【好题】高三数学上期中试题(带答案)(2)

合集下载

山东省泰安市2023-2024学年高三上学期11月期中考试数学试题(含答案解析)

山东省泰安市2023-2024学年高三上学期11月期中考试数学试题(含答案解析)

山东省泰安市2023-2024学年高三上学期11月期中考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题..C ...有四个关于三角函数的命题:x ∈R,2sin 2x +2cos 2x =122p :∃x 、y ∈sin(x-y)=sinx-siny x ∈[]0,π,1cos 22x -=sinx 4p :sinx=cosy ⇒x+y=2π其中假命题的是1p ,4p B .2p ,4p 1p ,3p .已知21a =-,2e 2b =,1ln55c =,则()a b c<<B .c b a<<c a b<<二、多选题A .()πsin 2cos 23A x x ωϕ⎛+=+ ⎝B .函数()f x 的一个对称中心为三、填空题参考答案:【详解】试题分析:由指数函数的性质可知,当必有,所以的充分条件,而当时,可得,此时不一定有,所以的不必要条件,综上所述,的充分而不必要条件,所以正确选项为即()()2f x f x +-=-①,因为()1f x +为偶函数,所以()()()()112f x f x f x f x +=-+⇒=-,则()()2f x f x -=+②,由①②得()()22f x f x ++=-,()()242f x f x +++=-,所以()()4f x f x =+,,4为()f x 周期,对于C ,令()()()411g x f x f x =++=+,则()()()()11(12)g x f x f x f x g x +=+-=--=-=--,则()g x 为奇函数,C 正确;对于A ,令()()1h x f x =-,则()()()134()()()4h x f x f x h x h x h x -=--=--=--⇒-+=-,所以()()1h x f x =-不为奇函数,A 错误;对于B ,令()()21m x f x =+-,则()()()()2132324()m x f x f x f x m x -=-+-=---=--+=--,即()()4m x m x +-=-,所以()()21m x f x =+-不为奇函数,B 错误;对于D ,令()()31x f x ϕ=++,则()()()()311131()x f x f x f x x ϕϕ-=-++=--+=++=所以()()31x f x ϕ=++不为奇函数,D 错误;故选C.8.D【分析】函数()y f x =的图象关于x 轴对称的函数为()y f x =-,则函数()f x 与()g x 的图象上存在关于x 轴对称,即函数()y f x =-与()y g x =的图象有交点,分别作出函数()y f x =-与()y g x =的图象,由图即可得解.【详解】对于A ,函数()2f x x =+的图象关于x 轴对称的函数为()2y f x x =-=--,如图作出函数()y f x =-与()y g x =,由图可知函数()y f x =-与()y g x =的图象没有交点,所以A 选项不符题意;对于B ,函数()113x f x +⎛⎫= ⎪⎝⎭的图象关于x 轴对称的函数为如图作出函数()y f x =-与()y g x =,由图可知函数()y f x =-与()y g x =的图象没有交点,所以B 选项不符题意;对于C ,函数()2f x x =-的图象关于x 轴对称的函数为如图作出函数()y f x =-与()y g x =,由图可知函数()y f x =-与()y g x =的图象没有交点,所以C 选项不符题意;对于D ,函数()2x f x =的图象关于x 轴对称的函数为如图作出函数()y f x =-与()y g x =,由图可知函数()y f x =-与()y g x =的图象有交点,所以D 选项符合题意.故选:D.9.AC方程0()f x m -='有两个不同实根,即直线因此22e 2m --<<,B 正确;对于C ,由选项B 知,()0f x '>于是e x ∀≥,不等式((()f ax f x ≤则有e x ∀≥,(2)ln a x x ≤+,由选项因此()(e)2e g x g ≥=+,即2a ≤“过某点”时,此点不一定为切点,需要重新假设切点进行切线的计算.。

2024-2025学年山东省青岛市高三上学期期中数学质量检测试题(含解析)

2024-2025学年山东省青岛市高三上学期期中数学质量检测试题(含解析)

2024-2025学年山东省青岛市高三上学期期中数学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则( )6,1P x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭N N {}15Q x x =-≤<P Q = A.B.C.D.{}1,2,3{}0,1,2{}1,2,5{}0,1,2,52. 已知,则=( )i22i z =-z A. 2 B. 13. 已知.若,则( )a = ()2a b a+⊥ cos ,a b=A.B.D. 4. 已知等比数列的前n 项和为,且,则“”是“的公比为2”的({}n a n S 31S ma =7m ={}n a )A. 必要不充分条件B. 充分不必要条件C .充要条件D. 既不充分也不必要条件5.此正四棱锥的体积为( )A. B. C.D.6. 已知函数则图象上关于原点对称的点有( )()21,0,22,0,xx f x x x x ⎧⎛⎫≥⎪ ⎪=⎝⎭⎨⎪-+<⎩()f x A. 1对B. 2对C. 3对D. 4对7. 已知函数,函数的图象各点的横坐标缩()2211cos sin cos 222222x x x xf x =-f (x )小为原来的(纵坐标不变),再向左平移个单位长度,得到函数的图象.若方程12π12y =g (x )在上有两个不同的解,,则的值为( )()21g x m -=7π0,12x ⎡⎤∈⎢⎥⎣⎦1x 2x 12x x +A. B. C. D. π6π3π2π8. 若关于不等式恒成立,则当时,的最小值为( )x ()ln ax x b ≤+1e e a ≤≤1e ln b a +-A. B. C. 1D. 11e+e 1-e二.多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对得部分分,有选错的得0分)9. 已知,则下列结论正确的是()3515ab==A. B. C. D.lg lg a b>a b ab+=1122a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭49a b +>10. 若数列满足,,,则称数列为斐波那{a n }11a =21a =12n n n a a a --=+3n ≥n +∈N {a n }契数列,又称黄金分割数列,则下列结论成立的是( )A. B. 713a =222n n n a a a -+=+3n ≥n +∈N C.D.135********a a a a a ++++= 24620242025a a a a a ++++= 11. 如图,在边长为4的正方体中,E ,F 分别是棱,的中点,1111ABCD A B C D -11B C 11C D P 是正方形内的动点,则下列结论正确的是()1111D C B AA. 若平面,则点P 的轨迹长度为//DP CEFB. 若P 的轨迹长度为AP =2πC. 若P 是正方形的中心,Q 在线段EF 上,则的最小值为1111D C B A PQ CQ +D. 若P 是棱的中点,则三棱锥的外接球的表面积是11A B P CEF -41π第Ⅱ卷三.填空题(本大题共3小题,每小题5分,共15分)12. 曲线的所有切线中,斜率最小的切线的方程是_______.32374y x x x =+++13. 为测量某塔的高度,在塔旁的水平地面上共线的三点A ,B ,C 处测得其顶点P 的仰角分别为30°,60°,45°,且米,则塔的高度________米.50AB BC ==OP =14. 已知,当,时,是线段的中点,点在所有的线段121A A =2n ≥*N n ∈1n A +1n n A A -P 上,若,则的最小值是________.1n n A A +1A P λ≤λ四.解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15. 已知数列的前项和为,且.{}n a n n S 22n n S a +=(1)求及数列的通项公式;2a {}n a (2)在与之间插入个数,使得这个数依次组成公差为的等差数列,求n a 1n a +n ()2+n n d数列的前项和.1n d⎧⎫⎨⎬⎩⎭n n T 16. 设的内角A ,B ,C 所对的边分别为a ,b ,c ,且有,ABC V π2cos 3b A a c⎛⎫-=+ ⎪⎝⎭(1)求角B :(2)若AC 边上的高,求.h =cos cos A C 17. 如图1,在平行四边形中,,,E 为的中点,ABCD 24AB BC ==60ABC ∠=︒CD 将沿折起,连结,,且,如图2.ADE V AE BD CD 4BD=(1)求证:图2中的平面平面;ADE ⊥ABCE (2)在图2中,若点在棱上,直线与平面F BD AF ABCE 点到平面的距离.F DEC 18. 已知函数,且与轴相切于坐标原点.()sin ln(1)f x x x ax =++-()y f x =x (1)求实数的值及的最大值;a ()f x (2)证明:当时,;π,π6x ⎡⎤∈⎢⎥⎣⎦1()22f x x +>(3)判断关于的方程实数根的个数,并证明.x ()0f x x +=19. 对于任意正整数n ,进行如下操作:若n 为偶数,则对n 不断地除以2,直到得到一个奇数,记这个奇数为;若n 为奇数,则对不断地除以2,直到得出一个奇数,记这个n a 31n +奇数为.若,则称正整数n 为“理想数”.n a 1n a =(1)求20以内的质数“理想数”;(2)已知.求m 的值;9m a m =-(3)将所有“理想数”从小至大依次排列,逐一取倒数后得到数列,记的前n 项和{}n b {}n b 为,证明.n S ()*7N 3n S n <∈2024-2025学年山东省青岛市高三上学期期中数学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则( )6,1P x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭N N {}15Q x x =-≤<P Q = A.B.C.D.{}1,2,3{}0,1,2{}1,2,5{}0,1,2,5【正确答案】B【分析】首先把集合用列举法表示出来,再运用交集的运算进行求解即可.P 【详解】若,,则是的正因数,而的正因数有,,,,61y x =+y ∈N 1x +661236所以,{}6,0,1,2,51P x y y x ⎧⎫=∈=∈=⎨⎬+⎩⎭N N 因为,{}15Q x x =-≤<所以,{}0,1,2P Q ⋂=故选:B.2. 已知,则=( )i22i z =-z A. 2 B. 1【正确答案】C【分析】根据复数的运算法则计算出复数,再计算复数的模.z 【详解】由题意知,()()()i 22i i 22i 22i 22i z +==--+2i 28-=11i 44=-+所以,z ==故选:C.3. 已知.若,则()a = ()2a b a+⊥ cos ,a b =A.B.D. 【正确答案】B【分析】根据向量垂直可得,代入向量夹角公式即可得结果.32a b ⋅=-【详解】因为,且,()2a b a+⊥1a = 则,可得,()2220a a a ab b +⋅=+⋅= 21322a b a⋅=-=-rr r 所以.cos ,a b a b a b⋅===⋅r r r r r r 故选:B.4. 已知等比数列的前n 项和为,且,则“”是“的公比为2”的({}n a n S 31S ma =7m ={}n a )A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件【正确答案】A【分析】利用等比数列的性质,分别判断充分性与必要性即可.【详解】设等比数列的公比为,{}n a q 由,得,()223123111111S a a a a a q a q a q q ma =++=++=++=21q q m ++=当时,,解得或,充分性不成立;7m =217q q ++=2q =3q =-当时,,必要性成立.2q =217q q m ++==所以“”是“的公比为2” 的必要不充分条件.7m ={}n a 故选:A5. 此正四棱锥的体积为( )A. B. C. D. 【正确答案】B【分析】根据正四棱柱及正四棱锥的体积公式可得正四棱锥的高与斜高的关系式,进而可得解.【详解】如图所示,正四棱柱为,正四棱锥,1111ABCD A B C D -1O ABCD -设底边边长,高AB a =1OO =则,1O E ==又正四棱柱的侧面积,114S AB OO =⋅=正四棱锥的侧面积,21142S AB O E a=⋅⋅=则,解得,a=a =所以正四棱锥体积,2113ABCD V S OO =⋅==故选:B.6. 已知函数则图象上关于原点对称的点有( )()21,0,22,0,xx f x x x x ⎧⎛⎫≥⎪ ⎪=⎝⎭⎨⎪-+<⎩()f x A. 1对 B. 2对C. 3对D. 4对【正确答案】C【分析】作出的图象,再作出函数关于原点对称的图象,进而数形结()f x 1,0,2xy x ⎛⎫=≥ ⎪⎝⎭合判断即可.【详解】作出的图象,再作出函数关于原点对称的图象如图所示.()f x 1,0,2xy x ⎛⎫=≥ ⎪⎝⎭因为函数关于原点对称的图象与图象有三个交点,故1,0,2xy x ⎛⎫=≥ ⎪⎝⎭22,0,y x x x =-+<图象上关于原点对称的点有3对.()fx故选:C7. 已知函数,函数的图象各点的横坐标缩()2211cos sin cos 222222x x x xf x =-f (x )小为原来的(纵坐标不变),再向左平移个单位长度,得到函数的图象.若方程12π12y =g (x )在上有两个不同的解,,则的值为( )()21g x m -=7π0,12x ⎡⎤∈⎢⎥⎣⎦1x 2x 12x x +A. B. C. D. π6π3π2π【正确答案】A【分析】先化简,根据图象变换求出,将方程转化为()f x ()g x ()21g x m -=,由函数图象的对称性求出答案.()12m g x +=()g x 【详解】根据题意可得,()1πcos sin 26f x x x x ⎛⎫=+=+ ⎪⎝⎭所以,()πππsin 2sin 21263g x x x ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,,7π012x ≤≤ππ3π2332x ∴≤+≤所以在上单调递增,在上单调递减,关于对称,()g x π0,12⎡⎤⎢⎥⎣⎦π7π,1212⎡⎤⎢⎥⎣⎦()g x π12x =且,,()π06g g ⎛⎫== ⎪⎝⎭π112g ⎛⎫= ⎪⎝⎭7π112g ⎛⎫=- ⎪⎝⎭方程等价于有两个不同的解,()21g x m -=()12m g x +=12,x x .12ππ2126x x ∴+=⨯=故选:A.8. 若关于不等式恒成立,则当时,的最小值为( )x ()ln ax x b ≤+1e e a ≤≤1e ln b a +-A.B. C. 1D. 11e +e 1-e【正确答案】C【分析】构建,分析可知的定义域为,且在()()ln f x ax x b=--()f x (0,+∞)()0f x ≤内恒成立,利用导数可得,整理可得,构建(0,+∞)ln 1a b ≤+1e ln ln b a a a +-≥-,利用导数求其最值即可.()1ln ,ee g a a a a =-≤≤【详解】设,()()ln f x ax x b=--因为,可知的定义域为,所以在内恒成立,1e e a ≤≤()f x (0,+∞)()0f x ≤(0,+∞)又因为,()111xf x x x -=-='令,解得;令,解得;f ′(x )>001x <<f ′(x )<01x >可知在内单调递增,在内单调递减,()f x (0,1)(1,+∞)则,可得,则,()()1ln 10f x f a b ≤=--≤ln 1a b ≤+1ln e e b aa +≥=可得,当且仅当时,等号成立,1e ln ln b a a a +-≥-ln 1a b =+令,则,()1ln ,e e g a a a a =-≤≤()111a g a a a '-=-=令,解得;令,解得;()0g a '>1e a <≤()0g a '<11e a <≤可知在内单调递增,在内单调递减,则,()g a (]1,e 1,1e ⎡⎫⎪⎢⎣⎭()()11g a g ≥=即,当且仅当时,等号成立,1eln ln 1b a a a +-≥-≥1,1a b ==-所以的最小值为1.1eln b a +-故选:C.方法点睛:两招破解不等式的恒成立问题(1)分离参数法第一步:将原不等式分离参数,转化为不含参数的函数的最值问题;第二步:利用导数求该函数的最值;第三步:根据要求得所求范围.(2)函数思想法第一步:将不等式转化为含待求参数的函数的最值问题;第二步:利用导数求该函数的极值;第三步:构建不等式求解.二.多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对得部分分,有选错的得0分)9. 已知,则下列结论正确的是()3515ab==A. B. C. D.lg lg a b>a b ab+=1122a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭49a b +>【正确答案】ABD【分析】根据指对互化与运算以及指数函数、对数函数单调性即可判断ABC ,利用基本不等式即可判断D.【详解】由题可得,,33log 15log 310a =>=>55log 15log 510b =>=>,即,所以,1515110log 3log 5a b ∴<=<=110a b <<0a b >>对于A ,因为,所以,故A 正确;0a b >>lg lg a b >对于B ,,,故B 正确;15151511log 3log 5log 151a b +=+== a b ab ∴+=对于C ,因为,所以,故C 错误;0a b >>1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭对于D ,因为,,0a b >>111a b +=所以,()11444559b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭当且仅当,即时等号成立,这与已知矛盾,所以,故D 正4b aa b =2a b =35a b =49a b +>确.故选:ABD.10. 若数列满足,,,则称数列为斐波那{a n }11a =21a =12n n n a a a --=+3n ≥n +∈N {a n }契数列,又称黄金分割数列,则下列结论成立的是( )A. B. 713a =222n n n a a a -+=+3n ≥n +∈N C.D.135********a a a a a ++++= 24620242025a a a a a ++++= 【正确答案】AC【分析】利用斐波那契数列的定义结合递推关系一一判定选项即可.【详解】对于A ,由题可得,,,,,故A 正确;32a =43a =55a =68a =713a =对于B ,因为,又,21112n n n n n n n n a a a a a a a a ++--=+=++=+12n n n a a a --=+所以,即,故B 错误;21213n n n n n a a a a a +---++=+223n n n a a a +-=+对于C ,2024202320222023202120202023202132a a a a a a a a a a =+=++==++++ ,故C 正确;2023202131a a a a =++++ 对于D ,2025202420232024202220212024202243a a a a a a a a a a =+=++=++++ ,故D 错误.20242022421a a a a a =+++++ 故选:AC.11. 如图,在边长为4的正方体中,E ,F 分别是棱,的中点,1111ABCD A B C D -11B C 11C D P 是正方形内的动点,则下列结论正确的是()1111D C B AA. 若平面,则点P 的轨迹长度为//DP CEFB. 若P 的轨迹长度为AP =2πC. 若P 是正方形的中心,Q 在线段EF 上,则的最小值为1111D C B A PQ CQ +D. 若P 是棱的中点,则三棱锥的外接球的表面积是11A B P CEF -41π【正确答案】ACD【分析】作出相应图形,先证明平面平面,再结合给定条件确定动点轨迹,//BDNM CEF 求出长度即可判断;建立空间直角坐标系,根据题意确定动点轨迹,求解长度即可判断,A B 将平面翻折到与平面共面,连接,与交于点,此时取到CEF 1111D C B A PC EF Q PQ CQ +最小值,利用勾股定理求出即可判断,先找到球心,利用勾股定理得出半径,求,PQ CQ C 出外接球的表面积即可判断.D 【详解】如图,取,的中点为,连接,,11A D 11A B ,N M ,,,,MN DN BD BM NE 11B D所以,又E ,F 分别是棱,的中点,11//MN B D 11B C 11C D 所以,所以,11//EF B D //MN EF 平面,平面,MN ⊄CEF EF ⊂CEF 平面,//MN ∴CEF 因为分别是棱,的中点,所以,且,,N E 11A D 11B C //NE CD NE CD =所以四边形为平行四边形,CDNE 所以,又平面,平面,//ND CE ND ⊄CEF CE ⊂CEF 平面,//ND ∴CEF 又,平面,MN ND N = ,MN ND ⊂BDNM 所以平面平面,//BDNM CEF点P 是正方形内的动点,且平面,1111D C B A //DP CEF 所以点P 的轨迹为线段,由勾股定理得,故正确;MN MN ==A 如图,以为原点,以所在直线为轴,轴,轴,A 1,,AB AD AA x y z 由题意得,设,(0,0,0)A (,,4)P x y,AP ==所以,所以点的轨迹为为圆心,半径为1的个圆,221x y +=P 1A 14所以点P 的轨迹长度为.故错误;1π2π42⋅=B 如图,将平面翻折到与平面共面,CEF 1111DC B A 连接,与交于点,此时取到最小值,PC EF Q PQ CQ+,且,CE CF === 2PE PF ==所以点为的中点,所以Q EFPQ EQ ===所以,CQ ===即的最小值为,故正确;PQ CQ +C如图,连接,交于点,连接,PF 11B D 1O PE 若P 是棱的中点,则,11A B 90FEP ∠= 所以是外接圆的一条直径,所以是外接圆的圆心,FP PEF !1O PEF !过点作平面的垂线,则三棱锥的外接球的球心一定在该垂线上,1O ABCD P CEF -O 连接,设,则,OP 1OO t =2222t R +=连接,,所以,OC 12AC ==()(2224t R -+=所以,解得,()(222224t t +=-+52=t 所以,222541244R =+=所以三棱锥的外接球的表面积为,故正确.P CEF -24π41πS R ==D 故选.ACD方法点睛:三棱锥外接球的半径的求法:(1)先找两个面的外心;(2)过外心作所在平面的垂线,两垂线的交点即为球心;(3)构造直角三角形,利用勾股定理求出半径.有时无须确定球心的具体位置,即只用找一个面的外心,则球心一定在过该外心与所在平面的垂线上.第Ⅱ卷三.填空题(本大题共3小题,每小题5分,共15分)12. 曲线的所有切线中,斜率最小的切线的方程是_______.32374y x x x =+++【正确答案】.430x y -+=【分析】首先求函数的导数,再根据二次函数求最小值,即可求切线的斜率,以及代入切线方程,即可求解.【详解】由题意,223673(1)4y x x x '=++=++所以时,,又时,,1x =-min4y '=1x =-1y =-所以所求切线的方程为,即.14(1)y x +=+430x y -+=故.430x y -+=13. 为测量某塔的高度,在塔旁的水平地面上共线的三点A ,B ,C 处测得其顶点P 的仰角分别为30°,60°,45°,且米,则塔的高度________米.50AB BC ==OP =【正确答案】【分析】设,在,,分别根据锐角三角函数定义求PO h =Rt POA △Rt POB △Rt POC △出,最后利用余弦定理进行求解即可.,,OA OB OC 【详解】设塔的高,PO h =在中,,同理可得,,Rt POA △otan 30OP OA ==OB =OC h =在中,,则,OAC πOBA OBC ∠+∠=cos cos OBA OBC ∠=-∠,22222222OB AB OA OB BC OC OB AB OB BC +-+-∴=-⋅⋅.=h =所以塔的高度为米.故答案为.14. 已知,当,时,是线段的中点,点在所有的线段121A A =2n ≥*N n ∈1n A +1n n A A -P 上,若,则的最小值是________.1n n A A +1A P λ≤λ【正确答案】23【分析】根据中点坐标公式可得,进而可得为等比数列,()*122n n n a a a n +++=∈N {}1n n a a +-即可利用累加法求解,由极限即可求解.121132n n a -⎡⎤⎛⎫=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦【详解】不妨设点、,设点,()10,0A ()21,0A ()(),0n n A a n *∈N 则数列满足,,,{a n }10a =21a =()*122n n n a a a n +++=∈N 所以,,1212n nn n a a a a +++--=-所以,数列是首项为,公比为的等比数列,{}1n n a a +-211a a -=12-所以,,11111122n n n n a a --+⎛⎫⎛⎫-=⨯-=- ⎪⎪⎝⎭⎝⎭当时,2n ≥()()()2121321110122n n n n a a a a a a a a --⎛⎫⎛⎫=+-+-++-=++-++- ⎪ ⎪⎝⎭⎝⎭ ,1111212113212n n --⎛⎫-- ⎪⎡⎤⎛⎫⎝⎭==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+也满足,故对任意的,.10a =121132n n a -⎡⎤⎛⎫=--⎢⎥⎪⎝⎭⎢⎥⎣⎦n *∈N 121132n n a -⎡⎤⎛⎫=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦所以,,故11212lim 1323n n A P ∞-→+⎧⎫⎡⎤⎪⎪⎛⎫=--=⎢⎥⎨⎬ ⎪⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭23λ≥故答案为.23四.解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15. 已知数列的前项和为,且.{}n a n n S 22n n S a +=(1)求及数列的通项公式;2a {}n a (2)在与之间插入个数,使得这个数依次组成公差为的等差数列,求n a 1n a +n ()2+n n d 数列的前项和.1n d⎧⎫⎨⎬⎩⎭n n T 【正确答案】(1),,24a =2n n a =*N n ∈(2)332n nn T +=-【分析】(1)先将代入题干表达式计算出,再将代入题干表达式即可计算1n =12a =2n =出的值,当时,由,可得,两式相减进一步推导即可2a 2n ≥22n n S a +=1122n n S a --+=发现数列是以为首项,为公比的等比数列,从而计算出数列的通项公式;{}n a 22{}n a (2)先根据第题的结果写出与的表达式,再根据题意可得,()1n a 1n a +()11n n n a a n d +-=+通过计算出的表达式即可计算出数列的通项公式,最后运用错位相减法即可计算出n d 1n d ⎧⎫⎨⎬⎩⎭前项和.n n T 【小问1详解】由题意,当时,,解得,1n =111222S a a +=+=12a =当时,,即,解得,2n =2222S a +=12222a a a ++=24a =当时,由,可得,两式相减,可得,2n ≥22n n S a +=1122n n S a --+=122n n n a a a -=-整理,得,∴数列是以2为首项,2为公比的等比数列,12n n a a -={}n a ∴,.1222n n n a -=⋅=*N n ∈【小问2详解】由(1)可得,,,2nn a =112n n a ++=在与之间插入个数,使得这个数依次组成公差为的等差数列,n a 1n a +n ()2+n n d 则有,()11n n na a n d +-=+∴,∴,1211nn n n a a d n n +-==++112n n n d +=∴,1231211123412222n n n n T d d d +=++⋅⋅⋅+=+++⋅⋅⋅+,()2311111123122222nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⋅⋅⋅+⋅++⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭两式相减得,2112311111121111133221122222222212n n n n n n n n n T ++++-+++=+++⋅⋅⋅+-=+-=--∴.332n n n T +=-16. 设的内角A ,B ,C 所对的边分别为a ,b ,c ,且有,ABC V π2cos 3b A a c⎛⎫-=+ ⎪⎝⎭(1)求角B :(2)若AC 边上的高,求.h =cos cos A C【正确答案】(1)π3B =(2)18-【分析】(1)由正弦定理及两角和的正弦公式可得角的大小;B (2)由等面积法可得,再由正弦定理可得的值,再由22b ac =sin sin A C ,可得的值.cos cos()B A C =-+cos cos A C 【小问1详解】因为,π2cos 3b A a c⎛⎫-=+ ⎪⎝⎭由正弦定理可得,12sin cos sin sin 2B A A A C ⎛⎫+=+ ⎪ ⎪⎝⎭即sin cos sin sin sin()B A A B A A B +=++即,sin cos sin sin sin cos cos sin B A A B A A B A B +=++,sin sin sin cos B A A A B =+在三角形中,,sin 0A >,cos 1B B -=即,因为,则π1sin 62B ⎛⎫-= ⎪⎝⎭(0,)B π∈ππ5π,666B ⎛⎫-∈- ⎪⎝⎭可得,则.ππ66B -=π3B =【小问2详解】因为边上的高,AC h =所以①21122ABC S b h b =⋅==又②11sin 22ABC S ac B ac === 由①②可得,22b ac =由正弦定理可得,2sin 2sin sin B A C =结合(1)中可得,π3B =3sin sin 8A C =因为,()1cos cos cos cos sin sin 2B A C A C A C =-+=-+=所以.1311cos cos sin sin 2828A C A C =-=-=-17. 如图1,在平行四边形中,,,E 为的中点,ABCD 24AB BC ==60ABC ∠=︒CD 将沿折起,连结,,且,如图2.ADE VAE BD CD 4BD =(1)求证:图2中的平面平面;ADE ⊥ABCE (2)在图2中,若点在棱上,直线与平面F BD AF ABCE 点到平面的距离.F DEC 【正确答案】(1)证明见解析(2【分析】(1)连接,利用勾股定理证明,再根据线面垂直的判定定BE ,BE DE BE AE ⊥⊥理证得平面,再根据面面垂直的判定定理即可得证;BE ⊥ADE (2)以点为原点,建立空间直角坐标系,利用向量法求解即可.E【小问1详解】连接,BE 由题意,2,60,120AD DE ADE BCE ==∠=︒∠=︒则为等边三角形,ADE V 由余弦定理得,所以2144222122BE ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭BE =则,222222,DE BE BD AE BE BD +=+=所以,,BE DE BE AE ⊥⊥又平面,,,AE DE E AE DE ⋂=⊂ADE 所以平面,BE ⊥ADE 又平面,所以平面平面;BE ⊂ABCE ADE ⊥ABCE 【小问2详解】如图,以点为原点,建立空间直角坐标系,E 则,()()()(()2,0,0,0,,,,0,0,0A B CD E -设,()01DF DB λλ=≤≤故,()((,,1,EC ED DB=-==-,((()1,1,AD AD DF λλ=+=-+-=--因为轴垂直平面,故可取平面的一条法向量为,z ABCE ABCE ()0,0,1m =所以,cos ,m AF m AF m AF⋅===化简得,解得或(舍去),23830λλ+-=13λ=3λ=-所以,1133DF DB ⎛==- ⎝ 设平面的法向量为,DEC (),,n x y z =则有,可取,00n EC x n ED x ⎧⋅=-=⎪⎨⋅=+=⎪⎩)1n =- 所以点到平面FDEC18. 已知函数,且与轴相切于坐标原点.()sin ln(1)f x x x ax =++-()y f x =x (1)求实数的值及的最大值;a ()f x (2)证明:当时,;π,π6x ⎡⎤∈⎢⎥⎣⎦1()22f x x +>(3)判断关于的方程实数根的个数,并证明.x ()0f x x +=【正确答案】(1),最大值为0 2a =(2)证明见解析(3)2个,证明见解析【分析】(1)由求出的值,即可得到解析式,再利用导数求出函数的单调(0)0f '=a ()f x 区间,从而求出函数的最大值;(2)依题意即证当时,记,π,π6x ⎡⎤∈⎢⎥⎣⎦1sin ln(1)2x x ++>1()sin ln(1)2m x x x =++-,当时直接说明即可,当,利用导数说明函数的单调π,π6x ⎡⎤∈⎢⎥⎣⎦π5π,66x ⎡⎤∈⎢⎥⎣⎦5π,π6x ⎛⎤∈ ⎥⎝⎦性,即可得证;(3)设,,当时,由(1)知,()()h x f x x =+()1,x ∞∈-+(1,0)x ∈-()(0)0f x f <=则,当时,利用导数说明函数的单调性,结合零点存在性定理判断函()0f x x +<π()0,x ∈数的零点,当时,,令,[π,)x ∈+∞()1ln(1)h x x x ≤++-()1ln(1)(π)l x x x x =++-≥利用导数说明在区间上单调递减,即可得到,从而说明函数在()l x [π,)+∞()0l x <无零点,即可得解.[π,)+∞【小问1详解】由题意知,且,(0)0f =(0)0f '=,1()cos 1f x x a x '=+-+ ,解得,(0)20f a '∴=-=2a =,,()sin ln(1)2f x x x x ∴=++-()1,x ∞∈-+则,1()cos 21f x x x '=+-+当时,,.故,0x ≥cos 1≤x 111x ≤+()0f x '≤所以在区间上单调递减,所以.()f x [0,)+∞()(0)0f x f £=当时,令,10x -<<1()cos 21g x x x =+-+则,21()sin (1)g x x x '=--+,,,sin (0,1)x -∈ 211(1)x >+()0g x '∴<在区间上单调递减,则,()f x '∴(1,0)-()(0)0f x f ''>=在区间上单调递增,则,则.()f x ∴(1,0)-()(0)0f x f <=()()max 00f x f ==综上所述,,的最大值为.2a =()f x 0【小问2详解】因为,()sin ln(1)2f x x x x =++-要证当时,即证,π,π6x ⎡⎤∈⎢⎥⎣⎦1()22f x x +>1sin ln(1)2x x ++>记,,1()sin ln(1)2m x x x =++-π,π6x ⎡⎤∈⎢⎥⎣⎦当时,,,π5π,66x ⎡⎤∈⎢⎥⎣⎦1sin 12x ≤≤ln(1)0x +>;1()sin ln(1)02m x x x ∴=++->当时,,5π,π6x ⎛⎤∈ ⎥⎝⎦1()cos 1m x x x '=++记,则,1()()cos 1n x m x x x '==++21()sin 0(1)n x x x '=--<+在区间上单调递减,则,()m x '∴5π,π6⎛⎤ ⎥⎝⎦5π6()065π6m x m ⎛⎫<=+< '+⎝'⎪⎭则在区间上单调递减,()m x 5π,π6⎛⎤⎥⎝⎦,()11()(π)sin πln(π1)ln π1022m x m ∴≥=++-=+->综上所述,当时,.π,π6x ⎡⎤∈⎢⎥⎣⎦1()22f x x +>【小问3详解】设,,()()sin ln(1)h x f x x x x x =+=++-()1,x ∞∈-+,1()cos 11h x x x '∴=+-+当时,由(1)知,(1,0)x ∈-()(0)0f x f <=故,()()0f x x f x +<<故在区间上无实数根.()0f x x +=(1,0)-当时,,因此为的一个实数根.0x =(0)0h =0()0f x x +=当时,单调递减,π()0,x ∈1()cos 11h x x x '=+-+又,,(0)10h '=>1(π)20π1h '=-<+存在,使得,∴0(0,π)x ∈()00h x '=所以当时,当时,00x x <<ℎ′(x )>00πx x <<ℎ′(x )<0在区间上单调递增,在区间上单调递减,()h x ∴()00,x ()0,πx ,又,()0(0)0h x h ∴>=(π)ln(π1)π2π0h =+-<-<在区间上有且只有一个实数根,在区间上无实数根.()0f x x ∴+=()0,πx (]00,x 当时,,[π,)x ∈+∞()1ln(1)h x x x ≤++-令,()1ln(1)(π)l x x x x =++-≥,1()1011x l x x x -'∴=-=<++故在区间上单调递减,,()l x [π,)+∞()(π)ln(1π)π13π0l x l ≤=+-+<-<于是恒成立.故在区间上无实数根,()0f x x +<()0f x x +=[π,)+∞综上所述,有2个不相等的实数根.()0f x x +=方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.19. 对于任意正整数n ,进行如下操作:若n 为偶数,则对n 不断地除以2,直到得到一个奇数,记这个奇数为;若n 为奇数,则对不断地除以2,直到得出一个奇数,记这个n a 31n +奇数为.若,则称正整数n 为“理想数”.n a 1n a =(1)求20以内的质数“理想数”;(2)已知.求m 的值;9m a m =-(3)将所有“理想数”从小至大依次排列,逐一取倒数后得到数列,记的前n 项和{}n b {}n b 为,证明.n S ()*7N 3n S n <∈【正确答案】(1)2和5为两个质数“理想数” (2)的值为12或18m(3)证明见解析【分析】(1)根据“理想数”概念,结合列举法可解;(2)分析题意知道必为奇数,则必为偶数,结合整除知识得解;9m a m =-m (3)将数列适当放缩,后分组,结合等比数列求和公式计算即可.【小问1详解】以内的质数为,202,3,5,7,11,13,17,19,故,所以为“理想数”;212=21a =2,而,故不是“理想数”;33110⨯+=1052=3,而,故是“理想数”;35116⨯+=41612=5,而,故不是“理想数”;37122⨯+=22112=7,而,故不是“理想数”;311134⨯+=34172=11,而,故不是“理想数”;313140⨯+=4058=13,而,故不是“理想数”;317152⨯+=52134=17,而,故不是“理想数”;319158⨯+=58292=19和5为两个质数“理想数”;2∴【小问2详解】由题设可知必为奇数,必为偶数,9m a m =-m ∴存在正整数,使得,即:∴p 92p m m =-9921p m =+-,且,921p ∈-Z211p-≥,或,或,解得,或,211p ∴-=213p -=219p-=1p =2p =,或,即的值为12或18.1991821m ∴=+=-2991221m =+=-m 【小问3详解】显然偶数"理想数"必为形如的整数,()*2k k ∈N 下面探究奇数"理想数",不妨设置如下区间:,((((0224462222,2,2,2,2,2,,2,2k k -⎤⎤⎤⎤⎦⎦⎦⎦若奇数,不妨设,1m >(2222,2k k m -⎤∈⎦若为"理想数",则,且,即,且,m (*3112s m s +=∈N )2s >(*213s m s -=∈N )2s >①当,且时,;(*2s t t =∈N )1t >41(31)133t t m -+-==∈Z ②当时,;()*21s t t =+∈N 2412(31)133t t m ⨯-⨯+-==∉Z ,且,(*413t m t -∴=∈N )1t >又,即,22241223t k k--<<1344134k t k-⨯<-≤⨯易知为上述不等式的唯一整数解,t k =区间]存在唯一的奇数"理想数",且,(2222,2k k -(*413k m k -=∈N )1k >显然1为奇数"理想数",所有的奇数"理想数"为,()*413k m k -=∈N 所有的奇数"理想数"的倒数为,∴()*341kk ∈-N 1133134144441k k k ++<=⨯---1212123111111222521n n n n S b b b b b b b +⎛⎫⎛⎫∴=+++<+++++<+++++++ ⎪ ⎪⎝⎭⎝⎭,即.21111171111124431124⎛⎫<⨯++++<+⨯=⎪⎝⎭-- ()*73n S n <∈N 知识点点睛:本题属于新定义的题目,综合了整除,数列的放缩,分组求和和等比数列公式.属于难题.。

