从自然数到有理数
从自然数到有理数(教案)浙教版数学七年级上册
从自然数到有理数(教案)课题 1.1从自然数到有理数(2)单元第1章从自然数到有理数学科数学年级七年级学习目标情感态度和价值观目标在与他人合作交流过程中,理解他人的思考方法和结论,针对他人所提的问题进行反思,初步形成评价与反思的意识.能力目标初步学会在具体的情境中从数学的角度发现问题和提出问题,并综合运用数学知识和方法等解决简单的实际问题,增强应用意识,提高实践能力.知识目标 1.利用并掌握有理数的概念,理解有理数的分类;2.掌握正负数表示相反意义的量.教学过程教学环节教师活动学生活动设计意图导入新课导入新课:一、创设情景,引出课题1.自然数可以用来计数、测量、标号或排序;分数和小数在实际生活中的应用.2.小学学过的数不够用了,数的范围需要扩展.思考:418+160-586=578-586=?问题1:你能用小学学过的数表示计算结果吗?为什么?20℃和-15℃这两个量分别表示什么?你能表示某一天的最高气温是零上5摄氏度,回顾上节课自然数的作用.观察温度计回答问题.通过正负数的学习,树立对立统一的辩证思想;让学生在自主探究体验数的扩展的必要性.最低气温是零下5摄氏度吗?请你说说生活中还有哪些具有相反意义的词语?讲授新课1、具有相反意义的量:(1)相反意义的量包含两个要素:一是它们的意义要相反;二是它们都具有数量:如前进8 m与后退5 m;例如:上升与下降就不是相反意义的量,缺少数量.(2)意义相反的量中的两个量必须是同类量,如节约汽油3吨与浪费1吨水就不是具有相反意义的量.针对练习:判断下列说法是否正确.(1)前进和后退是两个具有相反意义的量.(2)身高增加2 cm和体重减少2 kg.(3)收入50万元和亏损20万元是两个具有相反意义的量.(4)超过标准质量5 g和低于标准质量2 g.(5)上升了10分和下降了2名是两个具有相反意义的量.2、正数和负数:为了表示具有相反意义的量,我们把其中的一种意义的量规定为正,小学学过的数(零除外),了解具有相反意义的量.了解正、负数的概念.为建立负数的概念做好铺垫.了解正、负数的概念,能用正、负如123,25,等数叫做正数(positive number).正数前面可以放上“+”号(常省略不写).注意:零既不是正数,也不是负数.“-”不可以省略!针对练习:1、读出下列各数,说出它们各是哪类数?,-,+75,16,50,-25%,,-155,,213,12%,0.2、(1)向东走+58 m,-60 m,0 m表示的实际意义分别是什么呢?3、有理数的分类:我们把1,2,3,4,…称为正整数;-1,-2,-3,-4,…称为负整数;根据不同分类标准对正、负数进行分类.数表示具有相反意义的量.培养学生的分类、归纳能力.1 2,23,314,,…称为正分数;12-,23-,314-,,…称为负分数.正整数、零和负整数统称整数;正分数和负分数统称分数.整数和分数统称有理数.有理数还可以这样分类:合作探究:(1)零是______________________________;(2)零不是_________________________;非负数是_______________________,非正数是_______________________,非负整数是_______________________,非正整数是_______________________.针对练习:判断表中各数分别属于哪一类数,在相应的空格内打“√”.4、典例分析:例下列给出的各数,哪些是正数?哪些是通过合作探究完成填空.完成例题.深入理解有理数的概念.熟练掌握有理数的概念.负数?哪些是整数?哪些是分数?哪些是有理数?,22,176+,,0,35-,-9. 针对练习:把下列各数填入相应的括号内:5122.7150.1106134219.87690.997---+++, ,, , , ,, , , , 巩固提升1、填空:(2)如果向银行存入50元记为50元,那么-元表示______________________;(3)规定增加的百分比为正,增加25%记做_______,-12%表示___________;(4)规定温度零上为正,月球白天气温高达零上123℃ ,记为__________,夜晚气温低至零下233 ℃,记为________.阿波罗11号宇航员登上月球后不得不穿着御寒又防热的太空服.2.小聪、小明、小慧三位同学分别记录了一周中各天收支情况如下表(记收入为正,单位:元):独立完成巩固提升练习.掌握所学基础知识..3.把下列各数分别填在相应的集合里:-1,13,,0,,21,-2,,+6.(1)正数集合{ …}(2)负数集合{ …}(3)正整数集合{ …}(4)分数集合{ …}.拓展提升:针对练习:如图,每个椭圆表示一个数集,请在每个椭圆内填上6个数,其中三个写在重叠部分.小组合作完成拓展提升.通过完成拓展提升,提高应用数学知识解决问题的能力.课堂小结1、正数与负数都来自于实际生活;用正、负数可以表示实际问题中具有相反意义的量,例如…2、小学里学过的大于零的数都是正数;正数前面添放上“-”号的数是负数;0既不是正数,也不是负数,它表示正、负数的界限.3、有理数的分类方法不是唯一的,可以按整数和分数分成两大类,也可以按正有理数、零、负有理数分成三大类.回顾本节课所学知识.理解正、负数的概念及有理数的分类.板书正数:负数:正整数、零和负整数统称整数;正分数和负分数统称分数.整数和分数统称有理数.。
2024年浙教版七年级数学上册 1.1 从自然数到有理数 (课件)
可以是亏损100元等。
新知探究 知识点2 具有相反意义的量及其表示 重点
典例3 下列选项中,是具有相反意义的量的是( C )
A.身高增加1 cm与体重减少1 kg
B.海平面以上与海平面以下
C.向东5 m与向西8 m
D.存入100元与降价10元
新知探究 知识点2 具有相反意义的量及其表示 重点
0米
_____。
新知探究 知识点2 具有相反意义的量及其表示 重点
(3)手机移动支付给生活带来便捷,若规定收款为正,则+37元
收款37元
付款111元
表示__________,−111元表示___________。
(4)从山脚测山高为300 m,山脚高出海平面50 m。若以海平面
+350 m
为基准,山脚的高度记作+50 m,则山高记作________;若以山脚
第1章 有理数
1.1 从自然数到有理数
七上数学 ZJ
学习目标
1.了解从自然数到有理数的发展过程,感受数学与现实生活的
联系。
2.理解正数、负数和零的意义,会判断一个数是正数还是负数。
3.理解生活中具有相反意义的量,会用正数和负数表示具体情
境中具有相反意义的量,培养应用意识。
4.理解有理数的意义,能按一定的标准对有理数进行分类,体
3
用大于零的数前面放
负数 上负号“-”来表示的
数。
2
−60,−0.5,−
3
注意
正数前的“+”
常省略不写。
负数前的“-”不
能省略不写。
新知探究 知识点3 正数和负数 重点
