2017年北京市中考数学一模分类27题二次函数及答案

合集下载

2017中考数学复习----二次函数综合题

2017中考数学复习----二次函数综合题

2017中考数学复习----二次函数综合题1.如图,在△ABC中,∠BAC=90,BC∥x轴,抛物线y=ax2﹣2ax+3经过△ABC的三个顶点,并且与x轴交于点D、E,点A为抛物线的顶点.(1)求抛物线的解析式;(2)连接CD,在抛物线的对称轴上是否存在一点P使△PCD为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.3.如图,已知直线y=x+3与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A、B 两点,与x轴交于另一个点C,对称轴与直线AB交于点E.(1)求抛物线的解析式;(2)在第三象限内、F为抛物线上一点,以A、E、F为顶点的三角形面积为4,求点F的坐标;(3)连接B、C,点P是线段,AB上一点,作PQ平行于x轴交线段BC于点Q,过P作PM ⊥x轴于M,过Q作QN⊥x轴于N,求矩形PQNM面积的最大值和P点的坐标.2.如图,抛物线y=x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的函数关系式及顶点D的坐标;(2)若点M是抛物线对称轴上的一个动点,求CM+AM的最小值.4.在平面直角坐标系中,抛物线y=x2﹣x﹣2的顶点为点D,与直线y=kx在第一象限内交于点A,且点A的横坐标为4;直线OA与抛物线的对称轴交于点C.(1)求△AOD的面积;(2)若点F为线段OA上一点,过点F作EF∥CD交抛物线于点E,求线段EF的最大值及此时点E坐标;(3)如图2,点P为该抛物线在第四象限部分上一点,且∠POA=45°,求出点P的坐标.5.如图,已知抛物线L1:y1=x2,平移后经过点A(﹣1,0),B(4,0)得到抛物线L2,与y轴交于点C.(1)求抛物线L2的解析式;(2)判断△ABC的形状,并说明理由;(3)点P为抛物线L2上的动点,过点P作PD⊥x轴,与抛物线L1交于点D,是否存在PD=2OC?若存在,求出点P的坐标;若不存在,说明理由.7.如图,已知抛物线与x轴交于A (﹣4,0)和B(1,0)两点,与y轴交于C点.(1)求此抛物线的解析式;(2)若P为抛物线上A、C两点间的一个动点,过P作y轴的平行线,交AC于Q点,当P点运动到什么位置时,线段PQ的长最大,并求此时P点的坐标.6.抛物线y=ax2+bx+c(a≠0)的顶点为P(1,﹣4),在x轴上截得的线段AB长为4个单位,OA<OB,抛物线与y轴交于点C.(1)求这个函数解析式;(2)试确定以B、C、P为顶点的三角形的形状;(3)已知在对称轴上存在一点F使得△ACF周长最小,请写出F点的坐标.8.如图,抛物线y=﹣x2+ax+8(a≠0)于x轴从左到右交于点A,B于y轴交于点C于直线y=kx+b 交于点c和点D(m,5),tan∠DCO=1。

2017年中考数学备考专题复习二次函数的应用含解析

2017年中考数学备考专题复习二次函数的应用含解析

二次函数的应用一、单选题(共12题;共24分)1、(2016•天津)已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A、1或﹣5B、﹣1或5C、1或﹣3D、1或32、(2016•滨州)在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点选择180°得到抛物线y=x2+5x+6,则原抛物线的解析式是()A、y=﹣(x﹣)2﹣B、y=﹣(x+ )2﹣C、y=﹣(x﹣)2﹣D、y=﹣(x+ )2+3、(2016•宁波)已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A、当a=1时,函数图象过点(﹣1,1)B、当a=﹣2时,函数图象与x轴没有交点C、若a>0,则当x≥1时,y随x的增大而减小D、若a<0,则当x≤1时,y随x的增大而增大4、(2016•黄石)以x为自变量的二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是()A 、b≥B、b≥1或b≤﹣1C、b≥2D、1≤b≤25、某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为()A、y=60(300+20x)B、y=(60﹣x)(300+20x)C、y=300(60﹣20x)D、y=(60﹣x)(300﹣20x)6、(2016•达州)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0②4a+2b+c>0③4ac﹣b2<8a④ <a<⑤b>c.其中含所有正确结论的选项是()A、①③B、①③④C、②④⑤D、①③④⑤7、(2016•眉山)若抛物线y=x2﹣2x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为()A、y=(x﹣2)2+3B、y=(x﹣2)2+5C、y=x2﹣1D、y=x2+48、(2016•张家界)在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A 、B 、C 、D 、9、(2016•常德)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c <b;④b2﹣4ac>0,其中正确的个数是()A、1B、2C、3D、410、(2016•呼和浩特)已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,则(m﹣1)2+(n﹣1)2的最小值是()A、6B、3C、﹣3D、011、(2016•攀枝花)如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1和3,则下列结论正确的是()A、2a﹣b=0B、a+b+c>0C、3a﹣c=0D、当a= 时,△ABD是等腰直角三角形12、(2016•安顺)某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD如图乙所示,DG=1米,AE=AF=x 米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是()A 、B 、C 、D 、二、填空题(共5题;共5分)13、(2016•河南)已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是________.14、(2016•丹东)某公司今年4月份营业额为60万元,6月份营业额达到100万元,设该公司5、6两个月营业额的月均增长率为x,则可列方程为________.15、(2016•大庆)直线y=kx+b与抛物线y= x2交于A(x1, y1)、B(x2, y2)两点,当OA⊥OB时,直线AB恒过一个定点,该定点坐标为________.16、(2016•内江)二次函数y=ax2+bx+c的图象如图所示,且P=|2a+b|+|3b﹣2c|,Q=|2a﹣b|﹣|3b+2c|,则P,Q的大小关系是________.17、(2016•十堰)已知关于x的二次函数y=ax2+bx+c的图象经过点(﹣2,y1),(﹣1,y2),(1,0),且y1<0<y2,对于以下结论:①abc>0;②a+3b+2c≤0;③对于自变量x的任意一个取值,都有x2+x≥﹣;④在﹣2<x<﹣1中存在一个实数x0,使得x0=﹣,其中结论错误的是________ (只填写序号).三、综合题(共5题;共65分)18、(2016•淮安)如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A、B、C三点,其中点A的坐标为(0,8),点B的坐标为(﹣4,0).(1)求该二次函数的表达式及点C的坐标;(2)点D的坐标为(0,4),点F为该二次函数在第一象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S.①求S的最大值;②在点F的运动过程中,当点E落在该二次函数图象上时,请直接写出此时S的值.19、(2016•义乌)课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.20、(2016•连云港)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx经过两点A(﹣1,1),B (2,2).过点B作BC∥x轴,交抛物线于点C,交y轴于点D.(1)求此抛物线对应的函数表达式及点C的坐标;(2)若抛物线上存在点M,使得△BCM的面积为,求出点M的坐标;(3)连接OA、OB、OC、AC,在坐标平面内,求使得△AOC与△OBN相似(边OA与边OB对应)的点N 的坐标.21、(2016•扬州)如图1,二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1.(1)求这个二次函数的表达式;(2)点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;(3)如图3,一次函数y=kx(k>0)的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M在线段OC上(不与O、C重合),过点T作直线TN∥y轴交OC于点N.若在点T运动的过程中,为常数,试确定k的值.22、(12分)(2016•重庆)如图1,在平面直角坐标系中,抛物线y=﹣x2+ x+3与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,抛物线的顶点为点E.(1)判断△ABC的形状,并说明理由;(2)经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一动点,当△PCD 的面积最大时,Q从点P出发,先沿适当的路径运动到抛物线的对称轴上点M处,再沿垂直于抛物线对称轴的方向运动到y轴上的点N处,最后沿适当的路径运动到点A处停止.当点Q的运动路径最短时,求点N的坐标及点Q经过的最短路径的长;(3)如图2,平移抛物线,使抛物线的顶点E在射线AE上移动,点E平移后的对应点为点E′,点A的对应点为点A′,将△AOC绕点O顺时针旋转至△A1OC1的位置,点A,C的对应点分别为点A1,C1,且点A1恰好落在AC上,连接C1A′,C1E′,△A′C1E′是否能为等腰三角形?若能,请求出所有符合条件的点E′的坐标;若不能,请说明理由.答案解析部分一、单选题【答案】B【考点】二次函数的最值【解析】【解答】解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最小值5,可得:(1﹣h)2+1=5,解得:h=﹣1或h=3(舍);②若1≤x≤3<h,当x=3时,y取得最小值5,可得:(3﹣h)2+1=5,解得:h=5或h=1(舍).综上,h的值为﹣1或5,故选:B.【分析】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键.由解析式可知该函数在x=h时取得最小值1、x>h时,y随x的增大而增大、当x<h时,y 随x的增大而减小,根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1≤x≤3,x=1时,y取得最小值5;②若1≤x≤3<h,当x=3时,y取得最小值5,分别列出关于h的方程求解即可.【答案】A【考点】二次函数图象与几何变换【解析】【解答】解:∵抛物线的解析式为:y=x2+5x+6,∴绕原点选择180°变为,y=﹣x2+5x﹣6,即y=﹣(x﹣)2+ ,∴向下平移3个单位长度的解析式为y=﹣(x﹣)2+ ﹣3=﹣(x﹣)2﹣.故选A.【分析】先求出绕原点旋转180°的抛物线解析式,求出向下平移3个单位长度的解析式即可.本题考查的是二次函数的图象与几何变换,熟知二次函数的图象旋转及平移的法则是解答此题的关键.【答案】D【考点】二次函数的图象,二次函数的性质【解析】【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;故选D.【分析】把a=1,x=﹣1代入y=ax2﹣2ax﹣1,于是得到函数图象不经过点(﹣1,1),根据△=8>0,得到函数图象与x轴有两个交点,根据抛物线的对称轴为直线x=﹣=1判断二次函数的增减性.本题考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键.【答案】A【考点】二次函数的性质,二次函数图象与系数的关系【解析】【解答】解:∵二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,∴抛物线在x轴的上方或在x轴的下方经过一、二、四象限,当抛物线在x轴的上方时,∵二次项系数a=1,∴抛物线开口方向向上,∴b2﹣1≥0,△=[2(b﹣2)]2﹣4(b2﹣1)≤0,解得b≥ ;当抛物线在x轴的下方经过一、二、四象限时,设抛物线与x轴的交点的横坐标分别为x1, x2,∴x1+x2=2(b﹣2)≥0,b2﹣1≥0,∴△=[2(b﹣2)]2﹣4(b2﹣1)>0,①b﹣2>0,②b2﹣1>0,③由①得b<,由②得b>2,∴此种情况不存在,∴b≥ ,故选A.【分析】由于二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,所以抛物线在x轴的上方或在x轴的下方经过一、二、四象限,根据二次项系数知道抛物线开口方向向上,由此可以确定抛物线与x轴有无交点,抛物线与y轴的交点的位置,由此即可得出关于b的不等式组,解不等式组即可求解.此题主要考查了二次函数的图象和性质,解题的关键是会根据图象的位置得到关于b 的不等式组解决问题.【答案】B【考点】根据实际问题列二次函数关系式【解析】【解答】解:降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,根据题意得,y=(60﹣x)(300+20x),故选:B.【分析】根据降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,由题意可得等量关系:总销售额为y=销量×售价,根据等量关系列出函数解析式即可.【答案】D【考点】二次函数的性质【解析】【解答】解:①∵函数开口方向向上,∴a>0;∵对称轴在原点左侧∴ab异号,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①正确;②∵图象与x轴交于点A(﹣1,0),对称轴为直线x=﹣1,∴图象与x轴的另一个交点为(3,0),∴当x=2时,y<0,∴4a+2b+c<0,故②错误;③∵图象与x轴交于点A(﹣1,0),∴当x=﹣1时,y=(﹣1)2a+b×(﹣1)+c=0,∴a﹣b+c=0,即a=b﹣c,c=b﹣a,∵对称轴为直线x=1∴ =1,即b=﹣2a,∴c=b﹣a=(﹣2a)﹣a=﹣3a,∴4ac﹣b2=4•a•(﹣3a)﹣(﹣2a)2=﹣16a2<0∵8a>0∴4ac﹣b2<8a故③正确④∵图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间,∴﹣2<c<﹣1∴﹣2<﹣3a<﹣1,∴ >a>;故④正确⑤∵a>0,∴b﹣c>0,即b>c;故⑤正确;故选:D.【分析】根据对称轴为直线x=1及图象开口向下可判断出a、b、c的符号,从而判断①;根据对称轴得到函数图象经过(3,0),则得②的判断;根据图象经过(﹣1,0)可得到a、b、c之间的关系,从而对②⑤作判断;从图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间可以判断c的大小得出④的正误.主要考查图象与二次函数系数之间的关系.解题关键是注意掌握数形结合思想的应用.【答案】C【考点】二次函数图象与几何变换【解析】【解答】解:将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,这个相当于把抛物线向左平移有关单位,再向下平移3个单位,∵y=(x﹣1)2+2,∴原抛物线图象的解析式应变为y=(x﹣1+1)2+2﹣3=x2﹣1,故答案为C.【分析】思想判定出抛物线的平移规律,根据左加右减,上加下减的规律即可解决问题.本题考查二次函数图象的平移,解题的关键是理解坐标系的平移和抛物线的平移是反方向的,记住左加右减,上加下减的规律,属于中考常考题型.【答案】C【考点】一次函数的图象,二次函数的图象【解析】【解答】解:A、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,对称轴x= >0,应在y轴的右侧,故不合题意,图形错误;B、对于直线y=ax+b来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,对称轴x= <0,应在y轴的左侧,故不合题意,图形错误;C、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向上,对称轴x= >0,应在y轴的右侧,故符合题意;D、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,a<0,故不合题意,图形错误;故选:C.【分析】首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.此主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.【答案】C【考点】二次函数图象与系数的关系【解析】【解答】解:∵二次函数的开口向下,与y轴的交点在y轴的正半轴,∴a<0,c>0,故②正确;∵0<﹣<1,∴b>0,故①错误;当x=﹣1时,y=a﹣b+c<0,∴a+c<b,故③正确;∵二次函数与x轴有两个交点,∴△=b2﹣4ac>0,故④正确正确的有3个,故选:C.【分析】由二次函数的开口方向,对称轴0<x<1,以及二次函数与y的交点在x轴的上方,与x 轴有两个交点等条件来判断各结论的正误即可.此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).【答案】A【考点】根与系数的关系,二次函数的最值【解析】【解答】解:∵m2﹣2am+2=0,n2﹣2an+2=0,∴m,n是关于x的方程x2﹣2ax+2=0的两个根,∴m+n=2a,mn=2,∴(m﹣1)2+(n﹣1)2=m2﹣2m+1+n2﹣2n+1=(m+n)2﹣2mn﹣2(m+n)+2=4a2﹣4﹣4a+2=4(a﹣)2﹣3,∵a≥2,∴当a=2时,(m﹣1)2+(n﹣1)2有最小值,∴(m﹣1)2+(n﹣1)2的最小值=4(a﹣)2+3=4(2﹣)2﹣3=6,故选A.【分析】根据已知条件得到m,n是关于x的方程x2﹣2ax+2=0的两个根,根据根与系数的关系得到m+n=2a,mn=2,于是得到4(a﹣)2﹣3,当a=2时,(m﹣1)2+(n﹣1)2有最小值,代入即可得到结论.本题考查了根与系数的关系,二次函数的最值,熟练掌握根与系数的关系是解题的关键.【答案】D【考点】二次函数图象与系数的关系【解析】【解答】解:∵抛物线与x轴的交点A、B的横坐标分别为﹣1,3,∴抛物线的对称轴为直线x=1,则﹣=1,∴2a+b=0,∴选项A错误;∴当自变量取1时,对应的函数图象在x轴下方,∴x=1时,y<0,则a+b+c<0,∴选项B错误;∵A点坐标为(﹣1,0),∴a﹣b+c=0,而b=﹣2a,∴a+2a+c=0,∴3a+c=0,∴选项C错误;当a= ,则b=﹣1,c=﹣,对称轴x=1与x轴的交点为E,如图,∴抛物线的解析式为y= x2﹣x﹣,把x=1代入得y= ﹣1﹣=﹣2,∴D点坐标为(1,﹣2),∴AE=2,BE=2,DE=2,∴△ADE和△BDE都为等腰直角三角形,∴△ADB为等腰直角三角形,∴选项D正确.故选D.【分析】由于抛物线与x轴的交点A、B的横坐标分别为﹣1,3,得到对称轴为直线x=1,则﹣=1,即2a+b=0,得出,选项A错误;当x=1时,y<0,得出a+b+c<0,得出选项B错误;当x=﹣1时,y=0,即a﹣b+c=0,而b=﹣2a,可得到a与c的关系,得出选项C错误;由a= ,则b=﹣1,c=﹣,对称轴x=1与x轴的交点为E,先求出顶点D的坐标,由三角形边的关系得出△ADE和△BDE都为等腰直角三角形,得出选项D正确;即可得出结论.本题考查了二次函数y=ax2+bx+c的图象与系数的关系:当a>0,抛物线开口向上;抛物线的对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c).【答案】A【考点】二次函数的图象,二次函数的应用【解析】【解答】解:S△AEF = AE×AF= x2, S△DEG = DG×DE= ×1×(3﹣x)= ,S五边形EFBCG=S正方形ABCD﹣S△AEF﹣S△DEG=9﹣x2﹣=﹣x2+ x+ ,则y=4×(﹣x2+ x+ )=﹣2x2+2x+30,∵AE<AD,∴x<3,综上可得:y=﹣2x2+2x+30(0<x<3).故选:A【分析】先求出△AEF和△DEG的面积,然后可得到五边形EFBCG的面积,继而可得y与x的函数关系式.本题考查了动点问题的函数图象,解答本题的关键是求出y与x的函数关系式,对于有些题目可以不用求出函数关系式,根据走势或者特殊点的值进行判断.二、填空题【答案】(1,4)【考点】二次函数的性质,二次函数图象上点的坐标特征【解析】【解答】解:∵A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,∴代入得:,解得:b=2,c=3,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,顶点坐标为(1,4),故答案为:(1,4).【分析】把A、B的坐标代入函数解析式,即可得出方程组,求出方程组的解,即可得出解析式,化成顶点式即可.本题考查了二次函数的性质,二次函数图象上点的坐标特征的应用,能求出函数的解析式是解此题的关键.【答案】60(1+x)2=100【考点】一元二次方程的应用,根据实际问题列二次函数关系式【解析】【解答】解:设平均每月的增长率为x,根据题意可得:60(1+x)2=100.故答案为:60(1+x)2=100.【分析】本题考查的是一个增长率问题,关键是知道4月份的钱数和增长两个月后6月份的钱数,列出方程.设平均每月的增长率为x,根据4月份的营业额为60万元,6月份的营业额为100万元,分别表示出5,6月的营业额,即可列出方程.【答案】(0,4)【考点】二次函数的性质,一次函数的性质【解析】【解答】解:∵直线y=kx+b与抛物线y= x2交于A(x1, y1)、B(x2, y2)两点,∴kx+b= ,化简,得 x2﹣4kx﹣4b=0,∴x1+x2=4k,x1x2=﹣4b,又∵OA⊥OB,∴ ,解得,b=4,即直线y=kx+4,故直线恒过顶点(0,4),故答案为:(0,4).【分析】根据直线y=kx+b与抛物线y= x2交于A(x1, y1)、B(x2, y2)两点,可以联立在一起,得到关于x的一元二次方程,从而可以得到两个之和与两根之积,再根据OA⊥OB,可以求得b的值,从而可以得到直线AB恒过的定点的坐标.本题考查二次函数的性质、一次函数的性质,解题的关键是明确题意,找出所求问题需要的条件,知道两条直线垂直时,它们解析式中的k 的乘积为﹣1.【答案】P>Q【考点】二次函数的性质,二次函数图象与系数的关系【解析】【解答】解:∵抛物线的开口向下,∴a<0,∵﹣>0,∴b>0,∴2a﹣b<0,∵﹣=1,∴b+2a=0,x=﹣1时,y=a﹣b+c<0.∴﹣b﹣b+c<0,∴3b﹣2c>0,∵抛物线与y轴的正半轴相交,∴c>0,∴3b+2c>0,∴p=3b﹣2c,Q=b﹣2a﹣3b﹣2c=﹣2a﹣2b﹣2c,∴Q﹣P=﹣2a﹣2b﹣2c﹣3b+2c=﹣2a﹣5b=﹣4b<0∴P>Q,故答案为:P>Q.【分析】由函数图象可以得出a<0,b>0,c>0,当x=1时,y=a+b+c>0,x=﹣1时,y=a﹣b+c <0,由对称轴得出2a+b=0,通过确定绝对值中的数的符号后去掉绝对值再化简就可以求出P、Q 的值.本题考查了二次函数的图象与系数的关系,去绝对值,二次函数的性质.熟记二次函数的性质是解题的关键.【答案】②【考点】二次函数图象与系数的关系,二次函数图象上点的坐标特征【解析】【解答】解:由题意二次函数图象如图所示,∴a<0.b<0,c>0,∴abc>0,故①正确.∵a+b+c=0,∴c=﹣a﹣b,∴a+3b+2c=a+3b﹣2a﹣2b=b﹣a,又∵x=﹣1时,y>0,∴a﹣b+c>0,∴b﹣a<c,∵c>O,∴b﹣a可以是正数,∴a+3b+2c≤0,故②错误.故答案为②.∵函数y′= x2+x= (x2+ x)= (x+ )2﹣,∵ >0,∴函数y′有最小值﹣,∴ x2+x≥﹣,故③正确.∵y=ax2+bx+c的图象经过点(1,0),∴a+b+c=0,∴c=﹣a﹣b,令y=0则ax2+bx﹣a﹣b=0,设它的两个根为x1, 1,∵x1•1= =﹣,∴x1=﹣,∵﹣2<x1<x2,∴在﹣2<x<﹣1中存在一个实数x0,使得x0=﹣,故④正确,【分析】①正确.画出函数图象即可判断.②错误.因为a+b+c=0,所以a+3b+2c=a+3b﹣2a﹣2b=b﹣a,又a﹣b+c>0,所以b﹣a<c,故b﹣a可以是正数,由此可以周长判断.③正确.利用函数y′= x2+x= (x2+ x)= (x+ )2﹣,根据函数的最值问题即可解决.④令y=0则ax2+bx﹣a﹣b=0,设它的两个根为x1, 1,则x1•1= =﹣,求出x1即可解决问题.本题考查二次函数的图象与系数的关系、二次函数图象上的点的坐标特征,解题的关键是灵活应用二次函数的性质解决问题,学会构建二次函数解决最值问题,属于中考填空题中的压轴题.三、综合题【答案】(1)解:把A(0,8),B(﹣4,0)代入y=﹣x2+bx+c得,解得,所以抛物线的解析式为y=﹣x2+x+8;当y=0时,﹣x2+x+8=0,解得x1=﹣4,x2=8,所以C点坐标为(8,0)(2)解:①连结OF,如图,设F(t,﹣t2+t+8),∵S四边形OCFD=S△CDF+S△OCD=S△ODF+S△OCF,∴S△CDF=S△ODF+S△OCF﹣S△OCD = •4•t + •8•(﹣t2+t+8)﹣•4•8=﹣t2+6t+16=﹣(t﹣3)2+25,当t=3时,△CDF的面积有最大值,最大值为25,∵四边形CDEF为平行四边形,∴S的最大值为50;②∵四边形CDEF为平行四边形,∴CD∥EF,CD=EF,∵点C向左平移8个单位,再向上平移4个单位得到点D,∴点F向左平移8个单位,再向上平移4个单位得到点E,即E(t﹣8,﹣t2+t+12),∵E(t﹣8,﹣t2+t+12)在抛物线上,∴﹣(t﹣8)2+t﹣8+8=﹣t2+t+12,解得t=7,当t=7时,S△CDF=﹣(7﹣3)2+25=9,∴此时S=2S△CDF=18.【考点】待定系数法求二次函数解析式,与二次函数有关的动态几何问题【解析】【分析】(1)把A点和B点坐标代入y=﹣x2+bx+c得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线的解析式;然后计算函数值为0时对应的自变量的值即可得到C点坐标(2)①连结OF,如图,设F(t,﹣t2+t+8),利用S四边形OCFD=S△CDF+S△OCD=S△ODF+S△OCF,利用三角形面积公式得到S△CDF=﹣t2+6t+16,再利用二次函数的性质得到△CDF的面积有最大值,然后根据平行四边形的性质可得S的最大值;②由于四边形CDEF为平行四边形,则CD∥EF,CD=EF,利用C点和D的坐标特征可判断点C向左平移8个单位,再向上平移4个单位得到点D,则点F向左平移8个单位,再向上平移4个单位得到点E,即E(t﹣8,﹣t2+t+12),然后把E(t﹣8,﹣t2+t+12)代入抛物线解析式得到关于t的方程,再解方程求出t后计算△CDF的面积,从而得到S的值.本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和平行四边形的性质;会利用待定系数法求二次函数解析式;理解坐标与图形性质,掌握点平移的坐标规律.【答案】(1)解:由已知可得:AD= ,则S=1× m2(2)解:设AB=xm,则AD=3﹣m,∵ ,∴ ,设窗户面积为S,由已知得:,当x= m时,且x= m在的范围内,,∴与课本中的例题比较,现在窗户透光面积的最大值变大【考点】二次函数的应用【解析】【分析】此题考查二次函数的应用,关键是利用二次函数的最值解答.(1)根据矩形和正方形的周长进行解答即可;(2)设AB为xcm,利用二次函数的最值解答即可.【答案】(1)解:把A(﹣1,1),B(2,2)代入y=ax2+bx得:,解得,故抛物线的函数表达式为y= x2﹣x,∵BC∥x轴,设C(x0, 2).∴ x02﹣x0=2,解得:x0=﹣或x0=2,∵x0<0,∴C(﹣,2)(2)解:设△BCM边BC上的高为h,∵BC= ,∴S△BCM = •h= ,∴h=2,点M即为抛物线上到BC的距离为2的点,∴M的纵坐标为0或4,令y= x2﹣x=0,解得:x1=0,x2= ,∴M1(0,0),M2(,0),令y= x2﹣x=4,解得:x3= ,x4=,∴M3(,0),M4(,4),综上所述:M点的坐标为:(0,0),(,0),(,0),(,4)(3)解:∵A(﹣1,1),B(2,2),C(﹣,2),D(0,2),∴OB=2 ,OA= ,OC= ,∴∠AOD=∠BOD=45°,tan∠COD= ,①如图1,当△AOC∽△BON时,,∠AOC=∠BON,∴ON=2OC=5,过N作NE⊥x轴于E,∵∠COD=45°﹣∠AOC=45°﹣∠BON=∠NOE,在Rt△NOE 中,tan∠NOE=tan∠COD= ,∴OE=4,NE=3,∴N(4,3)同理可得N(3,4);②如图2,当△AOC∽△OBN时,,∠AOC=∠OBN,∴BN=2OC=5,过B作BG⊥x轴于G,过N作x轴的平行线交BG的延长线于F,∴NF⊥BF,∵∠COD=45°﹣∠AOC=45°﹣∠OBN=∠NBF,∴tan∠NBF=tan∠COD= ,∴BF=4,NF=3,∴N(﹣1,﹣2),同理N(﹣2,﹣1),综上所述:使得△AOC与△OBN相似(边OA与边OB对应)的点N的坐标是(4,3),(3,4),(﹣1,﹣2),(﹣2,﹣1).【考点】二次函数的性质,相似三角形的性质,与二次函数有关的动态几何问题【解析】【分析】(1)把A(﹣1,1),B(2,2)代入y=ax2+bx求得抛物线的函数表达式为y= x2﹣x,由于BC∥x轴,设C(x0, 2).于是得到方程x02﹣x0=2,即可得到结论;(2)设△BCM边BC上的高为h,根据已知条件得到h=2,点M即为抛物线上到BC的距离为2的点,于是得到M的纵坐标为0或4,令y= x2﹣x=0,或令y= x2﹣x=4,解方程即可得到结论;(3)解直角三角形得到OB=2 ,OA= ,OC= ,∠AOD=∠BOD=45°,tan∠COD= ①如图1,当△AOC∽△BON时,求得ON=2OC=5,过N作NE⊥x轴于E,根据三角函数的定义得到OE=4,NE=3,于是得到结果;②如图2,根据相似三角形的性质得到BN=2OC=5,过B作BG⊥x轴于G,过N作x 轴的平行线交BG的延长线于F解直角三角形得到BF=4,NF=3于是得到结论.本题主要考查的是二次函数与相似三角形的综合应用,难度较大,解答本题需要同学们熟练掌握二次函数和相似三角形的相关性质.【答案】(1)解:∵二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1,则有解得∴二次函数y=x2﹣2x(2)解:由(1)得,B(1,﹣1),∵A(﹣1,3),∴直线AB解析式为y=﹣2x+1,AB=2 ,设点Q(m,0),P(n,n2﹣2n)∵以A、B、P、Q为顶点的四边形是平行四边形,①当AB为对角线时,根据中点坐标公式得,则有,解得或∴P(1+ ,2)和(1﹣,2)②当AB为边时,根据中点坐标公式得解得或∴P(1+ ,4)或(1﹣,4).(3)解:设T(m,m2﹣2m),∵TM⊥OC,∴可以设直线TM为y=﹣x+b,则m2﹣2m=﹣m+b,b=m2﹣2m+ ,由解得,∴OM= = ,ON=m• ,∴ = ,∴k= 时,= .∴当k= 时,点T运动的过程中,为常数.本题考查二次函数综合题,平行四边形的判定和性质,中点坐标公式等知识,解题【考点】待定系数法求二次函数解析式,二次函数与一次函数的交点问题【解析】【分析】(1)利用待定系数法即可解决问题(2)①当AB为对角线时,根据中点坐标公式,列出方程组解决问题.②当AB为边时,根据中点坐标公式列出方程组解决问题.(3)设T(m,m2﹣2m),由TM⊥OC,可以设直线TM为y=﹣x+b,则m2﹣2m=﹣m+b,b=m2﹣2m+ ,求出点M、N坐标,求出OM、ON,根据列出等式,即可解决问题.本题的关键是利用参数,方程组解决问题,学会转化的思想,属于中考压轴题.【答案】(1)解:△ABC为直角三角形,当y=0时,即﹣x2+ x+3=0,∴x1=﹣,x2=3∴A(﹣,0),B(3 ,0),∴O A= ,OB=3 ,当x=0时,y=3,∴C(0,3),∴OC=3,根据勾股定理得,AC2=OB2+OC2=12,BC2=OB2+OC2=36,∴AC2+BC2=48,∵AB2=[3 ﹣(﹣)]2=48,∴AC2+BC2=AB2,∴△ABC是直角三角形(2)解:如图,∵B(3 ,0),C(0,3),∴直线BC解析式为y=﹣x+3,过点P作∥y轴,设P(a,﹣a2+ a+3),∴G(a,﹣a+3),∴PG=﹣a2+ a,设点D的横坐标为x D, C点的横坐标为x C,S△PCD = ×(x D﹣x C)×PG=﹣(a﹣)2+ ,∵0<a<3 ,∴当a= 时,S△PCD最大,此时点P(,),将点P向左平移个单位至P′,连接AP′,交y轴于点N,过点N作MN⊥抛物线对称轴于点M,连接PM,点Q沿P→M→N→A,运动,所走的路径最短,即最短路径的长为PM+MN+NA的长,∴P(,)∴P′(,),∵点A(﹣,0),∴直线AP′的解析式为y= x+ ,当x=0时,y= ,∴N(0,),过点P′作P′H⊥x轴于点H,∴AH= ,P′H= ,AP′= ,∴点Q运动得最短路径长为PM+MN+AN= + = ;(3)解:在Rt△AOC中,∵tan∠OAC= = ,∴∠OAC=60°,∵OA=OA1,∴△OAA1为等边三角形,∴∠AOA1=60°,∴∠BOC1=30°,∵OC1=OC=3,∴C1(,),∵点A(﹣,0),E(,4),∴AE=2 ,∴A′E′=AE=2 ,∵直线AE的解析式为y= x+2,设点E′(a,a+2),∴A′(a﹣2 ,﹣2)∴C1E′2=(a﹣2 )2+(+2﹣)2= a2﹣a+7,C1A′2=(a﹣2 ﹣)2+(﹣2﹣)2= a2﹣a+49,①若C1A′=C1E′,则C1A′2=C1E′2即:a2﹣a+7= a2﹣a+49,∴a= ,∴E′(,5),②若A′C1=A′E′,∴A′C12=A′E′2即:a2﹣a+49=28,∴a1= ,a2= ,∴E′(,7+ ),或(,7﹣),③若E′A′=E′C1,∴E′A′2=E′C12即:a2﹣a+7=28,∴a1= ,a2= (舍),∴E′(,3+ ),即,符合条件的点E′(,5),(,7+ ),或(,7﹣),(,3+ )【考点】二次函数的最值,勾股定理的逆定理,与二次函数有关的动态几何问题【解析】【分析】(1)先求出抛物线与x轴和y轴的交点坐标,再用勾股定理的逆定理判断出△ABC 是直角三角形;(2)先求出S△PCD最大时,点P(,),然后判断出所走的路径最短,即最短路径的长为PM+MN+NA的长,计算即可;(3)△A′C1E′是等腰三角形,分三种情况分别建立方程计算即可.此题是二次函数综合题,主要考查了函数极值的确定方法,等边三角形的判定和性质,勾股定理的逆定理,等腰三角形的性质,解本题的关键是分类讨论,也是解本题的难点.。