福建省三明第一中学2024-2025学年高三上学期11月期中考试数学试题(解析)

福建省三明第一中学2024-2025学年高三上学期11月期中考试数学试题(解析)

三明一中2024-2025学年上学期半期考高三数学试卷(考试时间:120分钟 试卷满分:150分)第一部分(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数3i 1i z =++在复平面内对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D 【解析】【分析】根据复数的运算法则化简z ,再写出其对应的点即得.【详解】3i 1iz =++()()()()31i 331i i 1i i 1i 1i 222-=+=+-=-+-,故其在复平面对应的点为31,22⎛⎫- ⎪⎝⎭,在第四象限.故选:D.2. 设,a b 均为单位向量,则“a b a b -=+ ”是“a b ⊥”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C 【解析】【分析】根据向量的运算法则和公式22a a = 进行化简,结合充分条件和必要条件的判定方法,即可求解.【详解】由a b a b -=+ ,则22a b a b -=+ ,即222222a b a b a b a b +-⋅=++⋅,可得0a b ⋅= ,所以a b ⊥,即充分性成立;反之:由a b ⊥ ,则0a b ⋅=,可得2222()a b a b a b -=-=+ 且2222()a b a b a b +=+=+ ,所以a b a b -=+,即必要性成立,综上可得,a b a b -=+ 是a b ⊥的充分必要条件.故选:C.3. 已知数列{}n a 满足()111n n a a +-=,若11a =-,则10a =( )A. 2 B. ―2C. 1- D.12【答案】C 【解析】【分析】根据递推式求出2a ,3a ,4a 的值,可以发现数列为周期数列,从而推出10a 的值.【详解】因为111n n a a +=-,11a =-,所以212a =,32a =,41a =-,所以数列{}n a 的周期为3,所以101a =-.故选:C .4. 已知实数1a >,0b >,满足3a b +=,则211a b+-的最小值为( )A.B.C.D.【答案】B 【解析】【分析】根据给定条件,利用基本不等式“1”的妙用求解即得.【详解】实数1a >,0b >,由3a b +=,得(1)2a b -+=,因此211211211[(1)]()(3)(3121212b a a b a b a b a b -+=-++=++≥+---,当且仅当211-=-b a a b,即14a -==-所以211a b +-.故选:B5. 中国古建筑的屋檐下常系挂风铃,风吹铃动,悦耳清脆,亦称惊鸟铃.若一个惊鸟铃由铜铸造而成,且可近似看作由一个较大的圆锥挖去一个较小的圆锥,两圆锥的轴在同一条直线上,截面图如下,其中1320cm O O =,122cm O O =,16cm AB =,若不考虑铃舌,则下列数据比较接近该惊鸟铃质量的是(参考数据:π3≈,铜的密度为8.963g /cm )( )A. 1kgB. 2kgC. 3kgD. 0.5kg【答案】A 【解析】【分析】根据圆锥的体积公式,结合质量公式求解即可.【详解】由题意可得惊鸟铃的体积约为长()22311π820π818128cm 33⨯⨯⨯-⨯⨯⨯=,所以该惊鸟铃的质量约为()1288.961146.88g 1⨯=≈(kg ).故选:A .6. 已知函数()()sin 10f x x ωω=+>在区间()0,π上有且仅有2个零点,则ω的取值范围是( )A. 711,22⎡⎫⎪⎢⎣⎭B. 711,22⎛⎤ ⎥⎝⎦C. [)3,5D. (]3,5【答案】B 【解析】【分析】利用三角函数的性质结合整体思想计算即可.【详解】因为0πx <<,所以0πx <ω<ω,令()sin 10f x x ω=+=,则方程sin 1x ω=-有2个根,所以711πππ22ω<≤,解得71122ω<≤,则ω的取值范围是711,22⎛⎤ ⎥⎝⎦.故选:B7. 在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且222a c b +-==sin 21cos 2CC+,则角A 的大小为( )A.π12B.5π12C.7π12D.3π4【答案】B 【解析】【分析】借助余弦定理计算可得π6B =,4BC π⎛⎫=- ⎪⎝⎭,代入计算即可得角A 的大小.【详解】因为222a c b +-=,由余弦定理得2cos ac B =,所以cos B =(0,π)B ∈,所以π6B =,2sin 22sin cos sin 1cos 22cos cos C C C CCC C ===+,所以cos cos sin sin C A C C A C +=-,)sin cos A C C C +=-,又πA C B +=-4B C π⎛⎫=- ⎪⎝⎭,所以π4B C =-或π4B C π+-=(舍),所以56412C πππ=+=,所以5561212A B C πππ=π--=π--=.故选:B.8. 已知函数()()()e ln 0xf x a ax a a a =--+>,若存在x 使得关于x 的不等式()0f x <成立,则实数a 的取值范围( )A. ()20,eB.()e0,e C.()2e ,+∞ D.()ee ,+∞【答案】C 【解析】【分析】将不等式变形为()ln eln 1ln 1x ax a x x -+-<-+-,构造函数()ln g x x x =+,分析可知该函数为增函数,可得出()ln ln 1a x x >--,求出函数()()ln 1h x x x =--的最小值,可得出关于实数a 的不等式,即可得出实数a 的取值范围.【详解】因为0a >,由0ax a ->可得1x >,即函数()f x 的定义域为()1,+∞,()()e ln ln 10xf x a a a x a =---+<可得()e ln ln 11x a x a-<--,即()ln eln 1ln 1x ax a x x -+-<-+-,构造函数()ln g x x x =+,其中0x >,则()110g x x'=+>,故函数()g x 在()0,∞+上单调递增,所以,()()ln e 1x agg x -<-,可得ln e1x ax -<-,则()ln ln 1x a x -<-,即()ln ln 1a x x >--,其中1x >,令()()ln 1h x x x =--,其中1x >,则()12111x h x x x -'=-=--,当12x <<时,()0h x '<,此时函数()h x 单调递减,当2x >时,()0h x '>,此时函数()h x 单调递增,所以,()()min ln 22a h x h >==,解得2e a >.故选:C.【点睛】关键点点睛:解本题的关键在于将不等式变形为()ln eln 1ln 1x ax a x x -+-<-+-,结合不等式的结果构造函数()ln g x x x =+,转化为函数()g x 的单调性以及参变量分离法求解.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列说法中正确的是( )A. 若//a b ,//b c,则//a cB. 若ABC V 是锐角三角形,则sin cos A B>C. 若点G 为ABC V 的重心,则0GA GB GC ++=D. 命题:x ∀∈R ,21x >-的否定是:x ∃∈R ,21x ≤-.【答案】BCD 【解析】【分析】若0b =可判断A ;根据正弦函数单调性和诱导公式可判断B ;由重心的向量表示可判断C ;由全称命题的否定可判断D.【详解】对于A ,若0b = ,则,a c不一定平行,故A 不正确;对于B ,若ABC V 是锐角三角形,则可得π2A B +>且π,0,2A B ⎛⎫∈ ⎪⎝⎭,可得2A B π>-,且0,22B ππ⎛⎫-∈ ⎪⎝⎭,根据正弦函数的单调性,可得πsin sin 2A B ⎛⎫>-⎪⎝⎭,所以sin cos A B >,所以B 正确;对于C ,分别取BC ,AC ,AB 中点D ,,E F ,则2GB GC GD +=,G 为ABC V 的重心,2GD AG ∴=,20GA GB GC GA GD ∴++=+=,故C 正确;对于D ,根据全称命题的否定可得:x ∀∈R ,21x >-的否定是:x ∃∈R ,21x ≤-,故D 正确.故选:BCD.10. 已知数列{}n a 的前n 项和为2113622n S n n =-+,则下列说法正确的是( )A. 7n a n =- B.23344556111145a a a a a a a a +++=C. 使0n S >的最小正整数n 为13 D.nS n的最小值为3-【答案】BCD 【解析】【分析】对A ,根据n S 与n a 关系,求出通项n a 判断;对B ,利用裂项求和得解可判断;对C ,令0n S >求得答案;对D ,求出nS n,利用对勾函数单调性求最值.【详解】对于A ,由2113622n S n n =-+,当1n =时,110a S ==,当2n ≥时,()()221113113611672222n n n a S S n n n n n -⎛⎫=-=-+----+=- ⎪⎝⎭,0,17,2n n a n n =⎧∴=⎨-≥⎩,故A 错误;对于B ,因为()()111118787n na a n n n n -==-----,2n ≥,所以23344556111111111111411453423255a a a a a a a a +++=-+-+-+-=-=,故B 正确;对于C ,由0n S >,即21136022n n -+>,解得12n >,故C 正确;对于D ,101S =,2n ≥时,1613112132222n S n n n n n ⎛⎫=+-=+- ⎪⎝⎭,因为函数12y x x =+在(0,上单调递减,在()∞+上单调递增,∴当3n =或4时,n Sn取得最小值为3-,故D 正确.故选:BCD.11. 已知函数()ln 1x xf x x -=+,则下列结论中正确的是( )A. 函数()f x 有两个零点B. ()13f x <恒成立C. 若方程()2k f x x x =+有两个不等实根,则k 的范围是10,2e ⎛⎫⎪⎝⎭D. 直线14y x =-与函数()f x 图象有两个交点【答案】BCD 【解析】【分析】分01x <<和1x >两种情况探讨()f x 的符号,判断A 的真假;转化为研究函数()11ln 33g x x x x =++的最小值问题,判断B 的真假;把方程()2k f x x x=+有两个不等实根,为2ln k x x =-有两个根的问题,构造函数()2ln m x x x =-,分析函数()m x 的图象和性质,可得k 的取值范围,判断C 的真假;直线14y x =-与函数()f x 图象有两个交点转化为11ln 044x x --=有两解,分析函数()11ln 44n x x x =--的零点个数,可判断D 的真假.【详解】对A :当01x <<时,()0f x >;当1x >时,()0f x <;1x =时,()0f x =,所以函数()f x 只有1个零点.A 错误;对B :欲证()13f x <,须证ln 113x x x -<+⇔11ln 033x x x ++>在()0,∞+上恒成立.设()11ln 33h x x x x =++,则()4ln 3h x x '=+,由()0h x '>⇒43e x ->;由()0h x '<⇒430e x -<<.所以()h x 在430,e -⎛⎫ ⎪⎝⎭上单调递减,在43e ,-⎛⎫+∞ ⎪⎝⎭上单调递增.所以()h x 的最小值为443343111e e 33e h --⎛⎫=-=- ⎪⎝⎭,因为433e <,所以43e 0h -⎛⎫> ⎪⎝⎭.故B 正确;对C :()2k f x x x=+⇒()1ln 1x x k x x x =++-⇒2ln k x x =-.设()2ln m x x x =-,0x >则()()2ln 2ln 1m x x x x x x '=--=-+,0x >.由()0m x '>⇒120e x -<<;由()0m x '<⇒12e x ->.所以()m x 120,e -⎛⎫ ⎪⎝⎭上单调递增,在12e ,-⎛⎫+∞ ⎪⎝⎭单调递减.所以()m x 的最大值为:121e 2em -⎛⎫= ⎪⎝⎭,又当120,e x -⎛⎫∈ ⎪⎝⎭时,()0m x >.如图所示:所以2ln k x x =-有两个解时,10,2e k ⎛⎫∈ ⎪⎝⎭.故C 正确;对D :问题转化为方程:ln 114x x x x -=-+有两解,即11ln 044x x --=有两解.设()11ln 44n x x x =--,0x >,所以()11444xn x x x-'=-=.由()0n x '>⇒04x <<;由()0n x '<⇒4x >.所以()n x 在()0,4上单调递增,在()4,+∞上单调递减.所以()n x 的最大值为()54ln 44n =-.因为82256=,53243=,所以85523e >>⇒454e >⇒544e >⇒5ln 44>在所以()54ln404n =->.且当0x >且0x →时,()0n x <;x →+∞时,()0n x <.所以函数()11ln 44n x x x =--的图象如下:所以11ln 044x x --=有两解成立,所以D 正确.故选:BCD【点睛】方法点睛:导数问题中,求参数的取值范围问题,通常有如下方法:(1)分离参数,转化为不含参数的函数的值域问题求解.(2)转化为含参数的函数的极值问题求解.第二部分(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分.12. =______.【答案】12##0.5【解析】【分析】利用二倍角公式结合诱导公式化简,即可求得答案.sin50sin 40cos40sin 40cos10cos10===sin 80cos1012cos102cos102=== .故答案为:1213. 已知集合2{|290}A x x x a =-+-=,2{|4100}B x ax x a =-+=≠,,若集合A ,B 中至少有一个非空集合,实数a 的取值范围_______.【答案】{8a a ≥或4a ≤且}0a ≠【解析】【分析】先考虑A ,B 为空集得出a 的范围,再利用补集思想求得结果.【详解】对于集合A ,由()Δ4490a =--<,解得8a <;对于集合B ,由1640a ∆=-<,解得4a >.因为A,B 两个集合中至少有一个集合不为空集,所以a 的取值范围是{8a a ≥或4a ≤,且}0a ≠故答案为:{8a a ≥或4a ≤且}0a ≠14. 在四面体V ABC -中,VA VB ==3VC =,4CA CB ==,VC 的中点为P ,AB 的中点为Q ,则PQ 的取值范围为______.【答案】43⎛ ⎝【解析】【分析】设出线段AB 的长度,然后利用勾股定理表示出QV 和QC ,进而利用2221)4||QP QP QV QC ==(+ 表示出线段PQ 的长度,然后转化为函数求最值即可,但是要注意确定解析式中自变量的取值范围.【详解】如图所示,连接VQ 和CQ,根据VA VB ==4CA CB ==可知,VQ AB ⊥和CQ AB ⊥.不妨设2AB x =,则根据勾股定理可知VQ =,CQ =,其中根据三角形中三边的长度关系可知,0280233x x <<⎧⎪<<⎪>-<,解得2287036x <<.因为12QP QV QC =(+) ,所以22222222113123944442||||||||||||||||||QV QC QP QV QC QV QC QV QC x QV QC +-=(+)=(++⋅⋅)=(-)⋅.因2287036x <<,所以2163994||QP <<,即43QP <<.为。

2025届成都市高三数学上学期期中测试卷及答案解析

2025届成都市高三数学上学期期中测试卷及答案解析

树德中学高2022级高三上学期11月半期测试数学试题一、单选题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.1. 已知集合{}{}21,2,,1,3A a B a =+=,若对,x A "Î都有x B Î,则a 为( )A. 1B. 1- C. 2D. 1或2【答案】C 【解析】【分析】得到A B Í,分22a a +=和23a +=两种情况,求出a ,舍去不合要求的解,得到答案.【详解】由题意得A B Í,当22a a +=时,解得2a =或1-,当2a =时,{}4,1,3B =满足要求,当1a =-时,21a +=,21a =,A ,B 中元素均与互异性矛盾,舍去,当23a +=时,1a =,此时21a =,B 中元素与互异性矛盾,舍去,综上,2a =.故选:C2. 直线220x y -+=被圆()()22124x y -+-=截得的弦长为( )A.B.C.D.【答案】D 【解析】【分析】求出圆心和半径,得到圆心()1,2到220x y -+=的距离,利用垂径定理求出弦长.【详解】()()22124x y -+-=的圆心为()1,2,半径为2,圆心()1,2到220x y -+=的距离d ,故直线220x y -+=)()22124y -+-=截得的弦长为==.故选:D3. 下图为2024年中国大学生使用APP 偏好及目的统计图,根据统计图,下列关于2024年中国大学生使用APP 的结论正确的是( )A. 超过13的大学生更爱使用购物类APP B. 超过半数的大学生使用APP 是为了学习与生活需要C. 使用APP 偏好情况中7个占比数字的极差是23%D. APP 使用目的中6个占比数字的40%分位数是34.3%【答案】C 【解析】【分析】A 选项,25.71%3<,A 错误;B 选项,%344.%14%8.33%50+=<,B 错误;C 选项,利用极差定义得到C 正确;D 选项,由百分位数的定义进行判断.【详解】A 选项,更爱使用购物类APP 的大学生比例为25.71%3<,A 错误;B 选项,为了学习与生活需要使用APP 的大学生比例为%344.%14%8.33%50+=<,B 错误;C 选项,使用APP 偏好情况中7个占比中,数字极差25.7% 2.7%23%-=,C 正确;D 选项,640% 2.4´=,故从小到大,选取第3个作为40%分位数,即16.3%,D 错误.故选:C4. 数列{}n a 为等比数列,若154215,6a a a a -=-=,则3a 为( )A. 4 B. -4C. 4± D. 不确定【答案】C 【解析】【分析】由等比数列的性质计算即可;【详解】由题意可得()()4211115,16a q a q q -=-=,为两式相除可得2152q q +=,即22520q q -+=,解得12q =或2,当12q =时,由()2111111161624a q q a a æöç÷-=´´-=Þ=-ç÷èø,所以34a =-;当2q =时,由()()2111124161a q q a a -=´´-=Þ=,所以34a =;综上,3a 为4±,故选:C.5. 已知实数,x y 满足0x y >>,则下列不等式恒成立的是( )A.222xy xy+> B.2x yy +>>C.4x y y x+³ D.2³+xyx y【答案】B 【解析】【分析】A 选项,举出反例;B 选项,由基本不等式得到2x y+>,由0x y >>y >=,B 正确;C 选项,由基本不等式得到2x yy x+>;D 选项,由基本不等式得到2x x y y <=+.【详解】A 选项,取2,1x y ==得21122xy xy+=+=,A 错误;B 选项,0,0x y >>,由基本不等式得2x y+³,当且仅当x y =时,等号成立,但0x y >>,故等号取不到,所以2x y+>,0x y >>y >=,综上,2x yy +>>,B 正确;C 选项,0,0x y >>,由基本不等式得2x y y x +³=,当且仅当x y =时,等号成立,但0x y >>,故等号取不到,所以2x yy x+>,C 错误;D选项,由B选项知,x y+>1x y<+所以2xxyy<=+,D错误.故选:B6. 已知四面体A BCD-外接球半径为2,若π3BC BDC=Ð=,则四面体A BCD-的体积最大值为()A.94B.92C.D.【答案】D【解析】【分析】根据球的性质先确定球心到底面BCD的距离,结合棱锥的体积公式计算即可.【详解】如图所示,设四面体A BCD-的外接球球心为O,底面BCD△的外接圆圆心为E,则OE^底面BCD,,,A O E共线且A在OE上方时四面体的高h最大,最大值为2h EA OE==+,取,由BC BF OF=Þ===所以EF==,底面BCD△中,显然当,,D E F共线时,D到BC距离最大,所以()()max11122BCDS BC EF DEö=×+=+=÷øV则四面体A BCD-的体积最大值(123BCDV S h=×=+=V故选:D的7. 设F 为抛物线2:4y x G =的焦点,过F 且倾斜角为60°的直线交曲线G 于,A B 两点(B 在第一象限,A 在第四象限),O 为坐标原点,过A 作G 的准线的垂线,垂足为M ,则||||OB OM 的值为( )A.13B.12C. 2D. 3【答案】D 【解析】【分析】过F 且倾斜角为60°的直线方程为y =2:4y x G =,设()()1122,,,A x y B x y ,21x x >,则121,33x x ==,进而得到(1,,3,3A B æççè,求出1,M æ-ççè,OB =,OM =,得到答案.【详解】由题意得()10F ,,2:4y x G =的准线方程为1x =-,过F 且倾斜角为60°的直线方程为y =y =-与2:4y x G =联立得231030x x -+=,设()()1122,,,A x y B x y ,21x x >,则121,33x x ==,故12y y ==,故(1,,3,3A B æççè,故OB ==,1,M æ-ççè,OM ==3=.故选:D8. 已知函数1()93xf x =-的图象关于点P 对称,则点P 的坐标是( )A. 12,18æöç÷èøB. 12,9æöç÷èøC. 12,3æöç÷èøD. ()0,0【答案】A 【解析】分析】计算出()1()49f x f x +-=,()()0f x f x +-¹,故A 正确,BCD 错误.【详解】ABC 选项,()()4991113()43939393xx x x x f x f x -+-=+=+----()9319939x x +--==,故函数1()93x f x =-的图象关于12,18æöç÷èø中心对称,A 正确,BC 错误;D 选项,()11()09393x xf x f x -+-=+¹--,故不关于()0,0中心对称,D 错误.故选:A二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求;全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 甲罐中有5个红球,5个白球,乙罐中有3个红球,7个白球.先从甲罐中随机取出一球放入乙罐,再从乙罐中随机取出一球.1A 表示事件“从甲罐取出的球是红球”,2A 表示事件“从甲罐取出的球是白球”,B 表示事件“从乙罐取出的球是红球”.则下列结论正确的是()【A. 1A 、2A 为对立事件B. ()1411P B A =C. ()310P B =D. ()()121P B A P B A +=【答案】AB 【解析】【分析】只需注意到事件B 是在事件1A 或2A 发生之后可解.【详解】因为甲罐中只有红球和白球,所以A 正确;当1A 发生时,乙罐中有4个红球,7个白球,此时B发生的概率为411,故B 正确;当2A 发生时,乙罐中有3个红球,8个白球,此时B 发生的概率为311,故D 不正确;14137()21121122P B =´+´=,故 C 不正确.故选:AB10. 对于函数()sin f x x =与()πsin 36g x x æö=-ç÷èø,下列说法正确的是( )A. ()f x 与()g x 有相同零点B. 当[0,2π]x Î时,()f x 与()g x 的交点个数为6C. 将()f x 的图像向右平移π6个单位,并把横坐标变为原来的13可以得到()g x 的图像D. 将()f x 的图像横坐标变为原来的13,并向右平移π6个单位可以得到()g x 的图像【答案】BC 【解析】【分析】计算两个函数的零点,即可求解A ,根据πsin sin 36x x æö=-ç÷èø,求解π32π6x x k =-+或π3π2π,Z 6x x k k +-=+Î,即可判断B ,根据函数图象的变换即可求解CD.【详解】对于A ,()sin f x x =的零点为π,Z x k k =Î,()πsin 36g x x æö=-ç÷èø的零点满足π3π,Z 6x k k -=Î,故π1π,Z 183x k k =+Î,两个函数的零点不相同,故A 错误,对于B, 令πsin sin 36x x æö=-ç÷èø,则π32π6x x k =-+或π3π2π,Z 6x x k k +-=+Î,解得ππ12x k =-或7π1π,Z 242x k k =+Î,故[0,2π]x Î时,零点有π7π19π13π31π43π,,,,,122424122424,共有6个,故B 正确,对于C ,将()f x 的图像向右平移π6个单位,得到πsin 6y x æö=-ç÷èø,再把πsin 6y x æö=-ç÷èø的横坐标变为原来的13可以得到()πsin 36g x x æö=-ç÷èø,C 正确,对于D ,将()f x 的图像横坐标变为原来的13,得到sin 3y x =,再将sin 3y x =向右平移π6个单位可以得到ππsin 3sin 362y x x æöæö=-=-ç÷ç÷èøèø的图象,故D 错误,故选:BC11. 已知函数()1ln f x x a x x=--,下列说法正确的是( )A. 若1,a =则曲线()f x 在()1,0的切线方程为10x y --=B. 若()0f x <当且仅当()0,1x Î,则a 的取值范围(),2-¥C. ()1f f x x æö=-ç÷èøD. 若函数()1ln f x x a x x=--有三个零点为123,,x x x ,则123ax x x 的取值范围()2,+¥【答案】ACD 【解析】【分析】利用导数的几何意义可判定A ,含参讨论函数的单调性结合特例可判定B ,利用解析式直接计算可判定C ,根据B 结合含参讨论函数的单调性得出函数大致图象,结合C ,得出零点间关系计算即可.【详解】对于A ,易知1a =时,()()2111ln ,1f x x x f x x x x¢=--=+-,所以()11f ¢=,即曲线()f x 在(1,0)的切线方程为10x y --=,故A 正确;对于B ,()()2210x ax f x x x-+=>¢,24a D =-,易知2a £时,则f ′(x )≥0,此时()f x 定义域上单调递增,而f (1)=0,即()0f x <当且仅当x ∈(0,1),2a £,故B 错误;对于C ,易知()11ln f x a x f x x xæö=-+=-ç÷èø显然成立,故C 正确;对于D ,由B 项知,当2a >时,令()2210x ax f x x x -+==Þ=¢,由2a >1<<,则()f x 在æçç和¥ö+÷÷ø上单调递增,在上单调递减,因为f (1)=0,且0x →时,()f x ¥→-,x →+¥时,()f x ¥→+,可大致作出函数图象,不妨设123x x x <<,可知1231x x x <<=<<,因为()()130f x f x ==,由C 知()1110f x f x æö=-=ç÷èø,即()3110f f x x æö==ç÷èø,因为111011x x <<Þ>,根据函数单调性知311x x =,即123a ax x x =,故D 正确.故选:ACD【点睛】思路点睛:对于B 项,含参讨论导函数零点个数判定函数的单调性即可;对于D 项,利用C 项的结论将多元变量转化是解决本题关键.三、填空题:本题共3小题,每小题5分,共15分.12. 已知1sin()2a b +=,tan 5tan ab=,则sin()a b -=______.【答案】13【解析】【分析】由已知条件展开可求得sin cos a b,cos sin a b ,代入即可.【详解】由1sin()2a b +=得:1sin cos cos sin 2a b a b +=,由tan 5tan ab=得:sin cos 5cos sin a b a b =,所以5sin cos 12a b =,1cos sin 12a b =,所以511sin cos cos sin 12123sin()a b a b a b -=-=-=.故答案为:1313. 已知数列{}n a 满足:11,2,N7,231,21,N n n n nn a a k k a a a a k k *+*ì=Îï==íï+=+Îî,则4a 为______.【答案】34【解析】【分析】由17a =求出222a =,由222a =求出311a =,进而求出434a =【详解】17a =为奇数,故213122a a =+=,222a =为偶数,故23112a a ==,311a =为奇数,故433134a a =+=.故答案为:3414. 设1234,,,a a a a 是数字1,2,3,4的排列,若存在14i j k £<<£成立i j k a a a <<,则称这样的排列为“树德好排列”,则从所有的排列中任取一个,则它是“树德好排列”的概率是______.【答案】512【解析】【分析】先得到1,2,3,4进行排列,共有44A 24=种情况,再列举出满足要求的情况,求出概率.【详解】1,2,3,4进行排列,共有44A 24=种情况,其中满足存在14i j k £<<£成立i j k a a a <<的情况有()()()()4,1,2,3,1,4,2,3,1,2,4,3,1,2,3,4,()()()()()()3,1,2,4,1,3,2,4,2,1,3,4,1,3,4,2,2,3,1,4,2,3,4,1,共10种情况,故从所有的排列中任取一个,则它是“树德好排列”的概率为1052412=.故答案为:512四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知在ABC V 中,221cos 2ac B bc a b -=-,(1)求A ;(2)若2a =,则三角形ABC,.b c 【答案】(1)π3A = (2)2b c ==【解析】【分析】(1)根据余弦定理边角互化,即可求解,(2)根据三角形面积公式可得4bc =,进而根据余弦定理即可求解.【小问1详解】根据221cos 2ac B bc a b -=-可得22222122a c b ac bc a b ac +--=-,即222c b a bc +-=,故2221cos 22c b a A bc +-==,由于()0,πA Î,故π3A =小问2详解】由π3A =得1sin 42S bc A bc ==\=,又因为2,a =由余弦定理知()2222222cos ,43a b c bc A b c bc b c bc =+-\=+-=+-,故4b c +=,结合4bc =解得2b c ==16. 如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ^,AB AD ^,PA PD =,2AB =,8AD =,5AC CD ==.(1)求证:平面PCD ⊥平面PAB ;(2)求点B 到平面PCD 的距离.【答案】(1)证明见解析【(2【解析】【分析】(1)由面面垂直得到线面垂直,得到AB ⊥PD ,结合PA PD ^得到PD ⊥平面PAB ,因为PD Ì平面PCD ,所以平面PCD ⊥平面PAB ;(2)作出辅助线,得到CO AD ^,3CO =,建立空间直角坐标系,求出平面PCD 的一个法向量为()4,3,3n =-r,利用点到平面的距离公式求出答案.【小问1详解】平面PAD ⊥平面ABCD ,交线为,AD AB AD ^,AB Ì平面ABCD ,所以AB ⊥平面PAD ,因为PD Ì平面PAD ,所以AB ⊥PD ,因为PA PD ^,AB PA A =I ,,AB PA Ì平面PAB ,所以PD ⊥平面PAB ,因为PD Ì平面PCD ,所以平面PCD ⊥平面PAB ;【小问2详解】取AD 中点为O ,连接CO ,PO ,又因为PA PD =,所以PO AD ^,则4AO PO ==,因为5AC CD ==,所以CO AD ^,则3CO ==,以O 为坐标原点,分别以OC uuu r ,OA uuu r ,OP uuu r所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系O xyz -,则()0,4,0A ,()2,4,0B ,()3,0,0C ,()0,4,0D -,()0,0,4P ,()3,0,4PC =-uuu r ,()0,4,4PD =--uuu r ,()2,4,4PB =-uuu r,设n =(x,y,z )是平面PCD 的一个法向量,则0n PC n PD ì×=ïí×=ïîuuu r r uuu rr ,得340440x z y z -=ìí--=î,令3z =,则4x =,3=-y ,所以()4,3,3n =-r,设点B 到平面PCD 的距离为h .则所以点B 到平面PCD 的距离为h .17. 已知函数()()e 1xf x a x=-+(1)讨论()f x 的单调性;(2)若()()e 1xf x a x b =-+³对于R x Î恒成立,求b a -的最大值.【答案】(1)答案见解析 (2)11e+【解析】【分析】(1)求导,分1a £-和1>-a 两种情况,得到函数单调性;(2)在(1)基础上,分1a <-,1a =-,1>-a 三种情况,1a <-时,不合要求;当1a =-,0,b b a £-的最大值为1;当1>-a 时,()f x 在()ln 1x a =+处取得极小值,也是最小值,()()()11ln 10a a a b +-++-³,故()()11ln 1b a a a -£-++,令()()1ln 0F x x x x =->,求导,得到函数单调性,得到()max 111e eF x F æö==+ç÷èø,从而求出b a -的最大值为11e +.【小问1详解】()()e 1x f x a ¢=-+,当1a £-,()f x 在R 上单调递增,当1>-a ,令()0f x ¢>得()ln 1x a >+,令()0f x ¢<得()ln 1x a <+,故()f x 在()(),ln 1a -¥+单调递减,()()ln 1,a ++¥单调递增,综上,当1a £-时,()f x 在R 上为单增递增;当1>-a 时,()f x 在()(),ln 1a -¥+单调递减,()()ln 1,a ++¥单调递增;【小问2详解】由(1)知,当1a <-,()f x 在R 上为单调递增,(),x f x →-¥→-¥,不合题意当1a =-,()f x 在R 上单调递增,(),0x f x →-¥→,故0,b b a £-的最大值为1,当1>-a ,()f x 在()(),ln 1a -¥+单调递减,()()ln 1,a ++¥单调递增,所以()f x 在()ln 1x a =+处取得极小值,也是最小值,()()()()()()()()ln 1ln 1e 1ln 111ln 1a f a a a b a a a b ++=-++-=+-++-,由不等式()e 1xa xb -+³,可得()()()11ln 10a a a b +-++-³,所以()()11ln 1b a a a -£-++,令()()1ln 0F x x x x =->,则()ln 1F x x ¢=--,当10ex <<时,()0F x ¢>;当1e x >时,()0F x ¢<,所以()F x 在10,e æöç÷èø上单调递增,在1,eæö+¥ç÷èø上单调递减,即()max 111e e F x F æö==+ç÷èø,即11eb a -£+,综上,b a -的最大值为11e+.【点睛】对于求不等式成立时参数范围问题,一般有三个方法,一是分离参数法, 使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的条件.二是讨论分析法,根据参数取值情况分类讨论,三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件.18. 已知椭圆C :22221x y a b+=过3(1,)2A ,3317(1,(,)2510B E ---,(2,0)F -中的三点.(1)求椭圆方程及其离心率;(2)过(4,0)P 作直线QR 交C 于,Q R 两点(Q R ¹),连接,BP BR ,过Q 作x 轴垂线分别交,BP BR 于,M N .求证:M 为QN 中点.的【答案】(1)22143x y +=,离心率12e =;(2)证明见解析【解析】【分析】(1)由对称性知,A B 同时在椭圆,假设,,A B E 在22221x y a b+=上,求出22134a b ==,此时方程为圆,不合要求,当,,A B F 在22221x y a b+=上时,求出224,3a b ==,得到椭圆方程,求出离心率;(2)求出1:22BP y x =-,设1122:4,(,),(,)QR x ky Q x y R x y =+,联立椭圆方程,得到两根之和,两根之积,得到121223y y ky y +=-,表达出M ,N 的坐标,要证M 为QN 中点,即证211123()(3)3232y ky y ky ky ++-+=+,即证()()2121232302k k y y k y y æö-+-+=ç÷èø,将121223y y ky y +=-代入上式恒成立,故M 为QN 中点.【小问1详解】由于,A B 关于x 轴对称, 故,A B 同时在椭圆C :22221x ya b+=上,若,,A B E 在22221x y a b +=上,则222219149289125100a b a bì+=ïïíï+=ïî,解得22134a b ==,此时为以原点O为圆心,=OA 为半径的圆,不合题意;若,,A B F 在22221x ya b +=上,则222191441a b a ì+=ïïíï=ïî,解得224,3a b ==,故椭圆方程为22143x y +=,1c ==,离心率为12c e a ==;【小问2详解】1:22BP y x =-,设1122:4,(,),(,)QR x ky Q x y R x y =+,联立224143x ky x y =+ìïí+=ïî,得有22(34)24360k y ky +++=,22(24)4(34)360k k D =-+×>,解得2k >或2k <-,由韦达定理得12212224343634k y y k y y k -ì+=ïï+íï=ï+î,故121223y y ky y +=-,在1:22BP y x =-中令114x x ky ==+得,()11114222y ky ky =+-=,故111(4,)2M ky ky +,直线22332:(1)412y BR y x ky +=--+-,令14x ky =+,得22112233()(3)3322(41)41232y y ky y ky ky ky +++=+--=-+-+,故21123()(3)32(4,32y ky N ky ky +++-+,要证M 为QN 中点,即证211123()(3)3232y ky y ky ky ++-+=+,即证()()()2112233(3)13322y ky k y ky ky ++=-+++,即证()()2121232302k k y y k y y æö-+-+=ç÷èø,将121223y y ky y +=-代入上式得,()()222121212232322032k k y y k k y y k k k k y y æö---=--+=ç÷èø,故M 为QN 中点.【点睛】定值问题常见方法:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理计算,并在计算推理的过程中消去变量,从而得到定值.19. 若数列{}()**1,,Nn a n k n k ££ÎÎN 满足{}0,1na Î,则称数列{}na 为k 项01-数列,由所有k 项01-数列组成集合k M .(1)若{}n a 是12项01-数列,当且仅当()*3,4n p p p =ΣN 时,0n a =,求数列{}(1)nn a -的所有项的和;(2)从集合k M 中任意取出两个不同数列{}{},n n a b ,记1ki ii X a b==-å.①若3k =,求随机变量X 的分布列与数学期望;②证明:()2kE X >.【答案】(1)0 (2)①分布列见解析,()127E X =;②证明见解析【解析】【分析】(1)根据题意得到()*3,4n p p p =ΣN 时,0n a =,当32n p =-和()*31,4n p p p =-ΣN 时,1n a =从而得到{}(1)n n a -的所有项的和;(2)①3M 中的数列有0,0,0;1,0,0;0,1,0;0,0,1;1,1,0;1,0,1;0,1,1;1,1,1;X 的取值有1,2,3,从8个数列中任选2个,共有28C 28=种情况,列举出1X =和3X =的情况数,得到()()1,3P X P X ==,进而求出()2P X =,得到分布列和数学期望;②X 的可能取值为:1,2,3,,k L ,根据数列中0的个数可得,集合k M 中元素的个数共有012C C C C 2k kk k k k ++++=L ,且()()2222C 2C A 1,2,,C 21k m kk m k k P X m m k ×====-L ,从而得到分布列,结合()1*1C C,1m m k k m k m m k --=Σ£N 求和,得到()11222122k k k k k k kE X --××=>=-.【小问1详解】因为{}n a 是12项01-数列,当且仅当()*3,4n p p p =ΣN 时,0n a =,所以当32n p =-和()*31,4n p p p =-ΣN 时,1n a =.设数列{}(1)nn a -的所有项的和为S ,则()24578101112457810111(1)(1)(1)(1)(1)(1)(1)S a a a a a a a a =-+-+-+-+-+-+-+-()2457810111(1)(1)(1)(1)(1)(1)(1)=-+-+-+-+-+-+-+-()()()()11111111=-+++-+-+++-0=所以数列{}(1)nn a -的所有项的和为0.【小问2详解】①若3k =,则3M 中的数列有0,0,0;1,0,0;0,1,0;0,0,1;1,1,0;1,0,1;0,1,1;1,1,1;1ki i i X a b ==-å,故X 的取值有1,2,3,从8个数列中任选2个,共有28C 28=种情况,其中当1X =时,若选择0,0,0,可从1,0,0;0,1,0;0,0,1任选1个,共有3种情况,若选择1,1,1,可以从1,1,0;1,0,1;0,1,1任选1个,共有3种情况,另外1,0,0和1,0,1,1,1,0两者之一满足要求,0,1,0和1,1,0,0,1,1两者之一满足要求,0,0,1和1,0,1,0,1,1两者之一满足要求,共有3322212++++=种情况,故()1231287P X ===,当3X =时,0,0,0和1,1,1满足要求,1,0,0和0,1,1满足要求,0,1,0和1,0,1满足要求,0,0,1和1,1,0满足要求,共有4种情况,故()413287P X ===,所以()31321777P X ==--=,其分布列为X123P373717则()331121237777E X =´+´+´=;②证明:因为数列{}{},n n a b 是从集合k M 中任意取出的两个数列,所以数列{}{},n n a b 为k 项01-数列,所以X 的可能取值为:1,2,3,,k L .根据数列中0的个数可得,集合k M 中元素的个数共有012C C C C 2k kk k k k ++++=L 个,当()1,2,,X m m k ==L 时,则数列{}{},n n a b 中有m 项取值不同,有k m -项取值相同,从k 项中选择m 项,{}n a 和{}n b 在m 项的某一项数字相同,其余k m -项,两者均在同一位置数字相反,由于1ki i i X a b ==-å,此问题为组合问题,故所有的情况会重复1次,故共有22C 2A m kk ×种情况,所以()()2222C 2C A 1,2,,C 21km kk m k k P X m m k ×====-L ,所以随机变量X 的分布列为:X123LL k P1C 21k k-2C 21k k-3C 21k k-LLC 21kk k-因为()()()()()()1*11!!C C ,1!!1!11!mm k k k m k m k k m m k m k m m k m ---×==×=Σ£-éù----ëûN ,所以()()12123C C C 1121C 2C 3C C 21212121kk kk k k k k kk k k k E X k k =´+´++´=++++----L L ()110121111122C C C C 212122k k k k k k k k k k k k k k -------××=++++=>=--L ,即()2kE X >.【点睛】关键点点睛:第三问,求出()()2222C 2C A 1,2,,C 21km kk m k k P X m m k ×====-L 为关键,其后求期望值时,需用到()1*1C C ,1m m k k m k m m k --=Σ£N ,是解题的另一个关键点.。

