+...+bⁿ-二项式定理:(a+b)ⁿ=aⁿ+nCaⁿ⁻¹b+nC₂aⁿ⁻²b²+...+bⁿ2.几何公式:-点斜式:y-y₁=m(x-x₁)- 直线斜截式:y = mx + c-两点间距离:√((x₂-x₁)²+(y₂-y₁)²)-圆的面积:πr²-圆的周长:2πr3.三角函数公式:- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:c² = a² + b² - 2abcosC- 正弦和余弦的和差公式:sin(A ± B) = sinAcosB ± cosAsinB- 三角函数的倍角公式:sin2A = 2sinAcosA, cos2A = cos²A - sin²A- 三角函数的和差公式:sin(A ± B) = sinAcosB ± cosAsinB 4.微积分公式:- 高斯积分公式:∫e⁻ˣ²dx = √π- 牛顿-莱布尼茨公式:∫(F'(x))dx = F(x) + C- 一阶导数:dy/dx = lim(h→0) [(f(x+h) - f(x))/h]- 二阶导数:d²y/dx² = lim(h→0) [(f(x+h) - 2f(x) + f(x-h))/h²]-泰勒级数:f(x)=f(a)+(x-a)f'(a)+(x-a)²f''(a)/2!+...5.概率统计公式:-期望:E(X)=∑(xP(x))- 方差:Var(X) = ∑((x - E(X))²P(x))- 标准差:σ(X) = √Var(X)-独立事件概率:P(A∩B)=P(A)P(B)-条件概率:P(A,B)=P(A∩B)/P(B)6.矩阵公式:- 矩阵乘法:C = AB ,其中Cij = ∑(AikBkj)-逆矩阵:AA⁻¹=I,其中I是单位矩阵- 行列式:det(A) = ∑((−1)^(i+j)MijAij) ,其中 Mij 是代数余子式这只是一个简单的数学公式表格,覆盖了代数、几何、三角函数、微积分、概率统计和矩阵等多个数学领域的基本公式。
数学公式表(完整版)
数学公式表(完整版)1. 数学基础公式1.1 代数公式- 平均值公式:$\frac{{x_1 + x_2 + \cdots + x_n}}{n}$- 二次方程求解公式:$x = \frac{{-b \pm \sqrt{b^2 - 4ac}}}{2a}$ - 因式分解公式:$a^2 - b^2 = (a-b)(a+b)$1.2 几何公式- 长方形面积公式:$A = l \times w$- 圆周长公式:$C = 2\pi r$- 三角形面积公式:$A = \frac{1}{2}bh$2. 微积分公式2.1 函数与导数- 函数$f(x)$在$x=c$处的导数:$f'(c) = \lim_{{h \to 0}}\frac{{f(c+h) - f(c)}}{h}$- 求导法则:- 导数的和:$(f+g)' = f' + g'$- 导数的积:$(fg)' = f'g + fg'$- 导数的商:$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$2.2 微分与积分- 定积分:$\int_a^b f(x) dx$- 常见定积分公式:- $\int k \, dx = kx + C$- $\int x^n \, dx = \frac{{x^{n+1}}}{n+1} + C$- $\int e^x \, dx = e^x + C$- $\int \sin x \, dx = -\cos x + C$- $\int \cos x \, dx = \sin x + C$3. 概率与统计公式3.1 概率公式- 排列公式:$P(n,r) = \frac{{n!}}{{(n-r)!}}$- 组合公式:$C(n,r) = \frac{{n!}}{{r!(n-r)!}}$- 条件概率公式:$P(A|B) = \frac{{P(A \cap B)}}{{P(B)}}$3.2 统计公式- 平均值公式:$\bar{x} = \frac{{x_1 + x_2 + \cdots + x_n}}{n}$ - 方差公式:$Var(X) = \frac{{\sum{{(x_i - \bar{x})^2}}}}{n}$ - 标准差公式:$SD(X) = \sqrt{Var(X)}$这份完整版的数学公式表包含了数学基础、微积分和概率统计方面的常用公式,希望能对您的学习和应用有所帮助。
高中数学公式大全(最整理新版)
高中数学公式大全(最整理新版)一、代数1. 一元一次方程:ax + b = 0,其中a ≠ 0。
解为 x = b/a。
2. 一元二次方程:ax^2 + bx + c = 0,其中a ≠ 0。
解为 x =[b ± sqrt(b^2 4ac)] / 2a。
3. 一元三次方程:ax^3 + bx^2 + cx + d = 0,其中a ≠ 0。
解为x = [b ± sqrt(b^2 3ac)] / 3a。
4. 一元四次方程:ax^4 + bx^3 + cx^2 + dx + e = 0,其中 a≠ 0。