中考数学压轴题二次函数问题解答题解析版

中考数学压轴题二次函数问题解答题解析版

27.在平面直角坐标系xOy中,已知抛物线(k为常数).(1)若抛物线经过点(1,k2),求k的值;(2)若抛物线经过点(2k,y1)和点(2,y2),且y1>y2,求k的取值范围;(3)若将抛物线向右平移1个单位长度得到新抛物线,当1≤x≤2时,新抛物线对应的函数有最小值,求k的值.【答案】(1);(2)k>1;(3)1或3.(2)把点代入抛物线,得把点代入抛物线,得解得当时,对应的抛物线部分位于对称轴左侧,随的增大而减小,时,,解得,(舍去)综上,或3.【关键点拨】本题考査的知识点是二次函数的代入点求值、二次函数的最值、二次函数与一元二次不等式、方程的关系以及函数平移的问题,解题关键是熟练掌握二次函数的相关知识.28.某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.【答案】(1) 50千克(2) 12.529.随着人们生活水平的提高,短途旅行日趋火爆.我市某旅行社推出“辽阳—葫芦岛海滨观光一日游”项目,团队人均报名费用y(元)与团队报名人数x(人)之间的函数关系如图所示,旅行社规定团队人均报名费用不能低于88元.旅行社收到的团队总报名费用为w(元). (1)直接写出当x≥20时,y与x之间的函数关系式及自变量x的取值范围;(2)儿童节当天旅行社收到某个团队的总报名费为3000元,报名旅游的人数是多少?(3)当一个团队有多少人报名时,旅行社收到的总报名费最多?最多总报名费是多少元?【答案】(1);(2)30;(3)36人,3168元.(2)20×120=2400<3000,由题意得:w=xy=x(-2x+160)=3000,-2x2+160x-3000=0,x2-80x+1500=0,(x-50)(x-30)=0,x=50或30,当x=50时,y==60,不符合题意,舍去,当x=30时,y==100>88,符合题意,答:报名旅游的人数是30人;(3)w=xy=x(-2x+160)=-2x2+160x=-2(x2-80x+1600-1600)=-2(x-40)2+3200,∵-2<0,∴x<40,w随x的增大而增大,∵x=36时,w有最大值为:-2(36-40)2+3200=3168,∴当一个团队有36人报名时,旅行社收到的总报名费最多,最多总报名费是3168元.【关键点拨】本题考查了一次函数的应用以及二次函数的应用,正确得出y与x的函数关系式是解题的关键.30.一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量(件与销售价(元/件)之间的函数关系如图所示.(1)求与之间的函数关系式,并写出自变量的取值范围;(2)求每天的销售利润W(元与销售价(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?【答案】(1)(2),,144元(2)根据题意知,,,当时,随的增大而增大,,当时,取得最大值,最大值为144,答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.【关键点拨】本题考查了二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及根据相等关系列出二次函数解析式及二次函数的性质.31.综合与探究如图1所示,直线y=x+c与x轴交于点A(-4,0),与y轴交于点C,抛物线y=-x2+bx+c经过点A,C.(1)求抛物线的解析式(2)点E在抛物线的对称轴上,求CE+OE的最小值;(3)如图2所示,M是线段OA的上一个动点,过点M垂直于x轴的直线与直线AC和抛物线分别交于点P、N.①若以C,P,N为顶点的三角形与△APM相似,则△CPN的面积为;②若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为()【答案】(1)y=-x2-3x+4;(2)5;(3)①或4;②存在,D点坐标为(,)或(-1+,)或(-1-,-)或(-4,3).【解析】(1)将代入将和代入抛物线解析式为(3)①当时,,则关于抛物线对称轴对称的面积为当时由已知为等腰直角三角形,过点作于点,设点坐标为,则为,代入解得的面积为4故答案为:或4【关键点拨】本题考查了直角坐标系下抛物线的综合运用与图形变换,能够综合应用相似形和分类讨论是解答本题的关键.32.如图,抛物线与轴交于,,两点(点在点的左侧),与轴交于点,且,的平分线交轴于点,过点且垂直于的直线交轴于点,点是轴下方抛物线上的一个动点,过点作轴,垂足为,交直线于点.(1)求抛物线的解析式;(2)设点的横坐标为,当时,求的值;(3)当直线为抛物线的对称轴时,以点为圆心,为半径作,点为上的一个动点,求的最小值.【答案】(1)y x2x﹣3;(2);(3).(3)如图,∵PF是对称轴,∴F(,0),H(,﹣2).∵AH⊥AE,∴∠EAO=60°,∴EO OA=3,∴E(0,3).∵C(0,﹣3),∴HC2,AH=2FH=4,∴QH CH=1,在HA上取一点K,使得HK,此时K().∵HQ2=1,HK•HA=1,∴HQ2=HK•HA,∴.∵∠QHK=∠AHQ,∴△QHK∽△AHQ,∴,∴KQ AQ,∴AQ+QE=KQ+EQ,∴当E、Q、K共线时,AQ+QE的值最小,最小值.【关键点拨】本题考查了相似三角形对应边成比例、两边成比例且夹角相等的两个三角形相似、待定系数法求二次函数的表达式、二次函数的图象与性质、数轴上两点间的距离公式,熟练掌握该知识点是本题解题的关键.33.知识背景当a>0且x>0时,因为(﹣)2≥0,所以x﹣2+≥0,从而x+(当x=时取等号).设函数y=x+(a>0,x>0),由上述结论可知:当x=时,该函数有最小值为2.应用举例已知函数为y1=x(x>0)与函数y2=(x>0),则当x==2时,y1+y2=x+有最小值为2 =4.解决问题(1)已知函数为y1=x+3(x>﹣3)与函数y2=(x+3)2+9(x>﹣3),当x取何值时,有最小值?最小值是多少?(2)已知某设备租赁使用成本包含以下三部分:一是设备的安装调试费用,共490元;二是设备的租赁使用费用,每天200元;三是设备的折旧费用,它与使用天数的平方成正比,比例系数为0.001.若设该设备的租赁使用天数为x天,则当x取何值时,该设备平均每天的租货使用成本最低?最低是多少元?【答案】(1)6;(2)w有最小值,最小值=201.4元.【关键点拨】本题考查二次函数的应用,反比例函数的应用,函数的最值问题,完全平方公式等知识,解题的关键是学会构建函数解决问题,属于中考常考题型.34.如图,已知二次函数的图象经过点A(4,0),与y轴交于点B.在x 轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m 的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱周长取最大值时,求点G的坐标.【答案】(1),;(2);(3)或.(2)由已知,点坐标为点坐标为轴(3)如图,过点做于点由(2)同理四边形是平行四边形整理得:,即由已知周长时,最大.点坐标为,,此时点坐标为,当点、位置对调时,依然满足条件点坐标为,或,【关键点拨】本题考查一次函数与二次函数的综合运用,解题的关键是能够根据题意找到有限条件列出解析式或表示出相关坐标.35.如图,已知二次函数y=ax2+bx+3 的图象与x轴分别交于A(1,0),B(3,0)两点,与y轴交于点C(1)求此二次函数解析式;(2)点D为抛物线的顶点,试判断△BCD的形状,并说明理由;(3)将直线BC向上平移t(t>0)个单位,平移后的直线与抛物线交于M,N两点(点M在y轴的右侧),当△AMN为直角三角形时,求t的值.【答案】(1);(2)△BCD为直角三角形,理由见解析;(3)当△AMN为直角三角形时,t的值为1或4.【解析】(1)将、代入,得:,解得:,此二次函数解析式为.(3)设直线的解析式为,将,代入,得:,解得:,直线的解析式为,将直线向上平移个单位得到的直线的解析式为.联立新直线与抛物线的解析式成方程组,得:,解得:,,点的坐标为,,点的坐标为,.点的坐标为,,,.为直角三角形,分三种情况考虑:①当时,有,即,整理,得:,解得:,(不合题意,舍去);②当时,有,即,整理,得:,解得:,(不合题意,舍去);③当时,有,即,整理,得:.,该方程无解(或解均为增解).[来源:Z&xx&]综上所述:当为直角三角形时,的值为1或4.【关键点拨】本题考查了待定系数法求二次函数解析式、待定系数法求一次函数解析式、二次函数图象上点的坐标特征、勾股定理以及勾股定理的逆定理,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点间的距离公式结合勾股定理的逆定理找出BC2+BD2=CD2;(3)分∠MAN=90°、∠AMN=90°及∠ANM=90°三种情况考虑.36.如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由.【答案】(1)y=﹣x2+2x+3;(2)①Q(2,3);②Q2(,),Q3(,);(3)存在点M,N使四边形MNED为正方形,MN=9或.理由见解析.(2)由B(3,0),C(0,3),得到直线BC解析式为y=﹣x+3,∵S△OBC=S△QBC,∴PQ∥BC,①过P作PQ∥BC,交抛物线于点Q,如图1所示,∵P(1,4),∴直线PQ解析式为y=﹣x+5,联立得:,解得:或,即Q(2,3);②设G(1,2),∴PG=GH=2,过H作直线Q2Q3∥BC,交x轴于点H,则直线Q2Q3解析式为y=﹣x+1,联立得:,解得:或,∴Q2(,),Q3(,);(3)存在点M,N使四边形MNED为正方形,∵NH2=(b﹣3)2,∴NF2=(b﹣3)2,若四边形MNED为正方形,则有NE2=MN2,∴42﹣8b=(b2﹣6b+9),整理得:b2+10b﹣75=0,解得:b=﹣15或b=5,∵正方形边长为MN=,∴MN=9或.【关键点拨】此题属于二次函数综合题,涉及的知识有:待定系数法确定函数解析式,根与系数的关系,等腰直角三角形的性质,正方形的性质,勾股定理,以及一次函数与二次函数的性质,熟练掌握待定系数法是解本题的关键.37.如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.(1)当a=﹣1时,求抛物线顶点D的坐标,OE等于多少;(2)OE的长是否与a值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.【答案】(1)(﹣1,4),3;(2)结论:OE的长与a值无关.理由见解析;(3)﹣≤a≤﹣1;(4)n=﹣m﹣1(m<1).(2)结论:OE的长与a值无关.理由:∵y=ax2+2ax﹣3a,∴C(0,﹣3a),D(﹣1,﹣4a),∴直线CD的解析式为y=ax﹣3a,当y=0时,x=3,∴E(3,0),∴OE=3,∴OE的长与a值无关.(4)如图,作PM⊥对称轴于M,PN⊥AB于N.∵PD=PE,∠PMD=∠PNE=90°,∠DPE=∠MPN=90°,∴∠DPM=∠EPN,∴△DPM≌△EPN,∴PM=PN,PM=EN,∵D(﹣1,﹣4a),E(3,0),∴EN=4+n=3﹣m,∴n=﹣m﹣1,当顶点D在x轴上时,P(1,﹣2),此时m的值1,∵抛物线的顶点在第二象限,∴m<1.∴n=﹣m﹣1(m<1).故答案为:(1)(﹣1,4),3;(2)OE的长与a值无关;(3)﹣≤a≤﹣1;(4)n=﹣m﹣1(m<1).[来源]【关键点拨】本题是二次函数综合题,考查了二次函数的图象与性质.38.如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.【答案】(1)y=﹣x2+2x+3;(2)①S四边形ACFD= 4;②Q点坐标为(1,4)或(,)或(,).∴CD=2,且CD∥x轴,∵A(﹣1,0),∴S四边形ACFD=S△ACD+S△FCD=×2×3+×2×(4﹣3)=4;②∵点P在线段AB上,∴∠DAQ不可能为直角,∴当△AQD为直角三角形时,有∠ADQ=90°或∠AQD=90°,i.当∠ADQ=90°时,则DQ⊥AD,∵A(﹣1,0),D(2,3),∴直线AD解析式为y=x+1,∴可设直线DQ解析式为y=﹣x+b′,把D(2,3)代入可求得b′=5,∴直线DQ解析式为y=﹣x+5,联立直线DQ和抛物线解析式可得,解得或,∴Q(1,4);【关键点拨】此题重点考察学生对于抛物线的综合应用能力,熟练抛物线的图像和性质,四边形面积的计算方法,点坐标的求解方式是解答本题的关键.39.已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(,0).(1)求抛物线F的解析式;(2)如图1,直线l:y x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);(3)在(2)中,若m,设点A′是点A关于原点O的对称点,如图2.①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)y=x2x;(2)y2﹣y1=(m>0);(3)①等边三角形;②点P的坐标为(2)、()和(,﹣2).∴y1m,y2m,∴y2﹣y1=(m)﹣(m)(m>0);②∵△AA′B为等边三角形,∴存在符合题意的点P,且以点A、B、A′、P为顶点的菱形分三种情况,设点P的坐标为(x,y).(i)当A′B为对角线时,有,解得:,∴点P的坐标为(2);(ii)当AB为对角线时,有,解得:,∴点P的坐标为();(iii)当AA′为对角线时,有,解得:,∴点P的坐标为(,﹣2).综上所述:平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(2)、()和(,﹣2).【关键点拨】本题考查了待定系数法求二次函数解析式、一次函数图象上点的坐标特征、等边三角形的判定与性质以及菱形的判定与性质等,熟练掌握待定系数法是解(1)的关键,将一次函数解析式代入二次函数解析式是解(2)的关键,分别求出AB、AA′、A′B的值以及分情况讨论是解(3)的关键.40.在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D(4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.【答案】(1)E(3,1);(2)S最大=,M坐标为(,3);(3)F坐标为(0,﹣).(2)如图①,过M作MH∥y轴,交CE于点H,设M(m,﹣m2+m+2),则H(m,﹣m+2),∴MH=(﹣m2+m+2)﹣(﹣m+2)=﹣m2+2m,S四边形COEM=S△OCE+S△CME=×2×3+MH•3=﹣m2+3m+3,当m=﹣=时,S最大=,此时M坐标为(,3);(3)连接BF,如图②所示,当﹣x2+x+20=0时,x1=,x2=,∴OA=,OB=,∵∠ACO=∠ABF,∠AOC=∠FOB,∴△AOC∽△FOB,∴,即,解得:OF=,则F坐标为(0,﹣).【关键点拨】此题属于二次函数综合题,涉及的知识有:待定系数法求二次函数解析式,相似三角形的判定与性质,三角形的面积,二次函数图象与性质,以及图形与坐标性质,熟练掌握各自的性质是解本题的关键.41.如图,已知抛物线过点A(,-3) 和B(3,0),过点A作直线AC//x轴,交y轴与点C.(1)求抛物线的解析式;(2)在抛物线上取一点P,过点P作直线AC的垂线,垂足为D,连接OA,使得以A,D,P为顶点的三角形与△AOC相似,求出对应点P的坐标;(3)抛物线上是否存在点Q,使得?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1);(2)P点坐标为(4,6)或(,- );(3)Q点坐标(3,0)或(-2,15)则抛物线解析式为;(2)当在直线上方时,设坐标为,则有,,当时,,即,整理得:,即,解得:,即或(舍去),此时,;当时,,即,整理得:,即,解得:,即或(舍去),此时,;当点时,也满足;当在直线下方时,同理可得:的坐标为,,综上,的坐标为,或,或,或;过作,截取,过作,交轴于点,如图所示:【关键点拨】二次函数综合题,涉及的知识有:待定系数法求函数解析式,相似三角形的判定与性质,点到直线的距离公式,熟练掌握待定系数法是解本题的关键.42.已知抛物线的图象如图所示:(1)将该抛物线向上平移2个单位,分别交x轴于A、B两点,交y轴于点C,则平移后的解析式为.(2)判断△ABC的形状,并说明理由.(3)在抛物线对称轴上是否存在一点P,使得以A、C、P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1);(2)△ABC是直角三角形;(3)存在,、、.(3)y x2x+2的对称轴是x,设P(,n),AP2=(1)2+n2n2,CP2(2﹣n)2,AC2=12+22=5.分三种情况讨论:①当AP=AC时,AP2=AC2,n2=5,方程无解;②当AP=CP时,AP2=CP2,n2(2﹣n)2,解得:n=0,即P1(,0);③当AC=CP时,AC2=CP2,(2﹣n)2=5,解得:n1=2,n2=2,P2(,2),P3(,2).综上所述:在抛物线对称轴上存在一点P,使得以A、C、P为顶点的三角形是等腰三角形,点P的坐标(,0),(,2),(,2).【关键点拨】本题考查了二次函数综合题.解(1)的关键是二次函数图象的平移,解(2)的关键是利用勾股定理及逆定理;解(3)的关键是利用等腰三角形的定义得出关于n的方程,要分类讨论,以防遗漏.43.空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园A BCD的面积最大,并求面积的最大值.【答案】(1)利用旧墙AD的长为10米.(2)见解析.(2)设AD=x米,矩形ABCD的面积为S平方米①如果按图一方案围成矩形菜园,依题意得:S=,0<x<a∵0<a<50∴x<a<50时,S随x的增大而增大当x=a时,S最大=50a-a2②如按图2方案围成矩形菜园,依题意得S=,a≤x<50+当a<25+<50时,即0<a<时,则x=25+时,S最大=(25+)2=,当25+≤a,即≤a<50时,S随x的增大而减小[来源:Zxx∴x=a时,S最大==,【关键点拨】本题以实际应用为背景,考查了一元二次方程与二次函数最值的讨论,解得时注意分类讨论变量大小关系.44.如图,已知顶点为的抛物线与轴交于,两点,直线过顶点和点.(1)求的值;(2)求函数的解析式;(3)抛物线上是否存在点,使得?若存在,求出点的坐标;若不存在,请说明理由.【答案】(1)﹣3;(2)y x2﹣3;(3)M的坐标为(3,6)或(,﹣2).(3)存在,分以下两种情况:①若M在B上方,设MC交x轴于点D,则∠ODC=45°+15°=60°,∴OD=OC•tan30°,设DC为y=kx﹣3,代入(,0),可得:k,联立两个方程可得:,解得:,所以M1(3,6);【关键点拨】此题是一道二次函数综合题,熟练掌握待定系数法求函数解析式等知识是解题关键.45.如图,已知抛物线的对称轴是直线x=3,且与x轴相交于A,B两点(B 点在A点右侧)与y轴交于C点.(1)求抛物线的解析式和A、B两点的坐标;(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;(3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.【答案】(1),点A的坐标为(-2,0),点B的坐标为(8,0);(2)存在点P,使△PBC的面积最大,最大面积是16,理由见解析;(3)点M的坐标为(4-2,)、(2,6)、(6,4)或(4+2,-).(2)当时,,点的坐标为.设直线的解析式为.将、代入,,解得:,直线的解析式为.假设存在,设点的坐标为,过点作轴,交直线于点,则点的坐标为,如图所示.,.,当时,的面积最大,最大面积是16 .,存在点,使的面积最大,最大面积是16 .【关键点拨】本题考查了二次函数的性质、二次函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)利用二次函数的性质求出a的值;(2)根据三角形的面积公式找出关于x的函数关系式;(3)根据MN的长度,找出关于m的含绝对值符号的一元二次方程.。

北京市西城区中考数学《二次函数》专项复习训练含答案

北京市西城区中考数学《二次函数》专项复习训练含答案

北京市西城区普通中学初三数学中考复习 二次函数 专项复习训练一、选择题(每小题4分,共32分) 1.下列函数中一定是二次函数的是( ) A .y =ax 2+bx +c B .y =x 2+3x 3 C .y =1x 2+2x +3D .y =2-3x 22.已知抛物线y =(m -1)x 2-mx -m 2+1的图象过原点,则m 的值为( ) A .±1 B .0 C .1 D .-13.在同一平面直角坐标系中,函数y =ax +b 与y =ax 2-bx 的图象可能是( )A B C D4.将抛物线y =x 2-2平移到抛物线y =x 2+2x -2的位置,以下描述正确的是( )A .向左平移1个单位长度,向上平移1个单位长度B .向右平移1个单位长度,向上平移1个单位长度C .向左平移1个单位长度,向下平移1个单位长度D .向右平移1个单位长度,向下平移1个单位长度5.若函数y =mx 2+(m +2)x +12m +1的图象与坐标轴只有2个公共点,那么m 的值为( )A .0B .0或2C .2或-2D .0,2或-26.抛物线y =x 2+bx +c(其中b ,c 是常数)过点A(2,6),且抛物线的对称轴与线段y =0(1≤x ≤3)有交点,则c 的值不可能是( ) A .4 B .6 C .8 D .107.在羽毛球比赛中,某次羽毛球的运动路线可以看作是抛物线y =-14x 2+34x +1的一部分(如图所示,单位:m),则下列说法不正确的是( )A .出球点A 离地面点O 的距离是1 mB .该羽毛球横向飞出的最远距离是3 mC .此次羽毛球最高达到2516mD .当羽毛球横向飞出32m 时,可达到最高点8.如图是抛物线y =ax 2+bx +c(a≠0)的部分图象,其顶点坐标为(1,n),且与x 轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a -b +c >0;②3a +b =0;③b 2=4a(c -n);④一元二次方程ax 2+bx +c =n -1有两个不相等的实数根.其中正确结论的个数是( )A .1B .2C .3D .4二、填空题(每小题4分,共24分)9.二次函数y=2x2+3x-9的图象与x轴交点的坐标是____________________.10.如图是抛物线y=ax2+bx+c的图象,则由图象可知,不等式ax2+bx+c<0的解集是________.11.如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a-2b+c的值为______.12. 科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如下表:温度t/℃-4 -2 0 1 4植物高度增长量l/mm41 49 49 46 25科学家经过猜想,推测出l与t之间是二次函数关系.由此可以推测最适合这种植物生长的温度为________℃.13.已知函数y=x2-2mx+2 017(m为常数)的图象上有三点:A(x1,y1),B(x2,y 2),C(x 3,y 3),其中x 1=m -2,x 2=m +3,x 3=m -1,则y 1,y 2,y 3的大小关系是____________.14.某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为________元时,该服装店平均每天的销售利润最大.三、解答题(共44分)15.(10分)如图,直线y =x +m 和抛物线y =x 2+bx +c 都经过点A(1,0),B(3,2).(1)求m 的值和抛物线的表达式;(2)求不等式x 2+bx +c >x +m 的解集.(直接写出答案)16.(10分)杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一个点)的路线是抛物线y =-35x 2+3x +1的一部分,如图所示.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?说明理由.17.(12分)如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有两道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,求围成的最大面积.18.(12分)某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.答案: 一、1---8 DDCCD ABC 二、9. (32,0)和(-3,0)10. -2<x<3 11. 0 12. -1 13. y 3<y 1<y 2 14. 22 三、15. (1)∵直线y =x +m 经过点A(1,0),∴0=1+m.∴m=-1.∴y=x -1.∵抛物线y =x 2+bx +c 经过点A(1,0),B(3,2),∴⎩⎪⎨⎪⎧0=1+b +c ,2=9+3b +c ,解得⎩⎪⎨⎪⎧b =-3,c =2.∴抛物线的表达式为y =x 2-3x +2 (2)x<1或x>316. (1)y =-35x 2+3x +1=-35(x -52)2+194.故函数的最大值是194,∴演员弹跳离地面的最大高度是194米(2)当x =4时,y =-35×42+3×4+1=3.4=BC.∴这次表演成功17. (1)∵AB=x ,∴BC =24-4x ,∴S =AB·BC=x(24-4x)=-4x 2+24x(0<x <6)(2)S =-4x 2+24x =-4(x -3)2+36,∵0<x <6,∴当x =3时,花圃的面积最大,最大为36平方米(3)∵⎩⎪⎨⎪⎧24-4x≤8,24-4x >0,∴4≤x <6,∴当x =4时,花圃的面积最大,最大为32平方米18. (1)y =⎩⎪⎨⎪⎧120x (0<x≤30),[120-(x -30)]x (30<x≤m),[120-(m -30)]x (x >m ).(2)由(1)可知当0<x≤30或x >m 时,函数值y 都是随着x 的增大而增大的,当30<x≤m 时,y =-x 2+150x =-(x -75)2+5 625,∵a =-1<0,∴当x≤75时,y 随着x 的增大而增大,∴为了让收取的总费用随着团队中人数的增大而增大,m 的取值范围为30<m≤75。

中考数学《二次函数与一元二次方程》专项练习题及答案

中考数学《二次函数与一元二次方程》专项练习题及答案

中考数学《二次函数与一元二次方程》专项练习题及答案.()=--2y x x my=mA.0个B.1个C.2个D.3个7.二次函数()20y ax bx c a =++≠()1,0-A .5个B .4个C .3个D .2个,使得ABP为等腰直角三角形,其中正确的结论的有(A.1个B.2个C.3个D.4个A.1个B.2个C.3个D.4个四个根的和为4-.其中正确的结论有_____.12.如图,抛物线1C :223y x x =+-与抛物线2C :2y ax bx c =++组成一个开口向上的“月牙线”,抛物线1C 和抛物线2C 与x 轴有着相同的交点A 、B (点B 在点A 右侧),与y 轴的交点分别为C 、D .如果BD CD =,那么抛物线2C 的表达式是______.13.二次函数()20y ax bx c a =++≠的图象的一部分如图所示,已知图象经过点()2,0-其对称轴为直线 2.x =下列结论①0abc >;①240b ac -<;①80a c +>;①9315a b c a ++=-;①点()()123,0,C y D y 是抛物线上的两点,则12y y <;①若抛物线经过点()3,n -,则关于x 的一元二次方程()200ax bx c n a ++-=≠的两根分别为3-,7.正确的有______ (填序号).14.已知y 是关于x 的函数,若该函数的图象经过点(),P t t ,则称点P 为函数图象上的“平衡点”,例如:直线23y x =-+上存在“平衡点”()1,1P ,若函数()2132y m x x m =--+的图象上存在唯一“平衡点”,则m =___________.15.已知抛物线2y ax bx c =++(a ,b ,c 是常数,a c ≠),且0a b c -+=,0a >下列四个结论:①对于任意实数m ,()()2110a m b m -+-≥恒成立;①若0a b +=,则不等式20ax bx c ++<的解集是12x -<<; ①一元二次方程()222a x bx b c --+=+有一个根1x =;①点()11,A x y ,()22,B x y 在抛物线上,若c a >,则当121x x -<<时,总有12y y <.其中正确的是__________.(填写序号)(1)求点M 的坐标;(用含m 的式子表示)时,请求出ODE 面积(3bx a +≠(1)求该二次函数解析式;,求BCP面积的最大值;所得新函数图象如图轴交于C点,(1)求该二次函数的表达式及其图象的顶点坐标;1.B2.B3.B4.D5.A6.D7.C。