2020-2021高三数学上期中试卷附答案(2)

2020-2021高三数学上期中试卷附答案(2)

2020-2021高三数学上期中试卷附答案(2)一、选择题1.已知首项为正数的等差数列{}n a 的前n 项和为n S ,若1008a 和1009a 是方程2201720180x x --=的两根,则使0n S >成立的正整数n 的最大值是( )A .1008B .1009C .2016D .20172.设ABC ∆的三个内角, , A B C 成等差数列,sin A 、sin B 、sin C 成等比数列,则这个三角形的形状是 ( ) A .直角三角形B .等边三角形C .等腰直角三角形D .钝角三角形3.下列函数中,y 的最小值为4的是( )A .4y x x=+B.2y =C .4x x y e e -=+D .4sin (0)sin y x x xπ=+<< 4.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为( )A .0B .1C .2D .35.若正数,x y 满足20x y xy +-=,则32x y+的最大值为( ) A .13B .38C .37D .16.已知0,0x y >>,且91x y +=,则11x y+的最小值是 A .10B .12?C .14D .167.在ABC ∆中,角,,A B C 的对边分别是,,a b c , 2cos 22A b c c+=,则ABC ∆的形状为 A .直角三角形 B .等腰三角形或直角三角形 C .等腰直角三角形D .正三角形8.等差数列{}n a 满足120182019201820190,0,0a a a a a >+>⋅<,则使前n 项和0n S >成立的最大正整数n 是( ) A .2018B .2019C .4036D .40379.已知数列{an}的通项公式为an =2()3nn 则数列{an}中的最大项为( ) A .89B .23C .6481D .12524310.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,S 表示ABC V 的面积,若cos cos sin ,c B b C a A += ()2223S b a c =+-,则B ∠=A .90︒B .60︒C .45︒D .30︒11.已知{}n a 是等比数列,22a =,514a =,则12231n n a a a a a a +++⋅⋅⋅+=( ) A .()1614n--B .()1612n--C .()32123n -- D .()32143n -- 12.若01a <<,1b c >>,则( ) A .()1abc<B .c a cb a b->- C .11a a c b --< D .log log c b a a <二、填空题13.已知数列{}n a 的前n 项和为n S ,11a =,22a =,且对于任意1n >,*n N ∈,满足11n n S S +-+=2(1)n S +,则10S 的值为__________14.已知数列{}n a 的前n 项和为n S ,且221n S n n n N *=++∈,,求n a =.__________.15.在平面内,已知直线12l l P ,点A 是12,l l 之间的定点,点A 到12,l l 的距离分别为和,点是2l 上的一个动点,若AC AB ⊥,且AC 与1l 交于点C ,则ABC ∆面积的最小值为____. 16.设是定义在上恒不为零的函数,对任意,都有,若,,,则数列的前项和的取值范围是__________.17.在△ABC 中,2BC =,7AC =3B π=,则AB =______;△ABC 的面积是______.18.若等比数列{}n a 的各项均为正数,且510119122a a a a e +=,则1220ln ln ln a a a +++L 等于__________.19.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++等于______. 20.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞,若要测量如图所示的蓝洞的口径A ,B 两点间的距离,现在珊瑚群岛上取两点C ,D ,测得80CD =,135ADB ∠=︒,15BDC DCA ∠∠==︒,120ACB ∠=︒,则A ,B 两点的距离为________.三、解答题21.已知等差数列{}n a 满足12231()()()2(1)n n a a a a a a n n +++++++=+L (*n N ∈). (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列12n n a -⎧⎫⎨⎬⎩⎭的前n 项和n S . 22.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知()3cos cos 0a b C c B ++=. (1)求cos C 的值;(2)若6c =,ABC ∆的面积为32,求+a b 的值; 23.设数列的前项和为,且.(1)求数列的通项公式; (2)设,求数列的前项和.24.设a ,b ,c 均为正数,且a+b+c=1,证明: (Ⅰ)ab+bc+ac ≤13; (Ⅱ)2221a b c b c a++≥.25.已知数列{}n a 是等差数列,数列{}n b 是公比大于零的等比数列,且112a b ==,338a b ==.(1)求数列{}n a 和{}n b 的通项公式; (2)记n n b c a =,求数列{}n c 的前n 项和n S .26.已知等差数列{}n a 的前n 项和为n S ,且1250,15a a S +==,数列{}n b 满足:12b a =,且131(2).n n n n n nb a b a b ++++=(1)求数列{}n a 和{}n b 的通项公式;(2)若211(5)log n n n c a b +=+⋅,求数列{}n c 的 前n 项和.n T【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】依题意知100810091008100920170,20180a a a a +=>=-<,Q 数列的首项为正数,()()1201610081009100810092016201620160,0,022a a a a a a S +⨯+⨯∴>∴==,()12017201710092017201702a a S a+⨯==⨯<,∴使0n S >成立的正整数n 的最大值是2016,故选C.2.B解析:B 【解析】 【分析】先由ABC ∆的三个内角, , A B C 成等差数列,得出2,33B AC ππ=+=,又因为sin A 、sin B 、sin C 成等比数列,所以23sin sin sin 4B AC =⋅=,整理计算即可得出答案.【详解】因为ABC ∆的三个内角, , A B C 成等差数列,所以2,33B AC ππ=+=, 又因为sin A 、sin B 、sin C 成等比数列, 所以23sin sin sin 4B AC =⋅=所以222sin sin sin sin cos sin cos 333A A A A A πππ⎛⎫⎛⎫⋅-=⋅- ⎪ ⎪⎝⎭⎝⎭21111132sin 2cos 2sin 22442344A A A A A π⎛⎫=+=-+=-+= ⎪⎝⎭ 即sin 213A π⎛⎫-= ⎪⎝⎭又因为203A π<< 所以3A π=故选B【点睛】本题考查数列与三角函数的综合,关键在于求得2,33B AC ππ=+=,再利用三角公式转化,属于中档题.3.C解析:C 【解析】 【分析】由基本不等式求最值的规则:“一正,二定,三相等”,对选项逐一验证即可. 【详解】选项A 错误,x Q 可能为负数,没有最小值;选项B错误,化简可得2y ⎫=,=,即21x =-,显然没有实数满足21x =-;选项D 错误,由基本不等式可得取等号的条件为sin 2x =, 但由三角函数的值域可知sin 1x ≤; 选项C 正确,由基本不等式可得当2x e =, 即ln 2x =时,4xxy e e -=+取最小值4,故选C.【点睛】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).4.D解析:D 【解析】如图,作出不等式组表示的可行域,则目标函数z x y =+经过(3,0)A 时z 取得最大值,故max 303z =+=,故选D .点睛:本题主要考查线性规划问题,首先由不等式组作出相应的可行域,并明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数的最值取法或值域范围.5.A解析:A 【解析】 【分析】根据条件可得出2x >,212y x =+-,从而33222(2)52x y x x =+-++-,再根据基本不等式可得出3123x y ≤+,则32x y +的最大值为13.【详解】0x Q >,0y >,20x y xy +-=,2122x y x x ∴==+--,0x >, 333222212(2)522x y x x x x ∴==+++-++--,212(2)5(2)5922x x x x -++≥-⋅=--Q , 当且仅当122x x -=-,即3x =时取等号, 31232(2)52x x ∴≤-++-,即3123x y ≤+,32x y ∴+的最大值为13. 故选:A. 【点睛】本题考查了利用基本不等式求最值的方法,注意说明等号成立的条件,考查了计算和推理能力,属于中档题.6.D解析:D 【解析】 【分析】通过常数代换后,应用基本不等式求最值. 【详解】∵x >0,y >0,且9x+y=1,∴()111199911016y x x y x y x y x y ⎛⎫+=+⋅+=+++≥+= ⎪⎝⎭当且仅当9y x x y =时成立,即11,124x y ==时取等号. 故选D. 【点睛】本题考查了应用基本不等式求最值;关键是注意“1”的整体代换和几个“=”必须保证同时成立.7.A解析:A 【解析】 【分析】先根据二倍角公式化简,再根据正弦定理化角,最后根据角的关系判断选择. 【详解】 因为2cos22A b c c+=,所以1cosA 22b cc ++=,()ccosA b,sinCcosA sinB sin A C ,sinAcosC 0===+=,因此cosC 0C 2π==,,选A.【点睛】本题考查二倍角公式以及正弦定理,考查基本分析转化能力,属基础题.8.C解析:C 【解析】 【分析】根据等差数列前n 项和公式,结合已知条件列不等式组,进而求得使前n 项和0n S >成立的最大正整数n . 【详解】由于等差数列{}n a 满足120182019201820190,0,0a a a a a >+>⋅<,所以0d <,且2018201900a a >⎧⎨<⎩,所以()1403640362018201914037201940374036201802240374037022a a S a a a a a S +⎧=⨯=+⨯>⎪⎪⎨+⎪=⨯=⨯<⎪⎩,所以使前n 项和0n S >成立的最大正整数n 是4036.故选:C 【点睛】本小题主要考查等差数列前n 项和公式,考查等差数列的性质,属于基础题.9.A解析:A 【解析】解法一 a n +1-a n =(n +1)n +1-nn=·n,当n <2时,a n +1-a n >0,即a n +1>a n ; 当n =2时,a n +1-a n =0,即a n +1=a n ; 当n >2时,a n +1-a n <0,即a n +1<a n . 所以a 1<a 2=a 3,a 3>a 4>a 5>…>a n ,所以数列{a n }中的最大项为a 2或a 3,且a 2=a 3=2×2=.故选A.解法二 ==,令>1,解得n <2;令=1,解得n =2;令<1,解得n >2.又a n >0,故a 1<a 2=a 3,a 3>a 4>a 5>…>a n ,所以数列{a n }中的最大项为a 2或a 3,且a 2=a 3=2×2=.故选A.10.D解析:D 【解析】 【分析】由正弦定理,两角和的正弦函数公式化简已知等式可得sin A =1,即A =900,由余弦定理、三角形面积公式可求角C ,从而得到B 的值. 【详解】由正弦定理及cos cos sin ,c B b C a A +=得2sin cos sin cos sin ,C B B C A +=()2sin sin sin 1C B A A ⇒+=⇒=,因为000180A <<,所以090A =;由余弦定理、三角形面积公式及)22234S b a c =+-,得13sin 2cos 24ab C ab C =, 整理得tan 3C =,又00090C <<,所以060C =,故030B =.故选D 【点睛】本题考查正、余弦定理、两角和的正弦公式、三角形面积公式在解三角形中的综合应用,考查计算能力和转化思想,属于中档题.11.D解析:D 【解析】 【分析】 先求出31()2n n a -=,再求出2511()2n n n a a -+=,即得解.【详解】 由题得35211,82a q q a ==∴=. 所以2232112()()22n n n n a a q---==⨯=,所以32251111()()()222n n n n n a a ---+=⋅=. 所以1114n n n n a a a a +-=,所以数列1{}n n a a +是一个等比数列. 所以12231n n a a a a a a +++⋅⋅⋅+=18[1()]4114n --=()32143n --. 故选:D 【点睛】本题主要考查等比数列通项的求法和前n 项和的计算,意在考查学生对这些知识的理解掌握水平.12.D解析:D 【解析】 【分析】运用不等式对四个选项逐一分析 【详解】对于A ,1b c >>Q ,1b c ∴>,01a <<Q ,则1ab c ⎛⎫> ⎪⎝⎭,故错误 对于B ,若c a cb a b->-,则bc ab cb ca ->-,即()0a c b ->,这与1b c >>矛盾,故错误对于C ,01a <<Q ,10a ∴-<,1b c >>Q ,则11a a c b -->,故错误对于D ,1b c >>Q ,c b log a log a ∴<,故正确 故选D 【点睛】本题考查了不等式的性质,由未知数的范围确定结果,属于基础题.二、填空题13.91【解析】【分析】由Sn+1+Sn ﹣1=2(Sn+1)可得Sn+1﹣Sn =Sn ﹣Sn ﹣1+2可得an+1﹣an =2利用等差数列的通项公式与求和公式即可得出【详解】∵对于任意n >1n∈N*满足Sn+解析:91 【解析】 【分析】由S n+1+S n ﹣1=2(S n +1),可得S n+1﹣S n =S n ﹣S n ﹣1+2,可得a n+1﹣a n =2.利用等差数列的通项公式与求和公式即可得出. 【详解】∵对于任意n >1,n∈N *,满足S n+1+S n ﹣1=2(S n +1), ∴n≥2时,S n+1﹣S n =S n ﹣S n ﹣1+2, ∴a n+1﹣a n =2.∴数列{a n }在n≥2时是等差数列,公差为2. 则10S =1+9×29822⨯+⨯=91. 故答案为91 【点睛】本题考查了数列递推关系、等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.14.【解析】分析:根据可以求出通项公式;判断与是否相等从而确定的表达式详解:根据递推公式可得由通项公式与求和公式的关系可得代入化简得经检验当时所以所以点睛:本题考查了利用递推公式求通项公式的方法关键是最解析:4,141,2n n a n n =⎧=⎨-≥⎩.【解析】分析:根据1n n n a S S -=-可以求出通项公式n a ;判断1S 与1a 是否相等,从而确定n a 的表达式。

江苏省徐州市2024-2025学年高三上学期11月期中抽测数学试题(含解析)

江苏省徐州市2024-2025学年高三上学期11月期中抽测数学试题(含解析)

2024—2025学年度第一学期高三年级期中抽测数学试题1.答题前,考生务必将自己的姓名、准考证号等填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将各答案写在答题卡上写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,则( )A. B. C. D.2.复数的虚部为( )A.1B.C.D.3.若向量,则向量在向量上的投影向量为( )A. B. C. D.4.已知圆锥的母线长为13,侧面积为,则该圆锥的内切球的表面积为( )A.B. C. D.5.等比数列的各项均为正数,若,则( )A.588B.448C.896D.5486.在直角坐标系中,已知直线与圆相交于两点,则的面积的最大值为( )A.1C.27.已知,则( )A.B. C. D.{}{}230,3,1,0,1,2,3A xx x B =-≤=--∣A B ⋂={}1,2,3{}0,1,2,3{}3,1--{}3i 11i-+1-i i-()()2,1,3,4a b == ab 68,55⎛⎫ ⎪⎝⎭34,55⎛⎫ ⎪⎝⎭34,55⎛⎫- ⎪⎝⎭65π100π94000π81400π91000π81{}n a 1234327,2a a a a a a ++==+789a a a ++=xOy 1y kx =+224x y +=,A B AOB ()()11sin ,sin 23αβαβ+=-=22cos cos αβ-=136136-1616-8.已知定义在上的函数满足,且,则( )A.B.C.是增函数D.是减函数二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数,则( )A.的图象关于点对称B.的图象可由的图象向左平移个单位长度得到C.在区间单调递减D.当时,的值域为10.已知正方体的棱长为2,点分别是棱的中点,则( )A.直线与直线的夹角为B.直线与平面C.点到平面D.三棱锥11.如图,由函数与的部分图象可得一条封闭曲线,则()()0,∞+()f x ()()()f xy xf y yf x =+()e e f =()22e 1ef =()1010e 10e f =()f x ()f x x()π2sin 23f x x ⎛⎫=+ ⎪⎝⎭()f x π,03⎛⎫⎪⎝⎭()f x ()2sin2g x x =π3()f x ππ,122⎛⎫⎪⎝⎭π0,2x ⎛⎫∈ ⎪⎝⎭()f x 2⎤⎦1111ABCD A B C D -,M N 111,CC C D MN 1AD 60MN 11AB D A 1B MN 11C B MN -e e 1x y =-+()ln e 1y x =+-ΓA.有对称轴B.的弦长的最大值为C.直线被D.的面积大于三、填空题:本题共3小题,每小题5分,共15分.12.已知随机变量服从二项分布,若,则__________.13.在四面体中,是正三角形,是等腰直角三角形,,平面平面,点在棱上,使得四面体与四面体的体积之比为,则二面角的余弦值为__________.14.已知双曲线上所有点绕原点逆时针旋转角所得曲线的方程为,则的虚轴长为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)下表提供了某厂进行技术改造后生产产品过程中记录的产能(单位:)与相应的生产能耗(单位:标准煤)的几组对应数据:3456标准煤3.5455.5(1)求关于的经验回归方程;(2)已知该厂技术改造前产品的生产能耗为标准煤,试根据(1)中求出的经验回经验回归方程,预测该厂技术改造后产品的生产能耗比技术改造前降低了多少标准煤.参考公式:ΓΓx y t +=Γ)e 2-Γ2e 4-ξ()10,B p ()3111E ξ+=p =ABCD ABC ACD DA DC =ACD ⊥ABC E BD ACDE ABCD 1:2D AC E--()2222:10,0x y C a b a b-=>>C θ2268x y xy ++=C x t y t /tx /t y y x ˆˆˆy bx a =+100t 90t 100t t 1221ˆ()ˆˆ.ni i i ni i x y nxy b x n x ay bx ==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑16.(15分)已知椭圆,短轴的一个端点与两个焦点构成的三角形的面积为4.(1)求的方程;(2)设直线与交于两点,点,求.17.(15分)已知数列满足为常数.(1)若,求;(2)若的各项均为正数,证明:.18.(17分)在中,角的对边分别为,且.(1)求;(2)点分别在边上,且平分平分,.①求证:;②求.19.(17分)设定义在上的函数的导函数为.如果存在实数和函数,使得,其中对任意实数恒成立,则称函数具有性质.(1)求证:函数具有性质;(2)已知函数具有性质,给定实数,,其中.证明:;(3)对于函数和点,令,若点满足在处取得最小值,则称是的“点”.已知函数具有性质,点()2222:10x y C a b a b +=>>C 22y x =+C ,A B 11,04M ⎛⎫- ⎪⎝⎭MA MB ⋅ {}n a (*111,n nd n d a a +-=∈N )1211,3a a ==11nk k k a a +=∑{}n a 212n n n a a a +++≤ABC ,,A B C ,,a b c ()1cos sin b C B +=C ,P Q ,AC AB BP ,ABC CQ ∠ACB ∠BC BQ PB PC +=+AB APBC PC=ABC ∠R ()f x ()f x 'k ()x ϕ()()()244f x x kx x k ϕ=-+'()0x ϕ>x ()f x ()W k ()3212413f x x x x =-++()1W ()g x ()2W ()22121212,,sincos x x x x x x αθθ<=+2212cos sin x x βθθ=+θ∈R ()()()()12g g g x g x αβ-≤-()h x (),P a b ()()22()()L x x a h x b =-+-()()00,Q x h x ()L x 0x x =Q P h ()h x ()W k.若对任意的,都存在曲线上的一点,使得既是的“点”,又是的“点”,求的取值范围.()()()()()()121,,1,P t h t t P t h t t ϕϕ-++-t ∈R ()y h x =Q Q 1P h 2P h k2024—2025学年度第一学期高三年级期中抽测数学试题参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【解析】,,选B.2.【答案】A 【解析】,虚部为1,选A.3.【答案】A【解析】在上的投影向量,选A.4.【答案】C【解析】,内切球半径,选C.5.【答案】B【解析】,则舍或2,选B.6.【答案】D 【解析】D.7.【答案】D【解析】,选D.8.【答案】B【解析】,则,则{}03A xx =≤≤∣{}0,1,2,3A B ⋂=()()1i 1i 1i 1i i 1i 1i 22-+--+-+++===+a b()210683,4,2555||a b b b ⋅⎛⎫== ⎪⎝⎭π13π65π,5,12rl r r h ==∴==1121021021313103R ⨯⨯⨯==++2100400π4π4π99S R ==⋅=4322a a a =+222,20,1q q q q q =+--==-()6789123764448a a a a a a q ++=++=⨯=111,22AOB d AB S AB d =≤==⋅=⋅ =≤()()()()2211111sin ,sin ,cos cos sin sin 23236αβαβαβαβαβ+=-=-=-+-=-⨯=-()()()f xy xf y yf x =+()()()(),ln f xy f y f x f x x xyyx x=+=,即对.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.【答案】AC 【解析】关于对称,A 对.向左平移个单位变为错.,则的一个单调减区间而在单调递减,C 对.,则.D 错.选AC.10.【答案】ABD【解析】与的夹角为与的夹角即为正三角形,,A 对.面与平面,B 对.设平面的法向量()()1010ln ,ee10f x x x f ==⋅()1010e 10,B ef =()π0,3f f x ⎛⎫=⎪⎝⎭π,03⎛⎫⎪⎝⎭()g x π3()π2π2sin 2,B 33g x x f x ⎛⎫⎛⎫+=+≠ ⎪ ⎪⎝⎭⎝⎭ππ3π2232x <+<()π7π,1212x f x <<∴π7π,1212⎛⎫⎪⎝⎭()πππ7π,,,1221212f x ⎛⎫⎛⎫⊂∴⎪ ⎪⎝⎭⎝⎭ππ,122⎛⎫⎪⎝⎭π02x <<ππ4ππ02π,2,2sin 223333x x x ⎛⎫<<<+<<+≤ ⎪⎝⎭MN ∥1,CD MN 1AD 1CD 1AD 11,AD C AD C ∠ 160AD C ∠∴= 1CA ⊥()()111111,2,2,2,0,2,2,cos ,AB D CA D C CA D C =-=-==MN ∴11AB D 1B MN ()100,,,,200n MN y z n x y z x z n B M ⎧⋅=-+=⎧⎪=∴⎨⎨--=⋅=⎩⎪⎩不放设,则错.对于D ,的外接圆是以为直径的圆上,设圆心为D 对.11.【答案】ACD【解析】由的反函数为,两者关于对称,A 正确.对于B ,,令在上单调递减;上单调递增,注意掉在和有一个零点,另一个零点为,B 错.对于与曲线对称轴垂直,如图,只需考察曲线上到距离大最大值即可,找出过与曲线相切且与平行的点即可,令,令,此时到的距离直线被正确.1x =()182,2,1,2,2,,C 3AB n z y n d n ⋅=-=-=--==1C MN MN ,P MN =22222132,,12(2)2OP R R R OP R ⎧+=⎪⎪∴==⎨⎪-+>⎪⎩()e e 1e e 1,ln e 1,e e 1xxxy y x y y =-+⇒=+-∴=+-∴=-+()ln e 1y x =+-y x =e e 1e e 1x x y x y x⎧=-+⇒-=-⎨=⎩()()e e 1,e 1x x h x x h x =+'--=-()h x (),0∞-()0,∞+()()()()120,12e 010,e h h h h x ->-=+-<=∴()2,1--0x ()()001,1,1,,A B x y ∴)01AB x ∴=->∴C,x y t +=ΓAB e e 1x y =-+P y x =P AB P ()e e 1xf x =-+()e 10x f x x ==⇒='()000,2e ,P P -y x =d =∴x y t +=Γ)e 2,C -对于D ,ВD 正确,选:ACD.三、填空题:本题共3小题,每小题5分,共15分.12.【答案】【解析】13.【答案】【解析】设,则,取中点为中点平面平面二面角为.14.【答案】4【解析】设在曲线上,也在曲线上且也在曲线上,曲线的两条对称轴分别为()()()()0Γ0122e 2e 212e 22P AB A B S S x x x ∴>=⋅-⋅-=-->- ( )021,x -<<-∴13()()110,,10,313130111,3B p E p E E p p ξξξξ~=+=+=+=∴=122DA DC ==AC =AC 1,2B ACD E ACD V BF DF BD E V --====∴BD ACD ⊥,ABC BD DE EF ∴===D AC E --1,cos 2DFE DFE ∠∠∴=(),P x y 2268x y xy ++=(),P y x ∴'2268x y xy ++=(),P y x ''--∴2268x y xy ++=y x=±而与曲线没有交点,为曲线实轴所在的直线联立实轴端点为,的虚轴长为4.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(1)(2),即改造后预测生产能耗为.预测该厂改造后100t产品的生产能耗比技术改造前降低了标准煤.16.【解析】(1)由题意,椭圆:.(2),解得或.17.【解析】(1).∴y x=-y x∴=221,68y xxx y xy=⎧⇒=±∴⎨++=⎩()()1,1,1,1--a∴=2c b⇒==C∴44114.5, 4.5,84.5,4 3.5i i i ii ix y x y x y xy=====-=∑∑4213.5ˆˆ45,0.7, 4.50.7 4.5 1.355iix x b a=-=∴===-⨯=∑0.7 1.5ˆ3.y x∴=+100,71.35x y==71.35t9071.3518.65-=∴18.65t222124,222ca ab c bca b c⎧=⎪⎧⎪=⎪⎪⋅=∴=⎨⎨⎪⎪=⎩=+⎪⎪⎩22184x y+=2222184y xx y=+⎧⎪⎨+=⎪⎩2xy=⎧⎨=⎩()1616149,0,2,,14999xA By⎧=-⎪⎪⎛⎫--⎨ ⎪⎝⎭⎪=-⎪⎩113514113514637,2,24369436914416MA MB⎛⎫⎛⎫⋅=⋅-=⨯-⨯=-=-⎪ ⎪⎝⎭⎝⎭()12111111,,2,121213n n na a n na a a+==∴-=∴=+-=-1111111,21(21)(21)22121n nnk kan k k k k==⎛⎫∴=∴=-⎪--+-+⎝⎭∑∑11111111112335212122121nn n n n⎛⎫⎛⎫=⋅-+-++-=-=⎪ ⎪-+++⎝⎭⎝⎭(2)整理得显然成立,.18.【解析】(1).(2)①证明:在和中分别使用正弦定理(2)同理()()1111111,0,0,11n n n d a d a a a n d a =+->≥∴=+-()()21111211111211n n n a a a nd n d n d a a a +++≤⇔≤+++-++2221111nd nd d a a ⎛⎫⎛⎫+≥+- ⎪ ⎪⎝⎭⎝⎭212n n n a a a +++∴≤()sin 1cos sin ,sin 0B C C B B +=> ππcos 12sin 1,63C C C C ⎛⎫-=⇒-== ⎪⎝⎭ABP BCP sin 4sin ,sin 3sin ABAP AB AP BC PC BC PC ∠θ∠θ⎧=⎪⎪⇒⇒=⎨⎪=⎪⎩①①②②()sin60sin sin60sin sin 60PB PC BC PB PCθθθ+===++ ()()1sin30sin 230sin 2302BC BQ BC BQθθ+==+++ ()()1sin 2302sin 230BC BQ PB PC θθ+++=+⇒=+19.【解析】(1)取,则具有性质.(2)具有性质函数使得时对恒成立在上单调递增,当且且另一方面,同理(3)设,,()1260sin 302θθ⇒+=<<+()12cos 602θ∴+==- ()()()22cos 3011cos 602cos 602θθθ-∴+=⇒--=()()()2cos 30sin 602602θθθ∴-+-=- ()()2cos 302cos 902θθ⇒-=- 30290,40,80ABC θθθ∠-=-∴==()()2244144f x x x x x '=-+=⋅-+()1x ϕ=()()()()244,f x x x x f x ϕ=⋅-+∴'()1W ()g x ()2,W ∴∃()x ϕ()()()2248g x x x x ϕ=-+'()()22240x x x ϕ=⋅-+>x ∀∈R ()g x ∴R ()()1212,x x g x g x <∴< 2222222111sin cos ,cos sin x x x x x x αθθβθθ≤+=≥+=()()()()()()()()2121,,g g x g g x g g g x g x αβαβ∴≤≥∴-≤-22111sin cos x x x αθθ≥+=2x β≤()()()()()()()()1212,,g g x g g x g g g x g x αβαβ∴≥≤∴-≥-()()()()()()2112g g g x g x g x g x αβ∴-≤-=-()()()()221(1)[]L x x t h x h t t ϕ=-++--()()()()222(1)[]L x x t h x h t t ϕ=--+-+()()()()()()1212L x x t h x h t t h x ϕ⎡⎤=-++--⎦'⎣'对,都存在曲线上的一点,使得既是的点又是的点设既是,也是的最小值点,两函数定义域为也为两函数极小值点,①,②,①-②具有性质恒成立故恒成立综上:的取值范围为.()()()()()()2212L x x t h x h t t h x ϕ⎡⎤=--+-+⋅⎦'⎣' t ∀∈R ()y h x =Q Q 1P h 2P h ()000,,P x y x ∴()1L x ()2L x 0,x ∴R ()()10200L x L x ∴==''()()()()()0002120x t h x h x h t t ϕ⎡⎤⇒-++--=⎣⎦'()()()()()0002120x t h x h x h t t ϕ⎡⎤---+⎣'+=⎦()()()()()00044010h x t h x t h x ϕϕ⇒-⋅='⇒'⋅'⇒=>()h x ()()()0,00W k t h x ϕ∴>⇒>'2440kx x k -+>2116160k k k >⎧⇒⇒>⎨-<⎩k ()1,∞+。