解为x = [b ± sqrt(b^2 4ac)] / 2a。
5. 分式方程:分子和分母均为多项式。
解法为将方程两边乘以分母的乘积,得到一个等价的整式方程,然后求解。
6. 二元一次方程组:由两个一元一次方程组成的方程组。
解法为消元法或代入法。
7. 二元二次方程组:由两个一元二次方程组成的方程组。
解法为消元法或代入法。
8. 三元一次方程组:由三个一元一次方程组成的方程组。
解法为消元法或代入法。
9. 等差数列:首项为 a1,公差为 d。
第 n 项为 an = a1 + (n 1)d。
前 n 项和为 Sn = n/2(a1 + an)。
10. 等比数列:首项为 a1,公比为 q。
第 n 项为 an = a1q^(n 1)。
前 n 项和为 Sn = a1 (1 q^n) / (1 q),其中q ≠ 1。
二、几何1. 平面几何(1)直线:两点确定一条直线,直线方程为 y = mx + b,其中m 是斜率,b 是截距。
(2)圆:圆心为 (a, b),半径为 r。
圆的方程为 (x a)^2 +(y b)^2 = r^2。
(3)椭圆:中心为 (a, b),长轴为 2a,短轴为 2b。
椭圆的方程为 (x a)^2 / a^2 + (y b)^2 / b^2 = 1。
(4)双曲线:中心为 (a, b),实轴为 2a,虚轴为 2b。
很好用的数学公式大全
很好用的数学公式大全1.代数- 一次方程:ax + b = 0,解为x = -b/a。
- 二次方程:ax^2 + bx + c = 0,解为x = (-b ± √(b^2 - 4ac)) / (2a)。
- 二次根式:√a x √b = √(ab)。
-二项式定理:(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+...+C(n,n)b^n。
-欧拉公式:e^(iπ)+1=0。
2.几何-勾股定理:a^2+b^2=c^2,其中a、b为直角边,c为斜边。
-面积公式:-三角形:S=1/2*底边长*高。
-矩形:S=长*宽。
-圆:S=πr^23.微积分- 导数定义:f'(x) = lim(h→0) [f(x+h) - f(x)] / h。
-常用导数:-常数函数:(c)'=0。
- 幂函数:(x^n)' = nx^(n-1)。
-指数函数:(e^x)'=e^x。
- 对数函数:(ln(x))' = 1/x。
- 积分定义:∫f(x)dx = F(x) + C,其中F'(x) = f(x),C为常数。
-常用积分:- 幂函数:∫x^n dx = (1/(n+1))x^(n+1) + C,其中n≠-1- 指数函数:∫e^x dx = e^x + C。
- 对数函数:∫(1/x) dx = ln,x, + C。
4.统计学-均值:平均数为数据值的和除以数据个数。
-方差:平均离差平方和除以数据个数。
-标准差:方差的平方根。
-正态分布概率密度函数:f(x)=(1/√(2πσ^2))*e^(-(x-μ)^2/(2σ^2)),其中μ为均值,σ为标准差。
5.概率-事件概率:P(A)=(A的可能数)/(总的可能数)。
- 互斥事件概率:P(A or B) = P(A) + P(B)。
- 独立事件概率:P(A and B) = P(A) * P(B)。
- 条件概率:P(A,B) = P(A and B) / P(B)。
《初中数学公式大全》
《初中数学公式大全》一、代数部分1.平方差公式:(a + b)² = a² + 2ab + b²(a - b)² = a² - 2ab + b²2.完全平方公式:a²-b²=(a-b)(a+b)3.一元一次方程:ax + b = 0 (a ≠0)解:x=-b/a4.一元二次方程:ax² + bx + c = 0 (a ≠ 0)解: x = (-b ± √(b² - 4ac)) / (2a)5.二次差公式:(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac6.三次差公式:(a + b + c + d)² = a² + b² + c² + d² + 2ab + 2ac + 2ad + 2bc + 2bd + 2cd7.分式运算公式:a/b ± c/d = (ad ± bc)/(bd)8.数列通项公式:an = a1 + (n - 1)d9.等差数列前n项和公式:Sn=(n/2)(2a1+(n-1)d)10.等比数列前n项和公式:Sn=a1(1-r^n)/(1-r)(r≠1)11.等差数列求和公式:Sn = (n/2)(a1 + an)12.等比数列求和公式:Sn=a1(1-r^n)/(1-r)(r≠1)13.n个非零数的乘法积为1的不等式:a₁+a₂+...+aₙ≥n(√(a₁a₂...aₙ)) 14.平方根性质:√ab = √a * √b15.高斯定理:1+2+3+...+n=n(n+1)/216.平方根运算公式:(a + b)² = a² + 2ab + b²(a - b)² = a² - 2ab + b²a² + b² = (a + b)² - 2aba²-b²=(a+b)(a-b)17.