中考数学模拟题汇总《二次函数》专项练习及答案解析

中考数学模拟题汇总《二次函数》专项练习及答案解析

中考数学模拟题汇总《二次函数》专项练习及答案解析一、单选题1.新定义:在平面直角坐标系中,对于点P(m,n)和点P′(m,n′),若满足m≥0时,n′=n-4;m<0时,n′=-n,则称点P′(m,n′)是点P(m,n)的限变点.例如:点P1(2,5)的限变点是P1′(2,1),点P2(-2,3)的限变点是P2′(-2,-3).若点P(m,n)在二次函数y=-x2+4x+2的图象上,则当-1≤m≤3时,其限变点P′的纵坐标n'的取值范围是()A.−2≤n′≤2B.1≤n′≤3C.1≤n′≤2D.−2≤n′≤3的图象上,若△PAB为直角三角2.抛物线y=x2−9与x轴交于A、B两点,点P在函数y=√3x形,则满足条件的点P的个数为().A.2个B.3个C.4个D.6个3.已知二次函数y=ax2+2ax+3a-2(a是常数,且a≠0)的图象过点M(x1,-1),N(x2,-1),若MN 的长不小于2,则a的取值范围是()A.a≥ 13B.0<a≤ 13C.-13≤a<0D.a≤-134.设一元二次方程(x−1)(x−2)=m(m>0)的两根分别为α,β,且α<β,则α,β满足()A.1<α<β<2B.1<α<2<βC.α<1<β<2D.α<1且β>25.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是().A.a>0B.abc>OC.2a+b<0D.ax2+bx+c=o有两个不相等的实数根6.如图,抛物线y=ax2+bx+c的顶点坐标为(1,﹣4a),点A(4,y1)是该抛物线上一点,若点B(x2,y2)是该抛物线上任意一点,有下列结论:①4a﹣2b+c>0;②抛物线y=ax2+bx+c与x轴交于点(﹣1,0),(3,0);③若y2>y1,则x2>4;④若0≤x2≤4,则﹣3a≤y2≤5a.其中,正确结论的个数是()A.0B.1C.2D.37.如图,抛物线y=ax 2+bx+c经过点(-1,0),对称轴l如图所示.则下列结论:①abc >0;②a-b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是()A.①③B.②③C.②④D.②③④8.如图所示,抛物线L:y=ax2+bx+c(a<0)的对称轴为x=5,且与x轴的左交点为(1,0),则下列说法正确的有()①C(9,0);②b+c>﹣10;③y的最大值为﹣16a;④若该抛物线与直线y=8有公共交点,则a的取值范围是a≤ 1 2.A.①②③④B.①②③C.①③④D.①④二、填空题9.当-1≤x≤1时,二次函数y=-(x-m)2+m2+1有最大值4,则实数m的值为.10.已知抛物线y=-x2+bx+c(b、c为常数).(1)当c=-4时,抛物线与x轴有且只有一个交点,则b=;(2)当c=2b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最大值为18,则b的值.11.如图,在平面直角坐标系中,直线y=34x+3交−94轴于点A,交轴于点B,抛物线y=−x2+2x+1与y轴交于C点,若点E在抛物线的对称轴上移动,点F在直线AB上移动,则CE+EF的最小值为.12.如图,抛物线y=12x2﹣x﹣32的图象与坐标轴交于A、B、D,顶点为E,以AB为直径画半圆交y轴的正半轴于点C,圆心为M,P是半圆AB上的一动点,连接EP,N是PE的中点,当P沿半圆从点A运动至点B时,点N运动的路径长是.13.将函数y=x2﹣x﹣2的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的图形是函数y=|x2﹣x﹣2|的图象,已知过点D(0,4)的直线y=kx+4恰好与y=|x2﹣x﹣2|的图象只有三个交点,则k 的值为.14.已知抛物线y=ax2+bx+c(a,b,c是常数)开口向下,过A(﹣1,0),B(m,0)两点,且1<m<2.下列四个结论:①b>0;②若m=32,则3a+2c<0;③若点M(x1,y1),N(x2,y2)在抛物线上,x1<x2,且x1+x2>1,则y1>y2;④当a≤﹣1时,关于x的一元二次方程ax2+bx+c=1必有两个不相等的实数根.其中正确的是(填写序号).三、综合题15.已知抛物线C1:y=ax2+bx+c向左平移1个单位长度,再向上平移4个单位长度得到抛物线C2:y=x2.(1)直接写出抛物线C1的解析式;(2)如图1,已知抛物线C1与x轴交于A,B两点,点A在点B的左侧,点P(52,t)在抛物线C1上,QB⊥PB交抛物线于点Q.求点Q的坐标;(3)已知点E,M在抛物线C2上,EM∥x轴,点E在点M的左侧,过点M的直线MD与抛物线C2只有一个公共点(MD与y轴不平行),直线DE与抛物线交于另一点N.若线段NE=DE,设点M,N的横坐标分别为m,n,直接写出m和n的数量关系(用含m的式子表示n)为. 16.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象与直线AB交于A、B两点,A(1,−92),B(-2,0),其中点A是抛物线y=ax2+bx+c的顶点,交y轴于点D.(1)求二次函数的解析式;(2)如图1,点P是第四象限抛物线上一点,且满足BP//AD,抛物线交x轴于点C,M为直线AB 下方抛物线上一点,过点M作PC平行线交BP于点N,求MN最大值;(3)如图2,点Q是抛物线第三象限上一点(不与点B、D重合),连接BQ,以BQ为边作正方形BEFQ,当顶点E或F恰好落在抛物线对称轴上时,直接写出对应的Q点的坐标.17.如图,抛物线y=−x2+bx+c与x轴交于A、B两点(B在A的右侧),且与直线y=x+2交于A、C两点,已知B点的坐标为(6,0).(1)求抛物线的函数表达式;(2)点E是线段AC上一点,且满足CEAE=16,①若点P为直线AC上方抛物线上一动点,设点P的横坐标为t,当t为何值时,△PEA的面积最大;②过点E向x轴作垂线,交x轴于点F,在抛物线上是否存在一点N,使得△NAC=△FEB,若存在,直接写出点N的坐标,若不存在,请说明理由.18.如图,在平面直角坐标系中,抛物线y=﹣12x2+bx+ 32与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P作PQ△l于点Q,M是直线l上的一点,其纵坐标为−m+32.以PQ,QM为边作矩形PQMN.(1)求b的值.(2)当点Q与点M重合时,求m的值.(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.(4) 当抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小时,直接写出m 的取值范围.19.已知抛物线 y =x 2+(1−3m)x −3m , (−14<m ≤2) ,直线 l:y =(k +1)x −3m +4 . (1)若该抛物线与 y 轴交点的纵坐标为 −4 ,求该抛物线的顶点坐标; (2)证明:该抛物线与直线 l 必有两个交点;(3)若该抛物线经过点 (t,−4) ,且对任意实数 x ,不等式 x 2+(1−3m)x −3m ≥−4 都成立;当 k −2≤x ≤k 时,该二次函数的最小值为 −2k +1 .求直线 l 的解析式.20.如图,在平面直角坐标系中,经过点A(4,0)的直线AB 与y 轴交于点B(0,4).经过原点O 的抛物线y =−x 2+bx +c 交直线AB 于点A ,C ,抛物线的顶点为D .(1)求抛物线y =−x 2+bx +c 的表达式;(2)M 是线段AB 上一点,N 是抛物线上一点,当MN ∥y 轴且MN =2时,求点M 的坐标; (3)P 是抛物线上一动点,Q 是平面直角坐标系内一点.是否存在以点A ,C ,P ,Q 为顶点的四边形是矩形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.参考答案与解析1.【答案】D 2.【答案】D 3.【答案】B 4.【答案】D 5.【答案】D 6.【答案】C 7.【答案】D 8.【答案】B 9.【答案】-2或2 10.【答案】(1)±4(2)−2√2或311.【答案】14512.【答案】π13.【答案】1﹣2 √2 或﹣214.【答案】①③④15.【答案】(1)y=(x−1)2−4(2)解:∵y=(x−1)2−4,令y=0,(x−1)2−4=0,解得x=3或x=−1,∴A(−1,0),B(3,0),∵点P(52,t)在抛物线C1上,∴t=(52−1)2−4,解得t=−74,∴P(52,−74),设Q(t,t2−2t−3),过点P作PM⊥x轴交于点M,过点Q作QN⊥x轴交于点N,如图所示,∵BQ⊥BP,∴∠QBN+∠MBP=∠QBN+∠MQN=90°,∴∠BQN=∠PBM,∴ΔBNQ∽ΔPMB,∴BM QN=PM BN,∴12t2−2t−3=743−t,∴t=−97或t=3,∵Q点在第二象限,∴t=−97,∴Q(−97, 6049) ;(3)n =(1±2√2)m16.【答案】(1)解:设抛物线解析式为:y =a(x −1)2−92,且过点B (-2,0),∴0=9a −92,∴a =12,∴抛物线解析式为:y =12(x −1)2−92=12x 2−x −4;(2)解:由题意可得,D 点的坐标为(0,-4) 设函数AD 的解析式为y =kx −4∴−92=k −4解得k =−12∴直线AD 的解析式为y =−12x −4∵BP△AD∴可设直线BP 的解析式为y =−12x +b∴0=−12·(−2)+b 解得b =−1∴直线BP 的解析式为y =−12x −1设P 点坐标为(t ,12t 2−t −4)∴12t 2−t −4=−12t −1 ∴t 2−t −6=0解得t =3或t =−2(舍去)∴P 点坐标为(3,−52)∵抛物线解析式为y =12x 2−x −4∴C 点坐标为(4,0)∴PC =√(4−3)2+(−52)2=√292过点M 作ME△x 轴交直线BP 于E ,设M 坐标为(m ,n )∴E 点的横坐标为−2n −2 ∴ME =−2n −2−m ∵ME△BC ,MN△PC ∴△E=△PBC ,△MNE=△BPC ∴△MNE△△CPB ∴MN PC =ME BC∴MN =−2n−2−m 6PC =−√2912(2n +2+m)=−√2912(m +m 2−2m −8+2)=−√2912(m 2−m −6)=−√2912(m −12)2+2548√29故当m =12,MN 由最大值2548√29(3)(−√3+1,-3)或(2−√10,1−√10)17.【答案】(1)解:由直线 y =x +2 可知,当 y =0 时, x =−2 ,∴A(−2,0) ,将 A(−2,0) , B(6,0) 代入抛物线解析式可得: {−4−2b +c =0−36+6b +c =0 ,解得: {b =4c =12 ,∴抛物线的解析式为: y =−x 2+4x +12 ; (2)解:①联立 {y =−x 2+4x +12y =x +2 , 解得: {x =−2y =0 或 {x =5y =7,即:点C 的坐标为 C(5,7) , ∵点E 在线段AC 上,∴设E 点坐标为 E(a ,a +2) , ∵CE AE =16, ∴AE AC =67 ,即: AE 2AC2=3649 , 由两点间距离公式可得:AC 2=98 , AE 2=2(a +2)2 ,∴2(a+2)298=3649 ,解得: a =4 或 a =−8 (舍), ∴E 点坐标为 E(4,6) ;由题意,设 P(t ,−t 2+4t +12) ,如图,过点P 作直线PM△x 轴,交直线AC 于M 点,∴设 M(t ,t +2) ,∴PM =y P −y M =−t 2+3t +10 ,∴S △PAE =12PM ·(x E −x A )=12×(4+2)×(−t 2+3t +10)=−3(t −32)2+1474,由二次函数的性质可知, −3<0 ,抛物线开口向下,∴当 t =32时, S △PAE 取得最大值;②存在,N (112,154) 或 (4,12)18.【答案】(1)解:把点A (3,0)代入 y =−12x 2+bx +32 ,得到−92+3b+32=0,解得:b=1.(2)解:∵抛物线的解析式为y=−12x2+x+32,∴P(m,−12m2+m+32),∵M,Q重合,∴−m+32=−12m2+m+32,解得m=0或4.(3)解:∵y=−12x2+x2+32=−12(x−1)2+2,∴抛物线的顶点坐标为(1,2),由题意PQ=MQ,且抛物线的顶点在该正方形内部,∴3−m=−m+32−(−12m2+m+32)且−m+32>2,得m<−12解得m=1−√7或m=1+√7(不合题意舍弃),∴m=1−√7(4)解:当点P在直线l的左边,点M在点Q下方时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,则有−m+32<−12m2+m+32,∴m2﹣4m<0,令w=m2−4m,由二次函数图象可得:w<0时,0<m<4,观察图象可知.当0<m<3时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,如图4﹣1中,当3<m<4时,抛物线不在矩形PQMN内部,不符合题意,如图,同理可得:当m>4时,点M在点Q的上方,也满足条件,如图4﹣2中,综上所述,满足条件的m的值为0<m<3或m>4.19.【答案】(1)解:依题意可知−3m=−4,则m=4 3,∴该抛物线对应的函数解析式为y=x2−3x−4=(x−32)2−254,∴该抛物线的顶点坐标为(32,−254).(2)证明:将y=(k+1)x−3m+4代入y=x2+(1−3m)x−3m,整理得:x2−(k+3m)x−4=0,∵a=1,b=−(k+3m),c=−4,∴⊿=b2−4ac=[-(k+3m)]2-4×(-4)=(k+3m)2+16>0,∴该抛物线与直线l必有两个交点;(3)解:由抛物线经过点(t,-4),且对任意实数x,不等式x2+(1−3m)x−3m≥−4都成立,得抛物线 y =x 2+(1−3m)x −3m 的最小值为-4. ∵y =x 2+(1−3m)x −3m=(x +1−3m 2)2−3m −(1−3m 2)2=(x +1−3m 2)2−9m 2+6m+14,∴−9m 2+6m+14=−4 ,整理得3m 2+2m -5=0,解得:m=1或 m =−53∵−14<m ≤2 ,∴−53<−14 , m =−53舍去,当m=1时,抛物线的解析式为 y =x 2−2x −3=(x −1)2−4 , 此时抛物线的对称轴为直线 x =1 ,①当k <1时,抛物线在 k −2≤x ≤k 上,函数值y 随x 的增大而减小,∴当x=k 时, y 最小值=k 2−2k −3 ,∴k 2−2k −3=−2k +1 , 解得: k =−2 或k=2(舍去), 直线l 的解析式为 y =−x +1 ;②当 k −2≤1≤k 时,即 1≤k ≤3 ,抛物线在 k −2≤x ≤k 上, y 最小值=−4 ,∴−4=−2k +1 ,解得 k =52,直线l 的解析式为 y =72x +1 ;③当 k −2>1 时,即 k >1 时,抛物线在 k −2≤x ≤k 上,函数值y 随x 的增大而增大, ∴当x=k -2时, y 最小值 =(k -2)2-2(k -2)-3, ∴(k -2)2-2(k -2)-3=-2k+1, 解得:k 1=k 2=2,与k -2>1矛盾,不正确,综上,直线l 的解析式为y=-x+1或 y =72x +1 .20.【答案】(1)解:∵抛物线y =−x 2+bx +c 过点A(4,0),O(0,0)∴{−16+4b +c =0c =0.,解得{b =4c =0,∴抛物线的表达式为y =−x 2+4x .(2)解:设直线AB 的解析式为:y =kx +b ,∵直线AB 经过A(4,0),B(0,4),∴{4k +b =0b =4,∴{k =−1b =4,∴直线AB 的表达式为y =−x +4.∵MN∥y轴,可设M(t,−t+4),N(t,−t2+4t),其中0≤t≤4.当M在N点上方时,MN=−t+4−(−t2+4t)=t2−5t+4=2.解得t1=5−√172,t2=5+√172(舍去).∴M1(5−√172,3+√172).当M在N点下方时,MN=−t2+4t−(−t+4)=−t2+5t−4=2.解得t3=2,t4=3.∴M2(2,2),M3(3,1).综上所述,满足条件的点M的坐标有三个(5−√172,3+√172),(2,2),(3,1).(3)解:解:(3)存在.满足条件的点Q的坐标有4个.(5,1),(−4,−2),(7−√52,1−√52),(7+√52,1+√52).理由如下:①如图,若AC是四边形的边.当x=2时,y=−2+4=2∴拋物线的对称轴与直线AB相交于点R(2,2).过点C,A分别作直线AB的垂线交抛物线于点P1,P2,∵C(1,3),D(2,4),∴CD=√2,CR=√2,RD=2.∵(√2)2+(√2)2= 22,∴CD2+CR2=DR2.∴∠RCD=90°.∴点P1与点D重合.当CP1∥AQ1,CP1=AQ1时,四边形ACP1Q1是矩形.∵C(1,3)向右平移1个单位,向上平移1个单位得到P1(2,4).∴A(4,0)向右平移1个单位,向上平移1个单位得到Q1(5,1).此时直线P1C的解析式为y=x+2.∵直线P2A与P1C平行且过点A(4,0),∴直线P2A的解析式为y=x−4.∵点P2是直线y=x−4与拋物线y=−x2+4x的交点,∴−x2+4x=x−4.解得x1=−1,x2=4(舍去).∴P2(−1,−5).当AC∥P2Q2,AC=P2Q2时,四边形ACQ2P2是矩形.∵A(4,0)向左平移3个单位,向上平移3个单位得到C(1,3).∴P2(−1,−5)向左平移3个单位,向上平移3个单位得到Q 2(−4,−2).②如图,若AC 是四边形的对角线,当∠AP 3C =90°时.过点P 3作P 3H ⊥x 轴,垂足为H ,过点C 作CK ⊥P 3H ,垂足为K .可得∠P 3KC =∠AHP 3=90°,∠P 3CK =∠AP 3H .∴△P 3CK ∽△AP 3H .∴P 3K CK =AHP 3H .∴−t 2+4t−3t−1=4−t −t 2+4t.∵点P 不与点A ,C 重合,∴t ≠1和t ≠4.∴t 2−3t +1=0.∴t 3,4=3±√52.∴如图,满足条件的点P 有两个.即P 3(3+√52,5+√52),P 4(3−√52,5−√52).当P 3C ∥AQ 3,P 3C =AQ 3时,四边形AP 3CQ 3是矩形.∵P 3(3+√52,5+√52)向左平移1+√52个单位,向下平移−1+√52个单位得到C(1,3).∴A(4,0)向左平移1+√52个单位,向下平移−1+√52个单位得到Q 3(7−√52,1−√52).当P 4C ∥AQ 4,P 4C =AQ 4时,四边形AP 4CQ 4是矩形.∵P 4(3−√52,5−√52)向右平移−1+√52个单位,向上平移1+√52个单位得到C(1,3).∴A(4,0)向右平移−1+√52个单位,向上平移1+√52个单位得到Q 4(7+√52,1+√52).综上,满足条件的点Q 的坐标为(5,1)或(−4,−2)或(7−√52,1−√52)或(7+√52,1+√52) .。

中考数学《二次函数》专项练习题及答案

中考数学《二次函数》专项练习题及答案

中考数学《二次函数》专项练习题及答案一、单选题1.如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b;⑤3a+c<0.其中正确的结论有()A.5个B.4个C.3个D.2个2.对于抛物线y=−13(x−5)2+3,下列说法正确的是()A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(-5,3)D.开口向上,顶点坐标(-5,3)3.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的?()A.第8秒B.第10秒C.第12秒D.第15秒4.已知二次函数y=x2−4x+2,当自变量x取值在−2≤x≤5范围内时,下列说法正确的是()A.有最大值14,最小值-2B.有最大值14,最小值7C.有最大值7,最小值-2D.有最大值14,最小值25.如图,二次函数y=ax2+bx+c图象的对称轴为x=1,则下列说法正确的有()①abc<0,②2a+b=0,③a−b+c>0,④若4a+2b+c>0.A.①②③B.②③④C.①②④D.①②③④6.在平面直角坐标系中,对于点 P(x ,y) 和 Q(x ,y′) ,给出如下定义:若 y′={y +1 (x ≥0)−y (x <0),则称点 Q 为点 P 的“亲密点”.例如:点 (1,2) 的“亲密点”为点 (1,3) ,点 (−1,3) 的“亲密点”为点 (−1,−3) .若点 P 在函数 y =x 2−2x −3 的图象上.则其“亲密点” Q 的纵坐标 y′ 关于 x 的函数图象大致正确的是( )A .B .C .D .7.对于二次函数 y =2(x −1)2−3 ,下列说法正确的是( )A .图象开口向下B .图象和y 轴交点的纵坐标为-3C .x <1 时,y 随x 的增大而减小D .图象的对称轴是直线 x =−18.抛物线 y =−3x 2+12x −3 的顶点坐标是( )A .(2,9)B .(2,-9)C .(-2,9)D .(-2,-9)9.如图,二次函数y=ax 2+bx+c 的图象经过点(0,﹣2),与x 轴交点的横坐标分别为x 1,x 2,且﹣1<x 1<0,1<x 2<2,下列结论正确的是( )A .a <0B .a ﹣b+c <0C .−b 2a>1D .4ac ﹣b 2<﹣8a10.已知抛物线y =ax 2+bx +c(a ≠0)交x 轴于点A(1,0),B(3,0).P 1(x 1,y 1),P 2(x 2,y 2)是抛物线上两个点.若|x 1−2|>|x 2−2|>1,则下列结论一定正确的是( ) A .y 1<y 2B .y 1>y 2C .|y 1|<|y 2|D .|y 1|>|y 2|11.二次函数y=x2-1的图象可由下列哪个函数图象向右平移2个单位,向下平移2个单位得到()A.y=(x−2)2+1B.y=(x+2)2+1C.y=(x−2)2−3D.y=(x+2)2+312.如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF△BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()A.B.C.D.二、填空题13.二次函数y=x2﹣2x﹣3的图象如图所示,若线段AB在x轴上,且AB为2 √3个单位长度,以AB为边作等边△ABC,使点C落在该函数y轴左侧的图象上,则点C的坐标为.14.将y=x2的向右平移3个单位,再向上平移5个单位后,所得的解析式是.15.为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每瓶零售价由100元降为81元,则平均每次降价的百分率是.16.如果抛物线y=x2﹣6x+c的顶点到x轴的距离是3,那么c的值等于.17.不等式x2+ax+b≥0(a≠0)的解集为全体实数,假设f(x)=x2+ax+b,若关于x的不等式f(x)<c的解集为m<x<m+6,则实数c的值为.18.用16m长的篱笆围成长方形的生物园饲养小兔,设围成长方形的生物园的长为x m,则围成长方形的生物的面积S(单位:m2)与x的函数表达式是.(不要求写自变量x的取值范围)三、综合题19.鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?20.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200﹣2x(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.21.如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=−12x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和四边形ABCD的面积.22.在平面直角坐标系xOy中,已知抛物线y=x2﹣4x+2m﹣1与x轴交于点A,B.(点A在点B的左侧)(1)求m的取值范围;(2)当m取最大整数时,求点A、点B的坐标.23.我市某电器商场代理销售某种家用空气净化器,其进价是200元/台,经过市场销售后发现,在一个月内,当售价是400元/台时,可售出200台,且售价每降低1元,就可多售出5台,若供货商规定这种空气净化器售价不低于330元/台,代理销售商每月要完成不低于450台的销售任务.(1)若某月空气净化器售价降低30元,则该月可售出多少台?(2)试确定月销售量y(台)与售价x(元/台)之间的函数关系式,并求出售价x的范围.(3)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获的利润w(元)最大,最大利润是多少?24.一家超市,经销一种地方特色产品,每千克成本为50元.这种产品在不同季节销量与单价满足一次函数变化关系.下表是其中不同4个月内一天的销量y(kg)与单价x(元/kg)的对应值.单价x(元/kg)55606570销量y(kg)70605040(2)平均每天获得600元销售利润的季节,顾客利益也较大,销售单价是多少?(3)当销售单价为多少时,一天的销售利润最大?最大利润是多少?参考答案1.【答案】B 2.【答案】A 3.【答案】B 4.【答案】A 5.【答案】D 6.【答案】B 7.【答案】C 8.【答案】A 9.【答案】D 10.【答案】D 11.【答案】B 12.【答案】D13.【答案】(1﹣ √7 ,﹣3) 14.【答案】y=(x ﹣3)2+5 15.【答案】10% 16.【答案】c=6或12 17.【答案】918.【答案】S =−x 2+8x19.【答案】(1)解:依题意有:y=10x+160;(2)解:依题意有:W=(80﹣50﹣x )(10x+160)=﹣10(x ﹣7)2+5290,∵-10<0且x 为偶数,故当x=6或x=8时,即故当销售单价定为74或72元时,每周销售利润最大,最大利润是5280元; (3)解:依题意有:﹣10(x ﹣7)2+5290≥5200,解得4≤x≤10,则200≤y≤260,200×50=10000(元).答:他至少要准备10000元进货成本.20.【答案】(1)解:当1≤x <50时,y=(200-2x )(x+40-30)=-2x 2+180x+2000当50≤x≤90时y=(200-2x )(90-30)=-120x+12000综上所述:y= {−2x 2+180x +2000(1≤x <50)−120x +12000(50≤x ≤90)(2)解:当1≤x <50时,二次函数开口向下,二次函数对称轴为x=45 当x=45时,y 最大=-2×452+180×45+2000=6050 当50≤x≤90时,y 随x 的增大而减小当x=50时,y最大=6000综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元(3)解:当1≤x<50时,y=-2x2+180x+2000≥4800,解得20≤x≤50,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=-120x+12000≥4800,解得x≤60因此利润不低于4800元的天数是50≤x≤60,共11天所以该商品在销售过程中,共41天每天销售利润不低于4800元;21.【答案】(1)解:由已知得:C(0, 4),B(4, 4)把B与C坐标代入y=−12x2+bx+c得:{4b+c=12c=4解得:b=2则解析式为y=−12x2+2x+4;(2)解:∵y=−12x2+2x+4=−12(x−2)2+6∴抛物线顶点坐标为(2, 6)则S四边形ABDC=S△ABC+S△BCD=12×4×4+12×4×2=8+4=12. 22.【答案】(1)解:根据题意得△=(-4)2-4(2m-1)>0解得m<5 2;(2)解:m的最大整数为2抛物线解析式为y=x2-4x+3当y=0时,x2-4x+3=0,解得x1=1,x2=3所以A(1,0),B(3,0).23.【答案】(1)解:由题意得:200+30×5=350(台)答:该月可售出350台(2)解:由题意得:y=200+5(400−x)=−5x+2200由供货商对售价和销售量的规定得:{x≥330y≥450,即{x≥330−5x+2200≥450解得:330≤x≤350答:所求的函数关系式为y=−5x+2200,售价x的范围为330≤x≤350(3)解:由题意和(2)可得:w=(x−200)(−5x+2200)整理得:w=−5(x−320)2+72000由二次函数的性质可知:当330≤x≤350时,w随x的增大而减小则当x=330时,w取得最大值,最大值为w=−5×(330−320)2+72000=71500(元)答:当售价定为330元/台时,商场每月销售这种空气净化器所获的利润最大,最大利润是71500元24.【答案】(1)解:设y=kx+b,由题意得:{55k+b=70 60k+b=60解得{k=−2 b=180∴y(kg)与x(元/kg)之间的函数关系式为y=﹣2x+180.(2)解:由题意得:(x﹣50)(﹣2x+180)=600整理,得x2﹣140x+4800=0解得x1=60,x2=80∵顾客利益也较大∴x=60∴平均每天获得600元销售利润的季节,顾客利益也较大,销售单价是60元/千克.(3)解:一天的销售利润为:w=(x﹣50)(﹣2x+180)=﹣2x2+280x﹣9000=﹣2(x﹣70)2+800∴当x=70时,w最大=800.∴当销售单价为70元/kg时,一天的销售利润最大,最大利润是800元。