数的
从自然数到有理数
1.1从自然数到有理数负数:我们把一种意义的量(如零上)规定为正,用学过的数(零除外)来表示,这样的数叫做正数,正数前面可以放上正号“+”来表示(常省略不写),;把另一种与之意义相反的量规定负,用学过的数(零除外)前面放上负号“-”来表示,这样的数叫做负数(负号不能省略)。
如:“+2”读做“正2”、“-3.3”读做“负3.3”等。
这样我们学过的数中又增加了新的数——负整数和负分数;相应地我们学过的自然数和分数分别称为正整数和正分数。
填空:1)规定盈利为正,某公司去年亏损了2.5万元,记做__________万元,今年盈利了3.2万元,记做__________万元;2)规定海平面以上的海拔高度为正,新疆乌鲁木齐市高于海平面918米,记做海拔__________米;吐鲁番盆地最低处低于海平面155米,记做海拔__________米;3)汽车在一条南北走向的高速公路上行驶,规定向北行驶的路程为正。
汽车向北行驶75km ,记做________km (或_______km ),汽车向南行驶100km ,记做________km ;4)下降153-米记做153-米,则上升1102米记做__________米;5)如果向银行存入50元记为50元,那么-30.50元表示__________; 6)规定增加的百分比为正,增加25%记做__________,-12%表示__________. 利用第3)题说明在表示具有相反意义的量时,把哪一种意义的量规定为正,是相对的.例如我们可以把向南100米记做+100km ,那么向北记做-75km.但习惯上,人们常把上升、运进、零上、增加、收入等规定为正。
正整数、零和负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。
⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零自然数负整数有理数正分数分数负分数 ⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数零负整数负有理数负分数 零是整数,零既不是正数,也不是负数.基础训练一、填空1、 如果零上28度记作280C ,那么零下5度记作2、 2、若上升10m 记作10m ,那么-3m 表示3、比海平面低20m 的地方,它的高度记作海拔 二、选择题4、在-3,-121,0,-73,2002各数中,是正数的有( ) A 、0个 B 、1个 C 、2个 D 、3个5、下列既不是正数又不是负数的是( ) A 、-1 B 、+3 C 、0.12 D 、06、飞机上升-30米,实际上就是( )A 、上升30米B 、下降30米C 、下降-30米D 、先上升30米,再下降30米。
从自然数到有理数的知识点
从自然数到有理数的知识点
1. 自然数可是咱们最开始认识的数呀!就像咱们从一开始学走路一样,先得会站,自然数就是数学世界的第一步呢!比如说,你有 3 个苹果,这 3 就是自然数啦!
2. 后来呀,发现光有自然数不够用啦!这就像咱光会走路还不行,还得会跑呀!有理数就出现啦!像温度零下 3 度,这里的-3 就是有理数呀!
3. 有理数包含了自然数呢,这多神奇呀!就好比大树包含了小树苗呀!比如5 这个自然数,它也是有理数呀!
4. 那负数也是有理数哦,是不是很有意思呀!这就好像生活中不光有好事,也有坏事一样。
像支出 100 元,用-100 表示,它就是有理数呢!
5. 有理数还包括小数呢,哇塞,这范围可广啦!就像一个大宝藏,有各种各样的宝贝!呀,就是有理数。
6. 有理数在生活中用处可大啦!难道不是吗?像计算身高、体重都可能用到呀!你看,如果小明身高米,这不就是有理数嘛!
我觉得呀,从自然数到有理数,就像我们在数学世界里不断成长和探索,越来越有趣,越来越精彩!。
第一章从自然数到有理数复习课chen平阳籍知名教师回乡助教活动课件
在数轴上两个有理数大小怎样比较?
5、判断正与错: (1)整数一定是自然数( × ) (2)自然数一定是整数( √ ) (3)一个正数的绝对值一定是正数( √) (4)绝对值较大的数较大( × )
(5)一个数的绝对值等于它的相反数这个数不是正数(×) (6)任何数的绝对值都不是负数( √) (7)表示在数轴上的两个有理数,较大的数和原点的距离较近 (× )
(2)比-3大的负整数是_______。
(3)与原点的距离为三个单位的点有__个, 他们分别表示的有理数是__和__。
练一练: (1)绝对值不大于3的数是—— (2)在数轴上与-2和4的距离相等的数是——
(3)数轴上表示整数的点称为整点,某数轴的单 位长度是1厘米,若在这个数轴上随意画出一条长 为2010厘米的线段AB,则线段AB盖住的整点有多 少个?练一练3.gsp
观察表中的数据,可以获得哪些信息? 问题3:
(1)一个数的绝对值与这个数本身有什么
区别和联系?
如果 | a | = a , a 0 . 如果 | a | = -a , a 0 .
(2)一个数的绝对值是什么数? | a | 0
问题3: ②知道一个数的绝对值,能求出这个数吗?
(4)有理数的大小比较
问题1 (1)请说一说,数轴有什么特征?画数轴应该注 意哪些问题发生? (2)数轴给我们提供了哪些信息?通过数轴你联想 到本章的哪些知识?
01
(1)有理数
例1 把下列各数在数轴上表示出来,
把它们填入相应的大括号。
6
•
0.5, 2, 0, 3 , 2, , 3.3
5
(1)整数集合:{ 2, 0, 3 , 2
}
(2)分数集合:{
(精品文档)从自然数到有理数复习--浙教版PPT演示课件
⑵一个数的绝对值是它的相反数,这个数是什么数?
⑶一个数的绝对值一定是正数吗? ⑷一个数的绝对值不可能是负数,对吗?
⑸绝对值是同一个正数的数有两个,它们互为相反数 这句话对吗?例3 请你回答下列问题:
⑴有没有最大的有理数,有没有最小的有理 数,为什么? ⑵有没有绝对值最小的有理数?若有,请把 它写出来 ⑶大于-1.5且小于4.2的整数有_____个,它 们分别是____; ⑷若a>0,b<0,a<|b|,则你能比较a,b,-a,-b这四 个数的大小吗?
6、有理数的绝对值的意义是什么?如果两 个数互为相反数,那么它们的绝对值有什 么关系?试举例说明。
7、有理数的大小怎样比较?请用数轴说明。
例1 下列给出的各数,哪些是正数?哪些是负 数?哪些是整数?哪些是分数?哪些是有理数?
17 3 8.4,22, ,0.3, ,9 6 5
练习1
判断表中各数属于什么数,在相应的空格内打“√”
正数集合
分数集合
例2 填一填:
右图是一个正方体纸盒的展开图,请把-10,7, 10,-2,-7,2分别填入六个正方形,使得按虚线 折成正方体后,相对面上的两个数互为相反数
练一练:
1、填表
2.05 100
7 8
8 9
相反数
绝对值
0
-1000 -2.05
练习2
回答下列问题:
⑴一个数的绝对值是它本身,这个数是什么?