完全立方公式:(a + b)³ = a³ + 3a²b + 3ab² + b³(a - b)³ = a³ - 3a²b + 3ab² - b³18.四次立方公式:(a + b)⁴ = a⁴ + 4a³b + 6a²b² + 4ab³ + b⁴(a - b)⁴ = a⁴ - 4a³b + 6a²b² - 4ab³ + b⁴19.乘法公式:(a + b)(c + d) = ac + ad + bc + bd20.三角函数和与差化积公式:sin(a ± b) = sin(a)cos(b) ± cos(a)sin(b)cos(a ± b) = cos(a)cos(b) ∓ sin(a)sin(b)tan(a ± b) = [tan(a) ± tan(b)] / [1 ∓ tan(a)tan(b)] 21.对数运算公式:loga(m ∙ n) = loga(m) + loga(n)loga(m/n) = loga(m) - loga(n)loga(m^p) = p ∙ loga(m)二、几何部分1.直角三角形斜边平方等于两直角边平方和:c²=a²+b²2.正弦定理:a/sinA = b/sinB = c/sinC3.余弦定理:a² = b² + c² - 2bc∙cosAb² = a² + c² - 2ac∙cosBc² = a² + b² - 2ab∙cosC4.面积公式:三角形面积:S=1/2∙底∙高平行四边形面积:S=底∙高梯形面积:S=1/2∙(上底+下底)∙高圆面积:S=πr²5.角平分线公式:AD/AE=BD/BE=CD/CE6.三角形外接圆与外心的性质:三角形的三条边的中垂线交于一点,该点称为三角形的外心。
数学公式大全
数学公式大全1.代数运算法则- 交换律:a + b = b + a, ab = ba- 结合律:(a + b) + c = a + (b + c), (ab)c = a(bc)- 分配律:a(b + c) = ab + ac- 幂运算:a^m * a^n = a^(m+n), (a^m)^n = a^(mn), (ab)^n =a^n * b^n2.一次方程- 一次方程的一般形式:ax + b = 0, 其中a和b为常数,x为未知数-一次方程解的唯一性:如果a不等于零,则方程有唯一的解x=-b/a3.二次方程- 二次方程的一般形式:ax^2 + bx + c = 0, 其中a、b和c为常数,a不等于零,x为未知数- 二次方程的求解公式:x = (-b ± √(b^2 - 4ac)) / 2a4.三角函数- 正弦函数的定义:sinθ = 对边/斜边- 余弦函数的定义:cosθ = 邻边/斜边- 正切函数的定义:tanθ = 对边/邻边- 余切函数的定义:cotθ = 邻边/对边- 正割函数的定义:secθ = 斜边/邻边- 余割函数的定义:cscθ = 斜边/对边5.三角恒等式- 余弦定理:c^2 = a^2 + b^2 - 2abcosC- 正弦定理:sinA/a = sinB/b = sinC/c- 三角和差公式:sin(A ± B) = sinAcosB ± cosAsinB, cos(A ± B) = cosAcosB ∓ sinAsinB- 两角和差公式:cos(A - B) = cosAcosB + sinAsinB, cos(A + B) = cosAcosB - sinAsinB6.指数与对数函数- 指数函数的性质:a^m * a^n = a^(m+n), (a^m)^n = a^(mn), (ab)^m = a^m * b^m- 对数函数的性质:log_a(m * n) = log_a(m) + log_a(n),log_a(m^n) = n * log_a(m), log_a(1) = 0, log_a(a) = 17.概率-加法原理:对于两个互斥事件A和B,P(A∪B)=P(A)+P(B)-乘法原理:对于两个相互独立的事件A和B,P(A∩B)=P(A)*P(B)-条件概率:P(A,B)=P(A∩B)/P(B)-全概率公式:P(A)=P(A,B)*P(B)+P(A,C)*P(C)+...-贝叶斯定理:P(B,A)=P(A,B)*P(B)/P(A)8.微积分-连续与导数:f(x)在[x,x+h]范围内连续,则f(x)在x处可导- 导数的定义:f'(x) = lim(h→0)(f(x+h) - f(x))/h-链式法则:(f(g(x)))'=f'(g(x))*g'(x)9.矩阵-矩阵乘法:若A是一个m行n列的矩阵,B是一个n行p列的矩阵,则AB是一个m行p列的矩阵-矩阵转置:矩阵A的转置记作A^T,其中A^T的第i行第j列的元素是A的第j行第i列的元素-行列式:行列式代表了方阵的一些性质,如行列式为零表示矩阵不可逆。
数学公式大全
数学公式大全一、代数公式1. 一次方程的解:对于方程ax + b = 0,其解为x = -b/a。
2. 二次方程的解:对于方程ax² + bx + c = 0,其解为x = (-b ± √(b² - 4ac)) / (2a)。