中考数学专题训练---二次函数的综合题分类含答案

中考数学专题训练---二次函数的综合题分类含答案

中考数学专题训练---二次函数的综合题分类含答案一、二次函数1.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y 轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P 的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.【答案】(1)y=﹣x2﹣2x+3;y=﹣x+1;(2)当x=﹣12时,△APC的面积取最大值,最大值为278,此时点P的坐标为(﹣12,154);(3)在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为102【解析】【分析】(1)根据点A,C的坐标,利用待定系数法即可求出抛物线及直线AC的函数关系式;(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),进而可得出PF的值,由点C的坐标可得出点Q的坐标,进而可得出AQ的值,利用三角形的面积公式可得出S△APC=﹣32x2﹣32x+3,再利用二次函数的性质,即可解决最值问题;(3)利用二次函数图象上点的坐标特征可得出点N的坐标,利用配方法可找出抛物线的对称轴,由点C,N的坐标可得出点C,N关于抛物线的对称轴对称,令直线AC与抛物线的对称轴的交点为点M,则此时△ANM周长取最小值,再利用一次函数图象上点的坐标特征求出点M的坐标,以及利用两点间的距离公式结合三角形的周长公式求出△ANM周长的最小值即可得出结论.【详解】(1)将A(1,0),C(﹣2,3)代入y=﹣x2+bx+c,得:10423b c b c -++=⎧⎨--+=⎩,解得:23b c =-⎧⎨=⎩, ∴抛物线的函数关系式为y =﹣x 2﹣2x +3; 设直线AC 的函数关系式为y =mx +n (m ≠0), 将A (1,0),C (﹣2,3)代入y =mx +n ,得:023m n m n +=⎧⎨-+=⎩,解得:11m n =-⎧⎨=⎩, ∴直线AC 的函数关系式为y =﹣x +1.(2)过点P 作PE ∥y 轴交x 轴于点E ,交直线AC 于点F ,过点C 作CQ ∥y 轴交x 轴于点Q ,如图1所示.设点P 的坐标为(x ,﹣x 2﹣2x +3)(﹣2<x <1),则点E 的坐标为(x ,0),点F 的坐标为(x ,﹣x +1),∴PE =﹣x 2﹣2x +3,EF =﹣x +1,EF =PE ﹣EF =﹣x 2﹣2x +3﹣(﹣x +1)=﹣x 2﹣x +2. ∵点C 的坐标为(﹣2,3), ∴点Q 的坐标为(﹣2,0), ∴AQ =1﹣(﹣2)=3, ∴S △APC =12AQ •PF =﹣32x 2﹣32x +3=﹣32(x +12)2+278. ∵﹣32<0, ∴当x =﹣12时,△APC 的面积取最大值,最大值为278,此时点P 的坐标为(﹣12,154). (3)当x =0时,y =﹣x 2﹣2x +3=3, ∴点N 的坐标为(0,3). ∵y =﹣x 2﹣2x +3=﹣(x +1)2+4, ∴抛物线的对称轴为直线x =﹣1. ∵点C 的坐标为(﹣2,3), ∴点C ,N 关于抛物线的对称轴对称.令直线AC 与抛物线的对称轴的交点为点M ,如图2所示. ∵点C ,N 关于抛物线的对称轴对称, ∴MN =CM ,∴AM +MN =AM +MC =AC , ∴此时△ANM 周长取最小值. 当x =﹣1时,y =﹣x +1=2, ∴此时点M 的坐标为(﹣1,2).∵点A 的坐标为(1,0),点C 的坐标为(﹣2,3),点N 的坐标为(0,3),∴AC=,AN ,∴C△ANM=AM+MN+AN=AC+AN=32+10.∴在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为32+10.【点睛】本题考查待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC的函数关系式;(2)利用三角形的面积公式找出S△APC=﹣32x2﹣32x+3的最值;(3)利用二次函数图象的对称性结合两点之间线段最短找出点M的位置.2.如图,已知抛物线y=x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.(1)求抛物线的函数表达式;(2)求直线BC的函数表达式;(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P 在第三象限.①当线段PQ=34AB时,求tan∠CED的值;②当以点C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标.【答案】(1)抛物线的函数表达式为y =x 2-2x -3.(2)直线BC 的函数表达式为y =x -3.(3)①23.①P 1(122),P 2(1-62,74). 【解析】 【分析】已知C 点的坐标,即知道OC 的长,可在直角三角形BOC 中根据∠BCO 的正切值求出OB 的长,即可得出B 点的坐标.已知了△AOC 和△BOC 的面积比,由于两三角形的高相等,因此面积比就是AO 与OB 的比.由此可求出OA 的长,也就求出了A 点的坐标,然后根据A 、B 、C 三点的坐标即可用待定系数法求出抛物线的解析式. 【详解】(1)∵抛物线的对称轴为直线x=1,∴− 221bba -⨯==1 ∴b=-2∵抛物线与y 轴交于点C (0,-3), ∴c=-3,∴抛物线的函数表达式为y=x 2-2x-3; (2)∵抛物线与x 轴交于A 、B 两点, 当y=0时,x 2-2x-3=0. ∴x 1=-1,x 2=3. ∵A 点在B 点左侧, ∴A (-1,0),B (3,0)设过点B (3,0)、C (0,-3)的直线的函数表达式为y=kx+m ,则033k m m ==+⎧⎨-⎩,∴13k m ⎧⎨-⎩==∴直线BC 的函数表达式为y=x-3; (3)①∵AB=4,PQ=34AB ,∴PQ=3∵PQ⊥y轴∴PQ∥x轴,则由抛物线的对称性可得PM=32,∵对称轴是直线x=1,∴P到y轴的距离是12,∴点P的横坐标为−12,∴P(−12,−74)∴F(0,−74),∴FC=3-OF=3-74=54∵PQ垂直平分CE于点F,∴CE=2FC=5 2∵点D在直线BC上,∴当x=1时,y=-2,则D(1,-2),过点D作DG⊥CE于点G,∴DG=1,CG=1,∴GE=CE-CG=52-1=32.在Rt△EGD中,tan∠CED=23 GDEG=.②P1(2,-2),P2(1-62-52).设OE=a,则GE=2-a,当CE为斜边时,则DG2=CG•GE,即1=(OC-OG)•(2-a),∴1=1×(2-a),∴a=1,∴CE=2,∴OF=OE+EF=2∴F、P的纵坐标为-2,把y=-2,代入抛物线的函数表达式为y=x2-2x-3得:x=1+2或1-2∵点P在第三象限.∴P1(1-2,-2),当CD为斜边时,DE⊥CE,∴OE=2,CE=1,∴OF=2.5,∴P和F的纵坐标为:-52,把y=-52,代入抛物线的函数表达式为y=x2-2x-3得:x=1-6,或1+6,∵点P在第三象限.∴P2(1-6,-52).综上所述:满足条件为P1(1-2,-2),P2(1-6,-52).【点睛】本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和三角形的面积求法.在求有关动点问题时要注意分析题意分情况讨论结果.3.如图,在平面直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求以C、E、F为顶点三角形与△COD相似时点P的坐标.【答案】(1)抛物线的解析式为y=﹣x 2﹣2x+3;(2)当△CEF 与△COD 相似时,P 点的坐标为(﹣1,4)或(﹣2,3). 【解析】 【分析】(1)根据正切函数,可得OB ,根据旋转的性质,可得△DOC ≌△AOB ,根据待定系数法,可得函数解析式;(2)分两种情况讨论:①当∠CEF =90°时,△CEF ∽△COD ,此时点P 在对称轴上,即点P 为抛物线的顶点;②当∠CFE =90°时,△CFE ∽△COD ,过点P 作PM ⊥x 轴于M 点,得到△EFC ∽△EMP ,根据相似三角形的性质,可得PM 与ME 的关系,解方程,可得t 的值,根据自变量与函数值的对应关系,可得答案. 【详解】(1)在Rt △AOB 中,OA =1,tan ∠BAO OBOA==3,∴OB =3OA =3. ∵△DOC 是由△AOB 绕点O 逆时针旋转90°而得到的,∴△DOC ≌△AOB ,∴OC =OB =3,OD =OA =1,∴A ,B ,C 的坐标分别为(1,0),(0,3),(﹣3,0),代入解析式为09303a b c a b c c ++=⎧⎪-+=⎨⎪=⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,抛物线的解析式为y =﹣x 2﹣2x +3;(2)∵抛物线的解析式为y =﹣x 2﹣2x +3,∴对称轴为l 2ba=-=-1,∴E 点坐标为(﹣1,0),如图,分两种情况讨论:①当∠CEF =90°时,△CEF ∽△COD ,此时点P 在对称轴上,即点P 为抛物线的顶点,P (﹣1,4);②当∠CFE =90°时,△CFE ∽△COD ,过点P 作PM ⊥x 轴于M 点,∵∠CFE=∠PME=90°,∠CEF=∠PEM ,∴△EFC ∽△EMP ,∴13EM EF OD MP CF CO ===,∴MP =3ME . ∵点P 的横坐标为t ,∴P (t ,﹣t 2﹣2t +3).∵P 在第二象限,∴PM =﹣t 2﹣2t +3,ME =﹣1﹣t ,t <0,∴﹣t 2﹣2t +3=3(﹣1﹣t ),解得:t 1=﹣2,t 2=3(与t <0矛盾,舍去).当t =﹣2时,y =﹣(﹣2)2﹣2×(﹣2)+3=3,∴P (﹣2,3).综上所述:当△CEF 与△COD 相似时,P 点的坐标为(﹣1,4)或(﹣2,3).【点睛】本题是二次函数综合题.解(1)的关键是利用旋转的性质得出OC ,OD 的长,又利用了待定系数法;解(2)的关键是利用相似三角形的性质得出MP =3ME .4.已知,m ,n 是一元二次方程x 2+4x +3=0的两个实数根,且|m |<|n |,抛物线y =x 2+bx +c 的图象经过点A (m ,0),B (0,n ),如图所示. (1)求这个抛物线的解析式;(2)设(1)中的抛物线与x 轴的另一个交点为抛物线的顶点为D ,求出点C ,D 的坐标,并判断△BCD 的形状;(3)点P 是直线BC 上的一个动点(点P 不与点B 和点C 重合),过点P 作x 轴的垂线,交抛物线于点M ,点Q 在直线BC 上,距离点P为2个单位长度,设点P 的横坐标为t ,△PMQ 的面积为S ,求出S 与t 之间的函数关系式.【答案】(1)223y x x =--;(2)C (3,0),D (1,﹣4),△BCD 是直角三角形;(3)2213(03)2213(03)22t t t S t t t t ⎧-+⎪⎪=⎨⎪-⎪⎩<<<或>【解析】试题分析:(1)先解一元二次方程,然后用待定系数法求出抛物线解析式;(2)先解方程求出抛物线与x 轴的交点,再判断出△BOC 和△BED 都是等腰直角三角形,从而得到结论;(3)先求出QF=1,再分两种情况,当点P 在点M 上方和下方,分别计算即可. 试题解析:解(1)∵2+430x x +=,∴11x =-,23x =-,∵m ,n 是一元二次方程2+430x x +=的两个实数根,且|m|<|n|,∴m=﹣1,n=﹣3,∵抛物线223y x x =--的图象经过点A (m ,0),B (0,n ),∴10{3b c c -+==-,∴2{3b c =-=-,∴抛物线解析式为223y x x =--;(2)令y=0,则2230x x --=,∴11x =-,23x =,∴C (3,0),∵223y x x =--=2(1)4x --,∴顶点坐标D (1,﹣4),过点D 作DE ⊥y 轴,∵OB=OC=3,∴BE=DE=1,∴△BOC 和△BED 都是等腰直角三角形,∴∠OBC=∠DBE=45°,∴∠CBD=90°,∴△BCD 是直角三角形;(3)如图,∵B (0,﹣3),C (3,0),∴直线BC 解析式为y=x ﹣3,∵点P 的横坐标为t ,PM ⊥x 轴,∴点M 的横坐标为t ,∵点P 在直线BC 上,点M 在抛物线上,∴P (t ,t ﹣3),M (t ,223t t --),过点Q 作QF ⊥PM ,∴△PQF 是等腰直角三角形,∵PQ=2,∴QF=1.①当点P 在点M 上方时,即0<t <3时,PM=t ﹣3﹣(223t t --)=23t t -+,∴S=12PM×QF=21(3)2t t -+=21322t t -+,②如图3,当点P 在点M 下方时,即t <0或t>3时,PM=223t t --﹣(t ﹣3)=23t t -,∴S=12PM×QF=12(23t t -)=21322t t -.综上所述,S=2213(03)22{13 (03)22t t t t t t t 或-+<<-.考点:二次函数综合题;分类讨论.5.如图,过()A 1,0、()B 3,0作x 轴的垂线,分别交直线y 4x =-于C 、D 两点.抛物线2y ax bx c =++经过O 、C 、D 三点.()1求抛物线的表达式;()2点M 为直线OD 上的一个动点,过M 作x 轴的垂线交抛物线于点N ,问是否存在这样的点M ,使得以A 、C 、M 、N 为顶点的四边形为平行四边形?若存在,求此时点M 的横坐标;若不存在,请说明理由;()3若AOC V 沿CD 方向平移(点C 在线段CD 上,且不与点D 重合),在平移的过程中AOC V 与OBD V 重叠部分的面积记为S ,试求S 的最大值.【答案】(1)2413y x x 33=-+;(2)32332+332-;(3)13. 【解析】 【分析】(1)利用待定系数法求出抛物线的解析式;(2)由题意,可知MN ∥AC ,因为以A 、C 、M 、N 为顶点的四边形为平行四边形,则有MN =AC =3.设点M 的横坐标为x ,则求出MN =|43x 2﹣4x |;解方程|43x 2﹣4x |=3,求出x 的值,即点M 横坐标的值;(3)设水平方向的平移距离为t (0≤t <2),利用平移性质求出S 的表达式:S 16=-(t ﹣1)213+;当t =1时,s 有最大值为13. 【详解】(1)由题意,可得C (1,3),D (3,1).∵抛物线过原点,∴设抛物线的解析式为:y =ax 2+bx ,∴3931a b a b +=⎧⎨+=⎩,解得43133a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的表达式为:y 43=-x 2133+x . (2)存在.设直线OD 解析式为y =kx ,将D (3,1)代入,求得k 13=,∴直线OD 解析式为y 13=x . 设点M 的横坐标为x ,则M (x ,13x ),N (x ,43-x 2133+x ),∴MN =|y M ﹣y N |=|13x ﹣(43-x 2133+x )|=|43x 2﹣4x |. 由题意,可知MN ∥AC ,因为以A 、C 、M 、N 为顶点的四边形为平行四边形,则有MN =AC =3,∴|43x 2﹣4x |=3.若43x 2﹣4x =3,整理得:4x 2﹣12x ﹣9=0,解得:x 32+=或x 32-= 若43x 2﹣4x =﹣3,整理得:4x 2﹣12x +9=0,解得:x 32=,∴存在满足条件的点M ,点M 的横坐标为:32或32+或32-. (3)∵C (1,3),D (3,1),∴易得直线OC 的解析式为y =3x ,直线OD 的解析式为y 13=x . 如解答图所示,设平移中的三角形为△A 'O 'C ',点C '在线段CD 上.设O 'C '与x 轴交于点E ,与直线OD 交于点P ;设A 'C '与x 轴交于点F ,与直线OD 交于点Q .设水平方向的平移距离为t (0≤t <2),则图中AF =t ,F (1+t ,0),Q (1+t ,1133+t ),C '(1+t ,3﹣t ).设直线O 'C '的解析式为y =3x +b ,将C '(1+t ,3﹣t )代入得:b =﹣4t ,∴直线O 'C '的解析式为y =3x ﹣4t ,∴E (43t ,0). 联立y =3x ﹣4t 与y 13=x ,解得:x 32=t ,∴P (32t ,12t ). 过点P 作PG ⊥x 轴于点G ,则PG 12=t ,∴S =S △OFQ ﹣S △OEP 12=OF •FQ 12-OE •PG 12=(1+t )(1133+t )12-•43t •12t 16=-(t ﹣1)213+ 当t =1时,S 有最大值为13,∴S 的最大值为13.【点睛】本题是二次函数压轴题,综合考查了二次函数的图象与性质、待定系数法、函数图象上点的坐标特征、平行四边形、平移变换、图形面积计算等知识点,有一定的难度.第(2)问中,解题的关键是根据平行四边形定义,得到MN =AC =3,由此列出方程求解;第(3)问中,解题的关键是求出S 的表达式,注意图形面积的计算方法.6.已知抛物线2(5)6y x m x m =-+-+-.(1)求证:该抛物线与x 轴总有交点;(2)若该抛物线与x 轴有一个交点的横坐标大于3且小于5,求m 的取值范围;(3)设抛物线2(5)6y x m x m =-+-+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y x =-的对称点恰好是点M ,求m 的值.【答案】(1)证明见解析;(2)1?<?m?3<;(3)56m m ==或【解析】【分析】(1)本题需先根据判别式解出无论m 为任何实数都不小于零,再判断出物线与x 轴总有交点.(2)根据公式法解方程,利用已有的条件,就能确定出m 的取值范围,即可得到结果. (3)根据抛物线y=-x 2+(5-m )x+6-m ,求出与y 轴的交点M 的坐标,再确定抛物线与x 轴的两个交点关于直线y=-x 的对称点的坐标,列方程可得结论.【详解】(1)证明:∵()()()222454670b ac m m m ∆=-=-+-=-≥∴抛物线与x 轴总有交点.(2)解:由(1)()27m ∆=-,根据求根公式可知, 方程的两根为:257m m x ()-±-= 即1216x x m =-=-+,由题意,有 3<-m 6<5+1<?m 3∴<(3)解:令 x = 0, y =6m -+∴ M (0,6m -+)由(2)可知抛物线与x 轴的交点为(-1,0)和(6m -+,0),它们关于直线y x =-的对称点分别为(0 , 1)和(0, 6m -),由题意,可得:6166m m m 或-+=-+=-56m m ∴==或【点睛】本题考查对抛物线与x 轴的交点,解一元一次方程,解一元一次不等式,根的判别式,对称等,解题关键是熟练理解和掌握以上性质,并能综合运用这些性质进行计算.7.如图,抛物线y=ax 2+6x+c 交x 轴于A ,B 两点,交y 轴于点C .直线y=x ﹣5经过点B ,C .(1)求抛物线的解析式;(2)过点A 的直线交直线BC 于点M .①当AM ⊥BC 时,过抛物线上一动点P (不与点B ,C 重合),作直线AM 的平行线交直线BC 于点Q ,若以点A ,M ,P ,Q 为顶点的四边形是平行四边形,求点P 的横坐标; ②连接AC ,当直线AM 与直线BC 的夹角等于∠ACB 的2倍时,请直接写出点M 的坐标.【答案】(1)抛物线解析式为y=﹣x 2+6x ﹣5;(2)①P 点的横坐标为45+41或5-412;②点M 的坐标为(136,﹣176)或(236,﹣76). 【解析】分析:(1)利用一次函数解析式确定C (0,-5),B (5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程-x 2+6x-5=0得A (1,0),再判断△OCB 为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB 为等腰直角三角形,所以,接着根据平行四边形的性质得到,PQ ⊥BC ,作PD ⊥x 轴交直线BC 于D ,如图1,利用∠PDQ=45°得到PQ=4,设P (m ,-m 2+6m-5),则D (m ,m-5),讨论:当P 点在直线BC 上方时,PD=-m 2+6m-5-(m-5)=4;当P 点在直线BC 下方时,PD=m-5-(-m 2+6m-5),然后分别解方程即可得到P 点的横坐标;②作AN ⊥BC 于N ,NH ⊥x 轴于H ,作AC 的垂直平分线交BC 于M 1,交AC 于E ,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM 1B=2∠ACB ,再确定N (3,-2), AC 的解析式为y=5x-5,E 点坐标为(12,-52),利用两直线垂直的问题可设直线EM 1的解析式为y=-15x+b ,把E (12,-52)代入求出b 得到直线EM 1的解析式为y=-15x-125,则解方程组511255y x y x -⎧⎪⎨--⎪⎩==得M 1点的坐标;作直线BC 上作点M 1关于N 点的对称点M 2,如图2,利用对称性得到∠AM 2C=∠AM 1B=2∠ACB ,设M 2(x ,x-5),根据中点坐标公式得到3=13+62x ,然后求出x 即可得到M 2的坐标,从而得到满足条件的点M 的坐标.详解:(1)当x=0时,y=x ﹣5=﹣5,则C (0,﹣5),当y=0时,x ﹣5=0,解得x=5,则B (5,0),把B (5,0),C (0,﹣5)代入y=ax 2+6x+c 得253005a c c ++=⎧⎨=-⎩,解得15a b =-⎧⎨=-⎩, ∴抛物线解析式为y=﹣x 2+6x ﹣5;(2)①解方程﹣x 2+6x ﹣5=0得x 1=1,x 2=5,则A (1,0),∵B (5,0),C (0,﹣5),∴△OCB 为等腰直角三角形,∴∠OBC=∠OCB=45°,∵AM ⊥BC ,∴△AMB 为等腰直角三角形,∴AM=2AB=2, ∵以点A ,M ,P ,Q 为顶点的四边形是平行四边形,AM ∥PQ ,∴PQ ⊥BC ,作PD ⊥x 轴交直线BC 于D ,如图1,则∠PDQ=45°,∴PD=2PQ=2×22=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1,m2=4,当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=5+412,m2=5-412,综上所述,P点的横坐标为4或5+41或5-41;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,∵M1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB为等腰直角三角形,∴AH=BH=NH=2,∴N(3,﹣2),易得AC的解析式为y=5x﹣5,E点坐标为(12,﹣52,设直线EM1的解析式为y=﹣15x+b,把E(12,﹣52)代入得﹣110+b=﹣52,解得b=﹣125,∴直线EM1的解析式为y=﹣15x﹣125解方程组511255y xy x=-⎧⎪⎨=--⎪⎩得136176xy⎧=⎪⎪⎨⎪=-⎪⎩,则M1(136,﹣176);作直线BC上作点M1关于N点的对称点M2,如图2,则∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),∵3=13+ 62x∴x=236,∴M2(236,﹣76).综上所述,点M的坐标为(136,﹣176)或(236,﹣76).点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、等腰直角的判定与性质和平行四边形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.8.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣12x 2+2x+6;(2)当t=3时,△PAB 的面积有最大值;(3)点P (4,6).【解析】 【分析】(1)利用待定系数法进行求解即可得;(2)作PM ⊥OB 与点M ,交AB 于点N ,作AG ⊥PM ,先求出直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6),则N (t ,﹣t+6),由S △PAB =S △PAN +S △PBN =12PN•AG+12PN•BM=12PN•OB 列出关于t 的函数表达式,利用二次函数的性质求解可得; (3)由PH ⊥OB 知DH ∥AO ,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE 为等腰直角三角形,则∠EDP=45°,从而得出点E 与点A 重合,求出y=6时x 的值即可得出答案.【详解】(1)∵抛物线过点B (6,0)、C (﹣2,0),∴设抛物线解析式为y=a (x ﹣6)(x+2),将点A (0,6)代入,得:﹣12a=6,解得:a=﹣12, 所以抛物线解析式为y=﹣12(x ﹣6)(x+2)=﹣12x 2+2x+6; (2)如图1,过点P 作PM ⊥OB 与点M ,交AB 于点N ,作AG ⊥PM 于点G ,设直线AB 解析式为y=kx+b ,将点A (0,6)、B (6,0)代入,得:660b k b =⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩, 则直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6)其中0<t <6, 则N (t ,﹣t+6),∴PN=PM﹣MN=﹣12t2+2t+6﹣(﹣t+6)=﹣12t2+2t+6+t﹣6=﹣12t2+3t,∴S△PAB=S△PAN+S△PBN=12PN•AG+12PN•BM=12PN•(AG+BM)=12 PN•OB=12×(﹣12t2+3t)×6=﹣32t2+9t=﹣32(t﹣3)2+272,∴当t=3时,△PAB的面积有最大值;(3)如图2,∵PH⊥OB于H,∴∠DHB=∠AOB=90°,∴DH∥AO,∵OA=OB=6,∴∠BDH=∠BAO=45°,∵PE∥x轴、PD⊥x轴,∴∠DPE=90°,若△PDE为等腰直角三角形,则∠EDP=45°,∴∠EDP与∠BDH互为对顶角,即点E与点A重合,则当y=6时,﹣12x2+2x+6=6,解得:x=0(舍)或x=4,即点P(4,6).【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.9.如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.【答案】(1)点B 的坐标为(1,0).(2)①点P 的坐标为(4,21)或(-4,5).②线段QD 长度的最大值为94. 【解析】【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解.【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0), ∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0), ∴2a 1b 12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩.∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=,∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3).又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭. ∵a 10<=-,-3302<<-∴线段QD 长度的最大值为94.10.如图,在平面直角坐标系中,抛物线y=ax 2+2ax ﹣3a (a <0)与x 轴相交于A ,B 两点,与y 轴相交于点C ,顶点为D ,直线DC 与x 轴相交于点E .(1)当a=﹣1时,求抛物线顶点D 的坐标,OE 等于多少;(2)OE 的长是否与a 值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a 的取值范围;(4)以DE 为斜边,在直线DE 的左下方作等腰直角三角形PDE .设P (m ,n ),直接写出n 关于m 的函数解析式及自变量m 的取值范围.【答案】(1)(﹣1,4),3;(2)结论:OE 的长与a 值无关.理由见解析;(3)﹣≤a≤﹣1;(4)n=﹣m﹣1(m<1).【解析】【分析】(1)求出直线CD的解析式即可解决问题;(2)利用参数a,求出直线CD的解析式求出点E坐标即可判断;(3)求出落在特殊情形下的a的值即可判断;(4)如图,作PM⊥对称轴于M,PN⊥AB于N.两条全等三角形的性质即可解决问题.【详解】解:(1)当a=﹣1时,抛物线的解析式为y=﹣x2﹣2x+3,∴顶点D(﹣1,4),C(0,3),∴直线CD的解析式为y=﹣x+3,∴E(3,0),∴OE=3,(2)结论:OE的长与a值无关.理由:∵y=ax2+2ax﹣3a,∴C(0,﹣3a),D(﹣1,﹣4a),∴直线CD的解析式为y=ax﹣3a,当y=0时,x=3,∴E(3,0),∴OE=3,∴OE的长与a值无关.(3)当β=45°时,OC=OE=3,∴﹣3a=3,∴a=﹣1,当β=60°时,在Rt△OCE中,∴﹣∴a=,∴45°≤β≤60°,a≤a≤﹣1.(4)如图,作PM⊥对称轴于M,PN⊥AB于N.∵PD=PE ,∠PMD=∠PNE=90°,∠DPE=∠MPN=90°,∴∠DPM=∠EPN ,∴△DPM ≌△EPN ,∴PM=PN ,PM=EN ,∵D(﹣1,﹣4a),E(3,0),∴EN=4+n=3﹣m ,∴n=﹣m ﹣1,当顶点D 在x 轴上时,P(1,﹣2),此时m 的值1,∵抛物线的顶点在第二象限,∴m <1.∴n=﹣m ﹣1(m <1).故答案为:(1)(﹣1,4),3;(2)OE 的长与a 值无关;(3)3﹣1;(4)n=﹣m ﹣1(m <1).【点睛】本题是二次函数综合题,考查了二次函数的图象与性质。

中考数学压轴题专题二次函数的经典综合题及答案解析

中考数学压轴题专题二次函数的经典综合题及答案解析

一、二次函数真题与模拟题分类汇编(难题易错题)1.如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?【答案】(1)足球飞行的时间是85s时,足球离地面最高,最大高度是4.5m;(2)能.【解析】试题分析:(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),于是得到,求得抛物线的解析式为:y=﹣t2+5t+,当t=时,y最大=4.5;(2)把x=28代入x=10t得t=2.8,当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,于是得到他能将球直接射入球门.解:(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),∴,解得:,∴抛物线的解析式为:y=﹣t2+5t+,∴当t=时,y最大=4.5;(2)把x=28代入x=10t得t=2.8,∴当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,∴他能将球直接射入球门.考点:二次函数的应用.2.抛物线2y x bx c =-++(b ,c 为常数)与x 轴交于点()1,0x 和()2,0x ,与y 轴交于点A ,点E 为抛物线顶点。

(Ⅰ)当121,3x x =-=时,求点A ,点E 的坐标;(Ⅱ)若顶点E 在直线y x =上,当点A 位置最高时,求抛物线的解析式;(Ⅲ)若11,0x b =->,当(1,0)P 满足PA PE +值最小时,求b 的值。

2017中考数学二次函数压轴题[含答案解析]

2017中考数学二次函数压轴题[含答案解析]

二次函数压轴题面积类1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点.(1)求抛物线的解析式.(2)点M是线段上的点(不与B,C重合),过M作∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示的长.(3)在(2)的条件下,连接、,是否存在m,使△的面积最大?若存在,求m的值;若不存在,说明理由.2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段下方的抛物线上一点,求△的面积的最大值,并求出此时M点的坐标.平行四边形类3.如图,在平面直角坐标系中,抛物线2经过点A(3,0)、B (0,﹣3),点P是直线上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.(1)分别求出直线和这条抛物线的解析式.(2)若点P在第四象限,连接、,当线段最长时,求△的面积.(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.4.如图,在平面直角坐标系中放置一直角三角板,其顶点为A (0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90°,得到△A′B′O.(1)一抛物线经过点A′、B′、B,求该抛物线的解析式;(2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形′A′B的面积是△A′B′O面积4倍?若存在,请求出P的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形′A′B是哪种形状的四边形?并写出四边形′A′B的两条性质.5.如图,抛物线2﹣2的顶点A在直线l:﹣5上.(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△的形状;(3)在直线l上是否存在一点P,使以点P、A、B、D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.周长类6.如图,△的两直角边、分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线2经过点B,且顶点在直线上.(1)求抛物线对应的函数关系式;(2)若把△沿x轴向右平移得到△,点A、B、O的对应点分别是D、C、E,当四边形是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)在(2)的条件下,连接,已知对称轴上存在一点P使得△的周长最小,求出P点的坐标;(4)在(2)、(3)的条件下,若点M是线段上的一个动点(点M与点O、B不重合),过点M作∥交x轴于点N,连接、,设的长为t,△的面积为S,求S和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由.等腰三角形类7.如图,点A在x轴上,4,将线段绕点O顺时针旋转120°至的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.8.在平面直角坐标系中,现将一块等腰直角三角板放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(﹣1,0),如图所示:抛物线2﹣2经过点B.(1)求点B的坐标;(2)求抛物线的解析式;(3)在抛物线上是否还存在点P(点B除外),使△仍然是以为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.9.在平面直角坐标系中,现将一块等腰直角三角板放在第一象限,斜靠在两坐标轴上,且点A(0,2),点C(1,0),如图所示,抛物线2﹣﹣2经过点B.(1)求点B的坐标;(2)求抛物线的解析式;(3)在抛物线上是否还存在点P(点B除外),使△仍然是以为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.综合类10.如图,已知抛物线2的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5).(1)求直线与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作∥y轴交直线于点N,求的最大值;(3)在(2)的条件下,取得最大值时,若点P是抛物线在x 轴下方图象上任意一点,以为边作平行四边形,设平行四边形的面积为S1,△的面积为S2,且S1=6S2,求点P的坐标.11.如图,抛物线2(a≠0)的图象过点C(0,1),顶点为Q (2,3),点D在x轴正半轴上,且.(1)求直线的解析式;(2)求抛物线的解析式;(3)将直线绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△∽△;(4)在(3)的条件下,若点P是线段上的动点,点F是线段上的动点,问:在P点和F点移动过程中,△的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.12.如图,抛物线与x轴交于A(1,0)、B(﹣3,0)两点,与y轴交于点C(0,3),设抛物线的顶点为D.(1)求该抛物线的解析式与顶点D的坐标.(2)试判断△的形状,并说明理由.(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.13.如图,已知抛物线23与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线的下方,试求△的最大面积与E点的坐标.14.如图,已知抛物线﹣x24与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).(1)求抛物线的解析式与它的对称轴方程;(2)求点C的坐标,连接、并求线段所在直线的解析式;(3)试判断△与△是否相似?并说明理由;(4)在抛物线的对称轴上是否存在点Q,使△为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.15.如图,在坐标系中,△是等腰直角三角形,∠90°,A(1,0),B(0,2),抛物线2﹣2的图象过C点.(1)求抛物线的解析式;(2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△的面积分为相等的两部分?(3)点P是抛物线上一动点,是否存在点P,使四边形为平行四边形?若存在,求出P点坐标;若不存在,说明理由.山水是一部书,枝枝叶叶的文字间,声声鸟鸣是抑扬顿挫的标点,在茂密纵深间,一条曲径,是整部书最芬芳的禅意。