新高考高三上学期期中考试数学试题(附参考答案及评分标准)

新高考高三上学期期中考试数学试题(附参考答案及评分标准)
是各项为正数的等差数列,公差为d,对任意的
*

是和
的等
a
nN
b
n
a
a
n1
n
n
比中项.
_________________.
四、解答题:本大题共6小题,共82分。解答应写出文字说明、证明过程或演算步骤。
()设
,求证:
1

c是等差数列;
cb
n
2
n1
b
2
nN
*
n
n
18.(本小题满分

12)
1
1
()若,1
2
d
答案A
B
A
A
A
D
C
B
B
ABCACDABC
23x5x
2
二、填空题
A

·············································14
3
3
3
2sinCsinBsinAcosB
513
8
2
6
1;
解:()由正弦定理得:
20.
1
14.
15.
16.
17.
13
sin
BA
sincos
B
化简得:2sinCcosAsinBcosAsinAcosB
,则ab
bc的值可能为
12.
13.
A.2
B.33

.2
D
C0
《数书九章》是中国南宋时期杰出数学家秦九韶的著作,全书十八卷共八十一个问题,
分为九类,每类九个问题,《数书九章》中记录了秦九昭的许多创造性成就,其中在卷

山东高三高中数学期中考试带答案解析

山东高三高中数学期中考试带答案解析

山东高三高中数学期中考试班级:___________ 姓名:___________ 分数:___________一、选择题1.已知集合或,集合,则()A.B.C.D.2.已知复数为虚数单位,则()A.B.C.D.3.已知都是第一象限角,那么是的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件4.下列函数中,既是奇函数,又在定义域上单调递增的是( )A.B.C.D.5.已知,则()A.B.C.D.6.函数的图像大致是()A.B.C.D.7.在中,若,则()A.B.C.D.8.我国古代名著《庄子·天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截去一半,永远都截不完.现将该木棍依次规则截取,如图所示的程序框图的功能就是计算截取天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是()A.①②③B.①②③C.①②③D.①②③9.已知二次函数的图像如图所示,则它与轴所围成封闭图形的面积为()A.B.C.D.10.函数在上单调递减,且为奇函数.若,则满足的的取值范围是()A.B.C.D.11.已知函数为的零点,为图像的对称轴,且在上单调,则的最大值为()A.B.C.D.12.已知定义在上的函数满足,且,则方程在区间上的所有实根之和为()A.B.C.D.二、填空题1.已知单位向量满足,则与的夹角是__________.2.已知,,则__________.3.将函数的图像向右平移个周期后,所得图像对应的函数为__________.4.已知且,函数存在最小值,则的取值范围为__________.三、解答题1.的内角所对的边分别为,向量.(1)若,求角的大小;(2)若,求的值.2.某花店每天以每枝元的价格从农场购进若干枝玫瑰花,然后以每枝元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(1)若花店一天购进枝玫瑰花,求当天的利润(单位:元)关于当天需求量(单位:枝,)的函数解析式.(2)花店记录了天玫瑰花的日需求量(单位:枝),整理得下表:日需求量假设花店在这天内每天购进枝玫瑰花,求这天的日利润(单位:元)的平均数.3.已知的内角的对边分别为,且.(1)求角的值;(2)若的面积为,求的周长.4.已知函数.(1)求函数的最值及对称轴方程;(2)若,求函数的取值范围.5.已知函数,其中为自然对数的底数.(1)当时,求函数的极值;(2)当时,讨论函数的定义域内的零点个数.6.已知函数.(1)令函数.若函数在上单调递增,求的取值范围;(2)若函数存在两个极值点,且,证明:.山东高三高中数学期中考试答案及解析一、选择题1.已知集合或,集合,则()A.B.C.D.【答案】D【解析】因为集合或,集合,所以,或,所以可得,,故选D.2.已知复数为虚数单位,则()A.B.C.D.【答案】B【解析】复数,,故选B.3.已知都是第一象限角,那么是的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】D【解析】当,,所以不是的充分条件,同理,当时,所以不是的必要条件,即是的既不充分又不必要条件,选D.4.下列函数中,既是奇函数,又在定义域上单调递增的是( )A.B.C.D.【答案】A【解析】是奇函数又在定义域上单调递增;在定义域上单调递增但是非奇非偶函数;是奇函数但在和上单调递增, 在定义域上不具单调性;是奇函数又在定义域上有增有减,所以选A.5.已知,则()A.B.C.D.【答案】C【解析】,幂函数在上递增,指数函数在上递增递减,,,即,故选C.6.函数的图像大致是()A.B.C.D.【答案】A【解析】因为函数是非奇非偶的,故可排除选项,对于选项当趋向于时,趋向于,故可排除选项,故选A.【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.7.在中,若,则()A.B.C.D.【答案】C【解析】由得,,所以,故选C.8.我国古代名著《庄子·天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截去一半,永远都截不完.现将该木棍依次规则截取,如图所示的程序框图的功能就是计算截取天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是()A.①②③B.①②③C.①②③D.①②③【答案】B【解析】程序运行过程中,各变量值如图所示,第一次循环,;第二次循环,;第三次循环,依次类推,第七次循环:,此时不满足条件,退出循环,其中判断框内①应填入的条件是:?执行框②应填入,③应填入:,故选B.9.已知二次函数的图像如图所示,则它与轴所围成封闭图形的面积为()A.B.C.D.【答案】B【解析】设,又点在函数的图象上,则,由定积分几何意义,围成图形的面积为,故选B.10.函数在上单调递减,且为奇函数.若,则满足的的取值范围是()A.B.C.D.【答案】C【解析】函数为奇函数,若,则,又函数在单调递减,,,解得满足的的取值范围是,故选C.11.已知函数为的零点,为图像的对称轴,且在上单调,则的最大值为()A.B.C.D.【答案】D【解析】为的零点,为图象的对称轴,即,即为正奇数,在,则,即,解得,当时,,,此时在不单调,不满足题意,当时,,,此时在单调,满足题意,故的最大值为,故选D.12.已知定义在上的函数满足,且,则方程在区间上的所有实根之和为()A.B.C.D.【答案】C【解析】,且,,又,当时,上述两个函数都是关于对称,画出两函数图象,如图,由图象可得两函数图象在区间上有三个交点,所以方程在区间上的实根有个,满足满足,方程在区间上的所有实根之和为,故选C.【方法点睛】本题主要考查分段函数的图象与性质以及函数与方程思想,属于难题. 函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.二、填空题1.已知单位向量满足,则与的夹角是__________.【答案】【解析】非零单位向量满足,则,,设与的夹角是的夹角是,,故答案为.【方法点睛】本题主要考查向量的模、夹角及平面向量数量积公式,属于中档题. 平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).2.已知,,则__________.【答案】【解析】,解得故答案为:3.将函数的图像向右平移个周期后,所得图像对应的函数为__________.【答案】【解析】由于函数的周期为,故个周期即,故把函数的图象向右平移个周期,故把函数的图象向右平移个单位,所得图象对应的函数的解析式为,故答案为.4.已知且,函数存在最小值,则的取值范围为__________.【答案】【解析】当时,,当且仅当时,取得最小值;当时,若,则,显然不满足题意,若,要使存在最小值,必有,解得,即,,由,可得,可得,故答案为.三、解答题1.的内角所对的边分别为,向量.(1)若,求角的大小;(2)若,求的值.【答案】(1);(2).【解析】(1)由,可得,从而可得结果;(2)由为,可得,所以,再由正弦定理可得结果.试题解析:(1)由已知,所以,,所以,解得,又因为,所以.(2)因为,所以,则,所以,因为,则,解得.【方法点睛】以三角形和平面向量为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.2.某花店每天以每枝元的价格从农场购进若干枝玫瑰花,然后以每枝元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(1)若花店一天购进枝玫瑰花,求当天的利润(单位:元)关于当天需求量(单位:枝,)的函数解析式.(2)花店记录了天玫瑰花的日需求量(单位:枝),整理得下表:日需求量频数假设花店在这天内每天购进枝玫瑰花,求这天的日利润(单位:元)的平均数.【答案】(1);(2).【解析】(1)根据卖出一枝可得利润元,卖不出一枝可得赔本元,以花店一天购进枝玫瑰花为分点即可建立分段函数;(2)根据表格中的数据,讨论需求量得到这天的日利润的平均数,利用天的销售量除以即可得到结论.试题解析:(1)当日需求量时,利润,当日需求量时,利润,所以.(2)当时,利润;当时,利润;当时,利润;当时,利润;当时,利润;当时,利润;当时,利润;所以日利润的平均数(元).3.已知的内角的对边分别为,且.(1)求角的值;(2)若的面积为,求的周长.【答案】(1);(2).【解析】(1)由根据正弦定理,两角和的正弦函数公式,三角形内角和定理化简已知可得,结合范围,解得,可得的值;(2)由三角形的面积公式可求,利用余弦定理解得的值,即可得解的周长.试题解析:(1)由已知,化简得,因为,解得,因为,所以.(2)由已知,所以,又因为,解得,所以,解得,所以的周长为.4.已知函数.(1)求函数的最值及对称轴方程;(2)若,求函数的取值范围.【答案】(1)最大值为,最小值为,;(2).【解析】(1)根据二倍角的正弦公式、二倍角的余弦公式以及两角差的正弦公式可将函数解析式化为,利用三角函数的有界性求解函数的最值,令,可得对称轴方程;(2)由,得,所以,则.试题解析:(1)由已知,,因为,所以,则的最大值为,最小值为.令,解得,,(2)因为,所以所以,则.5.已知函数,其中为自然对数的底数.(1)当时,求函数的极值;(2)当时,讨论函数的定义域内的零点个数.【答案】(1)极大值是;(2)无零点.【解析】(1)求出,求得的范围,可得函数增区间,求得的范围,可得函数的减区间,根据单调性可得函数的极值;(2)利用导数研究函数的单调性,可证明函数恒成立,即证明在定义域内无零点.试题解析:(1)当时,,当时,,所以,则单调增,当时,,所以,则单调减,所以是的极大值点,极大值是.(2)由已知,当时,,所以,令,令,在上递减,又,在上有唯一的零点,,当时,则,所以在内单调递增;当时,则,所以在内单调递减则.故当时,,故,所以当时,在定义域内无零点.【方法点睛】本题主要考查利用导数判断函数的单调性、函数的极值以及函数零点问题,属于难题.求函数极值的步骤:(1) 确定函数的定义域;(2) 求导数;(3) 解方程求出函数定义域内的所有根;(4) 列表检查在的根左右两侧值的符号,如果左正右负(左增右减),那么在处取极大值,如果左负右正(左减右增),那么在处取极小值.6.已知函数.(1)令函数.若函数在上单调递增,求的取值范围;(2)若函数存在两个极值点,且,证明:.【答案】(1);(2)证明见解析.【解析】(1)函数在上单调递增,等价于恒成立,得,则;(2)函数有两个极值点,所以在上有两个不等的实根,可求得,结合韦达定理可得,利用导数研究函数的单调性,证明函数的最小值大于零即可.试题解析:(1)由已知,所以所以当时,恒成立,即…(*)因为,则由(*)得,则.(2)由已知因为函数有两个极值点,所以在上有两个不等的实根,即在上有两个不等的实根,令,对称轴为则,解得且则,同理可得.令则因为,所以,又有,所以,则在上单调递增,所以,即,所以.。

上海市七宝中学2024-2025学年高三上学期期中考试数学试题(含答案)

上海市七宝中学2024-2025学年高三上学期期中考试数学试题(含答案)

七宝中学2024-2025学年高三上学期期中考试数学试题一、填空题(第1-6题每题4分,第7-12题每题5分,满分54分)1.函数的定义域为______.2.计算______.3.已知是1与9的等比中项,则正实数______.4.在的展开式中,的系数为______(用数字作答).5.在复平面内,复数对应的点位于第______象限。

6.已知,则______.7.已知集合,其中可以相同,用列举法表示集合中最小的4个元素所构成的集合为______.8.已知是函数的导函数,若函数的图象大致如图所示,则的极大值点为______(从中选择作答).9.已知函数.在中,,且,则______.10.如图,线段相交于,且长度构成集合,则的取值个数为______.11.抛物线的焦点为,准线为是拋物线上的两个动点,且满足.设线段y =(4log =a a =4(x -2x 2ii-π1sin 42θ⎛⎫+= ⎪⎝⎭πcos 4θ⎛⎫-= ⎪⎝⎭{}22,,A a a x y x y ==+∈N ,x y A ()f x '()f x ()f x y e '=()f x ,,,a b c d ()22cos 2xf x x =+ABC △()()f A f B =a b ≠C ∠=,AD BC O ,,,AB AD BC CD {}1,3,5,,90x ABO DCO ∠=∠=︒x 24y x =F ,,l A B π3AFB ∠=AB的中点在准线上的投影为,则的最大值是______.12.平面上到两个定点距离之比为常数的动点的轨迹为圆,且圆心在两定点所确定的直线上,结合以上知识,请尝试解决如下问题:已知满足,则的取值范围为______.二、选择题(本大题共4题,满分20分)13.已知是非零实数,则下列不等式中恒成立的是( )A .B .C .D14.已知直线,动直线,则下列结论正确的为()A .不存在,使得的倾斜角为B .对任意的与都不垂直C .存在,使得与重合D .对任意的与都有公共点15.一组学生站成一排.若任意相邻的3人中都至少有2名男生,且任意相邻的5人中都至多有3名男生,则这组学生人数的最大值是( )A .5B .6C .7D .816.若,有限数列的前项和为,且对一切都成立.给出下列两个命题:①存在,使得是等差数列;②对于任意的,都不是等比数列.则( )A .①是真命题,②是假命题B .①是假命题,②是真命题C .①②都是真命题D .①②都是假命题三、解答题(本大题共有5题,满分76分)17.如图,为正方体,动点在对角线上(不包含端点),记.M l N MNAB(0,1)λλλ>≠,,a b c 1,2,1a c b a b ===⋅=1122c a c b ++-a 1a a>2211a a a a+≥+12a a+>-≥-1:10l x y --=()()2:10l k x ky k k +-+=∈R k 2l π21,k l 2l k 1l 2l 1,k l 2l 3n ≥12,,,n a a a k k S 1k k S S +>11k n ≤≤-3n ≥12,,,n a a a 3n ≥12,,,n a a a 1111ABCD A B C D -P 1BD 11D PD Bλ=(1)求证:;(2)若异面直线与所成角为,求的值.18.已知点是坐标原点.(1)若,求的值:(2)若实数满足,求的最大值.19.英语学习中学生喜爱用背单词"神器"提升自己的英文水平,为了解上海中学生和大学生对背单词“神器”的使用情况,随机抽取了200名中学生和80名大学生,统计他们最喜爱使用的一款背单词“神器”,结果如下:百词斩扇贝单词秒词邦沪江开心词场中学生80604020大学生30202010假设大学生和中学生对背单词“神器”的喜爱互不影响.(1)从该地区的中学生和大学生中各随机抽取1人,用频率估计概率,试估计这2人都最喜爱使用“百词斩”的概率;(2)采用分层抽样的方式先从样本中的大学生中随机抽取8人,再从这8人中随机抽取3人.记X 为这3人中最喜爱使用“扇贝单词”的人数,求X 的分布列和数学期望;(3)记样本中的中学生最喜爱使用这四款背单词“神器”的频率依次为,其方差为;样本中的大学生最喜爱使用这四款背单词“神器”的频率依次为,其方差为的方差为.写出的大小关系.(结论不要求证明)20.在平面直角坐标系中,分别是椭圆的左右焦点,设不经过的直线与椭圆交于两个不同的点,焦点到直线的距离为.(1)求该粗圆的离心率;(2)若直线经过坐标原点,求面积的最大值;(3)如果直线的斜率依次成等差数列,求的取值范围.21.若斜率为的两条平行直线,曲线满足以下两条性质:(Ⅰ)分别与曲线至少有两个切点;(Ⅱ)曲线上的所有点都在之间或两条直线上.则称直线为曲线的一对“双夹线”,把“双夹线”之间的距离称为曲线在“方向上的宽度”,记为.已知曲线1AP B C ⊥AP 11D B π3λ()())1,1,1,1,,A B CO θθ-BC BA -=sin2θ,m n π,0,2mOA nOB OC θ⎛⎫+=∈ ⎪⎝⎭22(3)m n ++1234,,,x x x x 21s 1234,,,y y y y 2212341234;,,,,,,,s x x x x y y y y 23s 222123,,s s s 12,F F 22143x y +=1F l ,A B 2F l d l 2F AB △11,,AF l BF d k 12,l l ():C y f x =12,l l C C 12,l l 12,l l C C k ()d k.(1)判断时,曲线是否存在“双夹线”,并说明理由;(2)若,试问:和是否是函数的一对“双夹线”?若是,求此时的值;若不是,请说明理由.(3)对于任意的正实数,函数是否都存在"双夹线"?若是,求的所有取值构成的集合;若不是,请说明理由.2025届七宝中学高三(上)期中考试参考答案一、填空题1、; 2、; 3、3; 4.18; 5、四;6.;7、; 8、a ; 9、;10、4;11、1; 12、10、【答案】412、【答案】二、选择题13~16、BDBC三、解答题17、(1)证明:如图,连接.由已知可得,平面平面,所以,又是正方形,所以,又平面平面,所以平面,又动点在对角线上,所以平面,所以平面,所以.():sin C f x mx n x =+0,1m n ==C 1,1m n ==-1:1l y x =+2:1l y x =-()y f x =()d k ,m n ()y f x =()d k ()1,+∞3412{}0,1,2,4π311,BC AD AB ⊥111,BCC B B C ⊂11BCC B 1AB B C ⊥11BCC B 11B C BC ⊥1BC ⊂11,ABC D AB ⊂111,ABC D AB BC B = 1B C ⊥11ABC D P 1BD P ∈11ABC D AP ⊂11ABC D 1AP B C ⊥(2)以点为坐标原点,分别以所在的直线为轴,如图建立空间直角坐标系,设,则,则.由已知,可得,设点,则,所以,所以,即,所以,.又异面直线与所成角为,所以,即,解得或0,因为,所以满足条件.18、【答案】(1); (2)16.19、【答案】(1); (2); (3)20.【答案】(1); (2 (3).21、【答案】(1)存在;(2)是,3)是,C 1CD CB CC 、、x y z 、、1CD =()()()()()()()1110,0,0,1,0,0,0,1,0,0,0,1,1,0,1,0,1,1,1,1,0C D B C D B A ()11111,1,0,D B D B =-=11D PD Bλ=11D P D B λ= ()000,,P x y z ()10001,,1D P x y z =-- 00011x y z λλλ-=-⎧⎪=⎨⎪-=-⎩00011x y z λλλ=-+⎧⎪=⎨⎪=-+⎩()1,,1P λλλ-+-+(),1,1AP λλλ=---+AP ==AP 11D B π311π1cos ,cos 42AP D B 〈==〉 11cos ,2AP D 1λ=01λ<<45λ=12-320[]34E X =222231s s s <<12()d k =()0)d k n =>。

四川省成都市2024-2025学年高三上学期11月期中数学试题(含答案)

四川省成都市2024-2025学年高三上学期11月期中数学试题(含答案)

成都2022级半期考试数学试卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分;2.本堂考试时间120分钟,满分150分;3.答题前考生务必先将自己的姓名、学号填写在答题卡上,并用2B 铅笔填涂;4.考试结束后将答题卡交回.第Ⅰ卷(选择题部分,共58分)一、单项选择题:本题共8个小题,每小题5分,共40分,在每小题给出的四个选项中只有一项是符合题目要求的.1.已知集合,,则( )A. B. C. D.2.若函数是周期为4的奇函数,且,则( )A.2B. C.3D.3.已知,,则为第几象限角( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角4.若向量,,且,,三点共线,则( )A. B. C. D.5.若,则( )A.3 B. C. D.66.为了得到函数的图象,只需将函数的图象( )A.向左平移个单位,再将所有点的横坐标伸长到原来的2倍(纵坐标不变)B.向左平移个单位,再将所有点的横坐标缩短到原来的(纵坐标不变)C.所有点的横坐标缩短到原来的(纵坐标不变),再将图象向左平移个单位D.所有点的横坐标伸长到原来的2倍(纵坐标不变),再将图象向左平移个单位7.已知关于的不等式在上有解,则实数的取值范围是( ){}2log 1A x x =≤{}04B x x =<≤A B = {}04x x <≤{}4x x ≤{}2x x ≤{}02x x <≤()f x ()13f =()3f =2-3-()sin π0θ-<()cos π0θ+>θ()2,5AB = (),1AC m m =+A B C m =23-2332-32tan 3θ=-sin cos sin cos 2θθθθ+=103-56-()sin 2cos 2f x x x =+()g x x =π4π41212π4π8x 2230ax x a -+<(]0,2aA. B. C. D.8.设,,且,则下列结论正确的个数为( )① ② ③ ④A.1B.2C.3D.4二、多项选择题:本题共3个小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求;全部选对的得6分,部分选对得部分分,有选错的得0分.9.下列说法不正确的是( )A.钝角三角形的内角是第一象限角或第二象限角B.若向量,满足且,同向,则C.若,,三点满足,则,,三点共线D.将钟表的分针拨快10分钟,则分针转过的角的弧度数为10.函数(,)的部分图象如图所示,则( )A. B.C.的图象关于点对称 D.在区间上单调递增11.已知函数的定义域为,为奇函数,为偶函数,且时,单调递增,则下列结论正确的为( )A.是偶函数 B.的图象关于点中心对称C. D.第Ⅱ卷(非选择题部分,共92分)三、填空题:本题共3个小题,每小题5分,共15分.12.已知角的终边经过点,则______.4,7⎛⎫-∞ ⎪⎝⎭⎛-∞ ⎝(],0-∞(),0-∞0a >0b >1a b +=22log log 2a b +≥-22a b +≥ln 0a b +<1sin sin 4a b <a b a b > a b a b>P A B 3OP OA OB =+P A B π3()()sin f x x ωϕ=+0ω>π2ϕ<2ω=π6ϕ=()f x π,012⎛⎫⎪⎝⎭()f x 5ππ,4⎛⎫⎪⎝⎭()f x R ()1f x +()2f x +[]0,1x ∈()f x ()f x ()f x ()1,0-()20240f =51044f f ⎛⎫⎛⎫+-<⎪ ⎪⎝⎭⎝⎭α()3,4P -sin α=13.设函数,则满足的的取值范围是______.14.若,则的最大值为______.四、解答题:本题共5个小题,共70分,其中15题13分,16、17题每题15分,18、19题每题17分,解答应写出文字说明、证明过程或演算步骤.15.(本小题13分)已知数列为等差数列,,前项和为,数列为等比数列,,公比为2,且,.(1)求数列与的通项公式;(2)设数列满足,求数列的前项和.16.(本小题15分)在学校食堂就餐成为了很多学生的就餐选择.学校为了解学生食堂就餐情况,在校内随机抽取了100名学生,其中男生和女生人数之比为1:1,现将一周内在食堂就餐超过8次的学生认定为“喜欢食堂就餐”,不超过8次的学生认定为“不喜欢食堂就餐”.“喜欢食堂就餐”的人数比“不喜欢食堂就餐”人数多20人,“不喜欢食堂就餐”的男生只有10人.男生女生合计喜欢食堂就餐不喜欢食堂就餐10合计100(1)将上面的列联表补充完整,并依据小概率值的独立性检验,分析学生喜欢食堂就餐是否与性别有关;(2)用频率估计概率,从该校学生中随机抽取3名,记其中“喜欢食堂就餐”的人数为.事件“”的概率为,求随机变量的期望和方差.参考公式:,其中.0.10.050.010.0050.0012.7063.8416.6357.87910.82817.(本小题15分)已知锐角,内角,,所对的边分别为,,,面积为,.(1)求角;(2)若,求的取值范围.18.(本小题17分)已知抛物线:()经过点,直线:与的交()11,02,0x x x f x x -+≤⎧=⎨>⎩112f x ⎛⎫-> ⎪⎝⎭x ()()sin cos 2sin αβααβ+=-()tan αβ+{}n a 11a =n n S {}n b 11b >2354b S =3216b S +={}n a {}n b {}n c n n n c a b =+{}n c n n T 0.001α=X X k =()P X k =X ()()()()()22n ad bc a b c d a c b d χ-=++++n a b c d =+++αx αABC △A B C a b c S πsin cos 6b A a B ⎛⎫=- ⎪⎝⎭B 2a =S E 22y px =0p >()1,2P l y kx m =+E点为,,且直线与倾斜角互补.(1)求抛物线在点处的切线方程;(2)求的值;(3)若,求面积的最大值.19.(本小题17分)设函数(),.(1)当时,判断在上的单调性;(2)当时,证明:;(3)设函数,若函数在上存在唯一极值点,求实数的取值范围.A B PA PB ()1,2P k 3m <PAB △()()cos sin f x a x x x =-a ∈R ()e x g x =1a =()f x ()0,2π0x >()2112g x x x >++()()()2112h x g x f x x x =----()h x ()0,πa成都2022级半期考试数学参考答案及评分标准一、单选题:1. A2. D3. C4. B5. C6. B7. B8.C二、多选题:9. BCD 10. ACD 11. ABD三、填空题:12.13.四、解答题15.(1)设等差数列的公差为,由题知,解得,,∴,.(2)∵,∴.16.(1)列联表见图,男生女生合计喜欢食堂就餐402060不喜欢食堂就餐103040合计5050100零假设:假设食堂就餐与性别无关,由列联表可得:,根据小概率的独立性检验推断不成立,即可以得到学生喜欢食堂就餐与性别有关,此推断犯错误的概率不超过0.001(2)由题意可知,抽取的3名学生,喜欢饭堂就餐的学生人数服从二项分布,453,2⎛⎫+∞ ⎪⎝⎭{}n a d ()11233544216b d b d ⎧+=⎨++=⎩13b =2d =()11221n a n n =+-⨯=-132n n b -=⋅()12132n n n n c a b n -=+=-+⋅()()2112132131222n n n T c c c n -⎡⎤=++⋅⋅⋅+=++⋅⋅⋅+-++++⋅⋅⋅+⎣⎦()()()21121213321212nn n n n ⨯-⎡⎤+-⎣⎦=+⨯=+--0H 0H ()221004030102016.66710.82850506040χ⨯-⨯=≈>⨯⨯⨯0.001α=0H X且喜欢饭堂就餐的频率为,则,故其期望,方差.17.(1)因为,由正弦定理可得,,且,且故,所以,.(2)由正弦定理可得,,且,则,由(1)知,则,且是锐角三角形,即,,所以,即,,..18.(1)由题意可知,,所以,所以抛物线的方程为;(),,则,则切线方程为.(2)如图:设,,将直线的方程代入,得,所以,,因为直线与倾斜角互补,所以600.6100=()3,0.6X B~() 1.8E X np ==()()10.72D X np p =-=πsin cos 6b A a B ⎛⎫=-⎪⎝⎭1sin sin sin sin 2B A A B B ⎫=+⎪⎪⎭1sin 0sin 2A B B ≠=cos 0B ≠tan B =π02B <<π3B =sin sin sin a b c A B C ==2a =2sin sin Cc A=π3B =2π3A C +=ABC △π02C <<2ππ032A <-<π2π63A <<ππ62A <<π113sin 22S ac B ⎫⎛⎫⎪⎪====⎪ ⎪⎝⎭ππ62A <<S <<42p =2p =E 24y x =y =0x >y '=11x k y ='==1y x =+()11,A x y ()22,B x y l 24y x =()222240k x km x m +-+=12242km x x k -+=2122m x x k=PA PB,即,所以,即,所以.(3)由(1)可知,所以,,则因为,所以,即,又点到直线的距离为所以因为,所以,即时,等号成立,所以19.(1)当时,,则,当时,;当时,,所以在上单调递减,在上单调递增.(2)证明:令(),则,令,则,21212121222201111PA PB y y kx m kx m k k x x x x --+-+-+=+=+=----()()()()122121211222201111x x k k m k k m x x x x ⎛⎫+-++-+=++-=⎪----⎝⎭()()()242222022km k k k m k m k m --++-=+-++2422442022km k k k k m k m --++==++++1k =-()22240x m x m -++=1242x x m +=+212x x m =AB ==()222440m m ∆=+->1m >-13m -<<P AB d 12S =⨯()()()()()213133222m m m m m -+=--+3133222562327m m m -+-++⎛⎫≤= ⎪⎝⎭S ≤322m m -=+13m =PAB △1a =()cos sin f x x x x =-()cos sin cos sin f x x x x x x x =--=-'()0,πx ∈()0f x '<()π,2πx ∈()0f x '>()f x ()0,π()π,2π()()22111e 122x G x g x x x x x ⎛⎫=-++=---⎪⎝⎭0x >()e 1x G x x =--'()e 1x k x x =--()e 1x k x '=-当时,,所以在上单调递增,即在上单调递增;所以,所以在上单调递增,所以,所以不等式成立.(3)由题可知:,则,令且,所以函数在上存在唯一极值点等价于在上存在唯一变号零点,又因为且,令,则且①当时,,(ⅰ)当时,在上单调递减,所以在上单调递增.又因为,,由零点存在性定理知:存在唯一,使得,所以当时,;当时,,(ⅱ)当时,,所以,所以由(ⅰ)(ⅱ)知:在上单调递减,在上单调递增,即在上单调递减,在上单调递增,所以当时,,又因为,0x >()0k x '>()k x ()0,+∞()G x '()0,+∞()()00G x G '>='()G x ()0,+∞()()00G x G >=()2112g x x x >++()()21e 1cos sin 2xh x x x a x x x =-----()e 1sin x h x x ax x =--+'()e 1sin x m x x ax x =--+()00m =()h x ()0,π()m x ()0,π()()e 1sin cos x m x a x x x =-++'()00m '=()()()e 1sin cos x n x m x a x x x =-+'=+()()e 2cos sin x n x a x x x =+-'()012n a '=+12a <-()0120n a =+<'π0,2x ⎛⎫∈ ⎪⎝⎭2cos sin y x x x =-π0,2⎛⎫⎪⎝⎭()()e 2cos sin x n x a x x x =+-'π0,2⎛⎫⎪⎝⎭π2ππe 022n a ⎛⎫=-> ⎪⎝⎭'()0120n a =+<'0π0,2x ⎛⎫∈ ⎪⎝⎭()00n x '=()00,x x ∈()0n x '<0π,2x x ⎛⎫∈ ⎪⎝⎭()0n x '>π,π2x ⎛⎫∈⎪⎝⎭2cos sin 0y x x x =-<()()e 2cos sin 0x n x a x x x '=+->()n x ()00,x ()0,πx ()m x '()00,x ()0,πx ()00,x x ∈()()00m x m '<='()ππe 1π0m a =-->'所以由零点存在性定理知:存在唯一,使得,所以当时,;当时,所以在上单调递减,上单调递增,所以当时,,又因为,由(2)知:,所以由零点存在性定理知:存在唯一,使得,当时,;当时,,即为在上唯一变号零点,所以符合题意;②当时,由时,得:,令且,则且,令,又因为,则在上单调递增,即在上单调递增,所以,所以在上单调递增,所以,所以当时,,即在上无零点,所以不符合题意.综上:,即实数的取值范围为.()10,πx x ∈()10m x '=()10,x x ∈()0m x '<()1,πx x ∈()0m x '>()m x ()10,x ()1,πx ()10,x x ∈()()00m x m <=()ππe π1m =--()π0m >()21,πx x ∈()20m x =()20,x x ∈()0m x <()2,πx x ∈()0m x >2x ()m x ()0,π12a <-12a ≥-()0,πx ∈sin 0y x x =>()1e 1sin e 1sin 2x x m x x ax x x x x =--+≥---()1e 1sin 2xM x x x x =---()00M =()()1e 1sin cos 2xM x x x x =--+'()00M '=()()()1e 1sin cos 2xx M x x x x ϕ=--+'=()01e cos sin e cos 0002x x x x x ϕ'=-+>-+=()x ϕ()0,π()M x '()0,π()()00M x M '>='()M x ()0,π()()00M x M >=()0,πx ∈()0m x >()m x ()0,π12a ≥-12a <-a 1,2⎛⎫-∞- ⎪⎝⎭。