3.二次根式的求和与差:a) √a ± √b = (√2 ± 1) * √(a ± √ab + b)b)√a±√b=(√a+√b)*(√a-√b)二、几何公式1.周长和面积:a) 矩形:周长P = 2(l + w),面积A = lwb)正方形:周长P=4s,面积A=s²c)圆:周长C=2πr,面积A=πr²d)三角形:周长P=a+b+c,海伦公式:A=√(s(s-a)(s-b)(s-c)),其中s=(a+b+c)/2为半周长e)梯形:面积A=(a+b)h/2,其中a和b为上下底边长,h为高f) 平行四边形:面积A = bh,其中b为底边长,h为高2.三角函数:a) 正弦定理:a/sinA = b/sinB = c/sinCb) 余弦定理:c² = a² + b² - 2ab*cosCc) 正弦、余弦和正切值:sin²θ+ cos²θ = 1,tanθ =sinθ/cosθ三、微积分公式1.导数与微分:a)基本导数:-常数函数:(c)'=0- 幂函数:(x^n)' = nx^(n-1)-指数函数:(e^x)'=e^x- 对数函数:(lnx)' = 1/xb)基本微分:- 常数函数积分:∫c dx = cx + C- 幂函数积分:∫x^n dx = (x^(n+1))/(n+1) + C,其中n ≠ -1- e^x函数积分:∫e^x dx = e^x + C- 对数函数积分:∫1/x dx = ln,x, + C2.积分法则:a) 线性法则:∫(cf(x) + dg(x)) dx = c∫f(x) dx + d∫g(x) dxb) 乘法法则:∫(f(x)*g'(x)) dx = f(x)*g(x) - ∫(f'(x)*g(x)) dxc) 代换法则:∫f(g(x))g'(x) dx = ∫f(u) du,其中u = g(x)四、概率与统计公式1.排列组合:a)排列公式:An=n!b)组合公式:C(n,r)=n!/[(n-r)!r!]2.期望与方差:a)期望:E(X)=∑(xP(x)),其中x为随机变量的取值,P(x)为该取值发生的概率b) 方差:Var(X) = ∑((x-E(X))²P(x))以上是一些常见的数学公式,在数学的各个领域中都有广泛的应用。
数学公式-数学公式表
数学公式-数学公式表一、基本运算符
- 加法:a + b
- 减法:a - b
- 乘法:a * b
- 除法:a / b
- 次方:a^b
二、代数运算
- 开方:√a
- 绝对值:|a|
- 立方:a^3
- 平方:a^2
- 取余:a % b
三、三角函数
- 正弦:sinθ
- 余弦:cosθ
- 正切:tanθ
- 正割:secθ
- 余割:cscθ
- 余切:cotθ
四、微积分
1. 导数
- 函数导数:f'(x)
- 高阶导数:f^(n)(x)
- 一阶偏导数:∂f/∂x
- 二阶偏导数:∂^2f/∂x^2 2. 积分
- 不定积分:∫f(x) dx
- 定积分:∫[a,b] f(x) dx
- 累积积分:∫∫f(x, y) dA
- 弧长积分:∫√(1 + (f'(x))^2) dx 五、向量运算
- 向量加法:a + b
- 向量减法:a - b
- 向量点乘:a · b
- 向量叉乘:a × b
- 向量模长:|a|
- 向量投影:proj_a b
六、矩阵运算
- 矩阵加法:A + B
- 矩阵减法:A - B
- 矩阵乘法:A * B
- 矩阵转置:A^T
- 矩阵行列式:|A|
- 逆矩阵:A^(-1)
七、概率统计
- 期望:E(X)
- 方差:Var(X)
- 标准差:Std(X)
- 协方差:cov(X, Y)
- 相关系数:corr(X, Y)
以上是一些常见的数学公式,可以帮助你学习和应用数学知识。
所有的公式数学公式
所有的公式数学公式数学公式是表达数学关系与原理的符号化工具,其由数学符号、运算符号与命题符号组成,用于解决问题、推导结论与表示规律。
以下是一些常见的数学公式:1.代数公式:- 一次方程:ax + b = 0- 二次方程:ax^2 + bx + c = 0- 三次方程:ax^3 + bx^2 + cx + d = 0- 四次方程:ax^4 + bx^3 + cx^2 + dx + e = 0- 定比数列通项公式:an = a1 * q^(n-1)-定和数列公式:Sn=(2a+(n-1)d)*n/22.几何公式:- 三角形面积公式:S = 0.5 * a * b * sin(C)- 三角形三边关系:a/sin(A) = b/sin(B) = c/sin(C)-直角三角形勾股定理:a^2+b^2=c^2- 正弦定理:a/sin(A) = b/sin(B) = c/sin(C)- 余弦定理:a^2 = b^2 + c^2 - 2bc * cos(A)3.