中考数学专题复习分类练习 二次函数综合解答题含答案

中考数学专题复习分类练习 二次函数综合解答题含答案

一、二次函数 真题与模拟题分类汇编(难题易错题)1.如图1,抛物线y=ax 2+bx+c (a≠0)与x 轴交于点A (﹣1,0)、B (4,0)两点,与y 轴交于点C ,且OC=3OA .点P 是抛物线上的一个动点,过点P 作PE ⊥x 轴于点E ,交直线BC 于点D ,连接PC . (1)求抛物线的解析式;(2)如图2,当动点P 只在第一象限的抛物线上运动时,求过点P 作PF ⊥BC 于点F ,试问△PDF 的周长是否有最大值?如果有,请求出其最大值,如果没有,请说明理由. (3)当点P 在抛物线上运动时,将△CPD 沿直线CP 翻折,点D 的对应点为点Q ,试问,四边形CDPQ 是否成为菱形?如果能,请求出此时点P 的坐标,如果不能,请说明理由.【答案】(1) y=﹣234x +94x+3;(2) 有最大值,365;(3) 存在这样的Q 点,使得四边形CDPQ 是菱形,此时点P 的坐标为(73,256)或(173,﹣253).【解析】试题分析: (1)利用待定系数法求二次函数的解析式; (2)设P (m ,﹣34m 2+94m+3),△PFD 的周长为L ,再利用待定系数法求直线BC 的解析式为:y=﹣34x+3,表示PD=﹣2334m m ,证明△PFD ∽△BOC ,根据周长比等于对应边的比得:=PED PD BOC BC 的周长的周长,代入得:L=﹣95(m ﹣2)2+365,求L 的最大值即可;(3)如图3,当点Q 落在y 轴上时,四边形CDPQ 是菱形,根据翻折的性质知:CD=CQ ,PQ=PD ,∠PCQ=∠PCD ,又知Q 落在y 轴上时,则CQ ∥PD ,由四边相等:CD=DP=PQ=QC ,得四边形CDPQ 是菱形,表示P (n ,﹣23n 4 +94n+3),则D (n ,﹣34n+3),G (0,﹣34n+3),利用勾股定理表示PD 和CD 的长并列式可得结论. 试题解析:(1)由OC=3OA ,有C (0,3),将A (﹣1,0),B (4,0),C (0,3)代入y=ax 2+bx+c 中,得:016403a b c a b c c -+=⎧⎪++=⎨⎪=⎩, 解得:34943a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,故抛物线的解析式为:y=﹣234x +94x+3; (2)如图2,设P (m ,﹣34m 2+94m+3),△PFD 的周长为L ,∵直线BC 经过B (4,0),C (0,3), 设直线BC 的解析式为:y=kx+b ,则403k b b +=⎧⎨=⎩解得:343k b ⎧=-⎪⎨⎪=⎩∴直线BC 的解析式为:y=﹣34x+3, 则D (m ,﹣334m +),PD=﹣2334m m +,∵PE ⊥x 轴,PE ∥OC , ∴∠BDE=∠BCO , ∵∠BDE=∠PDF , ∴∠PDF=∠BCO , ∵∠PFD=∠BOC=90°, ∴△PFD ∽△BOC ,∴=PED PDBOC BC的周长的周长,由(1)得:OC=3,OB=4,BC=5, 故△BOC 的周长=12,∴2334125m mL -+=,即L=﹣95(m ﹣2)2+365,∴当m=2时,L 最大=365; (3)存在这样的Q 点,使得四边形CDPQ 是菱形,如图3, 当点Q 落在y 轴上时,四边形CDPQ 是菱形,理由是:由轴对称的性质知:CD=CQ ,PQ=PD ,∠PCQ=∠PCD , 当点Q 落在y 轴上时,CQ ∥PD , ∴∠PCQ=∠CPD , ∴∠PCD=∠CPD , ∴CD=PD , ∴CD=DP=PQ=QC , ∴四边形CDPQ 是菱形, 过D 作DG ⊥y 轴于点G , 设P (n ,﹣234n +94n+3),则D (n ,﹣34n+3),G (0,﹣334n +), 在Rt △CGD 中,CD 2=CG 2+GD 2=[(﹣34n+3)﹣3]2+n 2=22516n , 而|PD|=|(﹣239344n n ++ 3n ++)﹣(﹣34n+3)|=|﹣234n +3n|,∵PD=CD , ∴﹣235344n n n +=①, ﹣235344n n n +=-②, 解方程①得:n=73或0(不符合条件,舍去), 解方程②得:n=173或0(不符合条件,舍去), 当n=73时,P (73,256),如图3,当n=173时,P (173,﹣253),如图4,综上所述,存在这样的Q 点,使得四边形CDPQ 是菱形,此时点P 的坐标为(73,256)或(173,﹣253).点睛: 本题是二次函数的综合题,考查了利用待定系数法求函数的解析式、菱形的性质和判定、三角形相似的性质和判定,将周长的最值问题转化为二次函数的最值问题,此类问题要熟练掌握利用解析式表示线段的长,并利用相似比或勾股定理列方程解决问题.2.在平面直角坐标系中,有两点(),A a b 、(),B c d ,若满足:当a b ≥时,c a =,2d b =-;当a b <时,c a <-,d b <,则称点为点的“友好点”.(1)点()4,1的“友好点”的坐标是_______.(2)点(),A a b 是直线2y x =-上的一点,点B 是点A 的“友好点”. ①当B 点与A 点重合时,求点A 的坐标.②当A 点与A 点不重合时,求线段AB 的长度随着a 的增大而减小时,a 的取值范围. 【答案】(1)()41-,;(2)①点A 的坐标是()2,0或()1,1-;②当1a <或322a ≤<时,AB 的长度随着a 的增大而减小; 【解析】 【分析】(1)直接利用“友好点”定义进行解题即可;(2)先利用 “友好点”定义求出B 点坐标,A 点又在直线2y x =-上,得到2b a =-;①当点A 和点B 重合,得2b b =-.解出即可,②当点A 和点B 不重合, 1a ≠且2a ≠.所以对a 分情况讨论,1°、当1a <或2a >时,()222313224AB b b a a a ⎛⎫=--=-+=--⎪⎝⎭,所以当a ≤32时,AB 的长度随着a 的增大而减小,即取1a <.2°当12a <<时,()22231+3224AB b b a a a ⎛⎫=--=--=--+⎪⎝⎭,当32a ≥时,AB 的长度随着a 的增大而减小,即取322a ≤<. 综上,当1a <或322a ≤<时,AB 的长度随着a 的增大而减小. 【详解】(1)点()4,1,4>1,根据“友好点”定义,得到点()4,1的“友好点”的坐标是()41-, (2)点(),A a b 是直线2y x =-上的一点,∴2b a =-.2a a >-,根据友好点的定义,点B 的坐标为()2,B a b -,①当点A 和点B 重合,∴2b b =-. 解得0b =或1b =-. 当0b =时,2a =;当1b =-时,1a =,∴点A 的坐标是()2,0或()1,1-.②当点A 和点B 不重合,1a ≠且2a ≠.当1a <或2a >时,()222313224AB b b a a a ⎛⎫=--=-+=-- ⎪⎝⎭. ∴当a ≤32时,AB 的长度随着a 的增大而减小, ∴取1a <.当12a <<时, ()22231+3224AB b b a a a ⎛⎫=--=--=--+ ⎪⎝⎭ .∴当32a ≥时,AB 的长度随着a 的增大而减小, ∴取322a ≤<. 综上,当1a <或322a ≤<时,AB 的长度随着a 的增大而减小. 【点睛】本题属于阅读理解题型,结合二次函数的基本性质进行解题,第二问的第二小问的关键是求出AB 的长用a 进行表示,然后利用二次函数基本性质进行分类讨论3.温州茶山杨梅名扬中国,某公司经营茶山杨梅业务,以3万元/吨的价格买入杨梅,包装后直接销售,包装成本为1万元/吨,它的平均销售价格y (单位:万元/吨)与销售数量x (2≤x ≤10,单位:吨)之间的函数关系如图所示.(1)若杨梅的销售量为6吨时,它的平均销售价格是每吨多少万元?(2)当销售数量为多少时,该经营这批杨梅所获得的毛利润(w )最大?最大毛利润为多少万元?(毛利润=销售总收入﹣进价总成本﹣包装总费用)(3)经过市场调查发现,杨梅深加工后不包装直接销售,平均销售价格为12万元/吨.深加工费用y (单位:万元)与加工数量x (单位:吨)之间的函数关系是y =12x +3(2≤x ≤10).①当该公司买入杨梅多少吨时,采用深加工方式与直接包装销售获得毛利润一样? ②该公司买入杨梅吨数在 范围时,采用深加工方式比直接包装销售获得毛利润大些?【答案】(1)杨梅的销售量为6吨时,它的平均销售价格是每吨10万元;(2)当x =8时,此时W 最大值=40万元;(3)①该公司买入杨梅3吨;②3<x ≤8. 【解析】 【分析】(1)设其解析式为y =kx +b ,由图象经过点(2,12),(8,9)两点,得方程组,即可得到结论;(2)根据题意得,w =(y ﹣4)x =(﹣12x +13﹣4)x =﹣12x 2+9x ,根据二次函数的性质即可得到结论;(3)①根据题意列方程,即可得到结论;②根据题意即可得到结论. 【详解】(1)由图象可知,y 是关于x 的一次函数. ∴设其解析式为y =kx +b ,∵图象经过点(2,12),(8,9)两点, ∴21289k b k b +=⎧⎨+=⎩,解得k =﹣12,b =13, ∴一次函数的解析式为y =﹣12x +13, 当x =6时,y =10,答:若杨梅的销售量为6吨时,它的平均销售价格是每吨10万元; (2)根据题意得,w =(y ﹣4)x =(﹣12x +13﹣4)x =﹣12x 2+9x , 当x =﹣2ba=9时,x =9不在取值范围内,∴当x=8时,此时W最大值=﹣12x2+9x=40万元;(3)①由题意得:﹣12x2+9x=9x﹣(12x+3)解得x=﹣2(舍去),x=3,答该公司买入杨梅3吨;②当该公司买入杨梅吨数在 3<x≤8范围时,采用深加工方式比直接包装销售获得毛利润大些.故答案为:3<x≤8.【点睛】本题是二次函数、一次函数的综合应用题,难度较大.解题关键是理清售价、成本、利润三者之间的关系.4.如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B.抛物线过A、B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)如图1,设抛物线顶点为M,且M的坐标是(12,92),对称轴交AB于点N.①求抛物线的解析式;②是否存在点P,使四边形MNPD为菱形?并说明理由;(2)是否存在这样的点D,使得四边形BOAD的面积最大?若存在,求出此时点D的坐标;若不存在,请说明理由.【答案】(1)①y=﹣2x2+2x+4;;②不存在点P,使四边形MNPD为菱形;;(2)存在,点D的坐标是(1,4).【解析】【分析】(1)①由一次函数图象上点的坐标特征求得点B的坐标,设抛物线解析式为y=a21922x⎛⎫-+⎪⎝⎭,把点B的坐标代入求得a的值即可;②不存在点P,使四边形MNPD为菱形.设点P的坐标是(m,﹣2m+4),则D(m,﹣2m2+2m+4),根据题意知PD∥MN,所以当PD=MN时,四边形MNPD为平行四边形,根据该等量关系列出方程﹣2m2+4m=32,通过解方程求得m的值,易得点N、P的坐标,然后推知PN=MN是否成立即可;(2)设点D的坐标是(n,﹣2n2+2n+4),P(n,﹣2n+4).根据S四边形BOAD=S△BOA+S△ABD =4+S△ABD,则当S△ABD取最大值时,S四边形BOAD最大.根据三角形的面积公式得到函数S△ABD=﹣2(n﹣1)2+2.由二次函数的性质求得最值.【详解】解:①如图1,∵顶点M的坐标是19,22⎛⎫ ⎪⎝⎭,∴设抛物线解析式为y=21922a x⎛⎫-+⎪⎝⎭(a≠0).∵直线y=﹣2x+4交y轴于点B,∴点B的坐标是(0,4).又∵点B在该抛物线上,∴21922a⎛⎫-+⎪⎝⎭=4,解得a=﹣2.故该抛物线的解析式为:y=219222x⎛⎫--+⎪⎝⎭=﹣2x2+2x+4;②不存在.理由如下:∵抛物线y=219222x⎛⎫--+⎪⎝⎭的对称轴是直线x=12,且该直线与直线AB交于点N,∴点N的坐标是1,32⎛⎫ ⎪⎝⎭.∴93322MN=-=.设点P的坐标是(m,﹣2m+4),则D(m,﹣2m2+2m+4),∴PD=(﹣2m2+2m+4)﹣(﹣2m+4)=﹣2m2+4m.∵PD∥MN.当PD=MN时,四边形MNPD是平行四边形,即﹣2m2+4m=32.解得 m1=12(舍去),m2=32.此时P(32,1).∵PN∴PN≠MN,∴平行四边形MNPD不是菱形.∴不存在点P,使四边形MNPD为菱形;(2)存在,理由如下:设点D的坐标是(n,﹣2n2+2n+4),∵点P在线段AB上且直线PD⊥x轴,∴P(n,﹣2n+4).由图可知S四边形BOAD=S△BOA+S△ABD.其中S△BOA=12OB•OA=12×4×2=4.则当S△ABD取最大值时,S四边形BOAD最大.S△ABD=12(y D﹣y P)(x A﹣x B)=y D﹣y P=﹣2n2+2n+4﹣(﹣2n+4)=﹣2n2+4n=﹣2(n﹣1)2+2.当n=1时,S△ABD取得最大值2,S四边形BOAD有最大值.此时点D的坐标是(1,4).【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.5.如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)y=x2-4x+3.(2)当m=52时,四边形AOPE面积最大,最大值为758.(3)P点的坐标为:P13+5152-),P2(352,1+52),P3(52,1+52),P455-15-.【解析】分析:(1)利用对称性可得点D的坐标,利用交点式可得抛物线的解析式;(2)设P(m,m2-4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得四边形AOPE的面积,利用配方法可得其最大值;(3)存在四种情况:如图3,作辅助线,构建全等三角形,证明△OMP≌△PNF,根据OM=PN列方程可得点P 的坐标;同理可得其他图形中点P的坐标.详解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴抛物线的解析式;y=x2-4x+3;(2)如图2,设P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式为:y=x,过P作PG∥y轴,交OE于点G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四边形AOPE=S△AOE+S△POE,=12×3×3+12PG•AE,=92+12×3×(-m2+5m-3),=-32m2+152m,=32(m-52)2+758,∵-32<0, ∴当m=52时,S 有最大值是758;(3)如图3,过P 作MN ⊥y 轴,交y 轴于M ,交l 于N ,∵△OPF 是等腰直角三角形,且OP=PF , 易得△OMP ≌△PNF , ∴OM=PN ,∵P (m ,m 2-4m+3), 则-m 2+4m-3=2-m , 解得:m=5+5或55-,∴P 的坐标为(5+5,1+5)或(55-,15-);如图4,过P 作MN ⊥x 轴于N ,过F 作FM ⊥MN 于M ,同理得△ONP ≌△PMF , ∴PN=FM ,则-m 2+4m-3=m-2, 解得:x=3+52或352; P 的坐标为(3+52,152-)或(352,1+52);综上所述,点P 的坐标是:(5+52,1+52)或(552-,152-)或(3+52,152-)或(352,1+52). 点睛:本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题.6.如图,某足球运动员站在点O 处练习射门,将足球从离地面0.5m 的A 处正对球门踢出(点A 在y 轴上),足球的飞行高度y(单位:m )与飞行时间t(单位:s )之间满足函数关系y =at 2+5t +c ,已知足球飞行0.8s 时,离地面的高度为3.5m . (1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m )与飞行时间t(单位:s )之间具有函数关系x =10t ,已知球门的高度为2.44m ,如果该运动员正对球门射门时,离球门的水平距离为28m ,他能否将球直接射入球门?【答案】(1)足球飞行的时间是85s 时,足球离地面最高,最大高度是4.5m ;(2)能. 【解析】试题分析:(1)由题意得:函数y=at 2+5t+c 的图象经过(0,0.5)(0.8,3.5),于是得到,求得抛物线的解析式为:y=﹣t 2+5t+,当t=时,y 最大=4.5;(2)把x=28代入x=10t 得t=2.8,当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,于是得到他能将球直接射入球门.解:(1)由题意得:函数y=at 2+5t+c 的图象经过(0,0.5)(0.8,3.5), ∴,解得:,∴抛物线的解析式为:y=﹣t2+5t+,∴当t=时,y最大=4.5;(2)把x=28代入x=10t得t=2.8,∴当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,∴他能将球直接射入球门.考点:二次函数的应用.7.如图1,抛物线经过平行四边形的顶点、、,抛物线与轴的另一交点为.经过点的直线将平行四边形分割为面积相等的两部分,与抛物线交于另一点.点为直线上方抛物线上一动点,设点的横坐标为.(1)求抛物线的解析式;(2)当何值时,的面积最大?并求最大值的立方根;(3)是否存在点使为直角三角形?若存在,求出的值;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣x2+2x+3;(2)当t=时,△PEF的面积最大,其最大值为×,最大值的立方根为=;(3)存在满足条件的点P,t的值为1或【解析】试题分析:(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由A、C坐标可求得平行四边形的中心的坐标,由抛物线的对称性可求得E点坐标,从而可求得直线EF的解析式,作PH⊥x轴,交直线l于点M,作FN⊥PH,则可用t表示出PM的长,从而可表示出△PEF的面积,再利用二次函数的性质可求得其最大值,再求其最大值的立方根即可;(3)由题意可知有∠PAE=90°或∠APE=90°两种情况,当∠PAE=90°时,作PG⊥y轴,利用等腰直角三角形的性质可得到关于t的方程,可求得t的值;当∠APE=90°时,作PK⊥x 轴,AQ⊥PK,则可证得△PKE∽△AQP,利用相似三角形的性质可得到关于t的方程,可求得t的值.试题解析:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(0,3),D(2,3),∴BC=AD=2,∵B(﹣1,0),∴C(1,0),∴线段AC的中点为(,),∵直线l将平行四边形ABCD分割为面积相等两部分,∴直线l过平行四边形的对称中心,∵A、D关于对称轴对称,∴抛物线对称轴为x=1,∴E(3,0),设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得,解得,∴直线l的解析式为y=﹣x+,联立直线l和抛物线解析式可得,解得或,∴F(﹣,),如图1,作PH⊥x轴,交l于点M,作FN⊥PH,∵P点横坐标为t,∴P(t,﹣t2+2t+3),M(t,﹣t+),∴PM=﹣t2+2t+3﹣(﹣t+)=﹣t2+t+,∴S△PEF=S△PFM+S△PEM=PM•FN+PM•EH=PM•(FN+EH)=(﹣t2+t+)(3+)=﹣(t﹣)+×,∴当t=时,△PEF的面积最大,其最大值为×,∴最大值的立方根为=;(3)由图可知∠PEA≠90°,∴只能有∠PAE=90°或∠APE=90°,①当∠PAE=90°时,如图2,作PG⊥y轴,∵OA=OE,∴∠OAE=∠OEA=45°,∴∠PAG=∠APG=45°,∴PG=AG,∴t=﹣t2+2t+3﹣3,即﹣t2+t=0,解得t=1或t=0(舍去),②当∠APE=90°时,如图3,作PK⊥x轴,AQ⊥PK,则PK=﹣t2+2t+3,AQ=t,KE=3﹣t,PQ=﹣t2+2t+3﹣3=﹣t2+2t,∵∠APQ+∠KPE=∠APQ+∠PAQ=90°,∴∠PAQ=∠KPE,且∠PKE=∠PQA,∴△PKE∽△AQP,∴,即,即t2﹣t﹣1=0,解得t=或t=<﹣(舍去),综上可知存在满足条件的点P,t的值为1或.考点:二次函数综合题8.如图,抛物线与x轴交于点A(,0)、点B(2,0),与y轴交于点C(0,1),连接BC.(1)求抛物线的函数关系式;(2)点N为抛物线上的一个动点,过点N作NP⊥x轴于点P,设点N的横坐标为t (),求△ABN的面积S与t的函数关系式;(3)若且时△OPN∽△COB,求点N的坐标.【答案】(1);(2);(3)(,)或(1,2).【解析】试题分析:(1)可设抛物线的解析式为,用待定系数法就可得到结论;(2)当时,点N在x轴的上方,则NP等于点N的纵坐标,只需求出AB,就可得到S与t的函数关系式;(3)由相似三角形的性质可得PN=2PO.而PO=,需分和0<t<2两种情况讨论,由PN=2PO得到关于t的方程,解这个方程,就可得到答案.试题解析:(1)设抛物线的解析式为,把C(0,1)代入可得:,∴,∴抛物线的函数关系式为:,即;(2)当时,>0,∴NP===,∴S=AB•PN==;(3)∵△OPN∽△COB,∴,∴,∴PN=2PO.①当时,PN===,PO==,∴,整理得:,解得:=,=,∵>0,<<0,∴t=,此时点N的坐标为(,);②当0<t<2时,PN===,PO==t,∴,整理得:,解得:=,=1.∵<0,0<1<2,∴t=1,此时点N的坐标为(1,2).综上所述:点N的坐标为(,)或(1,2).考点:1.二次函数综合题;2.待定系数法求二次函数解析式;3.相似三角形的性质.9.已知抛物线27y x3x4=--的顶点为点D,并与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C.(1)求点A、B、C、D的坐标;(2)在y轴的正半轴上是否存在点P,使以点P、O、A为顶点的三角形与△AOC相似?若存在,求出点P的坐标;若不存在,请说明理由;(3)取点E(34-,0)和点F(0,),直线l经过E、F两点,点G是线段BD的中点.①点G是否在直线l上,请说明理由;②在抛物线上是否存在点M,使点M关于直线l的对称点在x轴上?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】解:(1) D(32,﹣4)(2) P(0,74)或(0,17)(3)详见解析【解析】【分析】(1)令y=0,解关于x的一元二次方程求出A、B的坐标,令x=0求出点C的坐标,再根据顶点坐标公式计算即可求出顶点D的坐标.(2)根据点A、C的坐标求出OA、OC的长,再分OA和OA是对应边,OA和OC是对应边两种情况,利用相似三角形对应边成比例列式求出OP的长,从而得解.(3)①设直线l的解析式为y=kx+b(k≠0),利用待定系数法求一次函数解析式求出直线l的解析式,再利用中点公式求出点G的坐标,然后根据直线上点的坐标特征验证即可.②设抛物线的对称轴与x轴交点为H,求出OE、OF、HD、HB的长,然后求出△OEF和△HDB相似,根据相似三角形对应角相等求出∠OFE=∠HBD,然后求出EG⊥BD,从而得到直线l是线段BD的垂直平分线,根据线段垂直平分线的性质点D关于直线l的对称点就是B ,从而判断出点M 就是直线DE 与抛物线的交点.再设直线DE 的解析式为y=mx+n ,利用待定系数法求一次函数解析求出直线DE 的解析式,然后与抛物线解析式联立求解即可得到符合条件的点M . 【详解】解:(1)在27y x 3x 4=--中,令y=0,则27x 3x 04--=,整理得,4x 2﹣12x ﹣7=0, 解得x 1=12-,x 2=72.∴A (12-,0),B (72,0). 在27y x 3x 4=--中,令x=0,则y=74-.∴C (0,74-). ∵()227413b 334ac b 442a 2124a 41⎛⎫⨯⨯--- ⎪--⎝⎭-=-===-⨯⨯,,∴顶点D (32,﹣4). (2)在y 轴正半轴上存在符合条件的点P . 设点P 的坐标为(0,y ),∵A (12-,0),C (0,74-),∴OA=12,OC=74,OP=y , ①若OA 和OA 是对应边,则△AOP ∽△AOC ,∴OP OA OC OA =.∴y=OC=74,此时点P (0,74). ②若OA 和OC 是对应边,则△POA ∽△AOC ,∴OP OAOA OC=,即1y 21724=.解得y=17,此时点P (0,17).综上所述,符合条件的点P 有两个,P (0,74)或(0,17).(3)①设直线l 的解析式为y=kx+b (k≠0),∵直线l 经过点E (32-,0)和点F (0,34-),∴3k b 023b 4⎧-+=⎪⎪⎨⎪=-⎪⎩,解得1k 23b 4⎧=-⎪⎪⎨⎪=-⎪⎩,∴直线l 的解析式为13y x 24=--. ∵B (72,0),D (32,﹣4),∴[]1735104222222+=+-=-(),(),∴线段BD 的中点G 的坐标为(52,﹣2). 当x=52时,153y 2224=-⨯-=-,∴点G 在直线l 上. ②在抛物线上存在符合条件的点M .设抛物线的对称轴与x 轴交点为H ,则点H 的坐标为(32,0), ∵E (32-,0)、F (0,34-),B (72,0)、D (32,﹣4), ∴OE=32,OF=72,HD=4,HB=72﹣32=2. ∵,∠OEF=∠HDB ,∴△OEF ∽△HDB .∴∠OFE=∠HBD .∵∠OEF+∠OFE=90°,∴∠OEF+∠HBD=90°.∴∠EGB=180°﹣(∠OEF+∠HBD )=180°﹣90°=90°,∴直线l 是线段BD 的垂直平分线.∴点D 关于直线l 的对称点就是点B .∴点M 就是直线DE 与抛物线的交点.设直线DE 的解析式为y=mx+n ,∵D (32,﹣4),E (32-,0), ∴,解得.∴直线DE 的解析式为. 联立,解得,.∴符合条件的点M 有两个,是(32,﹣4)或(,).10.如图1,抛物线y=ax 2+2x+c 与x 轴交于A (﹣4,0),B (1,0)两点,过点B 的直线y=kx+23分别与y 轴及抛物线交于点C ,D . (1)求直线和抛物线的表达式; (2)动点P 从点O 出发,在x 轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t 秒,当t 为何值时,△PDC 为直角三角形?请直接写出所有满足条件的t 的值;(3)如图2,将直线BD 沿y 轴向下平移4个单位后,与x 轴,y 轴分别交于E ,F 两点,在抛物线的对称轴上是否存在点M ,在直线EF 上是否存在点N ,使DM+MN 的值最小?若存在,求出其最小值及点M ,N 的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为:y=228233x x +-,BD 解析式为y=﹣2233x +;(2)t 的值为4915129±、233.(3)N 点坐标为(﹣2,﹣2),M 点坐标为(﹣32,﹣54),213 【解析】分析:(1)利用待定系数法求解可得;(2)先求得点D 的坐标,过点D 分别作DE ⊥x 轴、DF ⊥y 轴,分P 1D ⊥P 1C 、P 2D ⊥DC 、P 3C ⊥DC 三种情况,利用相似三角形的性质逐一求解可得;(3)通过作对称点,将折线转化成两点间距离,应用两点之间线段最短.详解:(1)把A (﹣4,0),B (1,0)代入y=ax 2+2x+c ,得168020a ca c-+=⎧⎨++=⎩,解得:2383 ac⎧=⎪⎪⎨⎪=-⎪⎩,∴抛物线解析式为:y=228233x x+-,∵过点B的直线y=kx+23,∴代入(1,0),得:k=﹣23,∴BD解析式为y=﹣2233x+;(2)由2282332233y x xy x﹣⎧=+-⎪⎪⎨⎪=+⎪⎩得交点坐标为D(﹣5,4),如图1,过D作DE⊥x轴于点E,作DF⊥y轴于点F,当P1D⊥P1C时,△P1DC为直角三角形,则△DEP1∽△P1OC,∴DEPO=PEOC,即4t=523t-,解得15129±,当P2D⊥DC于点D时,△P2DC为直角三角形由△P2DB∽△DEB得DBEB=2P BDB,5252,解得:t=233; 当P 3C ⊥DC 时,△DFC ∽△COP 3,∴DF OC =3CF P O ,即523=103t, 解得:t=49, ∴t 的值为49、15129±、233. (3)由已知直线EF 解析式为:y=﹣23x ﹣103, 在抛物线上取点D 的对称点D′,过点D′作D′N ⊥EF 于点N ,交抛物线对称轴于点M过点N 作NH ⊥DD′于点H ,此时,DM+MN=D′N 最小.则△EOF ∽△NHD′设点N 坐标为(a ,﹣21033a -), ∴OE NH =OF HD ',即52104()33a ---=1032a -, 解得:a=﹣2,则N 点坐标为(﹣2,﹣2),求得直线ND′的解析式为y=32x+1, 当x=﹣32时,y=﹣54, ∴M 点坐标为(﹣32,﹣54), 此时,DM+MN 22D H NH '+2246+13点睛:本题是二次函数和几何问题综合题,应用了二次函数性质以及转化的数学思想、分类讨论思想.解题时注意数形结合.。

2017全国中考数学真题分类-二次函数几何方面的应用(选择题+解答题)解析版

2017全国中考数学真题分类-二次函数几何方面的应用(选择题+解答题)解析版

2017全国中考数学真题分类知识点20二次函数几何方面的应用(选择题+填空题+解答题)解析版一、选择题1. 8.(2017江苏扬州,,3分)如图,已知△ABC 的顶点坐标分别为A (0,2)、B (1,0)、C (2,1),若二次函数21y x bx =++的图像与阴影部分(含边界)一定有公共点,则实数b 的取值范围是A .2b ≤-B .2b <-C .2b ≥-D .2b >-【答案】C【解析】由二次函数系数a 、b 、c 的几何意义可知该函数的开口方向和开口大小是确定不变的,与y 轴的交点(0,1)也是确定不变的。

唯一变化的是“b”,也就是说对称轴是变化的。

若抛物线经过点(0,1)和C(2,1)这组对称点,可知其对称轴是直线12bx =-=,即b =-2时是符合题意的,所以可以排除B、D两个选择支,如果将该抛物线向右平移,此时抛物线与阴影部分就没有公共点了,向左平移才能符合题意,所以12b-≤,即2b ≥-。