德,妾身永生难忘。”“没有别の事情,你退下去吧。”“回爷,妾身这就退下咯。”虽然口中说着这就退下咯,但是水清根本没办法退下去,来の时候就是因 为跪伤咯腿而站不住,才需要继续跪着回复这番话,现在又继续跪咯有半各多时辰,她更是起不来身咯。此时の水清万分尴尬和困窘,起不来身,又没有奴才在 身边帮忙,总不能让他来扶她吧,急得她咬咯半天嘴唇,也没想出来壹各法子。半天不见她退下去,他直纳闷:“你怎么还不退下?不是没有事情咯吗?”“回 爷,妾身の腿跪时间长咯,实在是站不起来,要不„„”王爷这才想起来,她来之前就跪咯两各时辰,刚刚又说咯这么半天の话,她要是能自己站起来才是怪事 呢,那正好说明她在院外の时候壹定是偷奸耍滑,没有好好跪请。现在虽然证明咯她の诚实,但是摆在他面前の壹各难题是,她如何从书院回到怡然居去!总不 能是他将她抱回去吧,虽然名义上她是自己の诸人,可是,他这壹辈子都要离她远远の,绝不会碰她壹根指头。奴才们?壹各太监抱着侧福晋,成何体统!丫 环?丫环能有多大の力气,还不半路上就给摔咯?王爷真是聪明,只是短短の转念之间就解决咯这各棘手の难题:“秦顺儿。”“奴才在。”“去,把春凳抬来, 再派两各太监,送侧福晋回怡然居。”第壹卷 第412章 原谅当婉然听说雍亲王府の侧福晋给她来送贺礼の时候,她の心中无比の愧疚。她此生愧对爹娘、愧对 兄长,可是她最愧对の,就是凝儿!好不容易才嫁咯如此般配の王爷,她竟然丧心病狂地去抢咯凝儿の夫君,她就是下咯十八层地狱,也洗刷不尽此生深重の罪 孽。但是水清,不但不痛恨她,责骂她,怨恨她,还给她送来咯贺礼,这让她还有啥啊脸面来面对如此善良の凝儿!假设不是为咯爹爹和娘亲,不是为咯王爷, 她真应该早早就咯断残生!翠珠也随婉然壹并来到咯保善大人の府邸。贴身看管の两各丫环寸步不离身,翠珠只能是负责壹些外围の事情。毕竟将来婉然嫁进咯 二十三贝子府,还得是由她来当陪嫁丫环,因此只要婉然和二十三小格の成亲礼结束,两各看管丫环の任务也就算完成咯。此时,翠珠正手捧着“水清”の贺礼 进咯屋,递给咯焦急等待中の仆役。婉然壹看到那剔红の漆盒,就觉得怎么这么眼熟?待她打开壹看,头嗡地壹声就炸咯:这不是凝儿の嫁妆吗?她迷惑不解地 望向翠珠:“这是二仆役送来の?”“是啊,仆役。”“王府派人送来の?”“是の,苏大总管亲自送来の,说侧福晋还等着回话呢。”可是,这明明就是五年 前の时候,年府送给雍亲王四福晋の新年重礼啊!当时她和年夫人壹起去の王府,对这件头面重礼既震惊万分又赞叹不已,特别是那各凤凰造型,打造得栩栩如 生,头顶红碧玺,口含白珍珠,尾镶七彩石,特别是那尾翅,还会随着晃动而壹颤壹动。这是她从来也不曾见过の样式,立即就被深深地吸引。当年夫人告诉她 这是水清の嫁妆时,她简直是惊诧万分,继而开始埋怨年夫人,为啥啊要挪用凝儿の嫁妆:“娘亲,凝儿马上就要嫁人咯,您怎么还要拿这壹件啊!”“唉,这 也是没有办法の事情。时间这么紧,手头根本没有壹件能压得住场面の重礼。娘也不同意,可是凝儿非要让带上这件。唉,这也没办法,老爷也点头答应咯,咱 们只能是赶快再去寻咯新の来,希望能寻得到。”“可是,四福晋又不需要再嫁人,送咯她,真是凭白地糟践咯好东西。”“好咯,事已至此,这也是万般无奈 の事情。咱们抓紧时间再赶快给凝儿寻壹套就是。”现在,这套首饰就放在婉然の手上,令她百思不得其解,明明已经送给咯四福晋,怎么现在又变成咯凝儿送 给她の贺礼咯?望着婉然呆呆地想心事,翠珠有点儿着急咯:“仆役,苏总管等着回信呢。”“那你就跟他说,谢谢侧福晋。”虽然想咯两天也没有想通,但有 壹点她是明白の,这套首饰在成亲之前送来,壹定是要作为她の头面首饰,让她在出嫁の那天戴上。她忽然想起咯水清の头面首饰,水清出嫁那天戴の正是婉然 の那套,不管是啥啊原因,两各人最终用上の,竟然就是对方の头面首饰,这怎么能不令她感叹万千,唏嘘不已?如若这首饰真の是凝儿送来の,那就是说,凝 儿原谅咯她,是吗?凝儿,你原谅姐姐咯吗?第壹卷 第413章 寻价水清从书院回到怡然居の第二天,就赶快差彩蝶去苏培盛那里问壹下,昨天由她向王爷差借 の那份贺礼需要她向府里支付好些银子。月影の腿也跪伤咯,现在水清只能让彩蝶临时充当她の大丫环。苏培盛壹见彩蝶,立即就晓得她是为啥啊而来。不过, 昨天王爷向他交代这件事情の时候,他真以为自己听错咯:“爷,年侧福晋要花银子买那份贺礼?”“对,你按照市面の行价,公事公办、秉公处理就 行。”“那奴才啥啊时候去办?”“看侧福晋の吧,她这两天腿脚不太利落,不差这几天。”苏培盛退下来以后,真是棘手至极。这可是他苏培盛在王府里当咯 这么多年の差以来,从来没有遇到过の新情况!历来都是王爷寻到咯啥啊奇珍异玩,赏赐给各院の主子们,博她们壹笑也好,对她们服侍有功进行奖赏也好,总 归他都是只出不进、只赔不赚。虽然他不是花钱如流水の人,但他也从来不是吝啬之人,特别是对诸人。可是,这各年侧福晋,不但从来都没有得到过王爷の任 何赏赐,现在更是因为壹件贺礼,竟然需要她自己花银子向府里来购买!这简直就是闻所未闻,甚至可以说是天下奇闻 ; .au/ 驾照翻译
七年级上册从自然数到有理数
第一章有理数1.1 从自然数到有理数1、自然数、分数、小数的意义自然数在计数、测量、标号和排序中有着广泛的运用,但在生活中仅有自然数是不够的,因分配、测量等实际需要而产生了分数及小数.例题:下面关于第17届亚洲运动会的简介中用了很多自然数,请找出这些书,并说明它们哪些表示技术,哪些表示排序或标号.第17届亚洲运动会于2014年9月19日至10月4日在韩国仁川举行.从此届亚运会开始,亚运会的规模将缩减至35个大项,其中包括28个奥运项目和7个非奥运项目.2、自然数、分数、小数的运算伴随着实际问题的比较,便产生了数的运算,数的运算是人们分析、判断和解决实际问题的重要手段.3、具有相反意义的量在日常生活和生产时间中,我们经常会遇到具有相反意义的量.如盈利、零上、收入、增加等,与之意义相反的为亏损、零下、支出、减少等.例题:(1)如果气温上升3℃记做+3℃,那么下降5℃记做-5℃,那么下列各量分别表示什么?①+5℃;②-6℃;③0℃(2)如果-10元表示支出10元,那么+30元表示 .(3)在一条东西向的跑道上,小亮先向东走了8米,记做+8米,又向西走了10米,此时他的位置可记做( )A.+2米B.-2米C.+18米D.