2025届北京市海淀区高三数学上学期期中练习试卷及答案解析

2025届北京市海淀区高三数学上学期期中练习试卷及答案解析

北京市海淀区2024-2025学年高三上学期期中练习数学试题本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题纸上,在试卷上作答无效.考试结束后,将本试卷和答题纸一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知集合{0A x x =£或x >1},{}2,0,1,2B =-,则A B =I ( )A. {}2,2- B. {}2,1,2- C. {}2,0,2- D. {}2,0,1,2-【答案】C 【解析】【分析】利用交集的定义可求得集合A B Ç.【详解】因为集合{0A x x =£或x >1},{}2,0,1,2B =-,则{}2,0,2A B =-I .故选:C.2. 若复数z 满足i 1i z ×=-,则z =( )A. 1i +B. 1i-+ C. 1i- D. 1i--【答案】D 【解析】【分析】根据给定条件,利用复数乘法运算计算即得.【详解】由i 1i z ×=-,得2i (1i)(i)z -×=-×-,所以1i z =--.故选:D3. 若0a b <<,则下列不等式成立的是( )A. 22a b < B. 2a ab< C.b a a b> D.2b a a b+>【答案】D 【解析】【分析】根据不等式的性质及基本不等式,逐项分析即可得解.【详解】因为0a b <<,所以0a b ->->,所以()()22a b ->-,即22a b >,故A 错误;因为0a b <<,所以2a ab >,故B 错误;由A 知22a b >,两边同乘以正数1ab ,则>a b b a,故C 错误;因为0a b <<,所以0,0a b b a >>,所以2b a a b +³=(a b ¹,等号不成立),故2b aa b+>,故D 正确.故选:D 4. 已知()sin cos x f x x =,则π4f æö¢=ç÷èø( )A. 1 B. 2C. 1- D. 2-【答案】B 【解析】【分析】求出函数的导函数,计算得解.【详解】因为()sin cos xf x x=,所以2222cos sin ()cos 1cos x x f x x x+¢==,所以π12142f æö¢==ç÷èø,故选:B5. 下列不等式成立的是( )A. 0.3log 0.21< B. 0.20.31< C. 0.3log 0.20< D. 0.30.21>【答案】B 【解析】【分析】根据指数函数和对数函数的单调性判断各选项即可.【详解】因为函数0.3log y x =在()0,¥+上单调递减,所以0.30.3log 0.2log 0.31>=,0.30.3log 0.2log 10>=,故AC 错误;因为函数0.3x y =在R 上单调递减,所以0.200.30.31<=,故B 正确;因为函数0.2x y =在R 上单调递减,所以0.300.20.21<=,故D 错误.故选:B.6. 若()2,,23,x x a f x x x aì³=í+<î在R 上为增函数,则a 的取值范围是( )A. [1,¥+)B. [3,)+¥ C. [1,3]- D. (,1][3,)-¥-+¥U 【答案】B 【解析】【分析】根据分段函数的单调性列式运算得解.【详解】因为()f x 是R 上单调递增函数,所以2023a a a ³ìí³+î,解得3a ³.所以实数a 的取值范围为[)3,+¥.故选:B.7. 已知向量(,1),(1,)a x b y ==-r r,则下列等式中,有且仅有一组实数x ,y 使其成立的是( )A. 0a b ×=r rB. ||||2a b +=r rC. ||||a b =r rD. ||2a b +=r r【答案】B 【解析】【分析】根据向量的坐标运算,向量的模,向量的数量积,建立方程,分析方程的解的个数即可得出答案.【详解】当 0a b ×=r r时,0x y -+=,有无数组解,故A 错误;当||||2a b +=r r2+=1³³,2³,当且仅当0x y ==时,等号成立,故方程有且仅有一组解,故B 正确;当||||a b =r r=,当x y =或x y =-时方程成立,方程有无数组解,故C 错误;当||2a b +=r r2=,即()()22114x y -++=,方程有无数组解,故D 错误.故选:B8. 大面积绿化可以增加地表的绿植覆盖,可以调节小环境的气温,好的绿化有助于降低气温日较差(一天气温的最高值与最低值之差).下图是甲、乙两地某一天的气温曲线图.假设除绿化外,其它可能影响甲、乙两地温度的因素均一致,则下列结论中错误的是( )A. 由上图推测,甲地的绿化好于乙地B. 当日6时到12时,甲地气温的平均变化率小于乙地气温的平均变化率C. 当日12时到18时,甲地气温的平均变化率小于乙地气温的平均变化率D. 当日必存在一个时刻,甲、乙两地气温的瞬时变化率相同【答案】C 【解析】【分析】结合图中数据分析一一判断各选项即可.【详解】对于A ,由图可知,甲地的气温日较差明显小于乙地气温日较差,所以甲地的绿化好于乙地,故A 正确;对于B ,由图可知,甲乙两地的平均变化率为正数,且乙地的变化趋势更大,所以甲地气温的平均变化率小于乙地气温的平均变化率,故B 正确;对于C ,由图可知,甲乙两地的平均变化率为负数,且乙地的变化趋势更大,所以甲地气温的平均变化率大于乙地气温的平均变化率,故C 错误;对于D ,由图可知,存在一个时刻,使得甲、乙两地气温的瞬时变化率相同,故D 正确.故选:C.9. 设无穷等差数列{}n a 的前n 项积为n T .若10a <,则“n T 有最大值”是“公差0d ³”的( )A. 充分而不必要条件 B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A 【解析】【分析】分析公差0,0,0d d d >=<三种情况,当0,0d d =<时n T 无最大值,当0d >时,不一有最大值,即可得出论【详解】对于无穷等差数列{a n },由于10a <,当0d >时,若数列中小于0的项为偶数项,且数列中无0时,显然n T没有最大值,.当0d =时,数列为常数列,当1a 不等于1-时,1nn T a =,无最大值,所以公差0d ³不能推出n T 有最大值,当0d <时,0n a <,所以n T 趋于正无穷,{}n T 为正负间隔的摆动数列,没有最大值,所以当n T 有最大值时,只能0d ³,综上,“n T 有最大值”是“公差0d ³”的充分不必要条件,故选:A10. 已知数列{}n a 满足()111(1,2,3,),(0,1)n n n a ra a n a +=-=ÎL ,则( )A. 当2r =时,存在n 使得1n a ³B. 当3r =时,存在n 使得0n a <C. 当3r =时,存在正整数N ,当n N >时,1n n a a +>D. 当2r =时,存在正整数N ,当n N >时,112024n n a a +-<【答案】D 【解析】【分析】需要根据给定的r 值,分析数列{}n a 的性质.通过对递推式的分析和一些特殊情况的探讨,结合二次函数的性质来判断每个选项的正确性.【详解】对于A 选项,当2r =时,12(1)n n n a a a +=-.令2()2(1)22f x x x x x =-=-+,(0,1)x Î.对于二次函数222y x x =-+,其对称轴为12x =,最大值为11(22f =.因为1(0,1)a Î,由递推关系可知(0,1)n a Î,所以不存在n 使得1n a ³,A 选项错误.对于B 选项,当3r =时,13(1)n n n a a a +=-.令1(0,1)a x =Î,23(1)33y x x x x =-=-+.因为233y x x =-+的值域为3(0,]4,且1(0,1)a Î,所以由递推关系可知(0,1)n a Î,不存在n 使得0n a <,B 选项错误.对于C 选项,当3r =时,13(1)n n n a a a +=-.令1(0,1)a x =Î,23(1)33y x x x x =-=-+.设213(1)23n n n n n n n a a a a a a a +-=--=-.令2()23g x x x =-,(0,1)x Î,()g x 对称轴为13x =,()g x 在1(0,3上递增,在1(,1)3上递减.当(0,1)x Î时,()g x 的值不是恒大于0的,所以不存在正整数N ,当N n >时,1n n a a +>,C 选项错误.对于D 选项,当2r =时,12(1)n n n a a a +=-.设212(1)2n n n n n n n n b a a a a a a a +=-=--=-.因为(0,1)n a Î,22y x x =-+在1(0,)4上递增,在(1,14)上递减.当n 足够大时,n a 会趋近于某个值a (01a <<),此时1n n n b a a +=-会趋近于0.所以存正整数N ,当n >N 时,112024n n a a +-<,D 选项正确.故选:D.第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分.11. 已知102,105a b ==,则a b +=____________.【答案】1【解析】【分析】根据对数的运算求解.【详解】因为102,105a b ==,所以lg 2,lg 5a b ==,故lg 2lg 5lg101a b +=+==,故答案为:112. 在平面直角坐标系xOy 中,角a 的终边经过点(2,1)P .若角a 的终边逆时针旋转π2得到角b 的终边,则sin b =____________.在【解析】【分析】根据三角函数的定义及诱导公式求解.【详解】因为角a 的终边经过点(2,1)P ,所以cos a ==又π2b a =+,所以πsin sin cos 2b a a æö=+==ç÷èø.13. 如图所示,四点,,,O A B C 在正方形网格的格点处.若OC OA OB l m =+uuu ruuu ruuu r,则l =________,m =________.【答案】 ①.23②.13【解析】【分析】建立平面直角坐标系,利用向量的坐标运算得解.【详解】建立平面直角坐标系,如图,则()()()()0,0,3,6,4,5,6,3O A C B ,所以()()()4,5,3,6,6,3OC OA OB ===uuu r uuu r uuu r,由OC OA OB l m =+uuu r uuu r uuu r可得()()()4,53,66,3u l =+,即364635u u l l +=ìí+=î,解得12,33u l ==,故答案为:23;1314. 已知函数π()sin()0,||2w j w j æö=+><ç÷èøf x x 满足()2(0)f x f ³-恒成立.①j 的取值范围是____________;②若2π2(0)3f f æö=-ç÷èø,则w 的最小值为____________.【答案】 ①.ππ62j £< ②. 2【解析】【分析】根据题意可知()201f -£-,解不等式可得j 的取值范围,由2π2(0)3f f æö=-ç÷èø确定2π13f æö=-ç÷èø,解出w ,由0w >可得最小值.【详解】因为()sin()f x x w j =+,所以()min 1f x =-所以由()2(0)f x f ³-可得2(0)1f -£-,即()10sin 2f j =³,由π||2j <可知,ππ62j £<,因为()1012f £<,所以()2201f -<-£-,因为()11f x -££,所以由2π2(0)3f f æö=-ç÷èø可知()201f -=-,即()10sin 2f j ==,π6j =,此时2π2ππsin 1336f w æöæö=+=-ç÷ç÷èøèø,所以2πππ2π,Z 362k k w +=-+Î,解得31,Z k k w =-Î,又0w >,所以min 2w =.故答案为:ππ62j £<;2【点睛】关键点点睛:本题关键点在于对正弦函数最值的理解,理解了正弦函数最值就能根据()2(0)f x f ³-恒成立转化为2(0)1f -£-,也能根据2π2(0)3f f æö=-ç÷èø转化出2π13f æö=-ç÷èø.15. 已知函数ln(1)()ln x f x x+=,其定义域记为集合,,D a b D Î,给出下列四个结论:①{0D xx =>∣且1}x ¹;②若1ab =,则|()()|1f a f b ->;③存在a b ¹,使得()()f a f b =;④对任意a ,存在b 使得()()1f a f b +=.其中所有正确结论的序号是____________.【答案】①②④【解析】【分析】根据解析式求定义域判断①,利用对数运算化简及对数函数的单调性判断②,求函数导数,利用导数分析函数的单调性及范围可判断③,取1b a=后利用对数运算化简可判断④.【详解】由ln(1)()ln x f x x +=知,100x x +>ìí>î且1x ¹,解得0x >且1x ¹,所以{0D xx =>∣且1}x ¹,故①正确;当1ab =时,()()11ln 1ln 1ln 1ln 1()()1ln ln ln a a a a f a f b a a aæöæö++++ç÷ç÷+èøèø-=-=1ln 21log 2ln a a a a a a æö++ç÷æöèø==++ç÷èø,因为112a a a ++>,当01a <<时,1log 21a a a æö++<-ç÷èø,当1a <时,因为12a a a ++>,1log 21a a a æö++>ç÷èø,所以1log 21a a a æö++>ç÷èø,故②正确;()()()22ln ln(1)ln 1ln 11()ln 1ln x x x x x x x x f x x x x x+--+++==+¢,当01x <<时,ln 0x x <,()()1ln 10x x ++>,所以()()ln 1ln 10x x x x -++<,又()21ln 0x x x +>,所以()0f x ¢<,()f x 在(0,1)上单调递减,当1x >时,ln y x x =单调递增,所以()()ln 1ln 1x x x x <++,同理可得()0f x ¢<,()f x 在(1,+∞)上单调递减,又0x →时,()ln 0,ln 10x x +,所以ln(1)()0ln x f x x +=<,当x →+¥时,()ln 1ln 0x x +>>,所以ln(1)()1ln x f x x+=>,即当01x <<时,函数图象在x 轴下方单调递减,当1x >时,函数图象在1y =上方单调递减,所以不存在a b ¹,使得()()f a f b =,故③错误;由②可联想考虑当1b a =时,()()11ln 1ln 1ln 1ln 1ln ()()11ln ln ln ln a a a a a f a f b a a a aæöæö++-+ç÷ç÷+èøèø+=+===,即对任意a ,存在1b a=使得()()1f a f b +=,故④正确.故答案为:①②④【点睛】关键点点睛:判断③时,关键在于求导数后,能分类讨论得到导数的符号,判断出函数的单调性,再分析两段函数图象的上下界,才能作出正确的结论.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16. 已知无穷等比数列{}n a 的前n 项和为3nn S b =+.(1)求1,b a 的值;(2)设221,1,2,3,n n c a n n =+-=L ,求数列{}n c 前n 项和n T .【答案】(1)11,2b a =-= (2)()23914nn -+【解析】【分析】(1)根据等比数列中,n n a S 的关系可得解;(2)根据分组求和,利用等比数列、等差数列求和公式得解.【小问1详解】当2n ³时,1123n n n n a S S --=-=´,的因为{}n a 是等比数列,所以12a =,又因为113a S b ==+,所以1b =-.【小问2详解】由(1)知123n n a -=´,因为26a =,且2229n na a +=,所以{}2n a 是以6为首项,9为公比的等比数列,()()2421321n n T a a a n éù=+++++++-ëûL L ()29123691.9124n n n n n -×=´+=-+-17. 设函数2()sin 22sin 1(0)f x A x x A =-+>,从条件①、条件②、条件③这三个条件中选择一个作为已知.(1)求A 的值;(2)若()f x 在(0,)m 上有且仅有两个极大值点,求m 的取值范围.条件①:π7π0412f f æöæö+=ç÷ç÷èøèø;条件②:将()f x 的图象向右平移π12个单位长度后所得的图象关于原点对称;条件③:对于任意的实数()()1212,,x x f x f x -的最大值为4.注:如果选择多个条件分别解答,按第一个解答计分.【答案】(1(2)7π13π66,æùçúèû【解析】【分析】(1)化简()f x 后,选条件①,根据π7π0412f f æöæö+=ç÷ç÷èøèø化简得解;选条件②,由平移可知π012f æö-=ç÷èø2=得解;(2)由正弦型函数性质求出极大值点,再根据题意知7π6在区间内,13π6不在区间内即可得解.【小问1详解】条件①()sin 2cos 2f x A x x =+,所以π7πππ7π7πsin cos sin cos 04122266f f A A æöæö+=+++=ç÷ç÷èøèø,所以02A A --=,解得A =条件②()sin 2cos 2f x A x x =+,所以()f x 的图象向右平移π12后所得图象关于原点对称,所以π012f æö-=ç÷èø,即ππsin cos 0662A A æöæö-+-=-=ç÷ç÷èøèø,解得A =,经验证:A =.条件③()sin 2cos 2f x A x x =+,所以()()2f x x j =+,其中1πtan ,0,2A j j æö=Îç÷èø,由题意知,()()max min 4f x f x -=2=,因为0A >,所以A =【小问2详解】()π2cos 22sin 26f x x x x æö=+=+ç÷èø,当ππ22π,Z 62x k k +=+Î时,()f x 取得极大值,即ππ,Z.6x k k =+Î因为()f x 在()0,m 上有且仅有两个极大值点,所以0,1k =符合题意,所以7π13π,.66m æùÎçúèû18. 已知函数2()ex x a f x -=.曲线()y f x =在点(0,(0))f 处的切线方程为3y kx =-.(1)求,a k 的值;(2)求()f x 的最小值.【答案】(1)3a k ==(2)2e-【解析】【分析】(1)求出导函数,根据题意列出方程即可求解;(2)求出导函数的零点,列表即可得出函数最小值.【小问1详解】()()()()()()222222e e 2e e 2e e e x xx x xx x x a x a x x a x x a f x ¢-×--××--×-++===¢,依题意,()()030f a f a k ì=-=-ïí==¢ïî,解得3a k ==.【小问2详解】由(1)得()23.e xx f x -=()()()21323e ex x x x x x f x -+=¢--++=,令()0f x ¢=,解得1x =-或3,(),(),x f x f x ¢的变化情况如下表:x (,1)¥--1-(1,3)-3(3,)+¥()f x ¢-0+0-()f x ]极小值Z 极大值]由表格可知,()f x 有极小值()12e f -=-,因为当(3,)x Î+¥时,()0f x >,所以()f x 最小值为2e -.19. 如图所示,某景区有,MN PQ 两条公路(,MN PQ 在同一平面内),在公路上有两个景点入口,,A C 游客服务中心在点B 处,已知1km,120,cos BC ABC BAC °=Ð=Ð=cos ACQ Ð=.(1)已知该景区工作人员所用的对讲机是同一型号,该型号对讲机的信号有效覆盖距离为3km.若不考虑其他环境因素干扰,则A 处的工作人员与C 处的工作人员能否用对讲机正常通话?(2)已知一点处接收到对讲机的信号强度与到该对讲机的距离的平方成反比.欲在公路CQ 段上建立一个志愿服务驿站D ,且要求在志愿服务驿站D 接收景点入口A 处对讲机的信号最强.若选址D 使2km CD =,请判断该选址是否符合要求【答案】(1)A 处工作人员对讲机能与C 处工作人员正常通话(2)D 点选址符合要求【解析】【分析】(1)由正弦定理求出AC ,与3比较大小即可得出结论;(2)由余弦定理求出AD ,可证明AD PQ ⊥,即可得解.【小问1详解】因为cos 0BAC Ð=>, 所以BAC Ð为锐角,所以sin BAC Ð==在ABC V 中sin sin AC BC ABC BAC =ÐÐ,所以sin sin BC ABC AC BAC Ð==Ð,3<,所以A 处工作人员对讲机能与C 处工作人员正常通话.【小问2详解】由余弦定理,2222cos 74223AD AC CD AC CD ACD =+-××Ð=+-=因为222347AD CD AC +=+==,所以AD 的长为点A 与直线PQ 上所有点的距离的最小值,所以D 点选址符合要求.20. 已知函数21()ln()(21),02f x a x a x a x a =-+-+>.(1)若()f x 在4x =处取得极大值,求(4)f 的值;(2)求()f x 的零点个数.【答案】(1)20-(2)1【解析】【分析】(1)求出函数导数,利用极值点导数为0求出a ,再检验即可得解;(2)分01,1,1a a a <<=>三种情况讨论,讨论时,列出当x 变化时,()(),f x f x ¢的变化情况,再由零点存在性定理判断零点个数即可.【小问1详解】()f x 的定义域为(),a +¥.()()()()()2221312221x a x a x a x a a a f x x a x a x a x aéù--+-+++ëû¢=+-+==---因为4是()f x 的极大值点,所以()40f ¢=,即()()4230a a --=,解得2a =或3a =当2a =时,当x 变化时,()(),f x f x ¢的变化情况如下表:x ()2,33()3,44()4,+¥()f x ¢+0-0+()f x Z 极大值]极小值Z此时,4是()f x 的极小值点,不符合题意;当3a =时,当x 变化时,()(),f x f x ¢的变化情况如下表:x()3,44()4,66()6,+¥()f x ¢+0-0+()f x Z 极大值]极小值Z此时4是()f x 的极大值点,符合题意.因此3a =,此时()420f =-.【小问2详解】①当01a <<时,当x 变化时,()(),f x f x ¢的变化情况如下表:x(),2a a 2a ()2,1a a +1a +()1,a ¥++()f x ¢+0-0+()f x Z 极大值]极小值Z()22ln 220f a a a a a =--<,因此],(1x a a Î+时,()0f x <,又()(42)ln 320f a a a +=+>,因此()f x (1,)a ++¥上有且仅有一个零点,因此()f x 的零点个数是1.②当1a =时,对任意1,()0x f x ¢>³,()f x 在(1,)+¥上是增函数,又(2)10(6)l ,n 50f f =-<=>,由零点存在定理知,有1个零点,因此()f x 的零点个数是1.③当1a >时,当x 变化时,()(),f x f x ¢的变化情况如下表:在x(),1a a +1a +()1,2a a +2a ()2,a +¥()f x ¢+0-0+()f x Z 极大值]极小值Z()()3111022f a a a æö+=--+<ç÷èø,因此(],2x a a Î时,()0f x <,又()(42)ln 320f a a a +=+>,因此()f x 在()2,a +¥上有且仅有1个零点,因此()f x 的零点个数是1.综上,当0a >时,()f x 的零点个数是1.21. 对于n 行n 列(2)n ³的数表111212122212n n n n nn a a a a a a A a a a éùêúêú=êúêúëûL L M M O M L ,定义T 变换:任选一组,,i j 其中{1,2,,},{1,2,,}ÎÎL L i n j n ,对于A 的第i 行和第j 列的21n -个数,将每个数同时加1,或者将每个数同时减1,其余的数不变,得到一个新数表.(1)已知对1111éùêúëû依次进行4次T 变换,如下:123411002120,11010202T T T T a b c d éùéùéùéùéù¾¾¾¾¾→¾¾¾¾¾→¾¾¾¾¾→¾¾¾¾¾→êúêúêúêúêúëûëûëûëûëû第次变换第次变换第次变换第次变换写出a b c d ,,,值;(2)已知000111000,111000111A B éùéùêúêú==êúêúêúêúëûëû.是否可以依次进行有限次T 变换,将A 变换为B ?说明理由;(3)已知11行11列的数表000000000C éùêúêú=êúêúëûL M O M M L L ,是否可以依次进行k 次T 变换,将其变换为111011*********D -éùêúêú=-êúêú--ëûL M O M M L L ?若可以,求k 的最小值;若不可以,说明理由.的【答案】(1)1 3.,,11,a b c d ====(2)不能,理由见解析(3)可以,k 的最小值400【解析】【分析】(1)根据变换的定义直接得解;(2)根据变换的规律,分析变换前后数字和的规律得解;(3)由题意,讨论三种选取,i j 方式,求出加1与减1变换次数之差,由题意得出k 满足条件即可.【小问1详解】根据变换的定义,可得1 3.,,11,a b c d ====【小问2详解】不可以,理由如下:由题可知每次变换T ,数表中所有数的和增加或减少5.因为A 中所有数的和为0,所以其经过有限次变换T 后各数和为5的倍数.而 B 中所有数的和为9,不符合,故无法通过有限次变换T ,将A 变换为B .【小问3详解】可以,且k 的最小值为 400当所选{},1,2,,10i j ÎL 时,所有加l 的变换T 与减1的变换T 次数之差设为x ;当所选11=i 且{}0,,121,j ÎL 或者{}0,,121,i ÎL 且11j =时,所有加1的变换T 与减1的变换T 次数之差设为y ;当所选11i j ==时,加1的变换T 与减1的变换T 次数之差设为z .考虑变换T 对上述三部分各数之和的影响,可知191010021020200100x y x y z y z +=ìï++=-íï+=î,解得100200100x y z =-ìï=íï=-î,所以||||||400k x y z ++=³,其中符合题意的 400 次变换T 构造如下:当所选{},1,2,,10i j ÎL 时,各进行一次减1的变换T ;当所选11=i 且{}0,,121,j ÎL 或者{}0,,121,i ÎL 且11j =时,各进行10次加l 的变换T ;当所选11i j ==时,进行100次减l 的变换T .【点睛】关键点点睛:解决本题的关键在于理解T 变换含义,即一个数表通过T 变换后得到什么数表,核心是理解新定义.。