二、解答题1. (2017重庆,26,12分)(本小题满分12分)如图,在平面直角坐标系中,抛物线3332332--=x x y 与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,点E (4,n )在抛物线上.(1)求直线AE 的解析式;(2)点P 为直线CE 下方抛物线上的一点,连接PC ,PE .当∆PCE 的面积最大时,连接CD ,CB ,点K 是线段CB 的中点,点M 是CP 上的一点,点N 是CD 上的一点,求KM +MN +NK 的最小值;(3)点G 是线段CE 的中点,将抛物线3332332--=x x y 沿x 轴正方向平移得到新抛物线y ',y '经过点D,y '的顶点为点F.在新抛物线y '的对称轴上,是否存在点Q,使得∆FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.思路分析:(1)首先求出A、E点的坐标,然后设出直线AE的解析式,并将A、E点的坐标代入,求得方程组的解,便可得到直线AE的解析式;(2)由抛物线解析式求得C点坐标,则可得出直线CE的解析式;过点P作PH∥x轴,交CE于点H,设出P点坐标,可推出H点坐标,根据斜三角形面积公式“2铅垂高水平宽⨯”可表示出∆PCE的面积,并可计算出其面积最大时P点的坐标;分别作K关于CP、CD的对称点的对称点K1、K2,将KM +MN+KN即可确定出转化成一条线段,由“两点之间,线段最短”及勾股定理计算出其最小值即可;(3)运用已知两定点时确定等腰三角形常用的方法“两圆一线”即可在抛物线y '的对称轴上找到符合条件的四个点,分别确定其坐标即可.解:(1)∵抛物线3332332--=xxy与x轴交于A,B两点,且点E(4,n)在抛物线上,∴03332332=--xx,解得:x1=-1,x2=3,∴A,B两点的坐标分别为(-1,0),(3,0);343324332-⨯-⨯=y=335,∴点E坐标为(4,335).设直线AE的解析式的解析式为y=kx+b,将A点、E点坐标分别代入,得:⎪⎩⎪⎨⎧+=+-=bkbk4335,解得:⎪⎪⎩⎪⎪⎨⎧==3333bk,∴y=33x+33;(2)∵令x =0,得y = 3-,∴点C (0,3-),∵点E 坐标为(4,335),∴直线CE 的解析式为y =3332-x ,过点P 作PH ∥x 轴,交CE 于点H ,如图,设点P 的坐标为(t ,3332332--t t ),则H (t ,3332-t ),∴PH =3332-t -(3332332--t t )=t t 334332+-, ∴t t t t PH x x S C E PCE 338332334334212122+-=⎪⎪⎭⎫ ⎝⎛+-⨯⨯=⋅-=∆,∵0332<-,抛物线开口向下,40<<t ,∴当⎪⎪⎭⎫⎝⎛-⨯-=3322338t =2时,PCE S ∆取得最大值,此时P 为(2,3-);∵点C (0,3-),B (3,0),由三角形中位线定理得K (23,23-),∵y C =y P =3-,∴PC ∥x 轴,作K关于CP 的对称点K 1,则K 1(23,233-);∵333tan ==∠OCB ,∴∠OCB =60゜,∵D (1,0),∴3331tan ==∠OCD ,∴∠OCD = 30゜,∴∠OCD =∠BCD =30゜,∴CD 平分∠OCB ,∴点K 关于CD 的对称点K 2在y 轴上,又∵CK =OC =3,∴点K 2与点O 重合,连接OK 1,交CD 于点N ,交CP 于点M ,如图,∴KM = K 1M ,KN =ON ,∴KM +MN +KN =K 1M +MN +ON ,根据“两点之间,线段最短”可得,此时KM +MN +KN 的值最小,∴K 1 K 2 =O K 1=32332322=⎪⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛,∴KM +MN +KN 的最小值为3;(3)点Q 的坐标为(3,321234+-),(3,321234--),(3,32),(3,332-).2. (2017浙江衢州,22,10分)(本题满分10分)定义:如图1,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A ,B 两点,点P 在抛物线上(P 点与A 、B 两点不重合),如果△ABP 的三边需满足AP 2+BP 2=AB 2,则称点P 为抛物线y =ax 2+bx +c (a ≠0)的勾股点.(1)直接写出抛物线y =-x 2+1的勾股点坐标.(2)如图2,已知抛物线C :y =ax 2+bx (a ≠0)与x 轴交于A ,B 两点,点P (13C 的勾股点,求抛物线C 的函数表达式.(3)在(2)的条件下,点Q 在抛物线C 上,求满足条件S △ABQ =S △ABP 的Q 点(异于点P )的坐标.思路分析:(1)所谓勾股点,即以AB为直径的圆与抛物线的交点.y=-x2+1与x轴交点坐标为(1,0),(-1,0),故圆心为原点,半径为1,与抛物线交点为(0,1).(2)由P点坐标可知∠PAB=60°,又∠APB=90°,从而求得B点坐标,利用待定系数法即可求解.(3)由S△ABQ=S△ABP,故有|y Q|y Q物线解析式即可求解.解(1)勾股点的坐标(0,1).(2)抛物线y=ax2+bx(a≠0)过原点(0,0),即A为(0,0).如图,作PG⊥x轴于点G,连结PA,PB.∵点P的坐标为(1,∴AG=1,PG PA=2,tan∠PAB∴∠PAB=60°,∴Rt△PAB中,AB=cos60PA=4,∴点B(4,0).设y=ax(x-4),当x=1时,ya.∴y x(x-4x2x.(3)①当点Q在x轴上方时,由S△ABQ=S△ABP易知点Qx2x1=3,x2=1(不合题意,舍去).∴Q1(3.②当点Q在x轴下方时,由S△ABQ=S△ABP易知点Qx2解得x1=2x2=2Q2(2,Q2(2.综上,满足条件的Q点有三个:Q1(3,Q2(2,Q2(2.3.(2017山东济宁,21,9分)已知函数2(25)2y mx m x m=--+-的图象与x轴有两个公共点.(1)求m的取值范围,写出当m取范围内最大整数时函数的解析式;(2)题(1)中求得的函数记为C1①当1n x≤≤-时,y的取值范围是13y n≤≤-,求n的值;②函数C2:22()y x h k=-+的图象由函数C1的图象平移得到,其顶点P的圆内或圆上.设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式.思路分析:(1)根据函数2(25)2y mx m x m=--+-图象与x轴有两个公共点,即一元二次方程2(25)20mx m x m --+-=有两个不同的实数解,即需满足m ≠0且根的判别式△>0,解不等式组得25,12m <且0m ≠;(2)由二次函数22y x x =+性质,当14x <-时,y 随x 的增大而减小,求出n 的值为—2;(3)由图形可知当P 为射线MO 与圆的交点时,距离最大,先求出MO 的解析式,设出点P 的坐标,根据勾股定理求出点P 的坐标,继而求出PM 最大时的函数解析式为()2221y x =-+.解:(1)由题意可得:()()20,25420.m m m m ≠⎧⎪⎨---->⎡⎤⎪⎣⎦⎩解得:25,12m <且0,m ≠ 当2m =时,函数解析式为:22y x x =+.(2)函数22y x x =+图象开口向上,对称轴为1,4x =-∴当14x <-时,y 随x 的增大而减小.∵当1n x ≤≤-时,y 的取值范围是13y n ≤≤-, ∴ 223n n n +=-.∴ 2n =-或0n =(舍去). ∴2n =-.(3)∵221122,48y x x x ⎛⎫=+=+- ⎪⎝⎭∴图象顶点M 的坐标为11,48⎛⎫-- ⎪⎝⎭,由图形可知当P 为射线MO 与圆的交点时,距离最大.∵点P 在直线OM 上,由11(0,0),(,)48O M --可求得直线解析式为:12y x =,设P (a ,b ),则有a =2b , 根据勾股定理可得()2222PO b b =+求得2,1a b ==.∴PM 最大时的函数解析式为()2221y x =-+.4. (2017山东威海,25,12分)如图,已知抛物线y =ax ²+bx +c 过点A (-1,0),B (3,0),C (0,3).点M ,N 为抛物线上的动点,过点M 作MD ∥y 轴,交直线BC 于点D ,交x 轴于点E . (1)求二次函数y =ax ²+bx +c 的表达式;(2)过点N 作NF ⊥x 轴,垂足为点F .若四边形MNFE 为正方形(此处限定点M 在对称轴的右侧),求该正方形的面积;(3)若∠DMN =90°,MD =MN ,求点M 的横坐标.解:∵抛物线2y ax bx c =++的图像经过点A (-1,0),B (3,0),∴抛物线的函数表达式为y =a (x +1)(x -3),将点C (0,3)代入上式,得3=a (0+1)(0-3), 解得a =-1.∴所求函数表达式为y =-(x +1)(x -3)=-x 2+2x +3.(2)由(1)知,抛物线的对称轴为212(1)x ==⨯-.如图1,设M 点的坐标(m ,-m 2+2m +3),∴ME =|-m 2+2m +3|.∵M ,N 关于x =1对称,且点M 在对称轴右侧, ∴N 点横坐标为2-m . ∴MN =2m -2∵四边形MNEF 为正方形∴ME =MN . ∴22322m m m -++=- . 分两种情况:①2m - +2m +3=2m -2.解,得12m m ==不符合题意,合去).当 m ,正方形的面积为22(2224⎡⎤+-=+⎣⎦综上所述,正方形的面积为24-或24+(3)设直线BC 的函数表达式为y =kx +b .把点B (3,0),C (0,3)代入表达式,得30,3,k b b +=⎧⎨=⎩解得1,3.k b =-⎧⎨=⎩∴直线BC 的函数表达式为y =-x +3,设点M 的坐标为(a ,223a a -++), 则点D 的坐标为(a ,-a +3), ∴DM =23a a -+ ,∵DM //y 轴,DM ⊥MN ,∴MN //x 轴. ∴M ,N 关于x =1对称. ∴N 点的横坐标为2-a , ∴MN =22a -, ∵DM =MN ,∴2322a a a -+=- . 分两种情况:①如图2,2322a a a -+=- , 解,得122,1a a ==- .②如图3,2322a a a -+=-,解,得3455,22a a +-==.综上所述,M 点的横坐标为122,1a a ==-,34,a a ==5.(2017年四川绵阳,24,11分)(本题满分12分)如图,已知抛物线y=ax2+bx+c(a≠0)的图象的顶点坐标是(2,1),并且经过点(4,2).直线y=x+1与抛物线交于B,D两点,以BD为直径作圆,圆心为点C,圆C于直线m交于对称轴右侧的点M(t,1).直线m 上每一点的纵坐标都等于1.(1)求抛物线的解析式;(2)证明:圆C与x轴相切;(3)过点B作BE⊥m,垂足为E,再过点D作DF⊥m,垂足为F.求BE∶MF的值.解:(1)设抛物线方程为,因为抛物线的顶点坐标是(2,1),所以…………………………1分又抛物线经过点(4,2),所以,解得,………………2分所以抛物线的方程是.……………………………3分(2)联立,消去y,整理得,………………………4分解得,,…………………………5分代入直线方程,解得,,所以B(),D(),因为点C是BD的中点,所以点C的纵坐标为,………………………6分利用勾股定理,可算出BD=,即半径R=,即圆心C到x轴的距离等于半径R,所以圆C与x轴相切.…………………………7分(3)连接BM和DM,因为BD为直径,所以∠BMD=90°,所以∠BME+∠DMF=90°,又因为BE⊥m于点E,DF⊥m于点F,所以∠BME=∠MDF,所以△BME∽△MDF,所以,……………………………9分即,代入得,化简得,解得t =5或t =1,………………………………10分因为点M 在对称轴右侧,所以t =5,………………………11分所以…………………………………………………12分法2:过点C 作CH ⊥m ,垂足为H ,连接CM ,由(2)知CM =R =25,CH =R -1=23, 由勾股定理,得MH =2,…………………9分又HF =,所以MF =HF -MH =-2,…………………10分 又BE =y 1-1=23-25,所以MF BE =25+1,………………………………………………12分思路分析:(1)知抛物线的顶点和其它任意一点,可设出抛物线的顶点式,代入点的坐标即可求出抛物线的解析式;(2)由抛物线与直线交于B、D,联立方程组,求出点B点D坐标,求出直径BD的长度,从而求出半径,与C的纵坐标进行比较,得出结论;(3)连接BM和DM,因为BD为直径,所以∠BMD=90°,所以∠BME+∠DMF=90°,又因为BE⊥m于点E,DF⊥m于点F,所以∠BME=∠MDF,所以△BME∽△MDF,所以,即,代入得,化简得,解得t=5或t=1,因为点M在对称轴右侧,所以t=5,所以.6.(2017四川攀枝花,24,12分)如图15,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值.(3)点D为抛物线对称轴上一点.①当∆BCD是以BC为直角边的直角三角形时,求点D的坐标;②若∆BCD是锐角三角形,求点D的纵坐标的取值范围.图1 备用图思路分析:(1)由点B 、C 的坐标利用待定系数法即可求出抛物线的解析式; (2)方法1:(代数法)设点的坐标转化成所求线段,找特殊角转化成所求线段,联立函数关系,代入整理成关于目标线段和的二次函数关系式,从而找到最值;方法2:(几何法)以BC 为对称轴将FCE ∆对称得到F CE '∆,作PH CF '⊥于H ,则PF +EF =PF ′= 2 PH =()()223C P P y y y -=-∴当P y 最小时,PF EF +取最大值42.(3)①先设点再分类讨论,利用勾股定理得到关于所求D 点的一元方程式,解得即为D 1和D 2;②利用直径圆周角性质构造圆,利用线段距离公式建立一元方程式,解得即为D 3和D 4.结合①中D 1和D 2的坐标,当D 在D 2D 4和D 3D 1之间时候为锐角三角形,从而得到点D 的纵坐标的取值范围.解析:(1)由题意得:⎩⎪⎨⎪⎧32+3b +c =0,c =3. 解得⎩⎨⎧b =-4,c =3.∴抛物线的解析式为:y =x 2-4x +3.(2)方法1:如图,过P 作PG ∥CF 交CB 与G ,由题意知∠BCO =∠CEF =45°,F (0,m )C (0,3), ∴∆CFE 和∆GPE 均为等腰直角三角形, ∴EF =22CF =22(3-m ) PE =22PG ,设x P =t (1<t <3), 则PE =22PG =22(-t +3-t -m )=22(-m -2t +3), t 2-4t +3=t +m ,∴PE +EF =22(3-m )+22(-m -2t +3)= 22(-2t -2m +6)=-2(t +m -3)=-2(t 2-4t )= -2(t -2)2+42,∴当t =2时,PE +EF 最大值=42.方法2:(几何法)由题易知直线BC的解析式为3y x=-+,OC=OB=3,∴∠OCB=45°.同理可知∠OFE=45°,∴△CEF为等腰直角三角形,以BC为对称轴将△FCE对称得到△F′CE,作PH⊥CF′于H点,则PF+EF=PF′= 2 PH.yxHPF'CBAOFE又PH=3C P Py y y-=-.∴当Py最小时,PF+EF取最大值,∵抛物线的顶点坐标为(2,-1),∴当1Py=-时,(PF+EF)max= 2 ×(3+1)=4 2 .(3)①由(1)知对称轴x=2,设D(2,n),如图.当∆BCD是以BC为直角边的直角三角形时,D在C上方D1位置时由勾股定理得CD2+BC2=BD2,即(2-0)2+(n-3)2+(32)2=(3-2)2+(0-n)2 ,解得n=5;当∆BCD是以BC为直角边的直角三角形时,D在C下方D2位置时由勾股定理得BD2+BC2=CD2 即(2-3)2+(n-0)2+(32)2=(2-0)2+(n-3)2 ,解得n=-1.∴当△BCD是以BC为直角边的直角三角形时,D为(2,5)或(2,-1).②如图:以BC的中点T(3,3),12BC为半径作⊙T,与对称轴x=2交于D3和D4,由直径所对的圆周角是直角得∠CD3B=∠CD2B=90°,设D(2,m),由DT=12BC32得(32-2)2+(32-m)2=2322⎛⎝⎭,解得m=173±,∴D 3(2,173+)D 4(2,173-), 又由①得D 1为(2,5),D 2(2,-1),∴若∆BCD 是锐角三角形,D 点在线段13D D 或24D D 上时(不与端点重合),则点D 的纵坐标的取值范围是-1<D y <1732-或1732+<D y <5.7. (2017四川内江,28,12分)如图,在平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)与y 轴交于点C (0,3),与x 轴交于A ,B 两点,点B 坐标为(4,0),抛物线的对称轴方程为x =1. (1)求抛物线的解析式;(2)点M 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点N 从B 点出发,在线段BC 上以每秒1个单位长度的速度向C 点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN 的面积为S ,点M 运动时间为t ,试求S 与t 的函数关系,并求S 的最大值;(3)在点M 运动过程中,是否存在某一时刻t ,使△MBN 为直角三角形?若存在,求出t 的值;若不存在,请说明理由.思路分析:(1) 由点B 的坐标与对称轴可求得点C 的坐标,把点A ,B ,C 的坐标分别代入抛物线的解析式,列出关于系数a ,b ,c 的方程组,求解即可;(2)设运动时间为t 秒,利用三角形的面积公式列出S △MBN 与t 的函数关系式,用配方法求的最大值;(3) 根据余弦函数,可得关于t 的方程,解方程,可得答案,注意分类讨论.解:(1)∵点B 坐标为(4,0),抛物线的对称轴方程为x =1,∴A (-2,0).把点A (-2,0),B (4,0),点C (0,3),分别代入y =ax 2+bx+c (a≠0),得⎪⎩⎪⎨⎧==++=+-.3,0416,024ccbacba解得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=.3,43,83cba∴该抛物线的解析式为y=343832++-xx.(2) 如图1,设运动时间为t秒,则AM=3t,BN=t,∴MB=6-3t.由题意得,点C的坐标为(0,3).在Rt△BOC中,BC=2243+=5.如图1,过点N作NH⊥AB于点H,∴NH∥CO,∴△BHN∽△BOC,∴BCBNOCHN=,即53tHN=,∴HN=t53.∴S△MBN=21MB·HN=21(6-3t)·t53==+-tt591092109)1(1092+--t.当△MBN存在时,0<t<2,∴当t=1时,S△MBN最大=109.∴S与t的函数关系为S=109)1(1092+--t,S的最大值为109.(3)如图2,在Rt△OBC中,cos∠B=54=BCOB,设运动时间为t秒,则AM=3t,BN=t.∴MB=6-3t.当∠MNB=90°时,cos∠B=54=BMBN,即5436=-tt,解得t=1724.当∠BM'N'=90°时,cos∠B=5436=-tt,解得t=1930.综合上所述,当t=1724或t=1930时,△MBN为直角三角形.8. (2017江苏无锡,27,10分)如图,以原点O 为圆心,3为半径的圆与x 轴分别交于A 、B 两点(点B 在点A的右边),P 是半径OB 上一点,过P 且垂直于AB 的直线与⊙O 分别交于C 、D 两点(点C 在点D 的上方),直线AC 、DB 交于点E .若AC :CE =1:2. (1)求点P 的坐标;(2)求过点A 和点E ,且顶点在直线CD 上的抛物线的函数表达式.思路分析:(1)过点E 作E F ⊥x 轴于F ,设P (m ,0).①由相似三角形的判定与性质证得AF =3AP ,BF =3PB ;②由关系式AF -BF =AB ,可得m =1.∴点P 的坐标(1,0).(2)①由已知证得A (-3,0),E (9,),抛物线过点(5,0);②用待定系数法可得抛物线的函数表达式.解:(1)过点E 作E F ⊥x 轴于F ,∵CD ⊥AB ,∴CD ∥EF ,PC =PD . ∴△ACP ∽△AEF ,△BPD ∽△BEF . ∵AC :CE =1:2.∴AC :AE =1:3. ∴AP AF =CP EF =13,DP EF =PB BF =13. ∴AF =3AP ,BF =3PB . ∵AF -BF =AB .又∵⊙O 的半径为3,设P (m ,0), ∴3(3+m )-3(3-m )=6 ∴m =1.∴P (1,0)(2)∵P (1,0),∴OP =1,A (-3,0). ∵OA =3,∴AP =4,BP =2.∴AF =12. 连接BC .∵AB 是直径,∴∠ACB =90°.∵CD ⊥AB ,∴△ACP∽△CBP .∴AP CP =CPBP. ∴CP 2=AP ·BP =4×2=8. ∴CP =.∴EF =3CP =. ∴E (9,).∵抛物线的顶点在直线CD 上,∴CD 是抛物线的对称轴, ∴抛物线过点(5,0).设抛物线的函数表达式为y =ax 2+bx +c .根据题意得09-30255819a b ca b c a b c ⎧⎪+⎨⎪+⎩=+,=+,+,解得8484a b c ⎧⎪⎪⎪⎪⎨⎪⎪--⎪⎪⎩==-= ∴抛物线的函数表达式为yx 2x .9. (2017山东潍坊)(本小题满分13分)如图1,抛物线y =ax 2+bx +c 经过平行四边形ABCD 的顶点A (0,3)、B (-1,0)、D (2,3),抛物线与x 轴的另一交点为E .经过点E 的直线l 将平行四边形ABCD 分割为面积相等的两部分,与抛物线交于另一点F .点P 为直线l 上方抛物线上一动点,设点P 的横坐标为t . (1)求抛物线的解析式;(2)当t 何值时,△PFE 的面积最大?并求最大值的立方根;(3)是否存在点P 使△PFE 为直角三角形?若存在,求出t 的值;若不存在,说明理由.思路分析:(1)利用待定系数法列方程组求解抛物线的解析式;(2)由平行四边形的对称性可知直线l 必过其对称中心,同时利用抛物线的对称性确定E 点坐标,进而可求直线l 的解析式,结合二次函数解析式确定点F 的坐标.作PH ⊥x 轴,交l 于点M ,作FN ⊥PH ,列出PM 关于t 的解析式,最后利用三角形的面积得S △PFE 关于t 的解析式,利用二次函数的最值求得t 值,从而使问题得以解决; (3)分两种情形讨论:①若∠P 1AE =90°,作P 1G ⊥y 轴,易得P 1G =AG ,由此构建一元二次方程求t 的值;②若∠AP 2E =90°,作P 2K ⊥x 轴,AQ ⊥P 2K ,则△P 2KE ∽△AQP 2,由此利用对应边成比例构建一元二次方程求t 的值. 解:(1)将点A (0,3)、B (-1,0)、D (2,3)代入y =ax 2+bx +c ,得⎪⎩⎪⎨⎧=++=+-=,324,0,3c b a c b a c 得⎪⎩⎪⎨⎧-==-=.1,2,1c b a 所以,抛物线解析式为:y=-x 2+2x +3.(2)因为直线l 将平行四边形ABCD 分割为面积相等的两部分, 所以必过其对称中心(21,23). 由点A 、D 知,对称轴为x =1,∴E (3,0), 设直线l 的解析式为:y =kx +m ,代入点(21,23)和(3,0)得 ⎪⎩⎪⎨⎧=+=+.03,2321m k m k 解之得⎪⎪⎩⎪⎪⎨⎧=-=.59,53m k 所以直线l 的解析式为:y =53-x +59. 由⎪⎩⎪⎨⎧++-=+-=,32,59532x x y x y 解得x F =52-. 作PH ⊥x 轴,交l 于点M ,作FN ⊥PH .点P 的纵坐标为y P =-t 2+2t +3, 点M 的纵坐标为y M =53-t +59.所以PM =y P -y M =-t 2+2t +3+53t -59=-t 2+513t +56. 则S △PFE =S △PFM + S △PEM =21PM ·FN +21PM ·EH =21PM ·(FN + EH )=21·(-t 2+513t +56)(3+52) =1017-·(t -1013)2+100289×1017 所以当t =1013时,△PFE 的面积最大,最大值的立方根为31017100289⨯=1017. (3)由图可知∠PEA ≠90°.①若∠P 1AE =90°,作P 1G ⊥y 轴,因为OA =OE ,所以∠OAE =∠OEA =45°, 所以∠P 1AG =∠AP 1G =45°,所以P 1G =AG . 所以t =-t 2+2t +3-3,即-t 2+t =0, 解得t =1或t =0(舍去).②若∠AP 2E =90°,作P 2K ⊥x 轴,AQ ⊥P 2K , 则△P 2KE ∽△AQP 2,所以QP KEAQ K P 22=, 所以tt tt t t 233222+--=++-,即t 2-t -1=0,解之得t =251+或t =251-<52-(舍去).综上可知t =1或t =251+适合题意.10. (2017湖南岳阳,本题满分10分)如图,抛物线223y x bx c =++经过点()3,0B ,()0,2C -,直线l :2233y x =--交y 轴于点E ,且与抛物线交于A ,D 两点.P 为抛物线上一动点(不与A ,D 重合). (1) 求抛物线的解析式;(2) 当点P 在直线l 下方时,过点P 作PM x ∥轴交l 于点M ,PN y ∥轴交l 于点N .求PM PN +的最大值;(3) 设F 为直线l 上的点,以E ,C ,P ,F 为顶点的四边形能否构成平行四边形?若能,求出点F 的坐标;若不能,请说明理由.备用图解:(1)将()3,0B ,()0,2C -代入223y x bx c =++,得:6302b c c ++=⎧⎨=-⎩解得:432b c ⎧=-⎪⎨⎪=-⎩∴抛物线的解析式为:224233y x x =--;(2)设()224,21233P a a a a ⎛⎫---<< ⎪⎝⎭,则22,33N a a ⎛⎫-- ⎪⎝⎭∴222242133=3333222PN a a a ⎛⎫=-++--+≤ ⎪⎝⎭∵M ,N 在直线l :2233y x =--上,PM x ∥,PN y ∥∴23PN PM =∴51524PM PN PN +=≤即:PM PN +的最大值为:154;(3)能设22,33F m m ⎛⎫-- ⎪⎝⎭① 当EC 为边时,有224,233P m m m ⎛⎫-- ⎪⎝⎭,EC PF =即:22244=3333m m -++解得:m =,其中0m =时不成立,舍去; ② 当EC 为对角线时,PF 中点即为EC 中点(0,43-)2,23P m m ⎛⎫-- ⎪⎝⎭在抛物线上所以,224222333m m m +-=-解得:01m =-或,其中0m =时不成立,舍去;综上所述:F 点的坐标为:41,3⎛⎫- ⎪⎝⎭、()1,0-、⎝⎭、⎝⎭.11. (2017湖南常德,25,10分)如图12,已知抛物线的对称轴是y 轴,且点(2,2),(1,54)在抛物线上,点P 是抛物线上不与顶点N 重合的一动点,过点P 作PA ⊥x 轴于A ,PC ⊥y 轴于C ,延长PC 交抛物线于E ,设M 是O 关于抛物线顶点N 的对称点,D 是C 点关于N 的对称点. (1)求抛物线的解析式及顶点N 的坐标; (2)求证:四边形PMDA 是平行四边形;(3)求证:△DPE ∽△PAM P 的坐标.图12思路分析:(1)将点(2,2),(1,54)坐标代入y=ax2+k中求出解析式,即可得到顶点N的坐标;(2)根据解析式设出点P坐标,从而得到点A、C的坐标,再通过N的坐标求出点M的坐标和D的坐标,即可求出MD和PA 的长度,得出长度相等,而MD∥PA,所以四边形PMDA是平行四边形;(3)在(2)证明之后继续证明PM=PA,则四边形PMDA是菱形,∠MDP=12∠PDE=12∠ADM=12∠APM,所以∠PDE=∠APM,而△DPE和△PAM都是等腰三角形,顶角相等,则两个三角形相似.解:(1)设抛物线的解析式为:y=ax2+k,∵点(2,2),(1,54)在抛物线上,∴4254a ka k+=⎧⎪⎨+=⎪⎩,解得141ak⎧=⎪⎨⎪=⎩.∴该抛物线的解析式为:y=14x2+1,顶点N的坐标为(0,1);(2)设点P坐标为(x, 14x2+1),∵PA⊥x轴于A,PC⊥y轴于C,M是O关于抛物线顶点N的对称点,D是C点关于N的对称点.∴A(x,0),C(0,14x2+1),M(0,2),D(0,1-14x2);PA∥y轴;∴MD=2-(1-14x2)=14x2+1=PA且MD∥PA∴四边形PMDA是平行四边形;(3)由(2)得四边形PMDA是平行四边形,PC=x,CM=14x2+1-2=14x2-1;∵在Rt△PCM中,PM2114x==+=PA∴四边形PMDA 是菱形,△PAM 是等腰三角形; ∴∠APM =∠ADM ;∠MDP =12∠ADM ; 根据抛物线的对称性,PD =ED , ∴△DPE 是等腰三角形,DC 平分∠PDE , ∴∠MDP =12∠PDE , ∴∠PDE =∠APM ;又∵∠PDE ,∠APM 分别为等腰△DPE 和△PAM 的顶角; ∴△DPE ∽△PAM PE =2x ,AM =222x +∵PE :AM =3时,解得:x =23±; ∴相似比为3时P 点坐标为:(23±,4)12. 24.(2017湖北咸宁,24,12分)如图,抛物线c bx x y ++=221与x 轴交于A 、B 两点,与y 轴交于点C ,其对称轴交抛物线于点D ,交x 轴于点E ,已知OB=OC=6.⑴求抛物线的解析式及点D 的坐标;⑵连接BD ,F 为抛物线上一动点,当∠FAB=∠EDB 时,求点F 的坐标;⑶平行于x 轴的直线交抛物线于M 、N 两点,以线段MN 为对角线作菱形MPNQ ,当点P 在x 轴上,且PQ=12MN 时,求菱形对角线MN 的长.思路分析:(1)利用OB=OC=6得到点B(6,0),C(0,-6),将其代入抛物线的解析可以求出b 、c 的值,进而得到抛物线的解析式,最后通过配方得到顶点坐标;(2)由于F 为抛物线上一动点,∠FAB=∠EDB ,可以分两种情况求解:一是点F 在x 轴上方;二是点F 在x 轴下方.每一种情况都可以作FG ⊥x 轴于点G ,构造Rt △AFG 与Rt △DBE 相似,利用对应边成比例或三角函数的定义求点F 的坐标.(3)首先根据MN 与x 轴的位置关系画出符合要求的两种图形:一是MN 在x 轴上方;二是MN 在x 轴下方.设菱形对角线的交点T 到x 轴的距离为n ,利用PQ=12MN ,得到MT=2n ,进而得到点M 的坐标为(2+2n ,n),再由点M 在抛物线上,得21(22)2(22)62n n n =+-+-, 求出n 的值,最后可以求得MN=2MT=4n 的两个值. 解:(1)∵OB=OC=6, ∴B(6,0),C(0,-6).∴216+6026b c c ⎧⨯+=⎪⎨⎪=-⎩, 解得26b c =-⎧⎨=-⎩,∴抛物线的解析式为21262y x x =--. ……2分 ∵21262y x x =--=21(2)82x --, ∴点D 的坐标为(2,-8). ……4分 (2)如图,当点F 在x 轴上方时,设点F 的坐标为(x ,21262x x --).过点F 作FG ⊥x 轴于点G ,易求得OA=2,则AG=x+2,FG=21262x x --.∵∠FAB=∠EDB,∴tan∠FAG=tan∠BDE,即21261222x xx--=+,解得17x=,22x=-(舍去).当x=7时,y=92,∴点F的坐标为(7,92). ……6分当点F在x轴下方时,设同理求得点F的坐标为(5,72-).综上所述,点F的坐标为(7,92)或(5,72-). ……8分(3)∵点P在x轴上,∴根据菱形的对称性可知点P的坐标为(2,0).如图,当MN在x轴上方时,设T为菱形对角线的交点.∵PQ=12MN , ∴MT=2PT.设TP=n ,则MT=2n. ∴M(2+2n ,n).∵点M 在抛物线上, ∴21(22)2(22)62n n n =+-+-, 即2280n n --=.解得1n =,2n =(舍去).∴. ……10分当MN 在x 轴下方时,设TP=n ,得M(2+2n ,-n).∵点M 在抛物线上, ∴21(22)2(22)62n n n -=+-+-, 即22+80n n -=.解得114n -+=,214n -=(舍去).∴1-.综上所述,菱形对角线MN 1-. ……12分13. 24.(2017湖北宜昌)(本小题满分12分)已知抛物线y=ax 2+bx+c ,其中2a=b>0>c ,且a+b+c=0. (1)直接写出关于x 的一元二次方程ax 2+bx+c =0的一个根; (2)证明:抛物线y=ax 2+bx+c 的顶点A 在第三象限;(3)直线y= x+m 与轴,x y 轴分别相交于B,C 两点,与抛物线y=ax 2+bx+c 相交于A,D 两点.设抛物线y=ax 2+bx+c 的对称轴与x 轴相交于E ,如果在对称轴左侧的抛物线上存在点F ,使得△ADF 与△OCB 相似.并且12ADF ADE S S ∆∆=,求此时抛物线的表达式.xyO思路分析:(1)利用抛物线的对称轴、对称性及二次函数与方程的关系数形结合得出二次方程的根;(2)确定抛物线的顶点位置一可借助数形结合,二可借助顶点坐标的正负性;(3)借助一次函数与二次函数的关系确定与求解相关点的坐标,将坐标转化为相应的线段长,进而借助题意中的相似及面积关系等构建方程求解未知系数的值.解:(1)ax 2+bx+c =0的一个根为1(或者-3) (2)证明:∵ b =2a ,∴对称轴x=2ba-=-1,将b=2a 代入a+b+c=0.得c=-3a . 方法一:∵a=b>0>c ,∴b 2-4ac>0,∴244ac b a-<0, 所以顶点A (-1,244ac b a-)在第三象限.方法二:∵b =2a , c=-3a ,∴244ac b a -=221244a b a --=-4a <0, 所以顶点A (-1,244ac b a-)在第三象限.(3)∵b =2a , c=-3a∴242a a a -± ∴x 1=-3,x 2=1,所以函数表达式为y=ax 2+2ax-3a ,∵直线y= x+m 与x 轴、y 轴分别相交于B,C,两点,则OB=OC=m所以△BOC 是以∠BOC 为直角的等腰三角形,这时直线y=x+m 与对称轴x=-1的夹角∠BAE=45°.又因点F 在对称轴左侧的抛物线上,则∠BAE>45°,这时△BOC 与△ADF 相似,顶点A 只可能对应△BOC 中的直角顶点O ,即△ADF是以A 为直角顶点的等腰三角形,且对称轴是x =-1,设对称轴x =-1与OF 交于点G. ∵直线y=x+m 过顶点A ,所以m=1-4a ,∴直线解析式为y=x+1-4a,解方程组21423y x a y ax ax a =+-⎧⎨=+-⎩,解得1114x y a =-⎧⎨=-⎩,221114x ay a a ⎧=-⎪⎪⎨⎪=-⎪⎩, 这里的(-1,4a )即为顶点A ,点(1a -1,1a -4a )即为顶点D 的坐标(1a -1,1a -4a ) D 点到对称轴x=-1的距离为1a -1-(-1)=1a,AE =4a -=4a,S △ADE =12×1a×4a=2,即它的面积为定值.这时等腰直角△ADF 的面积为1,所以底边DF =2,而x=-1是它的对称轴,这时D,C 重合且在y 轴上,由1a-1=0,∴a=1,此时抛物线的解析式y=x 2+2x-314. (2017湖南邵阳,26,10分)(本小题满10分)如图(十六)所示,顶点(49-21,)的抛物线y =ax 2+bx+c 过点M (2,0). (1)求抛物线的解析式;(2)点A 是抛物线与x 轴的交点(不与点M 重合),点B 是抛物线与y 轴的交点,点C 是直线y =x +1上一点(处于x 轴下方),点D 是反比例函数y =xk(k >0)图象上一点.若以点A 、B 、C 、D 为顶点的四边形是菱形,求k 的值.思路分析:(1)已知抛物线的顶点坐标,可设顶点式为 y =a (x -21)2-49,再把点M (2,0)代入,可求a =1,所以抛物线的解析式可求.(2)先分别求出A 、B 两点的坐标,及AB 线段长,再根据反比例函数y =xk(k >0),考虑点C 在x 轴下方,故点D 只能在第一、三象限.确定菱形有两种情形:①菱形以AB 为边,如图一。

中考数学二次函数综合题汇编及答案解析

中考数学二次函数综合题汇编及答案解析
∵S△ACQ=2S△AOC,
∴S△ACF=2S△AOC,
∴AF=2OA=2,
∴F(1,0).
∵A(﹣1,0),C(0,﹣3),
∴直线AC的解析式为y=﹣3x﹣3.
∵AC∥FQ,
∴设直线FQ的解析式为y=﹣3x+b,
将F(1,0)代入,得0=﹣3+b,解得b=3,
∴直线FQ的解析式为y=﹣3x+3.
联立 ,
【详解】
解:(1)根据题意得,(60﹣x)×10+100=3×100,
解得:x=40,
60﹣40=20元,
答:这一星期中每件童装降价20元;
(2)设利润为w,
根据题意得,w=(x﹣30)[(60﹣x)×10+100]=﹣10x2+1000x﹣21000
=﹣10(x﹣50)2+4000,
答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.
【详解】
(1)∵抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0),
∴x1+x2=m,x1•x2=﹣(m+1),
∵x12+x22﹣x1x2=13,
∴(x1+x2)2﹣3x1x2=13,
∴m2+3(m+1)=13,
即m2+3m﹣10=0,
解得m1=2,m2=﹣5.
(2)当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?
【答案】(1)这一星期中每件童装降价20元;(2)每件售价定为50元时,一星期的销售利润最大,最大利润4000元.
【解析】
【分析】
(1)根据售量与售价x(元/件)之间的关系列方程即可得到结论.