微积分公式:- 导数定义:f'(x) = lim(h→0) (f(x+h)-f(x))/h-函数导数:(x^n)'=n*x^(n-1)- 导数的和差乘商法则:(u ± v)' = u' ± v',(u * v)' = u' * v + u * v',(u/v)' = (u'v - uv')/v^2- 不定积分:∫f(x) dx = F(x) + C- 定积分:∫ab f(x) dx = F(b) - F(a)4.概率与统计公式:-期望值:E(X)=∑xP(X=x)- 方差:Var(X) = E(X^2) - [E(X)]^2-正态分布函数:N(x,μ,σ^2)=(1/σ√(2π))*e^(-(x-μ)^2/(2σ^2))-二项分布概率:P(X=k)=C(n,k)*p^k*(1-p)^(n-k)- 样本方差:s^2 = Σ(xi - x̄)^2 / (n-1)5.线性代数公式:-矩阵乘法:C=A*B- 矩阵转置:A^T_ij = A_ji-向量内积:A·B=∑A_iB_i- 张量积:C = A ⊗ B,其中C_ij = A_iB_j-特征值方程:Ax=λx,其中A为n阶矩阵数学公式有很多种类和应用,以上只是一小部分的示例。
(完整版)数学公式大全
三角函数公式1.正弦定理a=b=c= 2R (R 为三角形外接圆半径):sin A sin B sin C2.余弦定理 :a 2 =b 2 +c 2 -2bc cos Ab 2 =a 2 +c 2 -2ac cosB c 2 =a 2 +b 2 -2ab cosCcos A b 2c 2 a 22bc3. ⊿ = 1 a h a = 1 ab sinC = 1 bc sin A = 1 ac sin B = abc=2R 2 sin A sin B sinCS2224R2= a 2 sin Bsin C = b 2 sin Asin C = c 2 sin Asin B =pr= p( p a)( p b)( p c)2sin A2 sin B 2sin C( 此中 p1(a bc) , r为三角形内切圆半径 )24.引诱公试公式七:三角函数值等于的同名三角函数值,前方加上一个把看作锐角时,原三角函数值的符号;即:函数名1不变,符号看象限说明:cot xtan x5.和差角公式① sin()sin cos cos sin② cos()cos cos sin sin③ tan()tan tan1tan? tan④ tan()tan- tantan? tan16.二倍角公式:( 含全能公式 )① sin 2 2 sin cos② cos 2cos2sin22 cos21 12 sin2=1tan1 tan③ tan 22tan1 tan222④ sin 21 cos 22 ⑤ cos 21 cos 22⑥ Sin 2x+cos 2x=1⑦ 1+tan 2x=sec 2x⑧ 1+cot 2x=csc 2x7.半角公式:(符号的选择由2所在的象限确立)① sin1 cos② s in 21 cos ③ cos1 cos222 222 ④ cos 21 cos⑤1cos2 sin 2⑥1 cos2 cos 22222⑦1 sin(cossin ) 2cos 2 sin2228.积化和差公式:sin cos1 sin() sin() cos sin1 sin( ) sin()22cos cos1 cos( ) cos() sin sin1 cos( ) cos229.和差化积公式:① sinsin 2 sincos② sin sin 2 cossin2222③ coscos2 coscos④ coscos2 sinsin2222高等数学必备公式1、指数函数( 4 个):幂函数 5-8( 1)a m a n a m n(2) a m a m na nnm mm1( 3)n(4)aa a a m( 5)x m x n x m n( 6)x mx m n nx( 7)n x mm( 8)x m1 x nx m2、对数函数( 4 个):( 1)ln ab ln a ln b( 2)ln aln a ln bb( 3)ln a b b ln a( 4)N ln e N e ln N3、三角函数( 10 个):( 1)sin2x cos2 x1( 2)sin 2x2sin x cosx ( 3)cos2x cos2 x sin 2 x 2 cos2 x 1 1 2sin 2 x2x 1cos2x21cos 2x( 4)sin2( 5)cos x2(6)1tan2 x sec2 x(7)1cot 2 x csc2 x( 8)sin x1( 9)cos x1 csc x secx( 10)tan x1 cot x4、等价无量小( 11 个 ) :(等价无量小量只好用于乘、除法)当W时:sinW~W arcsinW~W tanW~W arctanW~W 021 ~We W 1 ~ln(1) ~ 1 cos ~ W n 1WW W W Wn2当x时:x3tan x x3x x3tan x sin x ~ ~sin x ~236幂函数:( 1)( c) =0(2)( x ) x1(3)11( 4)x1 x x2 2 x 指数对数:(5) ( a x )a x ln a(7) (log a x)1 x ln a三角函数:(6) (e x )e x (8) (ln x)1x(9) (sin x)cos x(11) (tan x)sec2 x(13) (sec x)secx tan x 反三角函数:(10) (cos x)(12) (cot x)(14) (csc x)sin xcsc2 xcsc x cot x(arcsin x)1(arccos x)1( 15) 1 x 2( 16) 1 x 2(17) (arctan x)1(18) (arc cot x)1 1 x2 1 x2求导法例:设 u=u(x),v=v(x)1.