北京市2025届高三上学期期中考试数学试题含答案

北京市2025届高三上学期期中考试数学试题含答案

2024北京高三(上)期中数学(答案在最后)本试卷共6页,共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,只收答题纸,不收试卷.一、单选题(本大题共10小题,共40分)1.设集合{}22M x x =<,{}13N x x =-≤≤,则M N ⋃=()A.{1x x -≤< B.{}12x x -≤<C.{}3x x <≤ D.{}23x x -<≤【答案】C 【解析】【分析】解不等式求集合M ,进而根据并集运算求解.【详解】因为22x <,解得x <<,即{|M x x =<<,且{}13N x x =-≤≤,所以{}3M N xx =<≤∣ .故选:C .2.曲线3113y x =+在点()3,8--处的切线斜率为()A.9 B.5C.8- D.10【答案】A 【解析】【分析】求导,根据导数的几何意义可得解.【详解】由已知3113y x =+,则2y x '=,当3x =-时,()239y '=-=,即切线斜率9k =,故选:A.3.在复平面内,复数z 1,z 2对应的点分别是()()2,1,1,3--,则21z z 的模是()A .5B.C.2D.【答案】D【解析】【分析】由复数的除法运算及模长公式即可求解.【详解】由题意知,12i z =-,213i z =-,所以()()()()2113i 2i 13i 55i 1i 2i 2i 2i 5z z -+--====---+所以21z z ==,故选:D.4.已知直线6x π=是函数()sin (08)6f x x πωω⎛⎫=+<< ⎪⎝⎭图像的一条对称轴,则ω的值为()A.3B.4C.2D.1【答案】C 【解析】【分析】根据正弦函数图象的对称性可得,Z 662k k πππωπ⋅+=+∈,由此可得答案.【详解】依题意得()sin()1666f πππω=⋅+=±,所以,Z 662k k πππωπ⋅+=+∈,即62,Z k k ω=+∈,又08ω<<,所以2ω=.故选:C.5.若0.5.43200.4,0.5,log 4a b c ===,则a b c ,,的大小关系是()A.a b c<< B.b c a<< C.c b a << D.c a b<<【答案】D 【解析】【分析】利用指数函数和幂函数的单调性比较大小可得答案.【详解】322log 40.45===c ,因为0.4x y =在R 上为减函数,所以10.50.40.40.40.4=<=<c a ,因为0.4y x =在()0,x ∈+∞上为增函数,所以0.40.40.50.4>=b ,所以a b <,所以c a b <<,故选:D.6.在ABC V 中,AD 为BC 边上的中线,E 为AD 的中点.则EB =()A.3144AB AC -B.3344AB AC -C.3144AB AC +D.3344AB AC +【答案】A 【解析】【分析】根据平面向量的线性运算即可求解.【详解】因为ABC V 中,AD 为BC 边上的中线,E 为AD 的中点,所以()1113122244EB EA AB AD AB AB AC AB AB AC =+=-+=-⨯++=-,故选:A .7.在长方体1111ABCD A B C D -的八个顶点任两点连线中,随机取一直线,则该直线与平面11AB D 平行的概率为A.314B.514C.328D.528【答案】C 【解析】【分析】由题意结合排列组合公式和古典概型计算公式即可求得满足题意的概率值.【详解】八个顶点任两点连线共有28C 28=条,其中直线与平面11AB D 平行的有BD ,1BC , 共有3条,所以该直线与平面11AB D 平行的概率为328P =.故选:C .8.已知,a b 都大于零且不等于1,则“log 1a b >”是“(1)(1)0a b -->”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】log 1ab >等价于1b a >>或01b a <<<,(1)(1)0a b -->等价于11a b >⎧⎨>⎩或0101a b <<⎧⎨<<⎩,然后可判断出答案.【详解】由log 1a b >可得log log a a b a >,所以可得1a b a >⎧⎨>⎩或01a b a <<⎧⎨<⎩,即1b a >>或01b a <<<(1)(1)0a b -->等价于11a b >⎧⎨>⎩或0101a b <<⎧⎨<<⎩所以“log 1a b >”是“(1)(1)0a b -->”的充分不必要条件故选;:A9.已知函数()22,,x x x mf x x x m⎧-≥=⎨<⎩在R 上单调递增,则实数m 的取值范围是()A.1m ≥B.3m ≥C.13m ≤≤D.1m ≤或3m ≥【答案】B 【解析】【分析】根据二次函数的单调性及断点处左侧的函数值不大于右侧函数值得到不等式,解得即可.【详解】因为()22211y x x x =-=--在[)1,+∞上单调递增,y x =在R 上单调递增,又()22,,x x x mf x x x m ⎧-≥=⎨<⎩在R 上单调递增,所以212m m m m ≥⎧⎨≤-⎩,解得3m ≥,即实数m 的取值范围是3m ≥.故选:B10.核酸检测分析是用荧光定量PCR 法,通过化学物质的荧光信号,对在PCR 扩增进程中成指数级增加的靶标DNA 实时监测,在PCR 扩增的指数时期,荧光信号强度达到阈值时,DNA 的数量n X 与扩增次数n 满足()0lg lg 1lg n X n p X =++,其中p 为扩增效率,n X 为DNA 的初始数量.已知某被测标本DNA 扩增10次后,数量变为原来的100倍,那么该样本的扩增效率p 约为()(参考数据:0.210 1.585≈,0.2100.631-≈)A.36.9% B.41.5%C.58.5%D.63.4%【答案】C 【解析】【分析】由题意,0100n X X =代入解方程即可.【详解】由题意可知,()00lg10010lg 1lg X p X =++,即002lg 10lg(1)lg X p X +=++,所以0.2110 1.585p +=≈,解得0.585p =.故选:C二、填空题(本大题共5小题,共25分)11.函数y =______.【答案】()0,2【解析】【分析】由函数特征得到不等式,求出定义域.【详解】由题意得240x x >⎧⎨->⎩,解得02x <<,故定义域为()0,2.故答案为:()0,212.已知等差数列{}n a 的前n 项和为13,1,18n S a S ==,则6S =______.【答案】81【解析】【分析】运用等差数列的性质公式计算即可.【详解】根据题意,知道131,18a S ==,则231417a a a a +==+,则416a =,若公差为d ,所以41315a a d -==,则5d =.故1234561,6,11,16,,21,26.a a a a a a ======则6161116212681S =+++++=.故答案为:8113.在ABC V 中,角A 、B 、C 的对边分别为a 、b 、c ,()226b a c =+-,23B π=,则ABC V 的面积是______________.【答案】332【解析】【分析】利用余弦定理求出ac 的值,再利用三角形的面积公式可求得ABC V 的面积.【详解】由余弦定理可得222222cos b a c ac B a c ac =+-=++,222a c b ac ∴+-=-,()2222626b a c a c ac =+-=++- ,可得222260a c b ac +-+-=,则260ac ac --=,解得6ac =,因此,ABC V的面积是11sin 62222ABC S ac B ==⨯⨯=△.故答案为:2.【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”;(2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”;(3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”;(4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.14.已知函数()()22log 2,014,03x x x a x f x x ⎧++≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩的值域是R ,则实数a 的最大值是______.【答案】8【解析】【分析】根据条件可得()f x 在[)0+∞,上的最小值小于或等于3,判断其单调性列出不等式得出a 的范围.【详解】当0x <时,1()43)(,3xf x ⎛⎫=- ∈-∞⎪⎝⎭.因为()f x 的值域为R ,则当0x ≥时,min ()3f x ≤.当0x ≥时,222(1)1y x x a x a =++=++-,故()f x 在[)0+∞,上单调递增,min ()=(0)3f x f ∴≤,即2log 3a ≤,解得08a <≤,即a 的最大值为8.故答案为:8.15.如图所示,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥底面ABCD ,PA =AB =4.E ,F ,H 分别是棱PB ,BC ,PD 的中点,对于平面EFH 截四棱锥P ABCD -所得的截面多边形,有以下三个结论:①截面面积等于;②截面是一个五边形;③直线PC 与截面所在平面EFH 无公共点.其中,所有正确结论的序号是_____.【答案】②③【解析】【分析】根据给定条件,作出平面EFH 截四棱锥P ABCD -所得的截面多边形,再逐一判断各个命题作答.【详解】在四棱锥P ABCD -中,PA =AB =4,取CD 中点,连接FG ,GH ,BD ,AC ,如图,因底面ABCD 为正方形,,,E F H 分别是棱,,PB BC PD 的中点,则////EH BD FG ,////EF PC GH ,EFGH 是平行四边形,令FG AC J ⋂=,有14CJ AC =,在PA 上取点I ,使14PI PA =,连接,,EI HI JI ,则////JI PC EF ,点J ∈平面EFH ,有JI ⊂平面EFH ,点I ∈平面EFH ,,EI HI ⊂平面EFH ,因此五边形EFGHI 是平面EFH 截四棱锥P ABCD -所得的截面多边形,②正确;因EF ⊂平面EFH ,PC ⊄平面EFH ,而//EF PC ,则//PC 平面EFH ,直线PC 与截面所在平面EFH 无公共点,③正确;PA ⊥底面ABCD ,FG ⊂平面ABCD ,有PA FG ⊥,而BD AC ⊥,//BD FG ,则AC FG ⊥,又PA AC A = ,,PA AC ⊂平面PAC ,因此FG ⊥平面PAC ,PC ⊂平面PAC ,于是得FG PC ⊥,有FG EF ⊥,而122FG BD ==,22112322EF PC PA AC ==+,矩形EFGH 面积等于6EF FG ⋅=,3334JI PC ==,而JI EH ⊥,则IE H 边EH 上的高等于3JI EF -=1362IEH S EH == ,所以截面五边形EFGHI 面积为56.故答案为:②③【点睛】方法点睛:作截面的常用三种方法:直接法,截面的定点在几何体的棱上;平行线法,截面与几何体的两个平行平面相交,或者截面上有一条直线与几何体的某个面平行;延长交线得交点,截面上的点中至少有两个点在几何体的同一平面上.三、解答题(共6题,共85分)16.已知函数()()22sin cos 2cos f x x x x =+-,(1)求函数()f x 的最小正周期和单调递减区间;(2)当π0,2x ⎡⎤∈⎢⎥⎣⎦时,求()f x 的最大值和最小值【答案】(1)最小正周期π,单调递减区间3π7ππ,π88k k ⎡⎤++⎢⎥⎣⎦,k ∈Z ;(2,最小值-1.【解析】【分析】(1)先根据二倍角公式与配角公式将函数化为基本三角函数,再根据正弦函数性质求最小正周期和单调递减区间;(2)先根据π0,2x ⎡⎤∈⎢⎥⎣⎦,确定正弦函数自变量取值范围,再根据正弦函数性质求最值.【小问1详解】()()()222πsin cos 2cos 12sin cos 2cos 1sin 21cos 224f x x x x x x x x x x ⎛⎫=+-=+-=+-+=- ⎪⎝⎭,∴最小正周期2ππ2T ==,由ππ3π22π,2π422x k k ⎡⎤-∈++⎢⎥⎣⎦,k ∈Z 得单调递减区间为3π7ππ,π88x k k ⎡⎤∈++⎢⎥⎣⎦,k ∈Z ;【小问2详解】由π0,2x ⎡⎤∈⎢⎥⎣⎦得ππ3π2,444x ⎡⎤-∈-⎢⎥⎣⎦,故当ππ242x -=时,()f x ;当ππ244x -=-时,()f x 的最小值为-1.17.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,且___________.在下面的三个条件中任选一个补充到上面的问题中,并给出解答.①22cos a b c B -=,②1sin cos 62C C π⎛⎫+=+ ⎪⎝⎭,③(,)m a c b a =-- ,(,)n a c b =+ ,m n ⊥.(1)求角C ;(2)若c =,求ABC V 周长的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.【答案】(1)3π(2)【解析】【分析】(1)选①由正弦定理结合和角公式得出角C ;选②由和角公式结合辅助角公式得出角C ;由数量积公式结合余弦定理得出角C ;(2)由余弦定理结合基本不等式得出ABC V 周长的取值范围.【小问1详解】选①由正弦定理及22cos a b c B -=,2sin sin 2sin cos A B C B -=,又sin sin()sin cos cos sin A B C B C B C =+=+,2sin cos sin B C B∴=sin 0B ≠ ,1cos 2C ∴=,又(0,)C π∈,3C π∴=.选②由1sin cos 62C C π⎛⎫+=+ ⎪⎝⎭,311sin cos cos 222C C C +=+,即311sin cos 222C C -=,1sin 62C π⎛⎫∴-= ⎪⎝⎭.(0,)C π∈ ,5,666C πππ⎛⎫∴-∈- ⎪⎝⎭,66C ππ∴-=,3C π∴=.选③(,)m a c b a =-- ,(,)n a c b =+ .m n ⊥.()()()0a c a c b a b ∴-⋅++-⋅=.化简得222a b c ab +-=,2221cos 22a b c C ab +-==.又(0,)C π∈ ,3C π∴=.【小问2详解】由余弦定理得2222222cos ()3c a b ab C a b ab a b ab =+-=+-=+-,又2a b+³Q 2()4a b ab +∴≤当且仅当a b =时等号成立.2233()3()4ab a b a b ∴=+-≤+,0a b ∴<+≤,当且仅当a b ==.a b c ∴++≤=又a b c +>,2a b c c ∴++>=ABC ∴周长的取值范围为.18.如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PD ⊥底面ABCD ,22PD DC AD ===,E 是PC 的中点.(1)求证:PA ∥平面EDB ;(2)求平面EDB 与平面PAD 夹角的余弦值;(3)在棱PB 上是否存在一点F ,使直线EF 与平面EDB 所成角的正弦值为3,若存在,求出求线段BF 的长;若不存在,说明理由.【答案】(1)证明见解析(2)66(3)存在;BF 的长为32或94【解析】【分析】(1)利用线面平行的判定定理证明即可;(2)建立空间直角坐标系,用空间向量数量积公式求解二面角;(3)假设棱PB 存在一点F 使得BF BP λ= ,且EF EB BF =+uu u r uur uu u r,即可求出EF ,利用向量的夹角公式列出关于λ的方程求解即可.【小问1详解】连接AC ,交BD 于点O ,连接OE ,点E 是PC 的中点,点O 是AC 的中点,所以PA ∥OE ,OE ⊂平面EDB ,PA ⊄平面EDB ,所以PA ∥平面EDB ;【小问2详解】如图,以向量DA ,DC ,DP为,,x y z 轴的正方向建立空间直角坐标系,即()0,0,0D ,()1,2,0B ,()0,1,1E ,则()()1,2,0,0,1,1DB DE ==,设平面EDB 的法向量(),,m x y z = ,则20DB m x y DE m y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令1y =-得2,1x z ==,所以平面EDB 的法向量()2,1,1m =-,平面PAD 的一个法向量为()0,1,0n =,设平面EDB 和平面PAD 的夹角为θ,则6cos cos ,66m n m n m n θ⋅====,所以平面EDB 和平面PAD 的夹角的余弦值为66;【小问3详解】由(2)知()0,0,0D ,()1,2,0B ,()0,1,1E ,()0,0,2P ,()1,1,1EB =- ,()1,2,2BP =-- ,(),2,2(01)BF BP λλλλλ==--<<,()()()1,1,1,2,21,12,12EF EB BF λλλλλλ=+=-+--=---+,由(2)知平面EDB 的法向量()2,1,1m =-,设直线EF 与平面EDB 的夹角为α,则6sin cos ,,013EF m αλ===<<整理得281030λλ-+=,解得12λ=或3,4λ=故当12λ=时,32BF =;当34λ=时,94BF =则BF 的长为32或94.19.某市A ,B 两所中学的学生组队参加信息联赛,A 中学推荐了3名男生、2名女生.B 中学推荐了3名男生、4名女生.两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队参赛.(1)求A 中学至少有1名学生入选代表队的概率;(2)设X 表示A 中学参赛的男生人数,求X 的分布列和数学期望;(3)已知3名男生的比赛成绩分别为76,80,84,3名女生的比赛成绩分别为77,a ()*a ∈N,81,若3名男生的比赛成绩的方差大于3名女生的比赛成绩的方差,写出a 的取值范围(不要求过程).【答案】(1)99100(2)分布列见解析,期望为32(3){|738},5N a a a *<∈<【解析】【分析】(1)A 中学至少有1名学生入选代表队的对立事件是A 中没有学生入选代表队,那3名男生和3名女生都是B 中学的学生,计算概率后,求对立事件的概率即可;(2)6名男队员中有A ,B 中学各3人,所以选3人来自A 中学的人数X 可能取值为0,1,2,3,根据超几何分布计算其概率,列出分布列,求期望;(3)根据平均数与方差的计算公式,结合题意即可得出a 的取值范围.【小问1详解】由题意知,参加集训的男、女生各有6名.参赛学生全部从B 中学中抽取(等价于A 中学没有学生入选代表队)的概率为33343366C C 1C C 100=.因此,A 中学至少有1名学生入选代表队的概率为1991100100-=.【小问2详解】根据题意得,X 的可能取值为0,1,2,3.则()()031233333366,0C C C C 1901C 20C 2P X P X ⋅⋅======,()213336C C 92C 20P X ⋅===,()330363C C 13.C 20P X ⋅===所以X 的分布列为:X 0123P120920920120因此,X 的数学期望()199130123202020202E X =⨯+⨯+⨯+⨯=.【小问3详解】3名男生的比赛成绩分别为76,80,84,平均值为80,方差为2224)043233-++=(,3名女生的比赛成绩为77,a ()*a ∈N,81,平均值为1583a +,所以222158158158327781333a a a a +++⎛⎫⎛⎫⎛⎫>-+-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即()()()()()()222222329732158857347985a a a a a a ⨯>-+-+-=-+-+-,代入检验,可知a 最小为74,最大84,故7385a <<,N a *∈即a 的取值范围{|738},5N a a a *<∈<.20.已知函数()211ln22f x a x x =--+(a ∈R 且0a ≠).(Ⅰ)当a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(Ⅱ)若0a >,讨论函数()f x 的单调性与单调区间;(Ⅲ)若()y f x =有两个极值点1x 、2x ,证明:()()129ln f x f x a +<-.【答案】(Ⅰ)10x y +--=;(Ⅱ)详见解析;(Ⅲ)证明见解析.【解析】【分析】(Ⅰ)求出()1f 和()1f '的值,利用点斜式可得出所求切线的方程;(Ⅱ)求得()2x af x x-+-'=,由20x a -+-=,分0∆>和0∆≤两种情况讨论,分析()f x '的符号变化,可得出函数()y f x =的单调递增区间和递减区间;(Ⅲ)由题意可知,方程()0f x '=有两正根1x 、2x ,利用韦达定理得出12x x +=,12x x a =且()0,3a ∈,将所证不等式转化为ln ln 20a a a a --+>,构造函数()ln ln 2x x g x x x =--+,利用导数证明出当()0,3x ∈时,()0g x >即可.【详解】由题可知:函数()f x 的定义域为 t h(Ⅰ)因为a =时,()21122f x x x =--+,所以()f x x x'=--,那么()11f '=-,()1f =,所以曲线()y f x =在()()1,1f 处的切线方程为:()1y x -=--,即10x y +-=;(Ⅱ)因为()2a x af x x x x-+-'=--=,由20x a -+-=可得:①当1240a ∆=->,()0,3a ∈,时,有1x =+,2x =120x x >>,()20,x x ∈和()1,x x ∈+∞时()0f x '<,即函数()y f x =在(和)+∞上为减函数;()21,x x x ∈时,()0f x '>,即函数()y f x =在上为增函数;②当3a ≥时,0∆≤,()0f x '≤恒成立,所以函数()y f x =在 t h 为减函数.综上可知:当0<<3a 时,函数()y f x =在(和)+∞上为减函数,在上为增函数;当3a ≥时,函数()y f x =在 t h 上为减函数;(Ⅲ)因为()y f x =有两个极值点1x 、2x ,则()20x af x x-+-'==有两个正根1x 、2x ,则有1240a ∆=->,且12x x +=,120x x a =>,即()0,3a ∈,所以()())()()22121212121ln 1ln 72f x f x x x a x x x x a a a +=+--++=-++若要()()129ln f x f x a +<-,即要ln ln 20a a a a --+>,构造函数()ln ln 2x x g x x x =--+,则()1ln g x x x'=-,易知()y g x '=在()0,3上为增函数,且()110g '=-<,()12ln 202g '=->,所以存在()01,2x ∈使()00g x '=即001ln x x =,且当()01,x x ∈时()0g x '<,函数()y g x =单调递减;当()0,2x x ∈时,()0g x '>,函数()y g x =单调递增.所以函数()y g x =在()1,2上有最小值为()00000001ln ln 23g x x x x x x x ⎛⎫=-++=-+ ⎪⎝⎭,又因为()01,2x ∈则00152,2x x ⎛⎫+∈ ⎪⎝⎭,所以()00g x >在()01,2x ∈上恒成立,即()()129ln f x f x a +<-成立.【点睛】本题考查利用导数求函数的切线方程、利用导数求解含参函数的单调区间以及利用导数证明不等式,考查分析问题和解决问题的能力,属于中等题.21.设n 为正整数,集合(){}{}12|,,,,0,1,1,2,,.n n i A a a a a i n αα==∈= 对于()12,,,n n a a a A α=∈ ,设集合(){}01,,1,2,,i t i P a t t n a a i n t +=∈≤≤-==⋯-N .(1)若()()0,1,0,0,1,0,0,1,0,0,1,0,1,0,0,1,0αβ==,写出集合()(),P P αβ;(2)若()12,,,n n a a a A α=∈ ,且(),s t P α∈满足s t <,令()12,,,n s n s a a a A α--∈'= ,求证:()t s P α-∈';(3)若()12,,,n n a a a A α=∈ ,且(){}1212,,,,3m m P s s s s s s m α=<<<≥ (),求证:()1221,2,,2k k k s s s k m ++≥+=- .【答案】(1)(){}(){}0,3,5,0,5,8,10P P αβ==;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)由题意,即可直接写出(),()P P αβ;(2)由i s i a a +=可得j t j t s a a ++-=,结合j t j a a +=可得,1,2,,j t s j a a j n t +-==- ,即可证明;(3)若()t P α'∈且2t n s <-则2,1,2,,2i t i a a i n s t +==-- ,进而2()s t P α+∈,由(2)可知1()k k k s s P α+-∈,分类讨论12()k k k s s n s +-<-、12()k k k s s n s +-≥-时12k k s s +-与2k s +的大小关系,即可证明.【小问1详解】(){0,3,5},(){0,5,8,10}P P αβ==;【小问2详解】因为()s P α∈,所以,1,2,,i s i a a i n s +==- ,当1j n t ≤≤-时,1j t s n t t s n s <+-≤-+-=-,所以j t s s j t s a a +-++-=,即j t j t s a a ++-=,1,2,,j n t =- ,又因为()t P α∈,所以,1,2,,j t j a a j n t +==- ,所以,1,2,,j t s j a a j n t +-==- ,所以()t s P α'-∈;【小问3详解】对任意()s P α∈,令12(,,,)n s n s a a a A α--'=∈ ,若()t P α'∈且2t n s <-,则,1,2,,i t i a a i n s t +==-- ,所以2,1,2,,2i t i a a i n s t +==-- ,因为()s P α∈,所以1,1,2,,j j a a j n s +==- ,所以22,1,2,,2i i t i t s a a a i n s t +++===-- ,所以2()s t P α+∈.对1,()(1,2,,2)k k s s P k m α+∈=- ,因为1k k s s +<,由(2)可知,令12(,,,)k k n s a a a α-= ,则1()k k k s s P α+-∈.若12()k k k s s n s +-<-,因为()k s P α∈,所以12()()k k k s s s P α++-∈,即12()k k s s P α+-∈,又因为11112()k k k k k k s s s s s s ++++-=+->,所以122k k k s s s ++-≥.若12()k k k s s n s +-≥-,则122()k k k m k s s s n s s +++-≥>≥,所以122k k k s s s ++->.综上,122k k k s s s ++-≥即122(1,2,,2)k k k s s s k m ++≥+=- .【点睛】方法点睛:学生在理解相关新概念、新定义、新法则(公式)之后,运用学过的知识,结合已掌握的技能,通过推理、运算等解决问题.在新环境下研究“旧”性质.主要是将新性质应用在“旧”性质上,创造性地证明更新的性质,落脚点仍然是集合相关知识..。

2023-2024学年北京东城区景山学校高三(上)期中数学试题及答案

2023-2024学年北京东城区景山学校高三(上)期中数学试题及答案

2023北京景山学校高三(上)期中数 学注意事项(1)请用蓝色或黑色圆珠笔、钢笔或签字笔答卷,不得用铅笔或红笔答卷. (2)认真审题,字迹工整,卷面整洁.(3)本试卷共5页,共三道大题,21道小题.考试时间120分钟.(4)请将选择题的答案填涂在机读卡上,其余试题答案填写在答题纸上,在试卷上作答无效.一、选择题(共10小题,每小题4分,共40分)1. 已知集合{}1A x x =≤,{3,1,2,4}B =−,则A B ⋂等于( ) A. {3,1}−B. {2,4}C. {1,2,4}D. {3,1,2}−2. 若复数z 满足i 2i z ⋅=−,则||z =( )A.1B. 23. 下列函数中,在定义域上为增函数且为奇函数的是( ) A.2y x =+B. 3y x x =+C. sin y x =D. 2x y =4. 已知向量(2,1)a =−,(,3)b m =.若//a b ,则m =( ) A. 6B. 6−C. 32−D.235. 经过原点和点(3,1)且圆心在直线350x y +−=上的圆的方程为( ) A. 22(5)(10)125x y −++= B. 22(1)(2)25x y −+−= C. 22(3)9x y −+=D. 22(1)(2)5x y ++−=6. 在ABC 中,“tan A >”是“π3A >”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件7. 已知12e a =,1ln 2b =,1sin 2c =,则( )A. a b c >>B. b c a >>C. c a b >>D. a c b >>8. 已知直线1y kx =+与圆2240x x y −+=相交于M N ,两点,且||23MN ,那么实数k 的取值范围是( ) A. 143k−− B. 403kC. 0k 或43k −D. 403k −9. 已知函数()sin()(0)f x x ωϕω=+>在ππ,36⎡⎤−⎢⎥⎣⎦上单调,且π4ππ633f f f ⎛⎫⎛⎫⎛⎫==−− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则ω的取值不可能为( ) A.35B.75C.95D.12710. 如图,点P 是棱长为2的正方体1111ABCD A B C D −的表面上一个动点,则以下说法中不正确的是( )A. 当P 在平面11BCC B 上运动时,四棱锥11P AA D D −的体积不变B. 当P 在线段AC 上运动时,1D P 与11A C 所成角的取值范围是ππ,32⎡⎤⎢⎥⎣⎦C. 若F 是11A B 的中点,点P 在底面ABCD 上运动时,不存在点P 满足//PF 平面11B CDD. 若点P 在底面ABCD 上运动,则使直线1A P 与平面ABCD 所成的角为45︒的点P 的轨迹为圆上的一段弧二、填空题(共5小题,每小题5分,共25分)11.函数()ln(1)f x x =−的定义域是_________.12. 已知椭圆2222:1(0)x y C a b a b+=>>的两个焦点分别为1F ,2F ,点P 在C 上,且12123PF PF F F +=,则椭圆C 的离心率为__________.13. 已知数列{}n a 的前n 项和为n S ,且22n n a a +=,2133S a ==,则5a =__________;若30m S >,则m 的最小值为__________.14. 设函数()()2,121,1x a x f x a x x −+≤⎧⎪=⎨−−+>⎪⎩,若()f x 的值域为(,)−∞+∞,则a 的取值范围是__________. 15. 已知直线1:20+−=l x y 与2:210l x y −+=相交于点P ,直线1l 与x 轴交于点1P ,过点1P 作x 轴的垂线交直线2l 于点1Q ,过点1Q 作y 轴的垂线交直线1l 于点2P ,过点2P 作x 轴的工线交直线2l 于点2Q ,…,这样一直作下去,可得到一系列点1P ,1Q ,2P ,2Q ,…,记点()*N n P n ∈的横坐标构成数列{}n x ,给出下列四个结论:①点213,24Q ⎛⎫⎪⎝⎭; ②数列{}2n x 单调递减; ③12124n nPP −⎛⎫=⨯ ⎪⎝⎭; ④数列{}n x 的前n 项和n S 满足:1243n n S S n ++=+.其中所有正确结论的序号是__________.三、解答题(共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.)16. 已知ABC中,222a c b +=. (1)求B 的大小;(2)若1c =+,再从下列三个条件中,选择一个作为已知,使得ABC 存在且唯一,求ABC 的面积.条件①1sin 2A =;条件②2b =;条件③cos 2A =. 注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.17.已知函数2()cos 2sin f x x x x a =++,且π33f ⎛⎫= ⎪⎝⎭. (1)求a 的值及()f x 的最小正周期;(2)若[0,]x m ∈,且()0f x ≥,求实数m 的最大值. 18. 如图,在三棱柱111ABCA B C 中,1AA ⊥平面ABC ,ABC 是等腰直角三角形,12AA AB AC ===,D ,E ,F 分别是棱11B C ,AC ,BC 的中点.(1)证明://AD 平面1C EF ;(2)求平面ADE 与平面1C EF 夹角的余弦值.19. 已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为1A ,2A,焦距为(0,2)B 在椭圆上.(1)求C 的方程;(2)过点(1,0)P 的任意直线与椭圆C 交于M ,N (不同于1A ,2A )两点,直线1A M 的斜率为1k ,直线2A N 的斜率为2k .试问是否存在常数λ,使得12k k λ=?若存在,求出λ的值;若不存在,请说明理由.20. 已知函数31()ln()(0)3f x ax x a =−≠. (1)当2a =时,求曲线()y f x =在点11,22f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线方程; (2)讨论函数()f x 的单调性;(3)当1a =时,设()()g x f x t =+,若()g x 有两个不同的零点,求参数t 的取值范围.21. 已知{}n a 是无穷数列,1a a =,2a b =,且对于{}n a 中任意两项i a ,()j a i j <,在{}n a 中都存在一项(2)k a j k j <<,使得2k j i a a a =−.(1)若3a =,5b =,求3a ; (2)若0ab,求证:数列{}n a 中有无穷多项为0;(3)若a b <,求数列{}n a 的通项公式.参考答案一、选择题(共10小题,每小题4分,共40分)1. 【答案】A【分析】应用集合的交运算求结果. 【详解】由题设A B ={}1x x ≤⋂{3,1,2,4}{3,1}−=−.故选:A 2. 【答案】D【分析】根据复数除法的运算法则和复数模的计算公式进行求解即可. 【详解】2i (2i)i 2i 1i 2i 12i i i i 1z z −−+⋅=−⇒====−−⋅−,所以||z ==,故选:D 3. 【答案】B【分析】根据指数函数、正弦函数及简单幂函数的性质及奇偶性定义判断各项函数的单调性、奇偶性. 【详解】A :由()2y f x x ==+在定义域R 上递增,但()2()f x x f x −=−+≠−,不满足; B :由3()y f x x x ==+在定义域R 上递增,且3()()f x x x f x −=−−=−,满足; C :由sin y x =在定义域R 上不为增函数,不满足;D :由()2x y f x ==在定义域R 上递增,但()2()x f x f x −−=≠−,不满足. 故选:B 4. 【答案】B【分析】由向量平行的坐标表示列方程求参数即可. 【详解】由题设3621m m =⇒=−−. 故选:B 5. 【答案】A【分析】直接验证圆心是否在已知直线上以及圆是否过原点与点(3,1).【详解】由已知只有选项A 中圆心(5,10)−和B 中圆心(1,2)在已知直线上,CD 的圆心不在已知直线上, 代入原点和点(3,1)的坐标得,只有A 中圆过原点和点(3,1), 故选:A . 6. 【答案】A【分析】由三角形内角的性质,结合正切函数的性质及充分、必要性定义判断推出关系.【详解】由题设(0,π)A ∈,若tan A >,则ππ32A <<;若π3A >,则tan A >tan 0A <或正切值不存在;所以“tan A >是“π3A >”的充分不必要条件. 故选:A 7. 【答案】D【分析】利用中间值0,1可以比较三者的大小关系.【详解】因为102e e 1a ==>,1ln ln102b =<=,()1sin 0,12c =∈,所以a c b >> 故选:D. 8. 【答案】D 【分析】利用弦长公式,建立关于k 的不等式,直接求解.【详解】圆化简为标准方程为()2224x y −+=,圆心()2,0到直线1y kx =+的距离d =,MN =≥, 解得:403k −≤≤. 故选:D 9. 【答案】B【分析】由已知易得πT ≥、π()012f −=,结合π4π63f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,利用正弦型函数的图象讨论4π3x =不同对应点求ω的取值,即可得答案. 【详解】由()f x 在ππ,36⎡⎤−⎢⎥⎣⎦上单调,ππ63f f ⎛⎫⎛⎫=−− ⎪ ⎪⎝⎭⎝⎭,故πππ()π2632T T ≥−−=⇒≥, 而πππ36212−+=−,则π()012f −=,又π4π63f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,如下图依次讨论4π3x =对应为点,,,C A D E 四种情况,若4πππ()332T ω−−==,则35ω=,满足πT ≥;若4ππ2π36T ω−==,则127ω=,满足πT ≥;由4ππ3π3624+=,若3ππ33π()41242T ω−−==,则95ω=,满足πT ≥; 若4ππ4π236T ω−==,则247ω=,不满足πT ≥,其它情况均不符合;综上,B 不可能,A 、C 、D 可能. 故选:B 10. 【答案】C【分析】根据棱锥体积公式即判断A ,建立空间直角坐标系,向量法求线线角、线面角,及利用法向量判断线面关系,即可判断BCD.【详解】当P 在平面11BCC B 上运动时,P 到11AA D D 的距离恒为2,故四棱锥11P AA D D −的体积不变,A 对;如下图示空间直角坐标系,111(0,0,2),(,2,0),(2,0,2),(0,2,2)D P x x A C −,所以111(,2,2),(2,2,0)D P x x AC =−−=−且[0,2]x ∈, 设1D P 与11A C 所成角为θ且θπ0,2⎡⎤∈⎢⎥⎣⎦,则111cos |cos ,|D P AC θ===,当1x ≠时,cos θ=[0,1)(1,2]x ∈,可得1cos (0,]2θ∈;当1x =时,cos 0θ=; 所以1cos [0,]2θ∈,故θ∈ππ,32⎡⎤⎢⎥⎣⎦,B 对;如下图示空间直角坐标系,111(0,0,2),(0,2,0),(2,2,2),(2,0,0),(0,2,2)D C B A C ,所以111(0,2,2),(2,0,2),(2,2,2)D C CB AC =−==−,则11110AC D C AC CB ⋅=⋅=, 所以1111,AC D C AC CB ⊥⊥,又11D CCB C =且11,D C CB ⊂面11CB D ,所以1AC ⊥面11CB D ,即1AC 是面11CB D 的一个法向量, 由(2,1,2),(,,0)F P x y ,则(2,1,2)FP x y =−−−,若//PF 平面11B CD ,则12(2)2(1)40FP AC x y ⋅=−−+−−=,即10x y −+=,显然,直线10x y −+=与底面ABCD 有公共点,即存在点P 满足//PF 平面11B CD ,C 错; 若点P 在底面ABCD 上运动,设(,,0)P x y ,1(2,0,2)A ,则1(2,,2)A P x y =−−, 又面ABCD 的一个法向量(0,0,1)m =,则直线1A P 与平面ABCD 所成的角为45︒, 所以111|cos ,|||2||||(m A P m A P m A P ⋅===,整理得22(2)4x y −+=, 所以P 的轨迹是以(2,0)为圆心,2为半径的圆,其在底面ABCD 上轨迹为圆上的一段弧,D 对. 故选:C二、填空题(共5小题,每小题5分,共25分)11. 【答案】(]1,3【分析】根据偶次根式被开方数大于等于零,和对数的真数大于零即可求出答案. 【详解】解:由题意得30,10,x x −≥⎧⎨−>⎩,解得13x <≤,∴函数()f x 的定义域为(]1,3,故答案为:(]1,3. 12. 【答案】13【分析】根据椭圆的定义及性质有122PF PF a +=,122F F c =,结合已知条件即可求离心率. 【详解】由122PF PF a +=,122F F c =,又12123PF PF F F +=, 所以1263c a c e a =⇒==. 故答案为:1313. 【答案】 ①. 4 ②. 8【分析】求出12,a a ,再由递推关系得出数列{}n a 的奇数与偶数项分别成等比数列,从而可得数列的前几项,利用{}n S 是递增数列,求出和在30左右的n S 后可得m 的最小值. 【详解】∵2133S a ==,∴11a =,22a =,∵22n n a a +=,∴{}n a 的奇数与偶数项分别成等比数列,25124a a =⋅=,{}n a 各项均为正,因此{}n S 是递增数列,数列{}n a 的前几项依次为:1,2,2,4,4,8,8,16,16,7122448829S =++++++=,87829164530S S a =+=+=>,∴m 的最小值是8, 故答案为:4;8 14. 【答案】02a <≤【分析】由分段函数解析式,结合一次函数、二次函数性质分别求出对应区间的值域,结合已知列不等式求参数范围.【详解】由y x a =−+在(,1]−∞上递减,且值域为[1,)a −+∞,又()f x 的值域为(,)−∞+∞, 对于2(2)1y a x =−−+开口向下,即0a >,在(1,)+∞上值域为(,1]−∞, 所以11a −≤,即2a ≤,故02a <≤. 故答案为:02a <≤ 15. 【答案】①③ 【分析】由题设1,,n P P 在直线1l 上,1,,n Q Q 在直线2l 上,设(,)n n n P x y ,依据题设各点的关系推得13122n n x x +=−,并构造等比数列,进而求得111()2n n x −=+−,最后依次判断各项正误.【详解】由题设,112231313(2,0),(2,),(,),(,)22224P Q P Q ,故①对; 设(,)n n n P x y ,则11(,)22n n n Q x x +,进而有13111(,)2222n n n P x x +−+,即13122n n x x +=−,所以111(1)2n n x x +−=−−,故{1}n x −是以1为首项,12−为公比的等比数列,则111()2n n x −=+−,对于{}2n x ,212111()1224n n n x −=+−=−⋅,易知数列{}2n x 单调递增,②错; 由两直线交点(1,1)P 和(,2)n n n P x x −,则122221(1)(1)2(1)24n nn n n PP x x x −⎛⎫=−+−=−=⨯ ⎪⎝⎭,③对;由11()2212()13321()2nn n S n n −−=+=+−⋅−−−,故1102122()332n n S n +=++⋅−,所以1234n n S S n ++=+,④错;故答案为:①③三、解答题(共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.)16. 【答案】(1)π4B =; (2【分析】(1)由余弦定理求得得B ;(2)选①,由sin sin B A >得三角形只有一解,然后求得sin C ,由正弦定理求得a ,从而可得三角形面积;选②,分析得三角形有两解;选③,求出sin A 后,同选①计算. 【小问1详解】∵222a cb +=+,∴222cos 22a cb B ac +−==,又0πB <<,∴π4B =; 【小问2详解】 选①,1sin 2A =,因为1sin 22B =>,由sin sin a b A B =得b a >,所以B A >,因此π6A =,cos 2A =,sin sin(π)sin()sin cos cos sin 4C A B A B A B A B +=−−=+=+=,由sin sin c aC A=得(1sin 2sin c A a C +⨯===,11sin 2(12222ABCSac B +==⨯⨯+⨯=;选②,2b =,1c b =+>,∴C B >,又sin sin c b C B =,(1sin 2sin 2c B C b +===,∴C 角可能为锐角也可能为钝角,三角形是两解,不合题意;选③,cos 2A =,而(0,π)A ∈,∴π6A =,1sin 2A =,以下同选①.17. 【答案】(1)0a =,最小正周期为πT =; (2)2π3. 【分析】(1)由倍角正余弦公式、辅助角公式有π()2sin(2)16f x x a =−++,结合已知求参数,进而求正弦型函数的最小正周期; (2)根据正弦型函数的性质有ππ7π2666m −<−≤求参数范围,即可得最大值. 【小问1详解】由π()2cos 212sin(2)16f x x x a x a =−++=−++,且ππ2sin 1332f a ⎛⎫=++= ⎪⎝⎭, 所以0a =,故π()2sin(2)16f x x =−+,其最小正周期为2ππ2T ==. 【小问2详解】由[0,]x m ∈,显然(0)0f =,结合正弦函数的性质,只需π2sin(2)106m −+≥,即π1sin(2)62m −≥−,所以ππ7π2666m −<−≤,可得2π03m <≤,即m 的最大值为2π3. 18. 【答案】(1)证明见解析; (2)15. 【分析】(1)连接,FD CD ,且1,CD FC 交于G 点,易得四边形1FDC C 为矩形,即G 是CD 中点,连接EG ,中位线性质有//EG AD ,再由线面平行的判定证结论;(2)构建空间直角坐标系,向量法求面面角的余弦值. 【小问1详解】连接,FD CD ,且1,CD FC 交于G 点,又1AA ⊥面ABC ,D 、F 分别是棱11B C ,BC 的中点, 所以111////,DF CC AA DF CC =,即1,DF CC 都与面ABC 垂直,11B C ⊂面ABC ,所以11111,D C BCCCB F ⊥⊥,故四边形1FDC C 为矩形,即G 是CD 中点,连接EG ,又E 是棱AC 的中点,在ADC △中//EG AD ,EG ⊂面1C EF ,AD ⊄面1C EF , 所以//AD 平面1C EF ;【小问2详解】ABC 是等腰直角三角形且AB AC =,故111A B C △也为等腰直角三角形且11190B A C ∠=︒,又1AA ⊥面ABC ,构建如图空间直角坐标系1A xyz −, 则1(0,0,2),(1,1,0),(0,1,2),(1,1,2),(0,2,0)A D E F C ,所以1(1,1,2),(0,1,0),(1,0,0),(0,1,2)AD AE EF EC =−===−,若(,,)m x y z =是面ADE 的一个法向量,则200m AD x y z m AE y ⎧⋅=+−=⎪⎨⋅==⎪⎩,取1z =,则)2,10,m =, 若(,,)n a b c =是面1C EF 的一个法向量,则1020n EF a n EC b c ⎧⋅==⎪⎨⋅=−=⎪⎩,取1c =,则(0,2,1)n =,所以1|cos ,|||5||||5m n m n m n ⋅===⨯,平面ADE 与平面1C EF 夹角的余弦值为15.19. 【答案】(1)22194x y +=(2)存在,12λ=. 【分析】(1)根据题设及椭圆参数关系列方程求椭圆参数,即可得椭圆方程; (2)令:1MN x ty =+,联立椭圆并应用韦达定理求得2894M N ty y t+=−+、23294M N y y t =−+,进而表示出M N x x +、M N x x ,令1AN 的斜率为k ,结合椭圆性质易得249k k =−,且129k k ⋅=−,即可判断存在性.【小问1详解】由题设22222229414c a b b a b c ⎧=⎪⎧=⎪=⇒⎨⎨=⎩⎪=+⎪⎩,故C 的方程为22194x y +=; 【小问2详解】由题意,直线MN 不与x 轴重合,令:1MN x ty =+,联立椭圆方程得224(1)936ty y ++=, 所以22(94)8320t y ty ++−=,显然0∆>,则2894M N t y y t +=−+,23294M Ny y t =−+, 所以218()294M N M N x x t y y t +=++=+,2229(14)()194M N M N M N t x x t y y t y y t−=+++=+, 令1A N 的斜率为k ,则222339N N N N N N y y y k k x x x ⋅=⋅=+−−,而22194N Nx y +=,即22499N N y x =−−,所以249k k =−, 又2122232949(14)54333()999494N M N M M N M N M N y y y y t k k t x x x x x x t t −+⋅=⋅==−+++++++++223229(14)5481369t t −==−−+++,所以11122242119922k k k k k k −=−⇒=⇒=,即存在12λ=.20. 【答案】(1)2112110x y −−=; (2)答案见解析; (3)13t >. 【分析】(1)利用导数的几何意义求切线方程;(2)由题设31()x f x x−'=,讨论a<0、0a >,结合对应的定义域及其导数符号判断单调性;(3)问题化为31ln 3t x x =−在在,()0x ∈+∞有两个不同根,利用导数研究右侧的值域范围,即可得参数范围.【小问1详解】 由题设31()ln(2)3f x x x =−,则21()f x x x '=−,故11()224f =−,17()24f '=,所以在点11,22f ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭处的切线方程为171()2442y x +=−,即2112110x y −−=.【小问2详解】由3211()x f x x x x−'=−=,当a<0,定义域为(,0)x ∈−∞,此时310x −>,故()0f x '<,即()f x 在(,0)−∞上递减; 当0a >,定义域为,()0x ∈+∞,若(0,1)x ∈,则()0f x '>,()f x 在(0,1)上递增; 若(1,)x ∈+∞,则()0f x '<,()f x 在(1,)+∞上递减; 【小问3详解】 由题设,31()ln 3f x x x =−,故31()ln 3g x x x t =−+在,()0x ∈+∞有两个不同零点,所以31ln 3t x x =−在在,()0x ∈+∞有两个不同根, 令31()ln 3h x x x −=,则31()x h x x−'=, 在(0,1)x ∈,则()0h x '<,()h x 在(0,1)上递减,在(1,)x ∈+∞,则()0h x '>,()h x 在(1,)+∞上递增,且1(1)3h =, x 趋向于0或+∞时()h x 都趋向于+∞,故只需13t >,满足题设. 21. 【答案】(1)37a =;(2)证明见解析; (3)(1)(),1,2,3,n a a n b a n =+−−=【分析】(1)由题设取1,2i j ==,代入计算可得; (2)利用反证法证明即可; (3)利用反证法,先证{}n a 是递增数列,即*1N ,n n n a a +∀∈<恒成立,再证(1)(),1,2,3,n a a n b a n =+−−=,即可得通项公式.【小问1详解】取1,2i j ==,则存在24)k a k <<(使32122537a a a =−=⨯−=. 【小问2详解】假设{}n a 中仅有有限项为0,不妨设0m a =,当n m >时n a 均不为0,则2m ≥, 取1,i j m ==,则存在2)k a m k m <<(,使120k m a a a =−=,与0k a ≠矛盾, 所以数列{}n a 中有无穷多项为0; 【小问3详解】由a b <,先证{}n a 是递增数列,即*1N ,n n n a a +∀∈<恒成立,否则,存在最小正整数0n ,使001n n a a +≥,且012n a a a <<<,显然02n ≥,取01,2,,1i n =−,0j n =,则存在00(2)k a n k n <<使02k n i a a a =−,因为00000121222n n n n n a a a a a a a −−>−>>−>,所以01212,2,,2n n n n a a a a a a −−−−恰对应为0001221,,,n n n a a a ++−,所以001n n a a +>,与001n n a a +≤矛盾,故{}n a 是递增数列; 再证(1)(),1,2,3,n a a n b a n =+−−=,记d b a =−,即证(1),1,2,3,n a a n d n =+−=,当1,2n =时,易知结论成立,假设存在最小正整数0m ,使得(1)n a a n d =+−对任意01n m ≤≤恒成立, 但010m a a m d +≠+,则02m ≥, 取01,2,,1i m =−,0j m =,存在00(2)k a m k m <<使02k m i a a a =−,因为{}n a 是递增数列,所以00012121m m m a a a a a +−<<<<<<,则00001212,,2,2m m m m a a a a a a −−−−恰对应为0001221,,,m m m a a a ++−,所以0001100022[(1)][(2)]m m m a a a a m d a m d a m d +−=−=+−−+−=+,与010m a a m d +≠+矛盾, 所以(1)(),1,2,3,n a a n b a n =+−−=.【点睛】思路点睛:第二、三问,利用反证思想及数学归纳证数列单调性.。