北京市2017年中考数学试题及答案

北京市2017年中考数学试题及答案

北京市2017年中考数学试题及答案2017年北京市高级中等学校招生考试数学试卷一、选择题(本题共30分,每小题3分)1.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B . 线段PB 的长度C .线段PC 的长度D .线段PD 的长度2.若代数式4x x -有意义,则实数x 的取值范围是( ) A .0x = B .4x = C .0x ≠D .4x ≠3. 右图是某个几何题的展开图,该几何体是( )A . 三棱柱B . 圆锥C .四棱柱D . 圆柱4. 实数,,,a b c d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .4a >-B .0bd > C. a b >D .0b c +>5.下列图形中,是轴对称图形但不是中心对称图形的是( )A .B . C. D .6.若正多边形的一个内角是150°,则该正多边形的边数是( )A . 6B . 12 C. 16 D .187. 如果2210a a +-=,那么代数式242a a a a ⎛⎫- ⎪-⎝⎭g 的值是( )A . -3B . -1 C. 1 D .38.下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况.2011-2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)根据统计图提供的信息,下列推理不合理的是()A.与2015年相比,2016年我国与东欧地区的贸易额有所增长B.2011-2016年,我国与东南亚地区的贸易额逐年增长C. 2011-2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多9.小苏和小林在右图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如下图所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C. 小苏前15s跑过的路程大于小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次10. 下图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;② 随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③ 若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是( )A .①B .② C. ①② D .①③二、填空题(本题共18分,每题3分)11. 写出一个比3大且比4小的无理数:______________.12. 某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为____________.13.如图,在ABC ∆中,M N 、分别为,AC BC 的中点.若1CMN S∆=,则ABNM S =四边形 .14.如图,AB 为O e 的直径,C D 、为O e 上的点,AD CD =.若040CAB ∠=,则CAD ∠= .15.如图,在平面直角坐标系xOy中,AOB∆∆可以看作是OCD 经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一中由OCD∆的过程:.∆得到AOB16.下图是“作已知直角三角形的外接圆”的尺规作图过程已知:0∆∠=,求作Rt ABC,90Rt ABC C∆的外接圆.作法:如图.(1)分别以点A和点B为圆心,大于1AB的长为半径作弧,2两弧相交于,P Q 两点;(2)作直线PQ ,交AB 于点O ;(3)以O 为圆心,OA 为半径作O e .O e 即为所求作的圆.请回答:该尺规作图的依据是 .三、解答题 (本题共72分,第17题-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、证明过程或演算步骤.17. 计算:(004cos3012122+--.18. 解不等式组:()21571023x x x x ⎧+>-⎪⎨+>⎪⎩19.如图,在ABC ∆中,0,36AB AC A =∠=,BD 平分ABC ∠交AC 于点D .求证:AD BC =.20. 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据上图完成这个推论的证明过程.证明:()ADC ANF FGC NFGD SS S S ∆∆∆=-+矩形,ABC EBMF S S ∆=-矩形(____________+____________). 易知,ADC ABC SS ∆∆=,_____________=______________,______________=_____________. 可得NFGD EBMF S S =矩形矩形.21.关于x 的一元二次方程()23220x k x k -+++=.(1)求证:方程总有两个实数根;(2)若方程有一根小于1,求k 的取值范围.22. 如图,在四边形ABCD 中,BD 为一条对角线,0//,2,90AD BC AD BC ABD =∠=,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分,1BAD BC ∠=,求AC 的长.23. 如图,在平面直角坐标系xOy 中,函数()0k y x x =>的图象与直线2y x =-交于点()3,A m .(1)求k m 、的值;(2)已知点()(),0P n n n >,过点P 作平行于x 轴的直线,交直线2y x =-于点M ,过点P 作平行于y 轴的直线,交函数()0k y x x =>的图象于点N .①当1n =时,判断线段PM 与PN 的数量关系,并说明理由; ②若PN PM ≥,结合函数的图象,直接写出n 的取值范围.24.如图,AB 是O e 的一条弦,E 是AB 的中点,过点E 作EC OA ⊥于点C ,过点B 作O e 的切线交CE 的延长线于点D .(1)求证:DB DE=;(2)若12,5AB BD==,求O e的半径.25.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲 78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77乙 93 73 88 81 72 81 94 83 77 8380 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:成绩x人数部门4049x≤≤5059x≤≤6069x≤≤7079x≤≤8089x≤≤90100x≤≤甲0 0 1 11 7 1乙(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)分析数据:两组样本数据的平均数、中位数、众数如下表所示:部门平均数中位数众数甲78.3 77.5 75乙78 80.5 81得出结论:a.估计乙部门生产技能优秀的员工人数为____________;b.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)26.如图,P是AB所对弦AB上一动点,过点P作PM AB⊥交AB于点M,连接MB,过点P作PN MB=,设⊥于点N.已知6AB cm、两点间的距离为xcm,P N、两点间的距离为ycm.(当点A PP与点A或点B重合时,y的值为0)小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表: /x cm 0 12 3 4 5 6/y cm0 2.0 2.3 2.1 0.9 0(说明:补全表格时相关数值保留一位小数) (2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当PAN ∆为等腰三角形时,AP 的长度约为____________cm . 27.在平面直角坐标系xOy 中,抛物线243y x x =-+与x 轴交于点A B 、(点A 在点B 的左侧),与y 轴交于点C .(1)求直线BC 的表达式;(2)垂直于y 轴的直线l 与抛物线交于点()()1122,,,P x y Q x y ,与直线BC 交于点()33,N x y ,若123x xx <<,结合函数的图象,求123x xx ++的取值范围.28.在等腰直角ABC ∆中,090ACB ∠=,P 是线段BC 上一动点(与点B C 、不重合),连接AP ,延长BC 至点Q ,使得CQ CP =,过点Q 作QH AP ⊥于点H ,交AB 于点M .(1)若PAC α∠=,求AMQ ∠的大小(用含α的式子表示). (2)用等式表示线段MB 与PQ 之间的数量关系,并证明.29.在平面直角坐标系xOy 中的点P 和图形M ,给出如下的定义:若在图形M 上存在一点Q ,使得P Q 、两点间的距离小于或等于1,则称P 为图形M 的关联点. (1)当O e 的半径为2时,①在点1231135,0,,,,02222P P P ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中,O e 的关联点是_______________.②点P 在直线y x =-上,若P 为O e 的关联点,求点P 的横坐标的取值范围.(2)C e 的圆心在x 轴上,半径为2,直线1y x =-+与x 轴、y轴交于点A B 、.若线段AB 上的所有点都是C e 的关联点,直接写出圆心C 的横坐标的取值范围.2017年北京市高级中等学校招生考试数学试卷答案一、选择题1-5: BDACA 6-10: BCBDB二、填空题113. (答案不唯一)12.13. 3 14.25°三、解答题。

2017全国中考数学真题分类-二次函数概念、性质和图象(选择题+填空题+解答题)解析版

2017全国中考数学真题分类-二次函数概念、性质和图象(选择题+填空题+解答题)解析版

2017全国中考数学真题分类知识点18二次函数概念、性质和图象(选择题+填空题+解答题)解析版一、选择题1. .(2017四川广安,10,3分)如图所示,抛物线y =ax ²+bx +c 的顶点为B (-1,3),与x 轴的交点A 在点(-3,0)和(-2,0)之间,以下结论:①b ²-4ac =0 ②a +b +c >0 ③2a -b =0 ④c -a =3A .1B .2C .3D .4答案:B ,解析:由图象可知,抛物线与x 轴有两个交点,∴b ²-4ac >0,故结论①不正确;∵抛物线的对称轴为x =-1,与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,∴抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,∴当x =1时,y <0,∴a +b +c <0,故结论②不正确.∵抛物线的对称轴x =-2ba=-1,∴2a =b ,即2a -b =0,故结论③正确;∵抛物线y =ax ²+bx+c 的顶点为B (-1,3),∴a -b +c =3,∵抛物线的对称轴x =-1,∴2a =b ,∴a -2a +c =3,即c -a =3,故结论④正确;综上所述,正确的结论有2个.故选B .2. (2017浙江丽水·8·3分)将函数y =x 2的图象用下列方法平移后,所得的图象不经过点A (1,4)的方法是( )A .向左平移1个单位B .向右平移3个单位C .向上平移3个单位D .向下平移1个单位答案:D . 解析: 选项 知识点结果 A将函数y =x 2的图象向左平移1个单位得到函数y =(x +1)2,其图象经过点(1,4).×B 将函数y =x 2的图象向右平移3个单位得到函数y =(x -3)2,其图象经过点(1,4). ×C 将函数y =x 2的图象向上平移3个单位得到函数y =x 2+3,其图象经过点(1,4). ×D 将函数y =x 2的图象向下平移1个单位得到函数y =x 2-1,其图象不经过点(1,4).√3. (2017山东枣庄12,3分)已知函数221y ax ax =--(a 是常数,0a ≠),下列结论正确的是A .当a =1时,函数图象经过点(-1,0)B .当a =-2时,函数图象与x 轴没有交点C .若a <0,函数图象的顶点始终在x 轴的下方D .若a >0,则当1x ≥时,y 随x 的增大而增大答案:D ,解析:A 、当a =1时,函数解析式为y =x 2-2x -1,当x =-1时,y =1+2-1=2, ∴当a =1时,函数图象经过点(-1,2),∴A 选项不符合题意; B 、当a =2时,函数解析式为y =-2x 2+4x -1,令y =-2x 2+4x -1=0,则△=42-4×(-2)×(-1)=8>0,∴当a =-2时,函数图象与x 轴有两个不同的交点,∴B 选项不符合题意;C 、∵y =ax 2-2ax -1=a (x -1)2-1-a ,∴二次函数图象的顶点坐标为(1,-1-a ),当-1-a <0时,有a >-1,∴C 选项不符合题意;D 、∵y =ax 2-2ax -1=a (x -1)2-1-a ,∴二次函数图象的对称轴为x =1.若a >0,则当x ≥1时,y 随x 的增大而增大,∴D 选项符合题意.故选D .4. (2017四川成都,10,3分)在平面直角坐标系xOy 中,二次函数2y ax bx c =++的图像如图所示,下列说法正确的是 ( )A .20,40abc b ac <-> B .20,40abc b ac >->C. 20,40abc b ac <-<D .20,40abc b ac >-<答案:B ,解析:由二次函数2y ax bx c =++的图象开口向上,则a >0,与y 轴交点在y 轴的负半轴上,由c <0,对称轴在y 轴的左侧,则2b a->0,所以b <0,所以0abc >;图象与x 轴有两点交点,则240b ac ->,综上,故选B .5. (2017浙江金华,6,3分)对于二次函数y =-(x -1)2+2的图象与性质,下列说法正确的是A .对称轴是直线x =1,最小值是2B .对称轴是直线x =1,最大值是2C .对称轴是直线x =-1,最小值是2D .对称轴是直线x =-1,最大值是2 答案:B ,解析:二次函数y =-(x -1)2+2的对称轴是直线x =1. ∵-1<0,∴抛物线开口向下,有最大值,最大值是2.6. (2017安徽中考·9.4分)已知抛物线2y ax bx c =++与反比例函数by x=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y bx ac =+的图象可能是( )答案:B .解析:由公共点的横坐标为1,且在反比例函数by x=的图象上,当x =1时,y =b ,即公共点坐标为(1,b ),又点(1,b )在抛物线2y ax bx c =++上,得a +b +c =b ,a +c =0,由a ≠0知ac <0,一次函数y bx ac =+的图象与y 轴交点在负半轴上,反比例函数by x=的图象的一支在第一象限,b >0,一次函数y bx ac =+的图象满足y 随x 增大而增大,选项B 符合条件,选B .7. (2017山东德州,7,3分)下列函数中,对于任意实数x 1,x 2,当x 1>x 2时,满足y 1<y 2的是( )A .y =-3x +2B .y =2x +1C .y =2x 2+1D .y =x1-答案:A ,解析:一次函数y =-3x +2中,由于k =-3<0,所以y 随着x 的增大而减小,即对于任意实数x 1,x 2,当x 1>x 2时,满足y 1<y 2. 8. (2017山东威海,11,3分).已知二次函数y =ax ²+bx +c (a ≠0)的图像如图所示.若正比例函数y =(b +c )x 与反比例函数y =a b cx-+在同一坐标系中的大致图像是( )答案:C,解析:由抛物线知a>0,b<0,c>0,故a-b+c>0,反比例函数过一三象限;当x=1时,y=a+b+c <0,即b+c<-a, 因为a>0,所以b+c<0,所以正比例函数过二四象限,故选C.9.(2017山东菏泽,8,3分)一次函数y=ax+b和反比例函数y=cx在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象可能是()答案:A,解析:根据反比例函数图象和一次函数图象经过的象限,即可得出a<0、b>0、c<0,由此即可得出:二次函数y=ax2+bx+c的图象开口向下,选项D不符合题意,对称轴x=-2ba>0,选项B不符合题意,与y轴的交点在y轴负半轴,选项C不符合题意,只有选项A符合题意.10. 10.(2017年四川绵阳,10,3分)将二次函数y=x2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围是A.b>8 B.b>-8 C.b≥8 D.b≥-8答案:D 解析:二次函数向下平移1个单位,再向右平移3个单位后,得到y=(x-3)2+1,再结合与一次函数y=2x+b有公共点,联立方程组,建立关于x的一元二次方程,利用一元二次方程有解的条件△≥0,可求出b的范围.11. (2017年四川南充,10,3分)二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图5所示,下列结论错误的是( )A.4ac<b2B.abc<0 C.b+c>3a D.a<bxOy--图5(8题图) A. B. C. D答案:D 解析:(1)∵抛物线与横轴有两个交点,∴△>0,即b 2-4ac >0.∴4ac <b 2.可见选项A 中的结论正确.(2)∵抛物线的开口向下,∴a <0;∵对称轴在y 轴左边,∴-2b a<0.∴b <0;∵抛物线与y 轴的负半轴相交,∴c <0.∴abc <0.可见选项B 中的结论正确. (3)∵-2b a>-1,a <0,∴b >2a ①.∵x =-1时,y >0,∴a -b +c >0②.①+②,得c >a ③.①+③,得b +c >3a .可见选项C 中的结论正确. (4)∵-2b a<-12,a <0,∴a >b .可见选项D 中的结论错误.综上所述,选项D .12. (2017浙江舟山,10,3分)下列关于函数y =x 2-6x +10的四个命题:①当x =0时,y 有最小值10;②n 为任意实数,x =3+n 时的函数值大于x =3-n 时的函数值;③若n >3,且n 是整数,当n ≤x ≤n +1时,y 的整数值有(2n -4)个;④若函数图象过点(a ,y 0)和(b ,y 0+1),其中a >0,b >0,则a <b .其中真命题的序号是( ) A .① B .②C .③D .④答案:C ,解析:因为y =x 2-6x +10=(x -3)2+1,所以当x =3时,y 有最小值1,故①错误;n 为任意实数,当x =3+n 时,y =(3+n -3)2+1= n 2+1, 当x =3-n 时,y =(3-n -3)2+1= n 2+1,所以两函数值相等,故②错误;若n >3,且n 是整数,当n ≤x ≤n +1时,令x =n ,则y 1=(n -3)2+1= n 2-6n +10, 令x =n +1,则y 2=(n +1-3)2+1= n 2-4n +5, 由于y 2- y 1=2n -5,所以之间的整数值的个数是2n -5+1=2n +4个,故③正确;由二次函数的图象知④错误.令x =4,则y =(4-3)2+1=2, 令x =5,则y =(5-3)2+1=5,y 的整数值有2,3,4,5,2n -4=2×4-4=4个,令x =6,则y =(6-3)2+1=10, y 的整数值有5,6,7,8,9,10,2n -4=2×5-4=6个,令x =7,则y =(7-3)2+1=10, y 的整数值有10,11,12,13,14,15,16,17共8个,2n -4=2×6-4=8个, 13. (2017四川攀枝花,9,3分)二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,则下列命题中正确的是( )A .a >b >cB .一次函数y =ax +c 的图像不经过第四象限C .m (am +b )+b =a (m 是任意实数)D .3b +2c >0 答案:D解析:由题意知抛物线对称轴为12b x a =-=-,即12a b =,故A 错误;a >0,c <0∴一次函数y =ax +c 的图像不经过第二象限,故B 错误;m (am +b )+b =a ,2b a =可得m =-112a b =,故C 错误;又当1x =时,0y a b c =++>,∴102b bc ++>,即320b c +>,故选D .14. (2017江苏盐城,6,3分)如图,将函数y =21(2)12x -+的图像沿y 轴向上平移得到一条新函数的图像,其中点A (1,m )、B (4,n )平移后的对应点分别为点A ′、B ′.若曲线段AB 扫过的面积为9(图中的阴影部分),则新图像的函数表达式是A .y =21(2)22x --B .y =21(2)72x -+C .y =21(2)52x --D .y =21(2)42x -+答案:D ,解析:连接AB 、A ′B ′,则S 阴影=S 四边形ABB ′A ′.由平移可知,AA ′=BB ′,AA ′∥BB ′,所以四边形ABB ′A ′是平行四边形.分别延长A ′A 、B ′B 交x 轴于点M 、N .因为A (1,m )、B (4,n ),所以MN =4-1=3.因为ABB A S''=AA ′·MN ,所以9=3AA ′,解得AA ′=3,即沿y 轴向上平移了3个单位,所以新图像的函数表达式y =21(2)42x -+.B 'A 'ABOyx第6题图2 的增大而增大;④方程ax 2+bx +c =0有一个根大于4.其中正确的结论有 A .1个 B .2个 C .3个 D .4个答案:B ,解析:由表格所给出的自变量与函数值变化趋势,随x 的值增大,y 值先增大后变小可知抛物线的开口向下;由对称性知其图象的对称轴为x =32,所以当x <1时,函数值y 随x 的增大而增大正确;由表可知,方程ax 2+bx +c =0根在-1与0和3与4之间所以正确的2个.此题也可求出解析式进行判断.16.7.(2017江苏连云港,7,3分)已知抛物线20yax a 过12,Ay ,21,B y 两点,则下列关系式一定正确的是A .120y yB .210y y C .120y yD .210y y答案:C ,解析:∵20y ax a ∴抛物线的开口向上,对称轴为y 轴,12,Ay 在对称轴的左侧,21,B y 在对称轴的右侧,点A 离开对称轴的距离大于点B 离开对称轴的距离,∴120yy 因此选择C 选项.17. (2017四川达州8,3分)已知二次函数2y ax bx c =++的图象如下,则一次函数2y ax b =-与反比例函数cy x=在同一平面直角坐标系中的图象大致是( )A B C D答案C,解析:由于抛物线的开口向下,∴a<0,由于抛物线与y轴的交点在y轴的正半轴,∴c>0,由于抛物线的对称轴是x=-1∴-12ba=-,∴b=2a,∴y=ax-4a,对于方程组4y ax acyx=-⎧⎪⎨=⎪⎩,消去y,可整理成:240ax ax c--=,∆=2164a ac+,∵抛物线过点(-3,0),∴9a-3b+c=0,∴c=-3a,∴2222164=161240a ac a a a+-=>,∴直线与反比例函数有交点,故本题选C.18. 11.(2017四川眉山,11,3分)若一次函数y=(a+1)x+a的图象过第一、三、四象限,则二次函数y=ax2-axA.有最大值a4B.有最大值-a4C.有最小值a4D.有最小值-a4答案:B,解析:因为一次函数y=(a+1)x+a的图象过第一、三、四象限,所以⎩⎨⎧a+1>0,a<0,因此-1<a<0,而y=ax2-ax=a(x-12)2-14a,所以二次函数有最大值-a4.19. 8.(2017四川宜宾,8,3分)如图,抛物线211(1)12y x=++与22(4)3y a x=--交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于B、C两点,且D、E分别为顶点.则下列结论:①23a=;②AC=AE;③△ABD是等腰直角三角形;④当x>1时,y1>y2,其中正确结论的个数是A .1个B .2个C .3个D .4个答案:C ,解析:抛物线22(4)3y a x =--过点A (1,3),∴3=9a -3,解得a =23,由题意可知E (4,﹣3),点A (1,3)、C 关于x =4对称,得到C (7,3),∴AC =6,而AE = ,故AC ≠AE ,由抛物线的对称性可知,AD =BD 显然.根据抛物线的对称性可知,AD =BD ,两个函数比较大小,首先要知道这两个函数图象的交点,则2212(1)1(4)323x x ++=--,解得x 1=1,x 2=37,所以当1<x <37时,y 1>y 2.20. (2017山东滨州,7,3分)将抛物线y =2x 2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为( )A .y =2(x -3)2-5B .y =2(x +3)2+5C .y =2(x -3)2+5D .y =2(x +3)2-5答案:A ,解析:抛物线y =2x 2的顶点坐标为(0,0), ∵向右平移3个单位,再向下平移5个单位, ∴平移后的顶点坐标为(3,﹣5),∴平移后的抛物线解析式为y =2(x -3)2-5.故选A.21. 8.(2017江苏苏州,8,3分)若二次函数y =ax 2+1的图象经过点(-2,0),则关于x 的方程 a (x -2)2+1=0的实数根为 A .x 1=0,x 2=4B .x 1=—2,x 2=6C . x 1=32,x 2=52D .x 1=—4,x 2=0答案:A ,解析:根据“二次函数图象上点的坐标特征”可得4a +1=0,a =-14,则21(2)104x --+=,解一元二次方程得x 1=0,x 2=4.22. 9.(2017甘肃兰州,9,4分)抛物线y =3x ²-3向右平移3个单位长度,得到新抛物线的表达式为A. y =3(x -3)²-3B. y =3x ²C. y =3(x +3)²-3D. y =3x ²-6【答案】A【解析】由题知,y =3x ²-3为顶点式,直接根据二次函数图像左加右减,上加下减的平移规律进行解答即可。

2017年中考数学分类汇编二次函数压轴题14道

2017年中考数学分类汇编二次函数压轴题14道

中考数学分类汇编二次函数压轴题1.(2016•成都第28题)如图,在平面直角坐标系xOy 中,抛物线y =a (x +1)2﹣3与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C (0,﹣),顶点为D ,对称轴与x 轴交于点H ,过点H 的直线l 交抛物线于P ,Q 两点,点Q 在y 轴的右侧. (1)求a 的值及点A ,B 的坐标;(2)当直线l 将四边形ABCD 分为面积比为3:7的两部分时,求直线l 的函数表达式;(3)当点P 位于第二象限时,设PQ 的中点为M ,点N 在抛物线上,则以DP 为对角线的四边形DMPN 能否为菱形?若能,求出点N 的坐标;若不能,请说明理由.2.(2016•扬州第28题)如图1,二次函数2y ax bx =+的图像过点A (-1,3),顶点B 的横坐标为1.(1)求这个二次函数的表达式;(2)点P 在该二次函数的图像上,点Q 在x 轴上,若以A 、B 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐标; (3)如图3,一次函数y kx =(k >0)的图像与该二次函数的图像交于O 、C 两点,点T 为该二次函数图像上位于直线OC 下方的动点,过点T 作直线TM ⊥OC ,垂足为点M ,且M 在线段OC 上(不与O 、C 重合),过点T 作直线TN ∥y轴交OC 于点N 。

若在点T 运动的过程中,2ON OM为常数,试确定k 的值。

xy图3NM OC Tx y图2(备用图)BAOxy13-1图1B AO二、与轴对称和等腰三角形性质有关的综合题3.(2016•益阳第21题)如图,顶点为(3,1)A 的抛物线经过坐标原点O ,与x 轴交于点B .(1)求抛物线对应的二次函数的表达式;(2)过B 作OA 的平行线交y 轴于点C ,交抛物线于点D ,求证:△OCD ≌△OAB ; (3)在x 轴上找一点P ,使得△PCD 的周长最小,求出P 点的坐标.4.(2016•哈尔滨第27题)如图,二次函数y =ax 2+bx (a ≠0)的图象经过点A (1,4),对称轴是直线x =-32,线段AD 平行于x 轴,交抛物线于点D .在y 轴上取一点C (0,2),直线AC 交抛物线于点B ,连结OA ,OB ,OD ,BD . (1)求该二次函数的解析式;(2)设点F 是BD 的中点,点P 是线段DO 上的动点,将△BPF 沿边PF 翻折,得到△B ′PF ,使△B ′PF 与△DPF 重叠部分的面积是△BDP 的面积的 14 ,若点B ′在OD 上方,求线段PD 的长度;(3)在(2)的条件下,过B ′作B ′H ⊥PF 于H ,点Q 在OD 下方的抛物线上,连接AQ 与B ′H 交于点M ,点G 在线段AM 上,使∠HPN +∠DAQ =135°,延长PG 交AD 于N .若AN + B ′M =52,求点Q 的坐标.xyA D CBOxyA DCBO xyA DCBOKOyxC BA图2三、与图形的平移与旋转变换性质有关的综合题5.(2016•重庆第26题)如图1,二次函数1x 2-x 21y 2+=的图象与一次函数y =kx +b (k ≠0)的图象交于A ,B 两点,点A 的坐标为(0,1),点B 在第一象限内,点C 是二次函数图象的顶点,点M 是一次函数y =kx +b (k ≠0)的图象与x 轴的交点,过点B 作x 轴的垂线,垂足为N ,且S △AMO ︰S 四边形AONB =1︰48。