-18米4、正数和负数及其相关的概念为了表示具有相反意义的量,我们把一种意义的量规定为正,用大于零的数,如123,36,等来表示,这样的数叫做正数.把另一种与之意义相反的量规定为负,用大于零的数前面放上负号“-”来表示,如-123,-36等,这样的数叫做负数.0既不是正数也不是负数5、有理数的相关概念正整数、零和负整数统称为整数,如1,2,0,-1,-2等正分数和负分数统称为分数整数和分数统称为有理数6、有理数的分类按有理数的定义分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 按正数、负数与零的关系分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数例题:把下列各数填在相应的横线上:-6,0,2,3,1311-,25,513+,43-. 正整数: ;负整数: ; 正分数: ;负分数: ; 正有理数: ;负有理数: ; 有理数: .题型练习:例题1:某商店以每件60元的价格出售两件上衣,其中一件赚了25%,另一件亏了25%,那么这两件上衣卖出后是盈利还是亏损?例题2:观察-1,21,-3,41,-5,61,-7,81, , , ,…依次排列的一列数,请接着写出后面三个数,第15个数,第2014个数,第2015个数.1.1从自然数到有理数练习1、下列语句中,出现自然数表示排序的是()A.她家有1只小花猫B.奥运会中某国家得了10枚奖牌C.这是他入学以来第3次取得满分D.一个直径为2米的球2、某商店在一次交易中同时卖出两种货物,每种货物的售价均为1200元,若按成本计算,一种货物盈利20%,另一种货物亏本20%,则这次交易商店()A.赔100元B.赚100元C.赚50元D.不赔不赚3、下列说法正确的是()A.前进与后退是具有相反意义的量B.亏损20万元是具有相反意义的量C.收入80元与后退100米是具有相反意义的量D.向南走500米与向北走10米是具有相反意义的量4、李白出生于公元701年,我们记作+701年,那么秦始皇出生于公元前259年,可记作()A.259年B.-960年C.-259年D.442年5、如果火箭发射点火前5秒记作-5秒,那么火箭发射点火后10秒应记为()A.-10秒B.-5秒C.+5秒D.+10秒6、下列说法中,错误的是()A.整数一定是自然数B.自然数一定是整数C.自然数一定是非负整数D.自然数一定是有理数7、与盈利-900元是同一意义的量为()A.亏损-900元B.盈利900元C.亏损+900元D.不能确定8、在数3.0,01.0,45,3,0,8--中,属于非负整数的有( )A.2个B.3个C.4个D.5个9、下列具有相反意义的量的是( )A.向西走2米与向南走3米B.胜2局与负3局C.气温升高3℃与气温为-3℃D.盈利3万元与支出3万元10、如果高出海平面20米记作+20米,那么-30米表示( )A.不足30米B.低于海平面30米C.高出海平面30米D.低于海平面20米11、向东行驶3km 记作+3km ,则向西行驶2km 记作( )A.+2kmB.-2kmC.+3kmD.-3km12、如图,每筐杨梅以5千克为基准,超过的千克数记为整数,不足的千克数记为负数,则这4筐杨梅的总质量是( )A.19.7千克B.19.9千克C.20.1千克D.20.3千克13、小亮在看报纸时,收集到以下信息:(1)某地的国民生产总值位列全国第五;(2)某城市有16条公共汽车路线;(3)小刚乘T32次火车去北京;(4)小风在校运动会上获得跳远比赛第一名.其中用到自然数排序的有 .14、某工厂的45号机器每小时加工85个零件,其中45与85分别表示什么?15、将分数73用除法表示为 . 16、将0.3化成分数为 .17、搬进为10cm ,高为30cm 的圆柱形水桶中装满了水,小明先将桶里的水倒满2个底面半径为3cm ,高为6cm 的圆柱形杯子,再把剩下的水倒入长、宽、高分别为50cm ,30cm 和20cm 的长方体容器内,长方体容器内的水的高度大约是 cm (π取3,容器的厚度不计).18、若用黑白两色涂料刷出如图1所示的装饰图案,其中黑色部分的面积占总面积的比用分数可表示 .19、杰杰爷爷病了,需要挂100毫升的药液,杰杰守候在旁边,观察到点滴流量是每分钟3.5毫升,输液10分钟后,吊瓶空出部分的容积是50毫升(如图2),利用这些数据可计算整个吊瓶的容积是 毫升.20、如图所示,将若干个正三角形、正方形和圆按一定的规律从左向右排列,那么第2014个图形是 .△△□□□△○○□□□△○○□□□△○○□……21、写出一个与“盈利500元”构成相反意义的量: .22、在数0,31,2,2,3--π中,负有理数有 个. 23、观察下列各数,找出规律并填空:1,2,-3,-4,5,6,-7,-8, , , , ,…, (第50个),…, (第2017个),….24、如果收入100元记作+100元,那么支出300元记作 元.25、汽车在一条东西走向的高速公路上行驶,如果向东行驶10km 记作+10km ,那么向西行驶15km 记作 km.26、下列各组中,哪些是具有相反意义的量?哪些不是?(1)某山脉高出海平面800米,某盆地低于海平面1200米;(2)汽车前进80米,汽车下降30米;(3)向南走400米,向西走1250米;(4)某工厂今年增产30%,去年减产11%.27、七年级派出12名同学参加数学竞赛,老师以75分为基准,把分数超过75分的部分记作整数,不足的部分记为负数.评分记录如下:+15,+20,-5,-4,-3,+4,+6,+2,+3,+5,+7,-8.这12名同学中,最高分和最低分各是多少?28、把下列各数填在相应的大括号内:6,74 ,-20,0,3.2,+2,722,-2.03 正 数{ …}非负数{ …}整 数{ …}负分数{ …}有理数{ …}29、假日公司的西湖一日游价格如下:A 种:成人每位160元,儿童每位40元;B 种:5人以上团体,每位100元.现在有三对夫妇各带1小孩,共9人,参加西湖一日游,最少要多少钱?30、王丽父亲上个月从工作单位取得当月工资2400元,按照个人所得税法规定,每月的个人收入超过2000元的部分要纳税,超过部分少于或等于500元的,应按照5%的税率征收个人所得税,请你解答下面问题:(1)王丽的父亲上个月应缴纳个人所得税多少元?(2)如果杨洁的父亲上个月缴纳个人所得税是25元,那么王丽的父亲与杨洁的父亲上个月哪个人的工资高?杨洁的父亲上个月工资是多少元?31、观察下面一组数据,探求其规律:21-,32,43-,54,65-,76,…. (1)写出第7、第8、第9个数;(2)第2015个数是什么?(3)如果这一组数据无限排列下去,会与哪两个数越来越接近?1.2 数轴1、数轴定义:规定了原点、单位长度和正方向的直线叫做数轴.画法:1、画直线;2、定原点;3、定方向;4、统一单位长度2、有理数与数轴上的点的关系任何一个有理数都可以用数轴上的点表示,表示正有理数的点都在原点右侧,表示负有理数的点都在原点左侧,表示0的点就是原点。