(u —v)’=u’— v’2.(cu)’=cu’(c 为常数 )3.(uv) ’=u’v+uv’4.( u)’=u' v2uv' v v幂函数:(1)(3)(5)kdx kx C11x 2 dx x C1dx ln x C(2)(4)1x dx x1)C (11dx 2 x Cxx ax(7) e x dx e x指数函数:( 6)a dx ln a C C 三角函数:(8)(10)(12)(14)(16)(18)(20)(22)(23)sin xdx cos x C( 9)cosxdx sin x Ctan xdx ln cos x C(11) cot xdx ln sin x Csec x tan xdx sec x C(13) csc x cot xdx csc x C dx212cos2x sec xdx tan x C( 15)sin2x dx csc xdx cot x C secxdx ln secx tan x C(17) cscxdx ln cscx cot x C 1dx arcsin x C1dx arcsinxC( 19)1 x 2a2x 2a11x2dx1x1x2dxarctan x C( 21)a2a arctan a C1dx ln x x2a2Cx2a21dx ln x x2a2C1a2dx1lnx aCx2a2(24) x22a x a增补:完整平方差:完整平方和:(a b) a 2 2ab b 2 (a b)a 2 2ab b 2平方差:立方差:a 2b 2( a b)(a b)a 3b 3( a )( 2ab b 2 )b a立方和 : a 3b 3 ( a b)( a 2 ab b 2 )常有的三角函数值奇 /偶函的班别方法:偶函数: f(-x)= f(x)奇函数: f(-x)= -f(x)常有的奇函数:2n+1 Sinx , arcsinx , tanx , arctanx , cotx , x常有的有界函数:Sinx , cosx , arcsinx , arccosx , arctanx , arccotx极限运算法例:若 lim f(x)=A, lim g(x)=B, 则有:1. lim [f(x)—g(x)]= lim f(x)—lim g(x)=A—B2. lim [f(x). g(x)]= lim f(x).—lim g(x)=A.Bf ( x) lim f ( x)A3. 又 B 不等于 0,则limg(x) lim g (x)B两个重要极限:sinx推行lim sin g(x)11lim x01g(x)x g( x)01x;1;1lim (1x)x推行lim (1g(x))g ( x)e.2.) e lim (1exx x x无量小的比较:设: lim=0,lim =01. 若lim=0,则称是比 较高价的无量小量2. 若lim=c ,(c 不等于 0) ,则称是比 是同阶的无量小量3. 若lim=1,则称是比 是等价的无量小量4. 若lim=,则称是比 较廉价的无量小量抓大头公式:a0 ,nmnn 1={b 0lim a 0x ma 1x m 1a n 1 x a n0, nmb 0x b1xb m 1x b m, nm积分:1.直接积分(带公式)2.换元法:① 简单根式代换a.b.方程中含 naxb ,令 naxb=tnax b,n axb方程中含cxd令cxd =tc. 方程中含 nax b 和 maxb ,令 paxb (此中p 为 n,m 的最小公倍数)② 三角代换:a. 方程中含 a 2x 2 b. 方程中含 a 2x 2 c. 方程中含 x 2a2,令 X=asint; t(- 2,2),令 X=atant;t (-2,2),令 X=asect;t(0, )2③ 分部积分∫ uv ’dx=uv-∫u ’v dx反(反三角函数)对幂指三, 谁在后边,谁为 v ’,依据 v ’求出 v.无量级数:1.等比级数 :aqnq 1,收敛,{1, 发散n 1q2.P 级数:1p ,{p1, 收敛n 1 np 1,发散3.limun 11,收敛正项级数:,{1,发散n 0u n1,没法判断,改用比较 鉴别法4.比较鉴别法:重找一个 V n (一般为 p 级数),limu nA , u n 与v n 敛散性一致v nn 1n 1n5. 交织级数:( 1) nu n (u n0),莱布尼茨鉴别法:{u nu n 1,n1lim n u则级数收敛。