2017届中考数学专项训练二次函数及其图象含解析

2017届中考数学专项训练二次函数及其图象含解析

二次函数及其图象一、选择题1.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.a>0 B.当﹣1<x<3时,y>0C.c<0 D.当x≥1时,y随x的增大而增大2.已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m=0的两实数根是()A.x1=1,x2=﹣1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=33.已知两点A(﹣5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点.若y1>y2≥y0,则x0的取值范围是()A.x0>﹣5 B.x0>﹣1 C.﹣5<x0<﹣1 D.﹣2<x0<34.已知二次函数y=a(x+1)2﹣b(a≠0)有最小值1,则a,b的大小关系为()A.a>b B.a<b C.a=b D.不能确定5.如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s (cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.二、填空题6.二次函数y=x2+1的图象的顶点坐标是.7.已知点A(x1,y1)、B(x2,y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1y2(填“>”、“<”或“=”).8.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是.9.若抛物线y=x2+bx+c与x轴只有一个交点,且过点A(m,n),B(m+6,n),则n= .10.已知二次函数的y=ax2+bx+c(a≠0)图象如图所示,有下列5个结论:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m(am+b)(m≠1的实数),其中正确结论的序号有.三、解答题(共40分)11.当k分别取﹣1,1,2时,函数y=(k﹣1)x2﹣4x+5﹣k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.12.已知二次函数y=a(x﹣m)2﹣a(x﹣m)(a,m为常数,且a≠0).(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点.(2)设该函数的图象的顶点为C,与x轴交于A,B两点,与y轴交于D点.①当△ABC的面积为1时,求a的值.②当△ABC的面积与△ABD的面积相等时,求m的值.13.为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?14.)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)设点M(3,m),求使MN+MD的值最小时m的值;(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.二次函数及其图象参考答案与试题解析一、选择题1.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.a>0 B.当﹣1<x<3时,y>0C.c<0 D.当x≥1时,y随x的增大而增大【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:A、抛物线的开口方向向下,则a<0.故A选项错误;B、根据图示知,抛物线的对称轴为x=1,抛物线与x轴的一交点的横坐标是﹣1,则抛物线与x轴的另一交点的横坐标是3,所以当﹣1<x<3时,y>0.故B选项正确;C、根据图示知,该抛物线与y轴交于正半轴,则c>0.故C选项错误;D、根据图示知,当x≥1时,y随x的增大而减小,故D选项错误.故选:B.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.2.已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m=0的两实数根是()A.x1=1,x2=﹣1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=3【考点】抛物线与x轴的交点.【分析】关于x的一元二次方程x2﹣3x+m=0的两实数根就是二次函数y=x2﹣3x+m(m为常数)的图象与x轴的两个交点的横坐标.【解答】解:∵二次函数的解析式是y=x2﹣3x+m(m为常数),∴该抛物线的对称轴是:x=.又∵二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),∴根据抛物线的对称性质知,该抛物线与x轴的另一个交点的坐标是(2,0),∴关于x的一元二次方程x2﹣3x+m=0的两实数根分别是:x1=1,x2=2.故选B.【点评】本题考查了抛物线与x轴的交点.解答该题时,也可以利用代入法求得m的值,然后来求关于x的一元二次方程x2﹣3x+m=0的两实数根.3.已知两点A(﹣5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点.若y1>y2≥y0,则x0的取值范围是()A.x0>﹣5 B.x0>﹣1 C.﹣5<x0<﹣1 D.﹣2<x0<3【考点】二次函数图象上点的坐标特征.【专题】压轴题.【分析】先判断出抛物线开口方向上,进而求出对称轴即可求解.【解答】解:∵点C(x0,y0)是抛物线的顶点,y1>y2≥y0,∴抛物线有最小值,函数图象开口向上,∴a>0;∴25a﹣5b+c>9a+3b+c,∴<1,∴﹣>﹣1,∴x0>﹣1∴x0的取值范围是x0>﹣1.故选:B.【点评】本题考查了二次函数图象上点坐标特征,主要利用了二次函数的增减性与对称性,根据顶点的纵坐标最小确定出抛物线开口方向上是解题的关键.4.已知二次函数y=a(x+1)2﹣b(a≠0)有最小值1,则a,b的大小关系为()A.a>b B.a<b C.a=b D.不能确定【考点】二次函数的最值.【专题】压轴题;探究型.【分析】根据函数有最小值判断出a的符号,进而由最小值求出b,比较a、b可得出结论.【解答】解:∵二次函数y=a(x+1)2﹣b(a≠0)有最小值,∴抛物线开口方向向上,即a>0;又最小值为1,即﹣b=1,∴b=﹣1,∴a>b.故选A.【点评】本题考查的是二次函数的最值,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.5.如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s (cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题.【分析】由点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,得到BE=CF=t,则CE=8﹣t,再根据正方形的性质得OB=OC,∠OBC=∠OCD=45°,然后根据“SAS”可判断△OBE≌△OCF,所以S△OBE=S△OCF,这样S四边形OECF=S△OBC=16,于是S=S四边形OECF﹣S△CEF=16﹣(8﹣t)•t,然后配方得到S=(t﹣4)2+8(0≤t≤8),最后利用解析式和二次函数的性质对各选项进行判断.【解答】解:根据题意BE=CF=t,CE=8﹣t,∵四边形ABCD为正方形,∴OB=OC,∠OBC=∠OCD=45°,∵在△OBE和△OCF中,∴△OBE≌△OCF(SAS),∴S△OBE=S△OCF,∴S四边形OECF=S△OBC=×82=16,∴S=S四边形OECF﹣S△CEF=16﹣(8﹣t)•t=t2﹣4t+16=(t﹣4)2+8(0≤t≤8),∴s(cm2)与t(s)的函数图象为抛物线一部分,顶点为(4,8),自变量为0≤t≤8.故选:B.【点评】本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.二、填空题6.二次函数y=x2+1的图象的顶点坐标是(0,1).【考点】二次函数的性质.【分析】根据顶点式解析式写出顶点坐标即可.【解答】解:二次函数y=x2+1的图象的顶点坐标是(0,1).故答案为:(0,1).【点评】本题考查了二次函数的性质,熟练掌握顶点式解析式是解题的关键.7.已知点A(x1,y1)、B(x2,y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1>y2(填“>”、“<”或“=”).【考点】二次函数图象上点的坐标特征.【分析】先根据二次函数的解析式得出函数图象的对称轴,再判断出两点的位置及函数的增减性,进而可得出结论.【解答】解:∵a=1>0,∴二次函数的图象开口向上,由二次函数y=(x﹣1)2+1可知,其对称轴为x=1,∵x1>x2>1,∴两点均在对称轴的右侧,∵此函数图象开口向上,∴在对称轴的右侧y随x的增大而增大,∵x1>x2>1,∴y1>y2.故答案为:>.【点评】本题考查的是二次函数图象上点的坐标特点,根据题意判断出A、B两点的位置是解答此题的关键.8.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是﹣2<k<.【考点】二次函数的性质.【专题】压轴题.【分析】根据∠AOB=45°求出直线OA 的解析式,然后与抛物线解析式联立求出有一个公共点时的k 值,即为一个交点时的最大值,再求出抛物线经过点B 时的k 的值,即为一个交点时的最小值,然后写出k 的取值范围即可.【解答】解:由图可知,∠AOB=45°,∴直线OA 的解析式为y=x ,联立消掉y 得,x 2﹣2x+2k=0,△=b 2﹣4ac=(﹣2)2﹣4×1×2k=0,即k=时,抛物线与OA 有一个交点,此交点的横坐标为1,∵点B 的坐标为(2,0),∴OA=2,∴点A 的坐标为(,), ∴交点在线段AO 上;当抛物线经过点B (2,0)时,×4+k=0,解得k=﹣2,∴要使抛物线y=x 2+k 与扇形OAB 的边界总有两个公共点,实数k 的取值范围是﹣2<k <.故答案为:﹣2<k <. 【点评】本题考查了二次函数的性质,主要利用了联立两函数解析式确定交点个数的方法,根据图形求出有一个交点时的最大值与最小值是解题的关键.9.若抛物线y=x2+bx+c与x轴只有一个交点,且过点A(m,n),B(m+6,n),则n= 9 .【考点】抛物线与x轴的交点.【分析】首先,由“抛物线y=x2+bx+c与x轴只有一个交点”推知x=﹣时,y=0.且b2﹣4c=0,即b2=4c;其次,根据抛物线对称轴的定义知点A、B关于对称轴对称,则A(﹣﹣3,n),B(﹣+3,n);最后,根据二次函数图象上点的坐标特征知n=(﹣﹣3)2+b(﹣﹣3)+c=﹣b2+c+9,所以把b2=4c代入即可求得n的值.【解答】解:∵抛物线y=x2+bx+c与x轴只有一个交点,∴当x=﹣时,y=0.且b2﹣4c=0,即b2=4c.又∵点A(m,n),B(m+6,n),∴点A、B关于直线x=﹣对称,∴A(﹣﹣3,n),B(﹣+3,n)将A点坐标代入抛物线解析式,得:n=(﹣﹣3)2+b(﹣﹣3)+c=﹣b2+c+9∵b2=4c,∴n=﹣×4c+c+9=9.故答案是:9.【点评】本题考查了抛物线与x轴的交点.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2﹣4ac决定抛物线与x轴的交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.10.已知二次函数的y=ax2+bx+c(a≠0)图象如图所示,有下列5个结论:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m(am+b)(m≠1的实数),其中正确结论的序号有①③④.【考点】二次函数图象与系数的关系.【专题】压轴题.【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①由图象可知:a<0,b>0,c>0,abc<0,故此选项正确;②当x=﹣1时,y=a﹣b+c<0,即b>a+c,错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故此选项正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故此选项正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b>am2+bm,即a+b>m(am+b),故此选项错误.故①③④正确.故答案为:①③④.【点评】此题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.三、解答题(共40分)11.当k分别取﹣1,1,2时,函数y=(k﹣1)x2﹣4x+5﹣k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.【考点】二次函数的最值.【专题】分类讨论.【分析】当k分别取﹣1,1,2时,函数y=(k﹣1)x2﹣4x+5﹣k表示不同类型的函数,需要分类讨论,最终确定函数的最值.【解答】解:k可取值﹣1,1,2(1)当k=1时,函数为y=﹣4x+4,是一次函数(直线),无最值;(2)当k=2时,函数为y=x2﹣4x+3,为二次函数.此函数开口向上,只有最小值而无最大值;(3)当k=﹣1时,函数为y=﹣2x2﹣4x+6,为二次函数.此函数开口向下,有最大值.因为y=﹣2x2﹣4x+6=﹣2(x+1)2+8,则当x=﹣1时,函数有最大值为8.【点评】本题考查了二次函数的最值.需要根据k的不同取值进行分类讨论,这是容易失分的地方.12.已知二次函数y=a(x﹣m)2﹣a(x﹣m)(a,m为常数,且a≠0).(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点.(2)设该函数的图象的顶点为C,与x轴交于A,B两点,与y轴交于D点.①当△ABC的面积为1时,求a的值.②当△ABC的面积与△ABD的面积相等时,求m的值.【考点】二次函数综合题.【专题】压轴题.【分析】(1)把(x﹣m)看作一个整体,令y=0,利用根的判别式进行判断即可;(2)①令y=0,利用因式分解法解方程求出点A、B的坐标,然后求出AB,再把抛物线转化为顶点式形式求出顶点坐标,再利用三角形的面积公式列式进行计算即可得解;②令x=0求出点D的坐标,然后利用三角形的面积列式计算即可得解.【解答】(1)证明:令y=0,a(x﹣m)2﹣a(x﹣m)=0,△=(﹣a)2﹣4a×0=a2,∵a≠0,∴a2>0,∴不论a与m为何值,该函数的图象与x轴总有两个公共点;(2)解:①y=0,则a(x﹣m)2﹣a(x﹣m)=a(x﹣m)(x﹣m﹣1)=0,解得x1=m,x2=m+1,∴AB=(m+1)﹣m=1,y=a(x﹣m)2﹣a(x﹣m)=a(x﹣m﹣)2﹣,△ABC的面积=×1×|﹣|=1,解得a=±8;②x=0时,y=a(0﹣m)2﹣a(0﹣m)=am2+am,所以,点D的坐标为(0,am2+am),△ABD的面积=×1×|am2+am|,∵△ABC的面积与△ABD的面积相等,∴×1×|am2+am|=×1×|﹣|,整理得,m2+m﹣=0或m2+m+=0,解得m=或m=﹣.【点评】本题是对二次函数的综合考查,主要利用了根的判别式,三角形的面积,把(x﹣m)看作一个整体求解更加简便.13.为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?【考点】二次函数的应用.【分析】(1)把x=20代入y=﹣10x+500求出销售的件数,然后求出政府承担的成本价与出厂价之间的差价;(2)由总利润=销售量•每件纯赚利润,得w=(x﹣10)(﹣10x+500),把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;(3)令﹣10x2+600x﹣5000=3000,求出x的值,结合图象求出利润的范围,然后设政府每个月为他承担的总差价为p元,根据一次函数的性质求出总差价的最小值.【解答】解:(1)当x=20时,y=﹣10x+500=﹣10×20+500=300,300×(12﹣10)=300×2=600元,即政府这个月为他承担的总差价为600元.(2)由题意得,w=(x﹣10)(﹣10x+500)=﹣10x2+600x﹣5000=﹣10(x﹣30)2+4000∵a=﹣10<0,∴当x=30时,w有最大值4000元.即当销售单价定为30元时,每月可获得最大利润4000元.(3)由题意得:﹣10x2+600x﹣5000=3000,解得:x1=20,x2=40.∵a=﹣10<0,抛物线开口向下,∴结合图象可知:当20≤x≤40时,4000>w≥3000.又∵x≤25,∴当20≤x≤25时,w≥3000.设政府每个月为他承担的总差价为p元,∴p=(12﹣10)×(﹣10x+500)=﹣20x+1000.∵k=﹣20<0.∴p随x的增大而减小,∴当x=25时,p有最小值500元.即销售单价定为25元时,政府每个月为他承担的总差价最少为500元.【点评】本题主要考查了二次函数的应用的知识点,解答本题的关键熟练掌握二次函数的性质以及二次函数最大值的求解,此题难度不大.14.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)设点M(3,m),求使MN+MD的值最小时m的值;(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.【考点】二次函数综合题.【专题】压轴题.【分析】(1)利用待定系数法求二次函数解析式、一次函数解析式;(2)根据两点之间线段最短作N点关于直线x=3的对称点N′,当M(3,m)在直线DN′上时,MN+MD 的值最小;(3)需要分类讨论:①当点E在线段AC上时,点F在点E上方,则F(x,x+3)和②当点E在线段AC(或CA)延长线上时,点F在点E下方,则F(x,x﹣1),然后利用二次函数图象上点的坐标特征可以求得点E的坐标;(4)方法一:过点P作PQ⊥x轴交AC于点Q;过点C作CG⊥x轴于点G,如图1.设Q(x,x+1),则P(x,﹣x2+2x+3).根据两点间的距离公式可以求得线段PQ=﹣x2+x+2;最后由图示以及三角形的面积公式知S△APC=﹣(x﹣)2+,所以由二次函数的最值的求法可知△APC的面积的最大值;方法二:过点P作PQ⊥x轴交AC于点Q,交x轴于点H;过点C作CG⊥x轴于点G,如图2.设Q(x,x+1),则P(x,﹣x2+2x+3).根据图示以及三角形的面积公式知S△APC=S△APH+S直角梯形PHGC﹣S△AGC=﹣(x﹣)2+,所以由二次函数的最值的求法可知△APC的面积的最大值;【解答】解:(1)由抛物线y=﹣x2+bx+c过点A(﹣1,0)及C(2,3)得,,解得,故抛物线为y=﹣x2+2x+3又设直线为y=kx+n过点A(﹣1,0)及C(2,3)得,解得故直线AC为y=x+1;(2)如图1,作N点关于直线x=3的对称点N′,则N′(6,3),由(1)得D(1,4),故直线DN′的函数关系式为y=﹣x+,当M(3,m)在直线DN′上时,MN+MD的值最小,则m=﹣×=;(3)由(1)、(2)得D(1,4),B(1,2),∵点E在直线AC上,设E(x,x+1),①如图2,当点E在线段AC上时,点F在点E上方,则F(x,x+3),∵F在抛物线上,∴x+3=﹣x2+2x+3,解得,x=0或x=1(舍去)∴E(0,1);②当点E在线段AC(或CA)延长线上时,点F在点E下方,则F(x,x﹣1)由F在抛物线上∴x﹣1=﹣x2+2x+3解得x=或x=∴E(,)或(,)综上,满足条件的点E的坐标为(0,1)、(,)或(,);(4)方法一:如图3,过点P作PQ⊥x轴交AC于点Q,交x轴于点H;过点C作CG⊥x轴于点G,设Q(x,x+1),则P(x,﹣x2+2x+3)∴PQ=(﹣x2+2x+3)﹣(x+1)=﹣x2+x+2又∵S△APC=S△APQ+S△CPQ=PQ•AG=(﹣x2+x+2)×3=﹣(x﹣)2+∴面积的最大值为.方法二:过点P作PQ⊥x轴交AC于点Q,交x轴于点H;过点C作CG⊥x轴于点G,如图3,设Q(x,x+1),则P(x,﹣x2+2x+3)又∵S△APC=S△APH+S直角梯形PHGC﹣S△AGC=(x+1)(﹣x2+2x+3)+(﹣x2+2x+3+3)(2﹣x)﹣×3×3=﹣x2+x+3=﹣(x﹣)2+∴△APC的面积的最大值为.【点评】本题考查了二次函数综合题.解答(3)题时,要对点E所在的位置进行分类讨论,以防漏解.。

北京市中考数学试题分类汇总——二次函数[1]

北京市中考数学试题分类汇总——二次函数[1]

北京市中考数学试题分类汇总——二次函数1.(04年)已知:关于x 的两个方程2x 2+(m +4)x +m -4=0,……① 与 mx 2+(n -2)x +m -3=0,……②方程①有两个不相等的负实数根,方程②有两个实数根.⑴ 求证方程②的两根符号相同;⑵ 设方程②的两根分别为α、β,若α:β=1:2,且n 为整数,求m 的最小整数值.2.(04年)25.已知:在平面直角坐标系xOy 中,过点P(0,2)任作..一条与抛物线y =ax 2(a >0)交于两点的直线,设交点分别为A 、B .若∠AOB =90°,⑴ 判断A 、B 两点纵坐标的乘积是否为一个确定的值,并说明理由;⑵ 确定抛物线y =ax 2(a >0)的解析式; ⑶ 当△AOB 的面积为4 2 时,求直线AB 的解析式.3.(05年)已知:关于x 的方程()a x ax a +-+=2202有两个不相等的实数根x 1和x 2,并且抛物线()y x a x a =-++-22125与x 轴的两个交点分别位于点(2,0)的两旁。

(1)求实数a 的取值范围;(2)当x x 1222+=时,求a 的值。

4.(05年) 已知:在平面直角坐标系xOy 中,一次函数y kx k =-4的图象与x 轴交于点A ,抛物线y ax bx c =++2经过O 、A 两点。

(1)试用含a 的代数式表示b ;(2)设抛物线的顶点为D ,以D 为圆心,DA 为半径的圆被x 轴分为劣弧和优弧两部分。

若将劣弧沿x 轴翻折,翻折后的劣弧落在⊙D 内,它所在的圆恰与OD 相切,求⊙D 半径的长及抛物线的解析式;(3)设点B 是满足(2)中条件的优弧上的一个动点,抛物线在x 轴上方的部分上是否存在这样的点P ,使得∠∠POA OBA =43?若存在,求出点P 的坐标;若不存在,请说明理由。

5.(06年) 已知:关于x 的方程mx x 21470--=有两个实数根x x 12和,关于y 的方程y n y n n 222120--+-=()有两个实数根y y 12和,且-≤<≤2412y y 。

中考数学与二次函数有关的压轴题及答案

中考数学与二次函数有关的压轴题及答案

一、二次函数真题与模拟题分类汇编(难题易错题)1.如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P 的坐标,并求出△POB的面积;若不存在,请说明理由.【答案】(1)y=x2﹣3x。

(2)点B的坐标为:(4,4)。

(3)存在;理由见解析;【解析】【分析】(1)将原点坐标代入抛物线中即可求出k的值,从而求得抛物线的解析式。

(2)根据(1)得出的抛物线的解析式可得出A点的坐标,也就求出了OA的长,根据△OAB的面积可求出B点纵坐标的绝对值,然后将符合题意的B点纵坐标代入抛物线的解析式中即可求出B点的坐标,然后根据B点在抛物线对称轴的右边来判断得出的B点是否符合要求即可。

(3)根据B点坐标可求出直线OB的解析式,由于OB⊥OP,由此可求出P点的坐标特点,代入二次函数解析式可得出P点的坐标.求△POB的面积时,求出OB,OP的长度即可求出△BOP的面积。

【详解】解:(1)∵函数的图象与x轴相交于O,∴0=k+1,∴k=﹣1。

∴这个二次函数的解析式为y=x2﹣3x。

(2)如图,过点B做BD⊥x轴于点D,令x 2﹣3x=0,解得:x=0或3。

∴AO=3。

∵△AOB 的面积等于6,∴12AO•BD=6。

∴BD=4。

∵点B 在函数y=x 2﹣3x 的图象上,∴4=x 2﹣3x ,解得:x=4或x=﹣1(舍去)。

又∵顶点坐标为:( 1.5,﹣2.25),且2.25<4,∴x 轴下方不存在B 点。

∴点B 的坐标为:(4,4)。

(3)存在。

∵点B 的坐标为:(4,4),∴∠BOD=45°,22BO 442=+=。

若∠POB=90°,则∠POD=45°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京中考数学一模 26题“二次函数综合题”西城. 在平面直角坐标系xOy 中,二次函数5)12(2-++-=m x m mx y 的图象与x 轴有两个公共点. (1)求m 的取值范围;(2)若m 取满足条件的最小的整数,①写出这个二次函数的解析式;②当n ≤x ≤1时,函数值y 的取值范围是-6≤y ≤4-n ,求n 的值;③将此二次函数图象平移,使平移后的图象经过原点O . 设平移后的图象对应的函数表达式为k h x a y +-=2)(,当x <2时,y 随x 的增大而减小,求k的取值范围东城.二次函数2(2)2(2)5y m x m x m =+-+-+,其中20m +>. (1)求该二次函数的对称轴方程; (2)过动点C (0, n )作直线l ⊥y 轴.① 当直线l 与抛物线只有一个公共点时, 求n 与m 的函数关系;② 若抛物线与x 轴有两个交点,将抛物线在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象. 当n =7时,直线l 与新的图象恰好有三个公共点,求此时m 的值; (3)若对于每一个给定的x 的值,它所对应的函数值都不小于1,求m 的取值范围.Oyx–1–2–3–4–5–6123456–1–2–3–4–5–6123456xy直线lCBA–1–21234–1–2–31234O朝阳.在平面直角坐标系中xOy 中,抛物线2211222y x mx m m =-++-的顶点在x 轴上. (1)求抛物线的表达式;(2)点Q 是x 轴上一点,①若在抛物线上存在点P ,使得∠POQ =45°,求点P 的坐标; ②抛物线与直线y =2交于点E ,F (点E 在点F 的左侧),将此抛物线在点E ,F (包含点E 和点F )之间的部分沿x 轴平移n 个单位后得到的图象记为G ,若在图象G 上存在点P ,使得∠POQ =45°,求n 的取值范围.房山. 在平面直角坐标系xOy 中,直线32-=x y 与y 轴交于点A ,点A 与点B 关于x 轴对称,过点B 作y 轴的垂线l ,直线l 与直线32-=x y 交于点C. (1)求点C 的坐标;(2)如果抛物线n nx nx y 542+-= (n >0)与线段BC 有唯一公共点,求n 的取值范围.顺义.如图,已知抛物线28(0)y ax bx a =++≠与x 轴交于A (-2,0),B 两点,与y 轴交于C点,tan ∠ABC =2.(1)求抛物线的表达式及其顶点D 的坐标;(2)过点A 、B 作x 轴的垂线,交直线CD 于点E 、F ,将抛物线沿其对称轴向上平移m 个单位,使抛物线与线段EF (含线段端点)只有1个公共点.求m 的取值范围.平谷.直线33y x =-+与x 轴,y 轴分别交于A ,B 两点,点A 关于直线1x =-的对称点为点C . (1)求点C 的坐标;(2)若抛物线()230y mx nx m m =+-≠经过A ,B ,C 三点,求该抛物线的表达式;(3)若抛物线()230y ax bx a =++≠ 经过A ,B 两点,且顶点在第二象限,抛物线与线段AC 有两个公共点,求a 的取值范围.yx–2–112345–5–4–3–2–112O门头沟. 在平面直角坐标系xOy 中,抛物线()()13y a x x =+-与x 轴交于A ,B 两点,点A 在 点B 的左侧,抛物线的顶点为P ,规定:抛物线与x 轴围成的封闭区域称为“G 区域”(不包含边界).(1)如果该抛物线经过(1, 3),求a 的值,并指出此时“G 区域”有______个整数点;(整数点就是横纵坐标均为整数的点) (2)求抛物线()()13y a x x =+-的顶点P 的坐标(用含a 的代数式表示); (3)在(2)的条件下,如果G 区域中仅有4个整数点时,直接写出a 的取值范围.海淀.平面直角坐标系xOy 中,抛物线2222y mx m x =-+交y 轴于A 点,交直线x =4于B 点.(1)抛物线的对称轴为x = (用含m 的代数式表示);(2)若AB ∥x 轴,求抛物线的表达式;(3)记抛物线在A ,B 之间的部分为图象G (包含A ,B 两点),若对于图象G 上任意一点P (P x ,P y ),2P y ≤,求m 的取值范围.丰台.在平面直角坐标系xOy 中,抛物线()01242≠-+-=m m mx mx y 与平行于x 轴的一条直线交于A ,B 两点. (1)求抛物线的对称轴;(2)如果点A 的坐标是(-1,-2),求点B 的坐标;(3)抛物线的对称轴交直线AB 于点C ,如果直线AB 与y 轴交点的纵坐标 为-1,且抛物线顶点D 到点C 的 距离大于2,求m 的取值范围.石景山.在平面直角坐标系xOy 中,抛物线2443(0)y ax ax a a =-+-≠的顶点为A .(1)求顶点A 的坐标;(2)过点(0,5)且平行于x 轴的直线l ,与抛物线 2443(0)y ax ax a a =-+-≠交于B ,C 两点. ①当2a =时,求线段BC 的长;②当线段BC 的长不小于6时,直接写出a 的 取值范围.通州.在平面直角坐标系xOy 中,抛物线2222+-+-=m m mx x y 的顶点为D.线段AB 的两个端点分别为A (-3,m ),B (1,m ).(1)求点D 的坐标(用含m 的代数式表示); (2)若该抛物线经过点B (1,m ),求m 的值;(3)若线段AB 与该抛物线只有一个公共点,结合函数的图象,求m 的取值范围.怀柔.已知二次函数122-++=a ax axy (a>0).(1)求证:抛物线与x 轴有两个交点; (2)求该抛物线的顶点坐标;(3)结合函数图象回答:当x ≥1时,其对应的函数值y 的最小值范围是2≤y ≤6,求a 的取值范围.Oyx–1–2–3–4–5–6123456–1–2–3–4–5–6123456西城.解:(1)∵ 二次函数5)12(2-++-=m x m mx y 的图象与x 轴有两个交点,∴ m ≠0[]054122>)()+(---m m m解得 241->m 且m ≠0. ∴m 的取值范围是241->m 且m ≠0. ·········································· 2分(2)①m 取满足条件的最小的整数,由(1)可知m =1.∴ 二次函数的表达式为234y x x =--. ·································· 3分② 图象的对称轴为直线23=x .当n ≤x ≤1<32时,函数值y ∵ 函数值y 的取值范围是-6≤y ∴ 当x =1时,函数值为- 6. 当x =n 时,函数值为4-n.∴ n 2 – 3n - 4 = 4-n.,解得n = - 2∴ n 的值为- 2.③由①可知,a =1.又函数图像经过原点, ∴k =-h 2,∵当x <2时,y 随x 的增大而减小, ∴h ≥ 2 ∴k ≤-4.············································································································ 7分 东城.解:(1)对称轴方程:2(2)12(2)m x m -+=-=+. …………1分(2)①∵直线l 与抛物线只有一个公共点,∴23n m =-+. …………3分② 依题可知:当237m -+=-时,直线l 与新的图象恰好有三个公共点. ∴5m =. …………5分(3)抛物线2(2)2(2)5y m x m x m =+-+-+的顶点坐标是(1,23)m -+.依题可得 20,23 1.m m +>⎧⎨-+≥⎩解得2,1.m m >-⎧⎨≤⎩ ∴ m 的取值范围是21m -<≤. …………7分朝阳.解:(1)222111-2()2222y x mx m m x m m =++-=-+-. 由题意,可得m -2=0. ∴2m =. ∴21(2)2y x =-. (2)①由题意得,点P 是直线y x =与抛物线的交点.∴21-222x x x =+. 解得 13x =23x =.∴P 点坐标为(3+或 (3--.②当E 点移动到点(2,2)时,n =2.当F 点移动到点(-2,2)时,n =-6.由图象可知,符合题意的n 的取值范围是26-≤≤n .房山解:(1)∵直线y=2x-3与y 轴交于点A (0,-3) ------1分 ∴点A 关于x 轴的对称点为B (0,3),l 为直线y=3 ∵直线y=2x-3与直线l 交于点C ,∴点C 的坐标为(3,3) ------2分(2)∵抛物线n nx nx y 542+-= (n >0)∴y = nx2-4nx+4n+n = n(x-2)2+n∴抛物线的对称轴为直线x=2,顶点坐标为(2,n ) ------3分 ∵点B (0,3),点C (3,3)①当n >3时,抛物线最小值为n >3,与线段BC 无公共点; ②当n=3时,抛物线顶点为(2,3),在线段BC 上,此时抛物线与线段BC 有一个公共点; ------4分 ③当0<n <3时,抛物线最小值为n ,与直线BC 有两个交点 如果抛物线y=n(x-2)2+ n 经过点B (0,3),则3=5n ,解得53=n由抛物线的对称轴为直线x=2,可知抛物线经过点(4,3)点(4,3)不在线段BC 上,此时抛物线与线段BC 有一个公共点B ------5分如果抛物线y=n(x-2)2+ n 经过点C (3,3),则3=2n ,解得23=n 由抛物线的对称轴为直线x=2,可知抛物线经过点(1,3)点(1,3)在线段BC 上,此时抛物线与线段BC 有两个公共点 ------6分综上所述,当53≤n <23或n=3时,抛物线与线段BC 有一个公共点. ------7分 顺义27.解:(1)由抛物线的表达式知,点C (0,8),即 OC =8;Rt △OBC 中,OB =OC •tan ∠ABC =8×12=4, 则点B (4,0). ………………………… 1分 将A 、B 的坐标代入抛物线的表达式中,得:428016480a b a b -+=⎧⎨++=⎩,解得12a b =-⎧⎨=⎩, ∴抛物线的表达式为228y x x =-++.…… 3分∵2228(1)9y x x x =-++=--+ ,∴抛物线的顶点坐标为D (1,9). ………… 4分(2)设直线CD 的表达式为y =kx +8,∵点D (1,9),∴直线CD 表达式为y =x +8.∵过点A 、B 作x 轴的垂线,交直线CD 于点E 、F , 可得:E (-2,6),F (4,12). ………… 6分 设抛物线向上平移m 个单位长度(m >0),则抛物线的表达式为:2(1)9y x m =--++;当抛物线过E (-2,6)时,m =6,当抛物线过F (4,12)时,m =12, ∵抛物线与线段EF (含线段端点)只有1个公共点,∴m 的取值范围是6<m ≤12. ………………………………………… 7分平谷27.解:(1)令y =0,得x =1.∴点A 的坐标为(1,0). ···································································· 1 ∵点A 关于直线x =﹣1对称点为点C , ∴点C 的坐标为(﹣3,0). ··················· 2 (2)令x =0,得y =3.∴点B 的坐标为(0,3). ∵抛物线经过点B , ∴﹣3m =3,解得m =﹣1. (3)∵抛物线经过点A , ∴m+n ﹣3m =0,解得n =﹣2.∴抛物线表达式为223y x x =--+. (4)(3)由题意可知,a <0.根据抛物线的对称性,当抛物线经过(﹣1,0)时,开口最小,a =﹣3, ·········· 5 此时抛物线顶点在y 轴上,不符合题意.当抛物线经过(﹣3,0)时,开口最大,a =﹣1. (6)y x–2–112345–4–3–2–112A B C O13 页结合函数图像可知,a 的取值范围为31a -<≤-. (7)门头沟27. (1)()()3a 1113=+- ……………1分解得:34a =-………………………2分 6个 ………………………3分(2)由()()y a 13x x =+-配方或变形()()()2y a 13=14x x a x a =+--- .所以顶点P 的坐标为(1,-4a ). ……………………………………5分 (3) a <0时, ; 分a >0时, 7分 分 22x +与y 轴交于A 点,分 ∵ AB ∥x 轴,B 点在直线x =4上,∴ B (4,2),抛物线的对称轴为直线x =2. --------------------------------------------- 4分 ∴ m =2.∴ 抛物线的表达式为2282y x x =-+. --------------------------------------------------- 5分 (3)当0m >时,如图1.∵()02A ,,∴要使04P x ≤≤时,始终满足2P y ≤,只需使抛物线2222y mx m x =-+的对称轴与直线x=2重合或在直线x=2的右侧.∴2m ≥. -------------------------------------------- 6分图22132a --≤<12≤页 共 13 页当0m <时,如图2,0m <时,2P y ≤恒成立. ------------------- 7分综上所述,0m <或2m ≥.丰台27. 解:(1)∵抛物线()12212422---=-+-=m x m m mx mx y ,∴对称轴为x = 2.…………………………………2分(2)①∵抛物线是轴对称图形,∴点A 点B 关于x = 2轴对称,∵A (﹣1,-2) ,∴B (5,-2).……………………………………………3分 ②∵抛物线()12212422---=-+-=m x m m mx mx y ,∴顶点D (2,﹣2m -1). …………………………………………………4分∵直线AB 与y 轴交点的纵坐标为-1,∴C (2,-1). ……………………………………………………………5分∵顶点D 到点C 的距离大于2,∴﹣2m ﹣1 +1 > 2或﹣1+ 2m +1 > 2,∴m <﹣1或m > 1.………………………………………………………… 7分石景山27.解:(1)解法一: ∵2443y ax ax a =-+-2(2)3a x =--, ………………………………… 1分∴顶点A 的坐标为(2,3)-. ………………………………… 2分 解法二: ∵244(43)(4)2,324a a a a aa-⨯----==-,∴顶点A 的坐标为(2,3)-. ………………………………… 2分(2)①当2a =时,抛物线为2285y x x =-+ 令5y =,得22855x x -+=, ……………… 3分 解得,1204x x ==,.……………… 4分 ∴线段BC 的长为4. ……………… 5分② 80<9a ≤. ……………… 7分第 13 页 共 13 页通州27. 解:(1)D (m ,-m +2) ……………………..(2分)(2)m =3或m =1 ……………………..(5分)(3)1≤m ≤3 ……………………..(7分) 怀柔27.解:(1)令y=0. ∴0122=-++a ax ax .∵△=)1(442--a a a=4a,……………………………1分 ∵a>0,∴4a>0.∴△>0.∴抛物线与x 轴有两个交点. …………………2分 (2)212ax a=-=-.……………………………3分 把x=-1代入122-++=a ax ax y .∴y=-1.∴顶点坐标(-1,-1).…………………4分 (3)①把(1,2)代入122-++=a ax ax y . ∴43=a .……………………………5分 ②把(1,6)代入122-++=a ax axy . ∴74a =.……………………………6分 ∴由图象可知:43≤a ≤74.……………………………7分。

相关文档
最新文档