数的由来和发展――从自然数到有理数
数的由来和发展——从自然数到有理数原始社会时,先人用小石子检查放牧回来的羊的只数;用结绳的方法统计猎物的个数;用在木头上刻道的方法记录打鱼的数目等等。
这些原始的计数方法表示:人类很早就产生了一一对应的思想,于是产生了像1、2、3、4、5这样的自然数。
在自然数的符号表示方面,古罗马的数字相当特别,此刻很多老式挂钟上还经常使用它们。
罗马数字的符号一共只有 7 个,分别是:I(代表 1)、 V(代表 5)、 X(代表 10)、 L(代表 50)、C 代表 100)、D(代表 500)、 M(代表 1,000)。
这 7 个符号地点上无论如何变化,它所代表的数字都是不变的。
如:1.重复次数:一个罗马数字符号重复几次,就表示这个数的几倍。
如:III表示 3;XXX表示 30。
2.xx 左减:一个代表大数字的符号右侧附一个代表小数字的符号,就表示大数字加小数字,如 VI 表示 6,DC表示 600。
一个代表大数字的符号左侧附一个代表小数字的符号,就表示大数字减去小数字的数目,如 IV 表示 4,XL表示 40,VD 表示 495。
3.上加横线:在罗马数字上加一横线,表示这个数字的一倍。
与古罗马不一样,其余国家和地域的人民广泛认可十位进制的记数符号,即1、2、3、4、5、6、7、8、9,碰到零就用黑点?表示,比方 6708,就能够表示为 67?8。
以后这个表示零的?,渐渐变为了 0。
以后人们发现,不过能表示自然数是远远不可以的,比方说:假如分派猎获物时, 5 个人分 4 件东西,每一个人该得多少呢?于是分数就产生了。
自然数、分数和零,通称为算术数。
自然数也称为正整数。
跟着社会的发展,人们又发现好多半量拥有相反的意义,比方增添和减少、行进和退后、上涨和降落、向东和向西。
为了表示这样的量,又产生了负数。
正整数、负整数和零,统称为整数。
假如再加上正分数和负分数,就统称为有理数。
有了这些数字表示法,人们计算起来感觉方便多了。
浙教版七年级上册数学教案1.1 从自然数到有理数
1.1从自然数到有理数(1)一、教学目标:1. 了解自然数和分数是由于人们生活和生产实践的需要而产生的。
2. 了解自然数和分数的应用。
3. 经历数在解决实际问题的过程中的应用,感受数还需作进一步拓展。
二、教学重点和难点:重点:认识数的发展过程,感受由于生活与生产实践的需要,数还需从自然数和分数进一步的扩展。
难点:本节“合作学习”第2(2)题学生不易理解三、教学过程1.奥运报道:2012年伦敦奥运会中国体育代表团共由621人组成,其中运动员396人,参加本届奥运会23个大项,212个分项的比赛。
在本届奥运会上,中国体育代表团共获得奖牌88枚,其中金牌38枚,银牌27枚,铜牌23枚。
你在这段报道中看到了哪些数?它们都属于哪一类数?2.请阅读下面一段报道:世界上最长的跨海大桥——杭州湾跨海大桥于2003年6月8日奠基,于2008年5月1日全线通车。
这座设计日通车量为8万辆,全长36千米的6车道公路斜拉桥,是中国大陆的第1座跨海大桥。
自然数有些是用来计数和测量的,而有些是用来标号或排序的。
做一做:下列语句中用到的数,哪些属于计数和测量?哪些表示标号或排序?(1)2002年全国共有高等学校2 003所;(2)小明哥哥乘1 425次列车从北京到天津;(3)香港特别行政区的中国银行大厦高369米,地上70层,至1990年为止,是世界第5高楼。
3.在解答下列问题时,你会选用哪一类数?为什么?(1)小华和她的7位朋友一起过生日,要平均分一块生日蛋糕,每人可得多少蛋糕?(2)小明的身高是168厘米,如果改用米作单位,应怎样表示?4.完成合作学习的第1个问题,并在小组内交流.①T32次火车发车时间是________;②小慧坐火车从温州到杭州需______时;③小慧在市内交通和检票进站最少需_________分钟;④你是怎样理解“最迟”的含义的?⑤小慧最迟在________时从温州出发才一定赶得上火车.用自然数列式:___________________;用分数列式:_______________________.5.你对合作学习第2个问题中第二问方案可行不可行怎么理解?①硬卧下车票___________元/张?②小慧打算买一张硬卧下车票后还剩_______元,她实际有_____元钱?③方案可不可行,怎样计算?四、课堂小結:1.回顾一下小学里我们学过哪些数?2.找一找我们身边有哪些数的应用?想一想这些数有什么作用?3.想一想为什么有了自然数后还要引入分数或小数?在解决实际问题时,自然数和分数够用了吗?五、拓展训练1.某航空公司把从城市A到城市B的机票因燃油涨价而上涨了15%,三个月后又因燃油价格的落而重新下调15%.问下调后的票价与上涨前比是贵了,还是便宜了?2.如图一个台阶要铺地毯,则至少要买地毯m.六、学后反思1.1从自然数到有理数(2)一、教学目标:1.进一步理解正数、负数的意义,了解从自然数到有理数的扩展过程。
浙教版七年级上册数学1.1《从自然数到有理数》课件 (共18张PPT)
月球表面白天气温可高达123℃, 夜晚可低至-233℃. 图中阿波罗 11号的宇航员登上月球后不得不 穿着既防寒又御热的太空服.
上面123℃和-233℃这两个量分 别表示什么吗?
你留意了吗? 在日常生活和生产实践中,我们经常会遇到具
有相反意义的量,如:
温度有“零上”和“零下” 路程有“向东”和“向西” 水位变化有“升高”和“降低” 经营情况有“盈利” 和“亏损” 说明: 具有相反意义的量的含义:一是两个量,数字部分 可以不相等;二是必须要具有相反的意义,缺一不可.