北京市2025届高三上学期期中考试数学试卷含答案

北京市2025届高三上学期期中考试数学试卷含答案

2024—2025学年度第一学期期中练习题(答案在最后)年级:高三科目:数学考试时间:120分钟,满分:150分一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选中,选出符合题目要求的一项.1.已知集合{}11A x x =-≤≤,{|0}2xB x x =≤-,则A B = ()A.{}01x x ≤≤B.{}12x x -≤≤C.{}12x x -≤< D.{}02x x ≤≤【答案】C 【解析】【分析】解不等式化简集合B ,再利用并集的定义求解即得.【详解】解不等式02xx ≤-,得(2)020x x x -≤⎧⎨-≠⎩,解得02x ≤<,则{|02}B x x =≤<,而{}11A x x =-≤≤,所以{}12A B x x ⋃=-≤<.故选:C2.命题“()0,x ∀∈+∞,e ln x x >”的否定为()A.()0,x ∃∈+∞,e ln x x >B.()0,x ∀∈+∞,e ln x x <C.()0,x ∀∈+∞,e ln x x ≤D.()0,x ∃∈+∞,e ln x x≤【答案】D 【解析】【分析】根据全称命题与存在性命题的关系,准确改写,即可求解.【详解】根据全称命题与存在性命题的关系,可得:命题“()0,x ∀∈+∞,e ln x x >”的否定为“()0,x ∃∈+∞,e ln x x ≤”.故选:D .3.已知复数z 满足i 1z -=,则z 的取值范围是()A.[]0,1 B.[)0,1 C.[)0,2 D.[]0,2【答案】D 【解析】【分析】利用i 1z -=表示以 馀य़为圆心,1为半径的圆,z 表示圆上的点到原点的距离可得答案.【详解】因为在复平面内,i 1z -=表示到点 馀य़距离为1的所有复数对应的点,即i 1z -=表示以 馀य़为圆心,1为半径的圆,z 表示圆上的点到原点的距离,所以最短距离为0,最长距离为112+=,则z 的取值范围是 馀h .故选:D .4.若双曲线22221x y a b-=()0,0a b >>的离心率为2,则该双曲线的渐近线方程为()A.0y ±= B.0x ±=C.0x y ±=D.y ±=【答案】A 【解析】【分析】根据公式b a ==.【详解】由题意可知,2e =,则b a ==,所以双曲线的渐近线方程为y =0y ±=.故选:A5.直线()1:31210l a x ay ++-=和直线2:330l ax y -+=,则“53a =”是“12l l ⊥”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】由题意先求出12l l ⊥的充要条件,然后根据充分不必要条件的定义判断即可.【详解】由题设12l l ⊥()()31230a a a ⇔⨯++⨯-=,解得0a =或53a =.故1253a l l =⇒⊥,1253l l a ⊥⇒=/.所以“53a =”是“12l l ⊥”的充分不必要条件.故选:B.6.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则下列说法正确的是()A.该图象对应的函数解析式为()2sin 26f x x π⎛⎫=+ ⎪⎝⎭B.函数()y f x =的图象关于直线712x π=对称C.函数()y f x =的图象关于点5,012π⎛⎫-⎪⎝⎭对称D.函数()y f x =在区间2,36ππ⎡⎤--⎢⎥⎣⎦上单调递减【答案】B 【解析】【分析】先依据图像求得函数()f x 的解析式,再去代入验证对称轴、对称中心、单调区间的说法.【详解】由图象可知2,4312T A ππ==-,即T π=,所以22Tπω==,又212f π⎛⎫= ⎪⎝⎭,可得2sin 2212πϕ⎛⎫⨯+=⎪⎝⎭,又因为||2ϕπ<所以3πϕ=,所以2n 2)3(si f x x π⎛⎫=+⎪⎝⎭,故A 错误;当712x π=时,73sin 2sin 2sin 131232x ππππ⎛⎫⎛⎫+=⨯+==- ⎪ ⎪⎝⎭⎝⎭.故B 正确;当512π=-x 时,sin 2sin 1032x ππ⎛⎫⎛⎫+=-=-≠ ⎪ ⎪⎝⎭⎝⎭,故C 错误;当2,36x ππ⎡⎤∈--⎢⎥⎣⎦时,则2[,0]3ππ+∈-x ,函数()f x 不单调递减.故D 错误.故选:B7.已知1F ,2F 是椭圆C :22221(0)x y a b a b +=>>的两个焦点,P 为C 上一点,且1260F PF ∠=,125PF PF =,则C 的离心率为()A.6B.22C.12D.23【答案】A 【解析】【分析】根据椭圆的定义分别求出21,PF PF ,在12PF F 中,利用余弦定理求得,a c 的关系,从而可得出答案.【详解】解:在椭圆C :22221(0)x y a b a b+=>>中,由椭圆的定义可得122PF PF a +=,因为125PF PF =,所以215,33a aPF PF ==,在12PF F 中,122F F c =,由余弦定理得222121212122cos F F PF PF PF PF F PF =+-∠,即222222552149999a a a a c =+-=,所以222136c a =,所以C 的离心率216c e a ==.故选:A .8.函数()2sin 41x x xf x =+的大致图象为()A.B.C.D.【答案】A 【解析】【分析】根据函数的奇偶性、特殊点的函数值来确定正确选项.【详解】()()sin ,22x xxf x f x -=+的定义域为R ,()()sin 22x xxf x f x ---==-+,()f x 为奇函数,图象关于原点对称,排除C 选项.143ππ<<,()sin12201sin115522f <==<+,排除BD 选项.所以A 选项符合.故选:A9.“打水漂”是一种游戏:按一定方式投掷石片,使石片在水面上实现多次弹跳,弹跳次数越多越好.小乐同学在玩“打水漂”游戏时,将一石片按一定方式投掷出去,石片第一次接触水面时的速度为30m/s ,然后石片在水面上继续进行多次弹跳.不考虑其他因素,假设石片每一次接触水面时的速度均为上一次的75%,若石片接触水面时的速度低于6m/s ,石片就不再弹跳,沉入水底,则小乐同学这次“打水漂”石片的弹跳次数为()(参考数据:ln 20.7,ln 3 1.1,ln 5 1.6≈≈≈)A.5B.6C.7D.8【答案】B 【解析】【分析】设这次“打水漂”石片的弹跳次数为x ,根据题意得300.756x ⨯<,即0.750.2x <,根据指数函数的单调性和对数换底公式求解即可.【详解】设这次“打水漂”石片的弹跳次数为x ,由题意得300.756x ⨯<,即0.750.2x <,得0.75log 0.2x >.因为0.751lnln0.2lg55log 0.2 5.33ln0.75ln32ln2ln 4-===≈-,所以 5.3x >,即6x =.故选:B.10.已知函数2,0,()ln ,0,x x x f x x x x ⎧+⎪=⎨>⎪⎩,()()g x f x ax =-,若()g x 有4个零点,则a 的取值范围为()A.20,e ⎛⎫ ⎪⎝⎭B.10,2e ⎛⎫ ⎪⎝⎭C.2,1e ⎛⎫ ⎪⎝⎭D.1,12e ⎛⎫⎪⎝⎭【答案】B 【解析】【分析】由题意可得x=0为1个零点,只需要x ≠0时,21,0a 0x x lnx x x +≤⎧⎪=⎨>⎪⎩,,即y=a 与y 21,00x x lnx x x +≤⎧⎪=⎨>⎪⎩有3个交点且交点的横坐标不为0,作出y 21,00x x lnx x x +≤⎧⎪=⎨>⎪⎩,的图象,即可得出结论.【详解】当x=0时,g(0)=f(0)-0=0,当x 0≠时,由题意可得21,0a 0x x lnx x x +≤⎧⎪=⎨>⎪⎩,,即y=a 与y 21,00x x lnxx x +≤⎧⎪=⎨>⎪⎩,有3个交点且交点的横坐标不为0,令h(x)=2x 0lnx x >,,令h′(x )=312l 0nxx -=,则x=12e ,所以h(x)在(0,12e)单调递增,在(12e ∞+,)上单调递减,∴y 21,00x x lnx x x +≤⎧⎪=⎨>⎪⎩的大致图像如图:又h(12e)=12e,若y=a 与y 21,00x x lnx x x +≤⎧⎪=⎨>⎪⎩,有3个交点且交点的横坐标不为0,则10a 2e <<,故选B.【点睛】本题考查分段函数的零点,考查了利用导数解决函数零点的问题,考查了分析转化问题的能力,属于中档题.二、填空题共5小题,每小题5分,共25分.11.已知向量()4,2b = ,若向量a 在b 上的投影向量为12b,且a 与b 不共线,请写出一个符合条件的向量a的坐标________.【答案】()1,3(答案不唯一)【解析】【分析】根据题意,得到12a bb b b b ⋅⋅=,求得10a b ⋅=,进而可写出一个向量,得到答案.【详解】由向量()4,2b =,可得向量b = ,因为向量a 在b 上的投影向量为12b,可得12a b b b b b ⋅⋅=,可得10a b ⋅= ,设(,)a x y =,可得4210x y +=,取1,3x y ==,此时向量a 与向量b 不共线,故()1,3a =.故答案为:()1,3(答案不唯一).12.已知(2)n x y +展开式中各项系数和为243,则展开式中的第3项为___________.【答案】3280x y ##2380y x 【解析】【分析】令1x y ==,即可求出展开式系数和,从而求出n ,再写出展开式的通项,即可得解.【详解】解:令1x y ==,得()21243n+=,解得5n =,所以5(2)x y +的展开式的通项()555155C 22C kkk k k k kk T x y x y ---+==,则展开式的第3项为323232352C 80T x y x y ==.故答案为:3280x y 13.已知抛物线24y x =上的点P 到抛物线的焦点F 的距离为6,则以线段PF 的中点为圆心,PF 为直径的圆被x 轴截得的弦长为________.【答案】4【解析】【分析】首先利用抛物线定义确定P 点坐标,进而可得以PF 的中点为圆心, ᬈ长度为直径的圆的方程,再代入计算可得弦长.【详解】抛物线24y x =的焦点(1,0)F ,准线为=1x -,由题意得6PF =,结合抛物线定义知P 点到准线的距离为6,则615p x =-=,代入横坐标可得p y =±(5,P ±,所以PF 的中点坐标为或(3,,6PF =,所以以PF 的中点为圆心, ᬈ长度为直径的圆的方程为(22(3)9x y -+-=或(22(3)9x y -++=,圆心到x ,所以与x 截得的弦长为4=,故答案为:4.14.印章是我国传统文化之一,根据遗物和历史记载,至少在春秋战国时期就已出现,其形状多为长方体、圆柱体等,陕西历史博物馆收藏的“独孤信多面体煤精组印”是一枚形状奇特的印章(如图1),该形状称为“半正多面体”(由两种或两种以上的正多边形所围成的多面体),每个正方形面上均刻有不同的印章(图中为多面体的面上的部分印章).图2是一个由18个正方形和8个正三角形围成的“半正多面体”(其各顶点均在一个正方体的面上),若该多面体的棱长均为1,且各个顶点均在同一球面上,则该球的表面积为__________.【答案】(5π+【解析】【分析】根据几何体的结构特征确定其外接球球心位置,根据已知求球体半径,进而求球体表面积.1的正方体的表面上,如图,设其外接球的球心为O ,正方形ABCD 的中心为1O ,则点O 到平面ABCD 的距离1212OO +=,又122O C =,所以该多面体外接球的半径r ===故该球的表面积为(24π5π⨯=+⎝⎭.故答案为:(5π+15.已知数列 中各项均为正数,且211(1,2,3,)n n n a a a n ++-== ,给出下列四个结论:①对任意的*N n ∈,都有1n a >;②数列 可能为常数列;③若102a <<,则当2n ≥时,12n a a <<;④若12a >,则数列 为递减数列,其中正确结论是______.【答案】②③④【解析】【分析】对于①,根据一元二次方程有解得情况,利用判别式可得首项的取值范围,可得答案;对于②,将数列每一项设成未知量,根据等式建立方程,可得答案;对于③④,由题意作函数()()0f x x x =≥与函数()()20g x x x x =-≥的图象,利用数形结合的思想,对应数列中项在图象上的位置,可得答案.【详解】对于①,将等式211n n n a a a ++-=看作关于1n a +的一元二次方程,即2110n n n a a a ++--=,该方程有解,则140n a ∆=+≥,所以当14n a ≥-时,方程2110n n n a a a ++--=有解,即当101a <<时,一定存在数列 满足211(1,2,3,)n n n a a a n ++-== ,故①错误;对于②,令n a x =,由题意可得2x x x -=,解得0x =(舍去)或2,常数列2,2,2, 满足211(1,2,3,)n n n a a a n ++-== ,故②正确;由题意作函数()()0f x x x =≥与函数()()20g x x x x =-≥的图象如下:由211(1,2,3,)n n n a a a n ++-== ,则点()1,n n a a +在函数()g x 的图象上,易知(),n n a a 在函数()f x 的图象上,对于③,当102a <<时,由()21,a a 在函数()g x 的图象上,则212a <<,由()11,a a 在函数()f x 的图象上,则122a a <<,当2n ≥时,102n a -<<,由()1,n n a a -在函数()g x 的图象上,则12n a <<,由()11,n n a a --在函数()f x 的图象上,则12n n a a -<<,综上所述,若102a <<,当2n ≥时,12n a a <<,故③正确;对于④,当12a >时,由()21,a a 在函数()g x 的图象上,且()11,a a 在函数()f x 的图象上,则122a a >>,当2n a >时,由()1,n n a a +在函数()g x 的图象上,且(),n n a a 在函数()f x 的图象上,则12n n a a +>>,故④正确.故答案为:②③④.三、解答题共6小题,共85分.解答应写出文字说明,演算步摖或证明过程.16.在ABC V 中,222b c a bc +-=.(1)求A ∠;(2)再从条件①、条件②、条件③这三个条件中选择两个作为已知,使ABC V 存在且唯一确定,求ABC V 的面积.条件①:11cos 14B =;条件②:12a b +=;条件③:12c =.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多组符合要求的条件分别解答,按第一组解答计分.【答案】(1)π3(2)答案见解析【解析】【分析】(1)根据题意,利用余弦定理求得1cos 2A =,即可求解;(2)根据题意,若选择①②,求得sin B ,由正弦定理求得7,5a b ==,再由余弦定理求得8c =,结合面积公式,即可求解;若①③:先求得sin 14B =,由83sin sin()14C A B =+=,利用正弦定理求得212a =,结合面积公式,即可求解;若选择②③,利用余弦定理,列出方程求得0b =,不符合题意.【小问1详解】解:因为222b c a bc +-=,由余弦定理得2221cos 22b c a A bc +-==,又因为(0,π)A ∈,所以π3A =.【小问2详解】解:由(1)知π3A =,若选①②:11cos 14B =,12a b +=,由11cos 14B =,可得sin 14B ==,由正弦定理sin sin a bA B=353214=,解得7a =,则125b a =-=,又由余弦定理2222cos a b c bc A =+-,可得249255c c =+-,即25240c c --=,解得8c =或3c =-(舍去),所以ABC V的面积为113sin 58222S bc A ==⨯⨯⨯=.若选①③:11cos 14B =且12c =,由11cos 14B =,可得53sin 14B ==,因为πA BC ++=,可得()31115343sin sin 2142147C A B =+=⨯+⨯=,由正弦定理sin sin a cA C =34327=,解得212a =,所以ABC V 的面积为112153453sin 12222142S ac b ==⨯⨯⨯=.若选:②③:12a b +=且12c =,因为222b c a bc +-=,可得22212(12)12b b b +--=,整理得2412b b =,解得0b =,不符合题意,(舍去).17.已知三棱柱111ABC A B C -中,12AB BB ==,D 是BC 的中点,160B BA ∠=o,1B D AB ⊥.(1)证明:AB AC ⊥;(2)若侧面11ACC A 是正方形,求平面11ABB A 与平面1ADC 夹角的余弦值.【答案】(1)证明见解析;(2)55.【解析】【分析】(1)取AB 的中点O ,连接1AB 、OD 、1OB ,证明出AB ⊥平面1OB D ,//OD AC ,由此可证得AB AC ⊥;(2)以点O 为坐标原点,OB 、OD 、1OB 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得平面11ABB A 与平面1ADC 夹角的余弦值.【详解】(1)取AB 的中点O ,连接1AB 、OD 、1OB ,因为160B BA ∠=o,12AB BB ==,故1ABB 为等边三角形,因为O 为AB 的中点,则1OB AB ⊥,因为1AB B D ⊥,111OB B D B ⋂=,故AB ⊥平面1OB D ,OD ⊂ 平面1OB D ,所以,AB OD ⊥,O 、D 分别为AB 、BC 的中点,则//OD AC ,因此,AB AC ⊥;(2)112AA BB == ,则四边形11ACC A 是边长为2的正方形,O 、D 分别为AB 、BC 的中点,则112OD AC ==,由(1)可得11sin 60OB BB == ,//OD AC ,11//BB AA ,故OD 与1BB 所成角为190A AC ∠= ,即1OD BB ⊥,又因为OD AB ⊥,1AB BB B Ç=,OD ∴⊥平面11AA B B ,1OB ⊂ 平面11AA B B ,则1OD OB ⊥,所以,OD 、AB 、1OB 两两垂直,以点O 为坐标原点,OB 、OD 、1OB 所在直线分别为x 、y 、z轴建立空间直角坐标系,则()1,0,0A -、()0,1,0D 、()1,2,0C -、(1B 、()1,0,0B,(1BB =- ,()1,1,0AD =,()0,2,0AC =,(1111,AC AC CC AC BB =+=+=- ,设平面1ADC 的法向量为(),,n x y z =,则1020n AD x y n AC x y ⎧⋅=+=⎪⎨⋅=-++=⎪⎩,取1x =,则(1,n =-,易知平面11AA B B 的一个法向量为()0,1,0m =u r,cos ,5m n m n m n⋅<>==-=-⋅.因此,平面11ABB A 与平面1ADC夹角的余弦值为5.18.《中华人民共和国体育法》规定,国家实行运动员技术等级制度,下表是我国现行《田径运动员技术等级标准》(单位:m )(部分摘抄):项目国际级运动健将运动健将一级运动员二级运动员三级运动员男子跳远8.007.807.30 6.50 5.60女子跳远6.656.355.855.204.50在某市组织的考级比赛中,甲、乙、丙三名同学参加了跳远考级比赛,其中甲、乙为男生,丙为女生,为预测考级能达到国家二级及二级以上运动员的人数,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:):甲:6.60,6.67,6.55,6.44,6.48,6.42,6.40,6.35,6.75,6.25;乙:6.38,6.56,6.45,6.36,6.82,7.38;丙:5.16,5.65,5.18,5.86.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立,(1)估计甲在此次跳远考级比赛中成绩达到二级及二级以上运动员的概率;(2)设X 是甲、乙、丙在此次跳远考级比赛中成绩达到二级及二级以上运动员的总人数,估计X 的数学期望()E X ;(3)在跳远考级比赛中,每位参加者按规则试跳6次,取6次试跳中的最好成绩作为其最终成绩本次考级比赛中,甲已完成6次试跳,丙已完成5次试跳,成绩(单位:m )如下表:第1跳第2跳第3跳第4跳第5跳第6跳甲 6.50 6.48 6.47 6.51 6.46 6.49丙5.845.825.855.835.86a若丙第6次试跳的成绩为a ,用2212,s s 分别表示甲、丙试跳6次成绩的方差,当2212s s =时,写出a 的值.(结论不要求证明)【答案】(1)25(2)() 1.4E X =(3) 5.81a =或 5.87a =.【解析】【分析】(1)由已知数据计算频率,用频率估计概率;(2)由X 的取值,计算相应的概率,由公式计算数学期望()E X ;(3)当两人成绩满足()1,2,3,4,5,6i i y x b i =+=的模型,方差相等.【小问1详解】甲以往的10次比赛成绩中,有4次达到国家二级及二级以上运动员标准,用频率估计概率,估计甲在此次跳远考级比赛中成绩达到二级及二级以上运动员的概率为42105=;【小问2详解】设甲、乙、丙在此次跳远考级比赛中成绩达到二级及二级以上运动员分别为事件,,A B C ,以往的比赛成绩中,用频率估计概率,有()25P A =,()12P B =,()12P C =,X 是甲、乙、丙在此次跳远考级比赛中成绩达到二级及二级以上运动员的总人数,则X 可能的取值为0,1,2,3,()()3113052220P X P ABC ===⨯⨯=,()()()()2113113118152252252220P X P ABC P ABC P ABC ==++=⨯⨯+⨯⨯+⨯⨯=,()()()()2113112117252252252220P X P ABC P ABC P ABC ==++=⨯⨯+⨯⨯+⨯⨯=,()()2112352220P X P ABC ===⨯⨯=,估计X 的数学期望()38720123 1.420202020E X =⨯+⨯+⨯+⨯=;【小问3详解】甲的6次试跳成绩从小到大排列为:6.46,6.47,6.48,6.49,6.50,6.51,设这6次试跳成绩依次从小到大为()1,2,3,4,5,6i x i =,丙的5次试跳成绩从小到大排列为:5.82,5.83,5.84,5.85,5.86,设丙的6次试跳成绩从小到大排列依次为()1,2,3,4,5,6i y i =,当 5.81a =时,满足()0.651,2,3,4,5,6i i y x i =-=,2212s s =成立;当 5.87a =时,满足()0.641,2,3,4,5,6i i y x i =-=,2212s s =成立.所以 5.81a =或 5.87a =.19.已知椭圆2222:1(0)C b b x a a y +>>=的离心率是53,点()2,0A -在C 上.(1)求C 的方程;(2)过点()2,3-的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.【答案】(1)22194y x +=(2)证明见详解【解析】【分析】(1)根据题意列式求解,,a b c ,进而可得结果;(2)设直线PQ 的方程,进而可求点,M N 的坐标,结合韦达定理验证2M Ny y +为定值即可.【小问1详解】由题意可得222253b a b c c e a ⎧⎪=⎪⎪=+⎨⎪⎪==⎪⎩,解得32a b c ⎧=⎪=⎨⎪=⎩,所以椭圆方程为22194y x +=.【小问2详解】由题意可知:直线PQ 的斜率存在,设()()()1122:23,,,,PQ y k x P x y Q x y =++,联立方程()2223194y k x y x ⎧=++⎪⎨+=⎪⎩,消去y 得:()()()222498231630k x k k x k k +++++=,则()()()2222Δ64236449317280kk k k k k =+-++=->,解得0k <,可得()()2121222163823,4949k k k k x x x x k k +++=-=++,因为()2,0A -,则直线()11:22y AP y x x =++,令0x =,解得1122y y x =+,即1120,2y M x ⎛⎫⎪+⎝⎭,同理可得2220,2y N x ⎛⎫⎪+⎝⎭,则()()1212121222232322222y y k x k x x x x x +++++⎡⎤⎡⎤++⎣⎦⎣⎦=+++()()()()()()12211223223222kx k x kx k x x x +++++++⎡⎤⎡⎤⎣⎦⎣⎦=++()()()()1212121224342324kx x k x x k x x x x +++++=+++()()()()()()222222323843234231084949336163162344949k k k k k k k k k k k k k k k +++-++++===++-+++,所以线段MN 的中点是定点()0,3.【点睛】方法点睛:求解定值问题的三个步骤(1)由特例得出一个值,此值一般就是定值;(2)证明定值,有时可直接证明定值,有时将问题转化为代数式,可证明该代数式与参数(某些变量)无关;也可令系数等于零,得出定值;(3)得出结论.20.已知函数()()221ln ,f x x a x a x a =-++∈R .(1)若0a =,求曲线()y f x =在点()()2,2P f 处的切线方程.(2)若()f x 在1x =处取得极值,求()f x 的极值.(3)若()f x 在[]1,e 上的最小值为2a -,求a 的取值范围.【答案】(1)340x y --=(2)极大值15ln 224f ⎛⎫=-- ⎪⎝⎭,极小值()12f =-;(3)(1],-∞【解析】【分析】(1)根据导数的几何意义,即可求得答案;(2)根据()f x 在1x =处取得极值,求出a 的值,从而判断函数的单调性,求得极值;(3)分类讨论,讨论a 与区间[]1,e 的位置关系,确定函数单调性,结合函数的最值,即可确定a 的取值范围.【小问1详解】若0a =,则()2=-f x x x ,则()21f x x '=-,故()()22,23f f '==,故曲线()y f x =在点()()2,2P f 处的切线方程为23(2)y x -=-,即340x y --=;【小问2详解】()()221ln ,f x x a x a x a =-++∈R 定义域为(0),+∞,则()()221af x x a x'=-++,由于()f x 在1x =处取得极值,故()()12210,1f a a a '=-++=∴=,则()()()2211123123x x x x f x x x x x---+'=-+==,令()0f x '>,则102x <<或1x >,函数()f x 在10(1)2,,,⎛⎫+∞ ⎪⎝⎭上均单调递增,令()0f x '<,则112x <<,函数()f x 在1,12⎛⎫⎪⎝⎭上单调递减,故当12x =时,()f x 取到极大值11315ln ln 224224f ⎛⎫=-+=-- ⎪⎝⎭,当1x =时,()f x 取到极小值()1132f =-=-;【小问3详解】由于()()()()[],1,e 21221x x a a f x x a x x x--'=-++=∈,当1a ≤时,()0f x '≥,仅在1,1a x ==时等号取得,()f x 在[]1,e 上单调递增,则()min (1)2f x f a ==-,符合题意;当1e a <<时,则1x a <<时,()0f x '<,()f x 在[]1,a 上单调递减,e a x <<时,()0f x '>,()f x 在[],e a 上单调递增,故()min ()(1)2f x f a f a =<=-,不符合题意;当e a ≥时,()0f x '<,()f x 在[]1,e 上单调递减,故()min (e)(1)2f x f f a =<=-,不符合题意;综上,可知a 的取值范围为(1],-∞.【点睛】方法点睛:第三问根据函数的最小值求解参数范围,求出导数后,要分类讨论,讨论a 与区间[]1,e 的位置关系,从而确定最值,求得参数范围.21.已知有限数列12:,,,m A a a a 为单调递增数列.若存在等差数列121:,,,m B b b b + ,对于A 中任意一项i a ,都有1i i i b a b +≤<,则称数列A 是长为m 的Ω数列.(1)判断下列数列是否为Ω数列(直接写出结果):①数列1,4,5,8;②数列2,4,8,16.(2)若(,,)a b c a b c R <<∈,证明:数列a ,b ,c 为Ω数列;(3)设M 是集合{|063}x N x ∈≤≤的子集,且至少有28个元素,证明:M 中的元素可以构成一个长为4的Ω数列.【答案】(1)①数列1,4,5,8是Ω数列;②数列2,4,8,16是Ω数列;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)由数列的新定义,可直接判定,得到答案;(2)分当b a c b -=-,b a c b -<-和b a c b ->-三种情况讨论,结合数列的新定义,即可求解;(3)假设M 中没有长为4的Ω数列,先考虑集合{16,161,,1615}k M k k k =++L ,得到存在一个k ,使得k M 中没有一个元素属于M ,再考虑集合,{164,1641,k j M k j k j =+++1642,1643}k j k j ++++,得到存在一个j ,使得,k j M 中没有一个元素属于M ,进而证得集合M 中至多有27个元素,即可得到结论.【详解】(1)由数列的新定义,可得数列1,4,5,8是Ω数列;数列2,4,8,16是Ω数列.(2)①当b a c b -=-时,令1b a =,2b b =,3b c =,42b c b =-,所以数列1b ,2b ,3b ,4b 为等差数列,且1234b a b b b c b <<<≤≤≤,所以数列a ,b ,c 为Ω数列.②当b a c b -<-时,令12b b c =-,2b b =,3b c =,42b c b =-,所以数列1b ,2b ,3b ,4b 为等差数列,且1234b a b b b c b <<<≤≤≤.所以数列a ,b ,c 为Ω数列.③当b a c b ->-时,令1b a =,22a c b +=,3b c =,432c a b -=,所以数列1b ,2b ,3b ,4b 为等差数列,且1234b a b b b c b <<<≤≤≤.所以数列a ,b ,c 为Ω数列.综上,若a b c <<,数列a ,b ,c 为Ω数列.(3)假设M 中没有长为4的Ω数列,考虑集合{16,161,,1615}k M k k k =++L ,0k =,1,2,3.因为数列0,16,32,48,64是一个共有5项的等差数列,所以存在一个k ,使得k M 中没有一个元素属于M .对于其余的k ,再考虑集合,{164,1641,1642,1643}k j M k j k j k j k j =+++++++,0j =,1,2,3.因为164k j +,1644k j ++,1648k j ++,16412k j ++,16416k j ++是一个共有5项的等差数列,所以存在一个j ,使得,k j M 中没有一个元素属于M .因为,k j M 中4个数成等差数列,所以每个,k j M 中至少有一个元素不属于M .所以集合{|063}x x ∈N ≤≤中至少有16431937+⨯+⨯=个元素不属于集合M .所以集合M 中至多有643727-=个元素,这与M 中至少有28个元素矛盾.所以假设不成立.所以M 中的元素必能构成长为4的Ω数列.【点睛】1、数列新定义问题的特点:通过给出一个新的数列概念,或约定一种新运算,或给出几个新模型来创设全新的问题情境,要求考生再阅读理解的基础上,以及题目提供的信息,联系所学知识和方法,实现信息的迁移,达到灵活解题的目的;2、遇到数列的心定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使问题得以解决.。

新高三数学上期中试卷(及答案)(2)

新高三数学上期中试卷(及答案)(2)