数学公式大全 全套
数学公式大全:全套数学是科学世界中的语言,而公式则是数学中的词汇和语法。
掌握数学公式是理解和应用数学的关键。
本文将为您呈现全套数学公式,帮助您系统地掌握数学基础。
一、代数公式1.乘法分配律:a(b+c) = ab + ac2.乘法结合律:(ab)c = a(bc)3.乘法交换律:ab = ba4.除法定义:a÷b = c 表示a = b × c5.指数法则:a^m × a^n = a^(m+n)6.根式性质:√a^2 = |a|二、几何公式1.勾股定理:直角三角形中,直角边的平方和等于斜边的平方,即a^2 + b^2= c^22.圆周率公式:π = 22/7 或π =3.141593.圆的面积公式:S = πr^24.圆柱的体积公式:V = πr^2h三、三角函数公式1.正弦函数公式:sin(x) = sin(x + 2kπ)2.余弦函数公式:cos(x) = cos(x + 2kπ)3.正切函数公式:tan(x) = tan(x + kπ)4.余切函数公式:cot(x) = 1/tan(x)5.反正弦函数公式:arsin(x) = -i(log(iz))6.反余弦函数公式:arccos(x) = π - arcsin(x)7.反正切函数公式:arctan(x) = π/2 - arcsin(x/√(1+x^2))8.反余切函数公式:arccot(x) = π/2 - arctan(x)四、微积分公式1.导数定义:f'(x) = lim (h->0) [f(x+h) - f(x)] / h2.积分基本公式:∫ a dx = ax + C3.定积分公式:∫ [a, b] f(x) dx = F(b) - F(a)4.微分方程公式:dy/dx = f(x, y)5.级数求和公式:∑ [n=1,∞] a_n = S - S_n (n->∞)6.级数收敛判别法:∑ [n=1,∞] a_n 收敛当且仅当lim (n->∞) a_n = 07.多重积分公式:∫ [a, b] f(x, y, z) dV = Σ [S_k] F_k (S_k为k维曲面上的小区元)8.傅里叶变换公式:f(t) = Σ [n=-∞, ∞] c_n e^(i n t) (c_n为傅里叶系数)9.拉普拉斯变换公式:f(t) = Σ [n=0, ∞] s^n * (f^{(n)}(0)/n!) (s为复数变换参数)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MBA 数学常用公式初等数学一、初等代数1. 乘法公式与因式分解:(1)222)2a b a ab b ±=±+( (2)2222)222a b c a b c ab ac bc ++=+++++( (3)22()()a b a b a b -=-+ (4)33223)33a b a a b ab b ±=±+±( (5)3322()()a b a b aab b ±=±+ 2. 指数(1)m n m n a a a +⋅= (2)m n m n a a a -÷=(3)()m n mn a a = (4)()m m mab a b = (5)()m m m a a b b = (6)1m m a a-= 3. 对数(log ,0,1a N a a >≠)(1)对数恒等式 log a N N a =,更常用ln N N e =(2)log ()log log a a a MN M N =+(3)log ()log log a a a M M N N=- (4)log ()log n a a M n M =(5)1log log a a M n= (6)换底公式log log log b a b M M a =(7)log 10a =,log 1a a =4.排列、组合与二项式定理(1)排列 (1)(2)[(1)]m n P n n n n m =--⋅⋅⋅--(2)全排列 (1)(2)321!n n P n n n n =--⋅⋅⋅⋅⋅=lOb baA C(3)组合 (1)(2)[(1)]!!!()!m n n n n n m n C m m n m --⋅⋅⋅--==-组合的性质:(1)m n m n n C C -= (2)111m m m n n n C C C ---=+(3)二项式定理 01111n n n n n nn n n n C a C a b L C ab C b ---=++++n (a+b)● 展开式特征:1)11,0,1,...,k n k kk n k T C a b k n -++==通项公式:第项为2)1n +项数:展开总共项3)指数:1100;a n b n −−−→−−−→逐渐减逐渐加的指数:由;的指数:由各项a 与b 的指数之和为n4)展开式的最大系数:212132nn n n C n C +++n 当n 为偶数时,则中间项(第项)系数最大2n+1当n 为奇数时,则中间两项(第和项)系数最大。
2● 展开式系数之间的关系1)n rn C -=r n C ,即与首末等距的两相系数相等。