用心理解!
为了表示具有相反意义的量,我们把一种意义的 量规定为正,用过去学过的数(零除外),如123,15, 3.14等来表示,这样的数叫做正数.正数前面可加正号 “+”来表示(“+”常省略不写);把另一种与之意义 相反的量规定为负,用过去学过的数(零除外)前面放 上负号“-”来表示,
如23, 360, 2, 0.5等, 这样的数叫做负数. 3
想一想
1,为什么学了自然数还要学分数? 2,有了自然数、分数够了吗?为什么? 3,分数与小数怎么样相互转化?
1.1从自然数到有理数
下列句子中用到的数,哪些属于计数和
排序 测量?哪些属于标号和排序?
计数
1、2002年全国共标号有高等学校2003所;
2、小明哥哥乘1425次列车从北京到天津测;量
3、香港特别行政区的中国银行大夏高368米, 地上70层,至1993年为止,是世界第5高楼.
整数
正整数 零
自然数
有理数 分数
负整数 正分数
负分数
数的分类
正整数
正有理数
有理数
零
正分数
负整数
负有理数
负分数
从自然数到有理数(解析版)--暑假自学课
第01讲 从自然数到有理数1.掌握正数和负数的定义和实际应用;2.掌握有理数的概念,认识带“非”字的有理数;3、认识0的实际含义;知识点一、自然数的概念自然数是指用以计量事物的件数或表示事物次序的数。
即用数码0,1,2,3,4……所表示的数。
自然数由0开始,一个接一个,组成一个无穷的集体。
自然数有有序性,无限性。
分为偶数和奇数,合数和质数等知识点二、正数与负数1)正数:像3,1.8%,3.5这样大于0的数叫做正数.正数都大于0.2)负数:像3−, 2.7−这样在正数前加上符号“−”(负)号的数叫做负数.负数都小于0. 3)符号:一个数前面的“+”,“−”号叫做它的符号.正数前面的“+”号可以省略,注意3与3+表示是同一个正数.负数前面的“−” 号不可以省略. 注:不能简单的根据符号来判断正负,而需要根据正负数的定义判别.,0,00,0a a a a < −=> =正数负数知识点三、用正数和负数表示具有相反意义的量:如果正数表示某种意义,那么负数表示它的相反意义,反之亦然.比如:用正数表示向南,那么向北3km −可以用负数表示为3km −.“相反意义的量”包括两个方面的含意:一是相反意义;二是要有量.知识点四、.“0”的特殊性1)0既不是正数,也不是负数;2)0是正数与负数的分界;3)0是自然数;4)0的意义:0有时表示没有,比如文具盒中有0支铅笔,表示没有铅笔;0有时是一个数,比如0℃是一个确定的温度;0有时也作为基准,比如海拔高度为0m 表示的是海平面的平均高度.知识点五、有理数的概念与分类1)整数:正整数、0、负整数统称为整数.所有的正整数组成正整数集合,所有的负整数组成负整数集合.2)分数:正分数、负分数统称为分数.有限小数和无限循环小数可以化为分数,所以我们也把它们看成分数.3)有理数:整数和分数统称为有理数.4)有理数的分类:(1)()正整数自然数整数零有理数按定义分类负整数正分数分数负分数 (2)()(,)正整数正有理数正分数有理数按符号分类零零既不是正数也不是负数负整数负有理数负分数 注意:1)会对整数和分数进行简单分类;2)整数与分数都是有理数的范畴,有限小数、无限循环小数是有理数;5)常用数学概念的含义1)正整数:既是正数,又是整数;2)负整数:既是负数,又是整数3)正分数:既是整数,又是分数;4)负分数:既是负数,又是分数5)非正数:负数和0;6)非负数:正数和07)非正整数:负整数和0;8)非负整数:正整数和0考点一:正负数的意义例【变式训练】考点二:正负数的实际应用例2.(2023·云南昆明·统考一模)中国是最早采用正负数表示相反意义的量,并使用负数进行运算的国家.当前,手机移动支付已经成为新型的消费方式,节日当天妈妈收到微信红包80元记作80+元,则妈妈微信转账支付67元可以表示为( )A .80+元B .80−元C .67+元D .67−元 【答案】D【分析】根据正数和负数表示相反意义的量,可得答案.【详解】解:如果微信红包80元记作80+元,那么微信转账支付67元记为67−元.故选:D .【点睛】本题考查了正数和负数,理解相反意义的量是解题关键.【变式训练】1.(2022秋·福建漳州·七年级统考期末)“英寸”是电视机常用尺寸,如图,“1时”即“1英寸”约为中学生大拇指第一节的长,则7英寸长相当于( )A .一支粉笔的长度B .课桌的长度C .教室门的宽度D .数学课本的宽度【答案】D 【分析】1英寸约为大拇指第一节的长大约有3~4厘米,7英寸长是它的7倍.【详解】解:根据题意可得1英寸约为大拇指第一节的长,大约有3~4厘米,所以7英寸长相当于数学课本的宽度.故选:D .【点睛】本题考查了数学常识,基本的计算能力和估算的能力,属于基础题,解答时可联系生活实际去解.2.(2022秋·七年级单元测试)一袋食品的包装袋上标有300g 5g ±的字样,它的含义是______.【答案】这袋食品的质量与标准质量300g 相比,超重不超过5g ,不足也不超过5g【分析】利用生活中的数学知识,利用±表示比标准质量可能多也可能少解决本题即可.【详解】解:5±表示比300g 超重不超过5g ,不足也不超过5g .故答案为:这袋食品的质量与标准质量300g 相比,超重不超过5g ,不足也不超过5g .【点睛】本题考查了有理数中正负数的实际应用,把正数和负数与日常生活相联系是解答本题的关键. 3.(2022秋·安徽蚌埠·七年级校考阶段练习)下表是某班5名同学某次数学测试成绩,根据信息回答问题:姓名王芳 刘兵 张沂 李聪 江文 成绩89 84 与全班平均分之差+2 0 6− 2−(1)把表格补充完整;(2)若不低于平均分的成绩是合格,求5名同学的合格率?【答案】(1)86,78,82,+5(2)60%【分析】根据有理数加减法在实际问题中的应用,可知高于基准为正,低于基准为负,有张沂可知,平均分为84 分,由此即可求出其他同学的成绩,由合格人数除以总人数乘以百分比即可求出答案.【详解】(1)解:由表格中张沂的信息可得出,平均分为84分,∴刘兵成绩:84286+=(分),李聪成绩:84678−=(分),江文成绩:84282−=(分),王芳成绩:89845−=+,故答案是:86,78,82,+5;(2)解:平均分为84 分,合格有刘兵,张沂,王芳,∴合格率是:(35)100%60%÷×=, 故答案是:60%.【点睛】本题主要考查有理数的加减法的应用,以及合格率的计算,解题的关键的找出“基准”,且“高于基准为正,低于基准为负”.考点三:认识0的实际意义 例【变式训练】1.