新高三数学上期中试卷(及答案)(2)一、选择题1.数列{}n a 的前n 项和为21n S n n =++,()()1N*n n n b a n =-∈,则数列{}n b 的前50项和为( ) A .49B .50C .99D .1002.若不等式组0220y x y x y x y a ⎧⎪+⎪⎨-⎪⎪+⎩…„…„表示的平面区域是一个三角形,则实数a 的取值范围是( )A .4,3⎡⎫+∞⎪⎢⎣⎭B .(]0,1C .41,3⎡⎤⎢⎥⎣⎦ D .(]40,1,3⎡⎫+∞⎪⎢⎣⎭U3.已知数列{}n a 满足11a =,12nn n a a +=+,则10a =( )A .1024B .2048C .1023D .20474.()()()3663a a a -+-≤≤的最大值为( )A .9B .92C .3D .3225.在斜ABC ∆中,设角,,A B C 的对边分别为,,a b c ,已知sin sin sin 4sin cos a A b B c C b B C +-=,CD 是角C 的内角平分线,且CD b =,则cos C = ( )A .18B .34C .23 D .166.已知等比数列{}n a 中,31174a a a =,数列{}n b 是等差数列,且77b a =,则59b b +=( ) A .2 B .4C .16D .8 7.设函数是定义在上的单调函数,且对于任意正数有,已知,若一个各项均为正数的数列满足,其中是数列的前项和,则数列中第18项( )A .B .9C .18D .368.等比数列{}n a 中,11,28a q ==,则4a 与8a 的等比中项是( )A .±4B .4C .14±D .149.已知等比数列{}n a 的各项均为正数,若3132312log log log 12a a a ++⋯+=,则67a a =( ) A .1B .3C .6D .910.,x y 满足约束条件362000x y x y x y -≤⎧⎪-+≥⎪⎨≥⎪⎪≥⎩,若目标函数(0,0)z ax by a b =+>>的最大值为12,则23a b+的最小值为 ( ) A .256B .25C .253D .511.已知数列{an}的通项公式为an =2()3nn 则数列{an}中的最大项为( ) A .89B .23C .6481D .12524312.若不等式1221m x x≤+-在()0,1x ∈时恒成立,则实数m 的最大值为( ) A .9B .92C .5D .52二、填空题13.若数列{}n a 满足11a =,()()11132nn n n a a -+-+=⋅ ()*n N ∈,数列{}n b 的通项公式()()112121n n n n a b ++=-- ,则数列{}n b 的前10项和10S =___________14.已知命题20001:,02p x R ax x ∃∈++≤,若命题p 是假命题,则实数a 的取值范围是________.15.已知数列111112123123n+++++++L L L ,,,,,,则其前n 项的和等于______. 16.已知关于x 的一元二次不等式ax 2+2x+b >0的解集为{x|x≠c},则227a b a c+++(其中a+c≠0)的取值范围为_____. 17.设数列{a n }的首项a 1=32,前n 项和为S n ,且满足2a n +1+S n =3(n ∈N *),则满足2188177n n S S <<的所有n 的和为________. 18.在△ABC 中,2BC =,AC =3B π=,则AB =______;△ABC 的面积是______.19.(理)设函数2()1f x x =-,对任意3,2x ⎡⎫∈+∞⎪⎢⎣⎭,2()4()(1)4()xf m f x f x f m m-≤-+恒成立,则实数m 的取值范围是______. 20.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++等于______.三、解答题21.在ABC ∆中,角,,A B C 的对边分别为,,a b c,且sin 1cos a CA=-.(1)求角A 的大小;(2)若10b c +=,ABC ∆的面积ABC S ∆=a 的值.22.已知等差数列{}n a 的前n 项和为n S ,各项为正的等比数列{}n b 的前n 项和为n T ,11a =-,11b =,222a b +=.(1)若335a b +=,求{}n b 的通项公式; (2)若321T =,求3S23.数列{}n a 中,11a =,121n n a a n +=++. (1)求{}n a 的通项公式; (2)设141n n b a =-,求出数列{}n b 的前n 项和.24.等差数列{}n a 的各项均为正数,11a =,前n 项和为n S .等比数列{}n b 中,11b =,且226b S =,238b S +=.(1)求数列{}n a 与{}n b 的通项公式; (2)求12111nS S S ++⋯+. 25.已知数列{}n a 的前n 项和()2*,,n S pn qn p q n =+∈∈R N ,且143,24.a S ==(1)求数列{}n a 的通项公式;(2)设2n an b =,求数列{}n b 的前n 项和n T .26.已知函数()cos f x x x =-.(1)求函数()f x 在,2x ππ⎡⎤∈⎢⎥⎣⎦的值域; (2)在ABC ∆中,内角A 、B 、C 的对边分别是a 、b 、c ,若78663f A f B ππ⎛⎫⎛⎫+=+- ⎪ ⎪⎝⎭⎝⎭,求a b 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:当1n =时,113a S ==;当2n ≥时,()()()22111112n n n a S S n n n n n -⎡⎤=-=++--+-+=⎣⎦,把1n =代入上式可得123a =≠.综上可得3,1{2,2n n a n n ==≥.所以3,1{2,12,n n b n n n n n -==-≠为奇数且为偶数.数列{}n b 的前50项和为()()503235749224650S =--+++++++++L L ()()24349252503224922++=--⋅+⋅=.故A 正确.考点:1求数列的通项公式;2数列求和问题.2.D解析:D 【解析】 【分析】要确定不等式组0220y x y x y x y a⎧⎪+⎪⎨-⎪⎪+⎩…„…„表示的平面区域是否一个三角形,我们可以先画出0220y x y x y ⎧⎪+⎨⎪-⎩…„…,再对a 值进行分类讨论,找出满足条件的实数a 的取值范围. 【详解】不等式组0220y x y x y ⎧⎪+⎨⎪-⎩…„…表示的平面区域如图中阴影部分所示.由22x y x y =⎧⎨+=⎩得22,33A ⎛⎫⎪⎝⎭,由022y x y =⎧⎨+=⎩得()10B ,. 若原不等式组0220y x y x y x y a⎧⎪+⎪⎨-⎪⎪+⎩…„…„表示的平面区域是一个三角形,则直线x y a +=中a 的取值范围是(]40,1,3a ⎡⎫∈+∞⎪⎢⎣⎭U 故选:D 【点睛】平面区域的形状问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,然后结合分类讨论的思想,针对图象分析满足条件的参数的取值范围.3.C解析:C 【解析】 【分析】 根据叠加法求结果. 【详解】因为12n n n a a +=+,所以12nn n a a +-=,因此10981010921198122221102312a a a a a a a a -=-+-++-+=++++==-L L ,选C.【点睛】本题考查叠加法求通项以及等比数列求和,考查基本分析求解能力,属基础题.4.B解析:B 【解析】 【分析】根据369a a -++=是常数,可利用用均值不等式来求最大值. 【详解】 因为63a -≤≤, 所以30,60a a ->+> 由均值不等式可得:36922a a -++≤= 当且仅当36a a -=+,即32a =-时,等号成立, 故选B. 【点睛】本题主要考查了均值不等式,属于中档题.5.A解析:A 【解析】 【分析】利用正弦定理角化边可构造方程2cos cos bC C a=,由cos 0C ≠可得2a b =;利用ABC ACD BCD S S S ∆∆∆=+可构造方程求得3cos 24C =,利用二倍角公式求得结果.【详解】由正弦定理得:22224cos a b c b C +-=则22224cos 2cos cos 22a b c b C bC C ab ab a+-===ABC ∆Q 为斜三角形 cos 0C ∴≠ 2a b ∴=ABC ACD BCD S S S ∆∆∆=+Q 1112sin sin 2sin 22222C Cb b C b b b b ∴⋅=⋅+⋅即:2sin 4sin cos 3sin 222C C CC ==()0,C π∈Q 0,22C π⎛⎫∴∈ ⎪⎝⎭ sin 02C ∴≠ 3cos 24C ∴= 291cos 2cos 1212168C C ∴=-=⨯-= 本题正确选项:A 【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、余弦定理和三角形面积公式的应用、二倍角公式求三角函数值等知识;关键是能够通过面积桥的方式构造方程解出半角的三角函数值.6.D解析:D 【解析】 【分析】利用等比数列性质求出a 7,然后利用等差数列的性质求解即可. 【详解】等比数列{a n }中,a 3a 11=4a 7, 可得a 72=4a 7,解得a 7=4,且b 7=a 7, ∴b 7=4,数列{b n }是等差数列,则b 5+b 9=2b 7=8. 故选D . 【点睛】本题考查等差数列以及等比数列的通项公式以及简单性质的应用,考查计算能力.7.C解析:C 【解析】∵f (S n )=f (a n )+f (a n +1)-1=f[a n (a n +1)]∵函数f (x )是定义域在(0,+∞)上的单调函数,数列{a n }各项为正数∴S n =a n (a n +1)①当n=1时,可得a 1=1;当n≥2时,S n-1=a n-1(a n-1+1)②,①-②可得a n = a n (a n +1)-a n-1(a n-1+1)∴(a n +a n-1)(a n -a n-1-1)=0∵a n >0,∴a n -a n-1-1=0即a n -a n-1=1∴数列{a n }为等差数列,a 1=1,d=1;∴a n =1+(n-1)×1=n 即a n =n 所以故选C8.A解析:A 【解析】 【分析】利用等比数列{}n a 的性质可得2648a a a = ,即可得出.【详解】设4a 与8a 的等比中项是x .由等比数列{}n a 的性质可得2648a a a =,6x a ∴=± .∴4a 与8a 的等比中项561248x a =±=±⨯=±. 故选A .【点睛】本题考查了等比中项的求法,属于基础题.9.D解析:D 【解析】 【分析】首先根据对数运算法则,可知()31212log ...12a a a =,再根据等比数列的性质可知()6121267.....a a a a a =,最后计算67a a 的值.【详解】由3132312log log log 12a a a +++=L ,可得31212log 12a a a =L ,进而可得()6121212673a a a a a ==L ,679a a ∴= .【点睛】本题考查了对数运算法则和等比数列性质,属于中档题型,意在考查转化与化归和计算能力.10.A解析:A 【解析】 【分析】先画不等式组表示的平面区域,由图可得目标函数(0,0)z ax by a b =+>>何时取最大值,进而找到a b ,之间的关系式236,a b +=然后可得23123()(23)6a b a b a b+=++,化简变形用基本不等式即可求解。

江苏省南通市海安市2025届高三上学期11月期中考试数学试题(含答案)

江苏省南通市海安市2025届高三上学期11月期中考试数学试题(含答案)

江苏省南通市海安市2025届高三上学期11月期中考试数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知复数2+3im−i∈R,则实数m=( )A. −32B. −23C. 23D. 322.已知集合A={0,1,2,3,6},B={x|x−1∈A},则∁A(A∩B)=( )A. {0,6}B. {3,6}C. {−1,5}D. {0,1,2}3.在△ABC中,tan A=2,tan B=3,则C=( )A. 30∘B. 45∘C. 60∘D. 135∘4.函数f(x)=x(x−3)2的极大值为( )A. −4B. 0C. 1D. 45.在三棱锥P−ABC中,PA=PB=AB=AC=BC=2,PC与平面ABC所成角的大小为60∘,则PC=( )A. 1B. 2C. 3D. 26.曲线y=2sin x与y=sin(x−π3)的交点中,与y轴最近的点的横坐标为( )A. −5π6B. −π6C. π6D. 5π67.在▱ABCD中,AM=MB,BN=2NC,AP=xAB+(1−x)AD,x∈R.若AP//MN,则x=( )A. 17B. 27C. 37D. 478.在正四棱柱ABCD−A1B1C1D1中,AA1=3AB,P是线段CC1上靠近C的三等分点,过点C与直线PA垂直的平面将正四棱柱分成两部分,则较大部分与较小部分的体积比为( )A. 32B. 2 C. 52D. 3二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

9.在空间中,设a,b,c是三条直线,α,β,γ是三个平面,则下列能推出a//b的是( )A. a⊥c,b⊥cB. a//α,a⊂β,α∩β=bC. α⊥γ,β⊥γ,α∩γ=a,β∩γ=bD. α∩β=a,α∩γ=b,β∩γ=c,a//c10.已知函数f(x)=cos x cos2x,则( )A. f(x)的最大值为1B. (π2,0)是曲线y =f(x)的对称中心C. f(x)在(0,π2)上单调递减D. f(x)的最小正周期为2π11.设f(x)为R 上的增函数,满足:f(1+x)+f(1−x)=2,f(2+x)+f(2−x)=4,则( )A. f(3)=3B. f(x)为奇函数C. ∃x 0∈R ,f(x 0)=x 0+1D. ∀x ∈R ,f(e x +1)−f(x)≥2三、填空题:本题共3小题,每小题5分,共15分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【好题】高三数学上期中试题(带答案)(2)一、选择题1.朱载堉(1536~1611),是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作《律学新说》中制成了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等程律”.即一个八度13个音,相邻两个音之间的频率之比相等,且最后一个音是最初那个音的频率的2倍.设第三个音的频率为1f ,第七个音的频率为2f ,则21f f = A.BCD2.数列{}n a 的前n 项和为21n S n n =++,()()1N*nn n b a n =-∈,则数列{}n b 的前50项和为( ) A .49B .50C .99D .1003.已知数列{}n a 满足11a =,12nn n a a +=+,则10a =( )A .1024B .2048C .1023D .20474.若ABC V 的对边分别为,,a b c ,且1a =,45B ∠=o ,2ABC S =V ,则b =( ) A .5B .25CD.5.已知数列{a n } 满足a 1=1,且111()(233n n n a a n -=+≥,且n ∈N*),则数列{a n }的通项公式为( )A .32nn a n =+B .23n n n a +=C .a n =n+2D .a n =( n+2)·3n6.在ABC ∆中,,,a b c 分别是角,,A B C 的对边,若sin cos 0b A B -=,且2b ac =,则a cb+的值为( ) A .2 BCD .47.若ln 2ln 3ln 5,,235a b c ===,则 A .a b c << B .c a b << C .c b a <<D .b a c <<8.已知ABC ∆的三边长是三个连续的自然数,且最大的内角是最小内角的2倍,则最小角的余弦值为( ) A .34B .56C .78D .239.已知正数x 、y 满足1x y +=,则141x y++的最小值为( )A.2B.92C.143D.510.已知等比数列{}n a的前n项和为n S,11a=,且满足21,,n n nS S S++成等差数列,则3a 等于( )A.12B.12-C.14D.14-11.在等比数列{}n a中,21a a2-=,且22a为13a和3a的等差中项,则4a为() A.9B.27C.54D.8112.已知0,0x y>>,且91x y+=,则11x y+的最小值是A.10B.12?C.14D.16二、填空题13.在ABCV中,角A,B,C的对边分别为a,b,c,tan tan2tanb B b Ac B+=-,且8a=,73b c+=,则ABCV的面积为______.14.已知等差数列{}n a的公差为2,前n项和为n S,且1S,2S,4S成等比数列.令114(1)nnn nnba a-+=-,则数列{}nb的前100的项和为______.15.如图,无人机在离地面高200m的A处,观测到山顶M处的仰角为15°、山脚C处的俯角为45°,已知∠MCN=60°,则山的高度MN为_________m.16.在平面内,已知直线12l l P,点A是12,l l之间的定点,点A到12,l l的距离分别为和,点是2l上的一个动点,若AC AB⊥,且AC与1l交于点C,则ABC∆面积的最小值为____.17.某校数学课外小组在坐标纸上为学校的一块空地设计植树方案为:第K棵树种植在点(),k k kP x y处,其中11x=,11y=,当2K≥时,111215551255k kk kk kx x T Tk ky y T T--⎧⎡⎤--⎛⎫⎛⎫=+--⎪ ⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎨--⎛⎫⎛⎫⎪=+-⎪ ⎪⎪⎝⎭⎝⎭⎩()T a表示非负实数a的整数部分,例如()2.62T=,()0.20T=.按此方案第2016棵树种植点的坐标应为_____________.18.已知等比数列{}n a的首项为1a,前n项和为n S,若数列{}12nS a-为等比数列,则32a a =____. 19.若原点和点(1,2019)-在直线0x y a -+=的同侧,则a 的取值范围是________(用集合表示).20.等差数列{}n a 中,1351,14,a a a =+=其前n 项和100n S =,则n=__三、解答题21.在ABC V 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知()sin sin sin B C m A m +=∈R ,且240a bc -=.(1)当52,4a m ==时,求,b c 的值; (2)若角为锐角,求m 的取值范围.22.已知等比数列{}n a 的公比1q >,且满足:23428a a a ++=,且32a +是24,a a 的等差中项.(1)求数列{}n a 的通项公式; (2)若1122log ,n n n n n b a a S b b b ==+++L ,求使1·262n nS n ++>成立的正整数n 的最小值.23.如图,A ,B 是海面上位于东西方向相距()533+海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即即前往营救,其航行速度为30海里/小时,该救援船到达D 点需要多长时间?24.D 为ABC V 的边BC 的中点.222AB AC AD ===. (1)求BC 的长;(2)若ACB ∠的平分线交AB 于E ,求ACE S V . 25.已知数列{}n a 满足:121n n a a n +=-+,13a =.(1)设数列{}n b 满足:n n b a n =-,求证:数列{}n b 是等比数列; (2)求出数列{}n a 的通项公式和前n 项和n S . 26.设函数2()1f x mx mx =--.(1)若对于一切实数x ,()0f x <恒成立,求实数m 的取值范围; (2)若对于[1,3]x ∈,()0f x <恒成立,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】:先设第一个音的频率为a ,设相邻两个音之间的频率之比为q ,得出通项公式, 根据最后一个音是最初那个音的频率的2倍,得出公比,最后计算第三个音的频率与第七个音的频率的比值。

【详解】:设第一个音的频率为a ,设相邻两个音之间的频率之比为q ,那么1q n n a a -=,根据最后一个音是最初那个音的频率的2倍,11212132q q 2a a a ==⇒=,所以47213q a f f a ===D 【点睛】:本题考查了等比数列的基本应用,从题目中后一项与前一项之比为一个常数,抽象出等比数列。

2.A解析:A 【解析】试题分析:当1n =时,113a S ==;当2n ≥时,()()()22111112n n n a S S n n n n n -⎡⎤=-=++--+-+=⎣⎦,把1n =代入上式可得123a =≠.综上可得3,1{2,2n n a n n ==≥.所以3,1{2,12,n n b n n n n n -==-≠为奇数且为偶数.数列{}n b 的前50项和为()()503235749224650S =--+++++++++L L ()()24349252503224922++=--⋅+⋅=.故A 正确.考点:1求数列的通项公式;2数列求和问题.3.C解析:C【解析】 【分析】 根据叠加法求结果. 【详解】因为12n n n a a +=+,所以12nn n a a +-=,因此10981010921198122221102312a a a a a a a a -=-+-++-+=++++==-L L ,选C.【点睛】本题考查叠加法求通项以及等比数列求和,考查基本分析求解能力,属基础题.4.A解析:A 【解析】在ABC ∆中,1a =,045B ∠=,可得114522ABC S csin ∆=⨯⨯︒=,解得42c =. 由余弦定理可得:()222222142214252b ac accosB =+-=+-⨯⨯⨯=. 5.B解析:B 【解析】试题分析:由题可知,将111()(233n n n a a n -=+≥,两边同时除以,得出,运用累加法,解得,整理得23n nn a +=; 考点:累加法求数列通项公式6.A解析:A 【解析】 【分析】由正弦定理,化简求得sin 30B B =,解得3B π=,再由余弦定理,求得()224b a c =+,即可求解,得到答案.【详解】在ABC ∆中,因为sin 3cos 0b A a B -=,且2b ac =, 由正弦定理得sin sin 3cos 0B A A B =, 因为(0,)A π∈,则sin 0A >,所以sin 0B B =,即tan B =3B π=,由余弦定理得222222222cos ()3()3b a c ac B a c ac a c ac a c b =+-=+-=+-=+-, 即()224b a c =+,解得2a cb+=,故选A . 【点睛】本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.通常当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.7.B解析:B 【解析】 试题分析:因为ln 2ln 3ln8ln 9ln 2ln 30,23623--=<<,ln 2ln 5ln 32ln 25ln 2ln 50,251025--=>>,故选B. 考点:比较大小.8.A解析:A 【解析】 【分析】设三角形的三边分别为,1,2(*)n n n n N ++∈,根据余弦定理求出最小角的余弦值,然后再由正弦定理求得最小角的余弦值,进而得到n 的值,于是可得最小角的余弦值. 【详解】由题意,设ABC ∆的三边长分别为,1,2(*)n n n n N ++∈,对应的三角分别为,,A B C , 由正弦定理得222sin sin sin 22sin cos n n n n A C A A A+++===, 所以2cos 2n A n+=. 又根据余弦定理的推论得222(2)(1)5cos 2(2)(1)2(2)n n n n A n n n +++-+==+++.所以2522(2)n n n n ++=+,解得4n =, 所以453cos 2(42)4A +==+,即最小角的余弦值为34.故选A . 【点睛】解答本题的关键是求出三角形的三边,其中运用“算两次”的方法得到关于边长的方程,使得问题得以求解,考查正余弦定理的应用及变形、计算能力,属于基础题.9.B解析:B 【解析】 【分析】由1x y +=得(1)2x y ++=,再将代数式(1)x y ++与141x y++相乘,利用基本不等式可求出141x y++的最小值. 【详解】1x y +=Q ,所以,(1)2x y ++=,则1414412()[(1)]()559111x y x y x y x y y x ++=+++=++=+++…, 所以,14912x y ++…, 当且仅当4111x y y x x y +⎧=⎪+⎨⎪+=⎩,即当2313x y ⎧=⎪⎪⎨⎪=⎪⎩时,等号成立,因此,141x y ++的最小值为92, 故选B . 【点睛】本题考查利用基本不等式求最值,对代数式进行合理配凑,是解决本题的关键,属于中等题.10.C解析:C 【解析】试题分析:由21,,n n n S S S ++成等差数列可得,212n n n n S S S S +++-=-,即122n n n a a a ++++=-,也就是2112n n a a ++=-,所以等比数列{}n a 的公比12q =-,从而2231111()24a a q ==⨯-=,故选C.考点:1.等差数列的定义;2.等比数列的通项公式及其前n 项和.11.B解析:B 【解析】 【分析】根据题意,设等比数列{}n a 的公比为q ,由22a 为13a 和3a 的等差中项,可得21322a 3a a ⨯=+,利用等比数列的通项公式代入化简为2q 4q 30-+=,解得q ,又21a a 2-=,即()1a q 12-=,q 1≠,分析可得1a 、q 的值,可得数列{}n a 的通项公式,将n 4=代入计算可得答案. 【详解】解:根据题意,设等比数列{}n a 的公比为q ,若22a 为13a 和3a 的等差中项,则有21322a 3a a ⨯=+,变形可得21114a q 3a a q =+,即2q 4q 30-+=,解得q 1=或3;又21a a 2-=,即()1a q 12-=,则q 3=,1a 1=,则n 1n a 3-=,则有34a 327==;故选:B . 【点睛】本题考查等比数列的性质以及通项公式,关键是掌握等比数列通项公式的形式,属于基础题.12.D解析:D 【解析】 【分析】通过常数代换后,应用基本不等式求最值. 【详解】∵x >0,y >0,且9x+y=1,∴()111199911016y x x y x y x y x y ⎛⎫+=+⋅+=+++≥+= ⎪⎝⎭当且仅当9y x x y =时成立,即11,124x y ==时取等号. 故选D. 【点睛】本题考查了应用基本不等式求最值;关键是注意“1”的整体代换和几个“=”必须保证同时成立.二、填空题13.【解析】【分析】由正弦定理和三角函数公式化简已知式子可得cosA 的值由余弦定理可求64=(b+c )2﹣bc 求bc 即可得三角形的面积【详解】∵在△ABC 中btanB+btanA=﹣2ctanB ∴由正弦【解析】 【分析】由正弦定理和三角函数公式化简已知式子可得cosA 的值,由余弦定理可求64=(b +c )2﹣bc ,求bc ,即可得三角形的面积. 【详解】∵在△ABC 中btanB +btanA=﹣2ctanB ,∴由正弦定理可得sinB (tanA +tanB )=﹣2sinCtanB ,∴sinB (tanA+tanB )=﹣2sinC•sinBcosB, ∴cosB (tanA+tanB )=﹣2sinC ,∴cosB (sinA cosA +sinBcosB)=﹣2sinC , ∴cosB•sinAcosB cosAsinBcosAcosB+=﹣2sinC ,∴cosB•()sin A B cosAcosB+=sinCcosA=﹣2sinC , 解得cosA=﹣12,A=23π;∵a=8,b c +=64=b 2+c 2+bc=(b+c )2﹣bc , ∴bc=9∴△ABC 的面积为S =12bcsinA=192⨯,故答案为4. 【点睛】本题考查正、余弦定理解三角形,涉及同角三角函数基本关系和三角形的面积公式,属于中档题.14.【解析】【分析】首项利用已知条件求出数列的通项公式进一步利用裂项相消法求出数列的和【详解】解:设等差数列的首项为公差为2前n 项和为且成等比数列则:解得:所以:所以:所以:故答案为:【点睛】本题考查的 解析:200201【解析】【分析】首项利用已知条件求出数列的通项公式,进一步利用裂项相消法求出数列的和. 【详解】解:设等差数列{}n a 的首项为1a ,公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列.则:()2111(22)412a a a +=+,解得:11a =,所以:()12121n a n n =+-=-,所以:111411(1)(1)2121n n n n n n b a a n n --+⎛⎫=-=-⋅+ ⎪-+⎝⎭, 所以:100111111335199201S ⎛⎫⎛⎫⎛⎫=+-++⋯-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,12001201201=-=, 故答案为:200201【点睛】本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用,主要考查学生的运算能力和转化能力,属于基础题型.15.300【解析】试题分析:由条件所以所以这样在中在中解得中故填:300考点:解斜三角形【思路点睛】考察了解三角形的实际问题属于基础题型首先要弄清楚两个概念仰角和俯角都指视线与水平线的夹角将问题所涉及的解析:300 【解析】试题分析:由条件,,所以,,,所以,,这样在中,,在中,,解得,中,,故填:300.考点:解斜三角形【思路点睛】考察了解三角形的实际问题,属于基础题型,首先要弄清楚两个概念,仰角和俯角,都指视线与水平线的夹角,将问题所涉及的边和角在不同的三角形内转化,最后用正弦定理解决高度.16.6【解析】【分析】【详解】如图所示设由题意知与相似所以所以所以当且仅当即时等号成立所以面积的最小值为6解析:6 【解析】 【分析】 【详解】如图所示,设BF x =,由题意知3,2AE AF ==ABF ∆与CAE ∆相似,所以AB BF CA AE =,所以3AC AB x=,所以211322ABC S AB AC AB x∆==⨯ 21363(4)622x x x x =⨯⨯+=+≥,当且仅当632xx =,即2x =时,等号成立,所以CAE ∆面积的最小值为6.17.【解析】【分析】根据题意结合累加法求得与再代值计算即可【详解】由题意知故可得解得当时;当时故第棵树种植点的坐标应为故答案为:【点睛】本题考查数列新定义问题涉及累加法求通项公式属中档题解析:()4031,404. 【解析】 【分析】根据题意,结合累加法,求得k x 与k y ,再代值计算即可. 【详解】由题意知11x =,11y =211015555x x T T ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,211055y y T T ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭322115555x x T T ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,322155y y T T ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭433215555x x T T ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,433255y y T T ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭L11215555k k k k x x T T ---⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,11255k k k k y y T T ---⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭故可得12121105555k k k x x x x x x k T T --⎛⎫⎛⎫+++=+++++-⎪ ⎪⎝⎭⎝⎭L L 12121?10155k k k y y y y y y T T --⎛⎫⎛⎫+++=+++++- ⎪ ⎪⎝⎭⎝⎭L L解得155k k x k T -⎛⎫=+⎪⎝⎭,当2016k =时,2016201654034031x =+⨯=; 115k k y T -⎛⎫=+ ⎪⎝⎭,当2016k =时,20161403404y =+=. 故第2016棵树种植点的坐标应为()4031,404. 故答案为:()4031,404. 【点睛】本题考查数列新定义问题,涉及累加法求通项公式,属中档题.18.【解析】【分析】设等比数列的公比为由数列为等比数列得出求出的值即可得出的值【详解】设等比数列的公比为由于数列为等比数列整理得即化简得解得因此故答案为:【点睛】本题考查等比数列基本量的计算同时也考查了 解析:12【解析】 【分析】设等比数列{}n a 的公比为q ,由数列{}12n S a -为等比数列,得出()()()2211131222S a S a S a -=--,求出q 的值,即可得出32a a 的值. 【详解】设等比数列{}n a 的公比为q ,由于数列{}12n S a -为等比数列,()()()2211131222S a S a S a ∴-=--,整理得()()2211321a a a a a a -=-⋅+-,即()()2211q q q -=-+-,化简得220q q -=, 0q ≠Q ,解得12q =,因此,3212a q a ==. 故答案为:12. 【点睛】本题考查等比数列基本量的计算,同时也考查了等比中项的应用,考查运算求解能力,属于中等题.19.或【解析】【分析】根据同侧同号列不等式解得结果【详解】因为原点和点在直线的同侧所以或即的取值范围是或【点睛】本题考查二元一次不等式区域问题考查基本应用求解能力属基本题解析:{|2020a a >或0}a < 【解析】 【分析】根据同侧同号列不等式,解得结果. 【详解】因为原点和点()1,2019-在直线0x y a -+=的同侧,所以(00)(12019)02020a a a -+--+>∴>或0a <,即a 的取值范围是{2020a a 或0}.a <【点睛】本题考查二元一次不等式区域问题,考查基本应用求解能力.属基本题.20.10【解析】【分析】【详解】故则故n=10解析:10 【解析】 【分析】 【详解】1351,14,a a a =+=故126d 14,2a d +=∴=,则()1n 21002n n n S -=+⨯=故n=10三、解答题21.(1)2 12b c =⎧⎪⎨=⎪⎩或122b c ⎧=⎪⎨⎪=⎩; (2) 2m <<. 【解析】试题分析: 本题考查正弦定理和余弦定理;(1)先利用正弦定理将角角关系转化为边边关系,再通过解方程组求解;(2)利用余弦定理进行求解. 试题解析:由题意得2,40b c ma a bc +=-=. (1)当52,4a m ==时,5,12b c bc +==, 解得212b c =⎧⎪⎨=⎪⎩或122b c ⎧=⎪⎨⎪=⎩;(2)()222222cos 22b c bc a b c a A bc bc+--+-===()222222232a ma a m a --=-, ∵为锐角,∴()2cos 230,1A m =-∈,∴2322m <<,又由b c ma +=可得0m >,62m << 点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.22.(1)2nn a =;(2)6.【解析】试题分析:(1)求等比数列的通项公式,关键是求出首项和公比,这可直接用首项1a 和公比q 表示出已知并解出即可(可先把已知化简后再代入);(2)求出n b 的表达式后,要求其前n 项和,需用错位相减法.然后求解不等式可得最小值. 试题解析:(1)∵32a +是24,a a 的等差中项,∴()32422a a a +=+, 代入23428a a a ++=,可得38a =,∴2420a a +=,∴212118{20a q a q a q =+=,解之得122a q =⎧⎨=⎩或132{12a q ==, ∵1q >,∴122a q =⎧⎨=⎩,∴数列{}n a 的通项公式为2nn a =(2)∵1122log 2log 2?2n n nn n n b a a n ===-, ∴()21222?2n n S n =-⨯+⨯++L ,...............①()23121222?2?2nn S n n +=-⨯+⨯+++L ,.............②②—①得()2311112122222?2?222?212nn n n n n nS n n n ++++-=+++-=-=---L∵1·262n n S n ++>,∴12262n +->,∴16,5n n +>>, ∴使1·262n n S n ++>成立的正整数n 的最小值为6 考点:等比数列的通项公式,错位相减法. 23.救援船到达D 点需要1小时.【解析】 【分析】 【详解】5(33)906030,45,105sin sin •sin 5(33)?sin 455(33)?sin 45sin sin105sin 45?cos 60sin 60?cos 45AB DBA DAB ADB DB ABDAB DAB ADB AB DAB DB ADB =+∠=︒-︒=︒∠=︒∴∠=︒∆=∠∠∠+︒+︒∴===∠︒︒︒+︒︒解:由题意知海里,在中,由正弦定理得海里又海里中,由余弦定理得,海里,则需要的时间答:救援船到达D 点需要1小时 24.(1)6=BC 231015-【解析】 【分析】(1)由题意知21AB AC AD ===,.设BD DC m ==,在ADB △与ADC V 中,由余弦定理即可解得m 的值.(2)在ACE △与BCE V 中,由正弦定理,角平分线的性质可得6AE AC BE BC ==.可求6BE AE =,2615AE =().利用余弦定理可求cos BAC ∠的值,根据同角三角函数基本关系式可求sin BAC ∠的值,利用三角形的面积公式即可计算得解. 【详解】解:(1)由题意知21AB AC AD ===,.设BD DC m ==.在ADB V 与ADC V 中,由余弦定理得:2222cos AB AD BD AD BD ADB =+-⋅∠,2222cos AC AD DC AD DC ADC =+-⋅∠.即:212cos 4m m ADB +-∠=,①212cos 1m m ADB ++∠=.②由①+②,得:232m =, 所以6m =6BC = (2)在ACE V 与BCE V 中,由正弦定理得:,sin sin sin sin AE EC BE ECACE EAC BCE CBE==∠∠∠∠,由于ACE BCE ∠=∠,且sin sin BC ACBAC CBA=∠∠,所以AE AC BE BC ==所以BE =,所以215AE =().又222222121cos 22214AB AC BC BAC AB AC +-+-∠===-⋅⨯⨯,所以sin BAC ∠=,所以11211225ACE S AC AE sin BAC =⋅⋅∠=⨯⨯=V (). 【点睛】本题主要考查了余弦定理,正弦定理,角平分线的性质,同角三角函数基本关系式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题. 25.⑴见证明;⑵()11222n n n ++-+【解析】 【分析】(1)由递推公式计算可得12n nb b +=,且1112b a =-=,据此可得数列{}n b 是等比数列. (2)由(1)可得2n n b =,则2nn a n =+,分组求和可得()11222n n n n S ++=-+.【详解】 (1)()()()11121122n n n n n n n n a n a n n a n b b a n a n a n++-+-+-+-====---, 又111312b a =-=-={}n b ∴是以2为首项,2为公比的等比数列,(2)由(1)得2n n b =,2nn a n ∴=+,()()()()()12122122...222...2123...n n n S n n ∴=++++++=++++++++()()()121211221222nn n n n n +-++=+=-+-.【点睛】数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和. 26.(1) 40m -<≤.(2) 16m < 【解析】 【分析】(1)利用判别式可求实数m 的取值范围,注意二次项系数的讨论.(2)就0,0,0m m m <=>三种情况讨论函数的最值后可得实数m 的取值范围. 【详解】解:(1)要使210mx mx --<恒成立, 若0m =,显然10-<;若0m ≠,则有2040m m m <⎧⎨∆=+<⎩,40m ∴-<<, ∴40m -<≤.(2)当0m =时,()10f x =-<显然恒成立;当0m ≠时,该函数的对称轴是12x =,2()1f x mx mx =--在[1,3]x ∈上是单调函数. 当0m >时,由于(1)10f =-<,要使()0f x <在[1,3]x ∈上恒成立,只要(3)0f <即可,即9310m m --<得16m <,即106m <<; 当0m <时,由于函数()0f x <在[1,3]x ∈上恒成立,只要(1)0f <即可,此时(1)10f =-<显然成立. 综上可知16m <. 【点睛】一元二次不等式的恒成立问题,可以转化为函数的最值进行讨论,必要时需要考虑对称轴的不同位置.。

相关文档
最新文档