12.2n n n n n C C C ++=),即展开式各项系数之和为2n024135132,n n n n n n n C C C C C C -++=++=)即奇数项系数和等于偶数项系数和二、平面几何1. 图形面积 (1)任意三角形11sin 22S bh ab C == (2)平行四边形:sin S bh ab ϕ== (3)梯形:S =中位线×高=12(上底+下底)×高(4)扇形:21122S rl r θ== 弧长 l r θ=2. 旋转体(1)圆柱设R ――底圆半径 H ――柱高,则1) 侧面积:2S RH π=侧2) 全面积:222S RH R ππ=+全3) 体积:2V R H π=(2)圆锥:(l =斜高)1)侧面积:S Rl π=侧2)全面积:2S Rl R ππ=+全 3)体积:213V R H π=(3)球设R ――底圆半径 d ――直径,则1) 全面积:24S R π=全 2) 体积:343V R π=更多公式 数学公式,是表征自然界不同事物之数量之间的或等或不等的联系,它确切的反映了事物内部和外部的关系,是我们从一种事物到达另一种事物的依据,使我们更好的理解事物的本质和内涵。
如一些基本公式抛物线:y = ax* + bx + c就是y 等于ax 的平方加上 bx 再加上 ca > 0时开口向上a < 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y 轴还有顶点式y = a (x-h )* + k就是y 等于a 乘以(x-h )的平方+kh 是顶点坐标的xk 是顶点坐标的y一般用于求最大值与最小值抛物线标准方程:y^2=2px它表示抛物线的焦点在x 的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py圆:体积=4/3(pi )(r^3)面积=(pi)(r^2)周长=2(pi)r圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b )是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0(一)椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
(二)椭圆面积计算公式椭圆面积公式:S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。
常数为体,公式为用。
椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高三角函数:两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角乘法与因式分a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系x1+x2=-b/a x1*x2=c/a 注:韦达定理某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sina=b/sinb=c/sinc=2r 注:其中r 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosb 注:角b是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+dx+ey+f=0 注:d2+e2-4f>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积s=c*h 斜棱柱侧面积s=c'*h正棱锥侧面积s=1/2c*h' 正棱台侧面积s=1/2(c+c')h'圆台侧面积s=1/2(c+c')l=pi(r+r)l 球的表面积s=4pi*r2圆柱侧面积s=c*h=2pi*h 圆锥侧面积s=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r锥体体积公式v=1/3*s*h 圆锥体体积公式v=1/3*pi*r2h斜棱柱体积v=s'l 注:其中,s'是直截面面积,l是侧棱长柱体体积公式v=s*h 圆柱体v=pi*r2h1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(sss) 有三边对应相等的两个三角形全等26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即s=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半l=(a+b)÷2 s=l×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)94 判定定理3 三边对应成比例,两三角形相似(sss)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。