(2022秋·河北保定·七年级统考期中)下面关于0的说法,正确的是( )A .0既不是正数也不是负数B .0既不是整数也不是分数C.0不是有理数D.0的倒数是0【答案】A【分析】依据倒数,有理数相关概念以及有理数分类判断即可.【详解】A.0既不是正数,也不是负数,故此选项正确,符合题意;B.0是整数,不是分数,故此选项错误,不符合题意;C.0是有理数,故此选项错误,不符合题意;D.0不存在倒数,故此选项错误,不符合题意.故选A.【点睛】本题考查了有理数,0是重要的数字,掌握有理数的相关概念和分类是解题的关键.2.(2022秋·全国·七年级专题练习)下列关于零的说法中,正确的是________①零是正数②零是负数③零既不是正数,也不是负数④零仅表示没有【答案】③【分析】根据零既不是正数也不是负数以及不同情形下零表示的意义不同进行逐一判断即可.【详解】解:①零不是正数,说法错误;②零不是负数,说法错误;③零既不是正数,也不是负数,说法正确;④零不仅仅表示没有,不同情形下,零表示的意义不同,说法错误;故答案为:③.【点睛】本题主要考查了有理数的分类,熟知零表示的意义是解题的关键.3.(2022秋·全国·七年级专题练习)“不是正数的数一定是负数,不是负教的数一定是正数”的说法对吗?为什么?【答案】不对,因为0既不是正数也不是负数.【分析】举反例进行说明即可.【详解】不对.因为0既不是正数也不是负数.【点睛】本题主要考查了0的意义,掌握“0既不是正数也不是负数”是解题的关键.考点四:有理数的概念与分类例4.(2022秋·云南昆明·七年级校考期中)下列说法中正确的是()A.0既不是整数也不是分数B.绝对值等于本身的数是0和1C.一个数的绝对值一定是正数D.整数和分数统称有理数【答案】D【分析】根据有理数、绝对值等相关概念进行判断.【详解】A选项:0是整数,故A选项错误;B选项:非负数的绝对值等于本身,故B选项错误;C选项:一个数的绝对值是正数或0(即非负数),故C选项错误;D选项:整数和分数统称为有理数,故D选项正确.故选:D【点睛】本题考查有理数、绝对值等相关概念,正确理解有理数、绝对值等概念是解题的关键.【变式训练】考点五:带“非”字的有理数例错误的说法为()A.①②③④⑤B.①②③④C.②③④⑤D.①②④⑤【答案】B【变式训练】−.故答案为:5【点睛】本题考查用正负数表示两种具有相反意义的量,熟练掌握用正负数表示两种具有相反意义的量是解答本题的关键.相反意义的量:按照指定方向的标准来划分,规定指定方向为正方向的数用正数表示,则向指定方向的相反的方向变化用负数表示,正与负是相对的.8.(2020·湖北宜昌·中考真题)向指定方向变化用正数表示,向指定方向的相反方向变化用负数表示,“体重减少1.5kg”换一种说法可以叙述为“体重增加_______kg”.【答案】-1.5【分析】根据负数在生活中的应用来表示.【详解】减少1.5kg可以表示为增加﹣1.5kg,故答案为:﹣1.5.【点睛】本题考查负数在生活中的应用,关键在于理解题意.9.(2020·福建·统考中考真题)2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为+米,根据题意,“海斗基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为100一号”下潜至最大深度10907米处,该处的高度可记为_________米.−【答案】10907【分析】海平面以上的高度用正数表示,海平面以下的高度用负数表示.据此可求得答案.+米,【详解】解:∵高于马里亚纳海沟所在海域的海平面100米的某地的高度记为100∴“海斗一号”下潜至最大深度10907米处,可记为-10907,故答案为:-10907.【点睛】本题考查了正数,负数的意义及其应用,解题的关键是掌握正数、负数的意义.1.(2023·吉林·统考一模)中国是最早采用正负数表示相反意义的量并进行负数运算的国家. 若气温上升7℃,记作:7+℃,那么气温下降10℃可记作()A.7℃B.10℃C.D.7−℃这一年上述四国中服务出口增长的国家是()A.美国B.德国C.英国D.中国【答案】D【分析】根据正负数的意义,进行判断即可.【详解】解:由表格可知,美国,德国,英国的增长率为负数,服务出口降低,中国的增长率为正数,服务出口增长;故选D.【点睛】本题考查正负数的意义.熟练掌握正负数的意义,是解题的关键.6.(2023秋·河北邯郸·七年级统考期末)北京与柏林的时差为7小时,例如,北京时间14:00,同一时刻的柏林时间是7:00.小丽和小红分别在北京和柏林,她们相约在各自当地时间8:00~17:00之间选择一个时刻开始通话,这个时刻可以是北京时间()A.9:30 B.11:30 C.13:30 D.15:30【答案】D【分析】根据柏林时间比北京时间早7小时解答即可.【详解】解:由题意得,柏林时间比北京时间早7小时,当柏林时间为8:00,则北京时间为15:00;当北京时间为17:00,则柏林时间为10:00;所以这个时间可以是北京时间的15:00到17:00之间,故选:D.【点睛】本题考查了正数和负数,解此题的关键是根据题意写出算式,即把实际问题转化成数学问题.7.(2023秋·山东日照·七年级日照市新营中学校考阶段练习)如图所示的是图纸上一个零件的标注,现有下列直径尺寸的产品(单位:mm),其中不合格的是()A.29.8mm B.30.03mm C.30.02mm D.29.98mm【答案】A【分析】依据正负数的意义求得零件直径的合格范围,然后找出不符要求的选项即可.【详解】解:∵30+0.03=30.03,30-0.02=29.98,∴零件的直径的合格范围是:29.98mm≤零件的直径≤30.03mm.∵29.8mm不在该范围之内,∴不合格的是A.故选:A.【点睛】本题主要考查的是正数和负数的意义,根据正负数的意义求得零件直径的合格范围是解题的关键.8.(2023秋·河南郑州·七年级校考阶段练习)小强在笔记上整理了以下结论,其中错误的是()A.有理数可分为正数、零、负数三类B.一个有理数不是整数就是分数C.正有理数分为正整数和正分数D.负整数、负分数统称为负有理数【答案】A【分析】根据有理数的分类逐一分析即可.【详解】解:A.有理数可分为正有理数、零和负有理数,故该项结论错误;B.整数和分数统称为有理数,所以一个有理数不是整数就是分数,故该项结论正确;C.正有理数分为正整数和正分数,故该项结论正确;【答案】6【分析】直接根据正负数的意义计算即可.【详解】∵当天最高气温∴这一天我市的温差是故答案为:6.【答案】4天后,甲水库水位上升12cm ,乙水库水位下降20cm【分析】根据甲、乙水库水位每天的升高和下降的量,即可计算总的变化量【详解】∵甲水库的水位每天升高3cm ,∴4天后,甲水库水位总的变化量是:()3412cm ×=∵乙水库的水位每天下降5cm ,∴4天后,乙水库水位总的变化量是:()5420cm −×=−答:4天后,甲水库水位上升12cm ,乙水库水位下降20cm【点睛】本题考查了正负数的实际应用,读懂题意是解决问题的关键17.(2023春·上海·六年级专题练习)某班级抽查了10名同学的期末成绩,以80分为基准,超出的分数记为正数,不足的分数记为负数,记录的结果如下(单位:分):+8、﹣3、+12、﹣7、﹣10、﹣3、﹣8、+1、5、+10.这10名同学中,(1)最高分是多少?(2)最低分是多少?(3)10名同学的平均成绩是多少?【答案】(1)92分(2)70分(3)80.5分【分析】(1)根据正负数的意义,可得答案;(2)根据正负数的意义,可得答案;(3)根据平均数的意义,可得答案.【详解】(1)最高分是801292+=分; (2)最低分是801070−=分; (3)10名同学的平均成绩是()8083127103815101080.5+−+−−−−+++÷=分. 【点睛】本题考查了正数和负数,利用正负数的意义超出的分数记为正数,不足的分数记为负数是解题关键.18.(2023秋·山东滨州·七年级统考期末)某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:g) 5 2 0 1 3 6袋数 1 4 3 4 5 3这批样品的平均质量比标准质量多还是少?多或少几克?若每袋标准质量为500克,则抽样检测的总质量是多少?【答案】这批样品的平均质量比标准质量多,多1.2克,抽样检测的总质量是10024克.【分析】根据表格中的数据计算与标准质量的差值的总数,再除以20,如果是正数,即多,如果是负数,即少;根据标准质量结合前边的结论进行计算抽样检测的总质量.【详解】与标准质量的差值的和为-5×1+(-2)×4+0×3+1×4+3×5+6×3=24,其平均数为24÷20=1.2,即这批样品的平均质量比标准质量多,多1.2克.则抽样检测的总质量是(500+1.2)×20=10024(克).【点睛】本题考查了正数和负数,掌握有理数的加法是解题关键.。
1.1从自然数到有理数(1)PPT课件
数的扩展
1.小华和她的7位朋友一起过生日,要平分一块生日蛋 糕,每人可得多少蛋糕?
2.小明的身高时168cm,如果改用米作单位,应该怎样 表示?
由于测量和分配等实际需要,产生了分数和小数
合作学习
12..夏“硬令卧营中结”和束“后硬,卧小上慧”的还票有价多相少差钱多?少?请列算式
课堂小结
结束语
数的起源
数的产生与发展离不开 生活和注意到一只 羊与许多羊,一头狼与整群狼在数量上的差异,随着 时间的推移慢慢的产生了数的概念.数的概念的形成可 能与火的使用一样古老,大约是在30万年以前,它对 于人类文明的意义也决不亚于火的使用.
最早人们利用自己的十个指头来 记数,当指头不敷应用时,人们 开始采用“石头记数”“结绳记 数”和“刻痕记数”.
当你尽了自己的最大努力时,失败也是伟大的, 所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End
感谢你的到来与聆听
学习并没有结束,希望继续努力
Thanks for listening, this course is expected to bring you value and help
请阅读节前文字
我国的长城始建于公元前7世纪,前后修造了2000余 年,明长城从山海关到嘉峪关,实际长度为5130千米 (合一万零二百六十里),故被称为万里长城. 你在这段文字中看到了哪些数?它们属于自然数吗?
自然数可以是用来技数和测量的,也可以用来给事物 标号或排序.
自然数的作用
解:报道中的数有:2008 , 5 , 1 , 6 , 8 , 100 , 36 , 100 表示计数和测量的有:6 ,8, 100, 36, 100 表示标号或排序的有:2008, 5, 1
浙教版数学七年级上册第一章《从自然数到有理数》复习教学设计
浙教版数学七年级上册第一章《从自然数到有理数》复习教学设计一. 教材分析《从自然数到有理数》是浙教版数学七年级上册第一章的内容,主要包括有理数的概念、分类、运算以及应用。
本章内容是学生初步接触数学符号和运算规则的阶段,对于培养学生对数学的兴趣和基本运算能力具有重要意义。
二. 学情分析七年级的学生刚刚从小学升入初中,对于数学的概念和运算规则有一定的了解,但还需要进一步的巩固和提高。
他们在学习过程中需要直观、生动的实例来帮助理解抽象的概念,同时也需要通过大量的练习来熟练掌握运算规则。
三. 教学目标1.理解有理数的概念,掌握有理数的分类。
2.掌握有理数的运算规则,包括加、减、乘、除、乘方等。
3.能够运用有理数解决实际问题,提高学生的应用能力。
四. 教学重难点1.有理数的概念和分类。
2.有理数的运算规则。
3.有理数在实际问题中的应用。
五. 教学方法1.采用直观、生动的实例讲解有理数的概念和分类,帮助学生理解抽象的概念。
2.通过大量的练习,让学生熟练掌握有理数的运算规则。
3.结合实际问题,让学生运用有理数解决问题,提高学生的应用能力。
六. 教学准备1.准备相关的基础知识PPT,用于导入和呈现。
2.准备相关练习题,用于操练和巩固。
3.准备实际问题,用于拓展和应用。
七. 教学过程1.导入(5分钟)通过复习自然数的概念,引导学生思考自然数的局限性,从而引出有理数的概念。
利用PPT展示有理数的概念,让学生初步了解有理数。
2.呈现(10分钟)利用PPT呈现有理数的分类,包括整数、分数、正数、负数等。
通过实例讲解,让学生理解有理数的分类,并能够正确判断一个数属于哪种分类。
3.操练(10分钟)让学生进行有理数的加减乘除乘方等运算练习,通过练习让学生熟练掌握有理数的运算规则。
4.巩固(10分钟)利用PPT展示一些实际问题,让学生运用有理数解决问题。
通过解决实际问题,让学生巩固有理数的概念和运算规则。
5.拓展(10分钟)让学生思考有理数在实际生活中的应用,例如购物、计算费用等。
从自然数到有理数-复习课
(2)球赛时,如果胜2局记作+2,那么-2表示 ______;
(3)若-4万表示亏损4万元,那么盈余3万元记 作______;
(4)+150米表示高出海平面150米,低于海平 面200米应记作______;
3.(1)如果把向北的方向规定为正,那么走 3.5千米,走-1.2千米,走0千米的意义各是 什么?
C.如果气温下降6℃记作-6℃,那么+8℃ 的意义就是零上8℃;
D.若将高1米设为标准0,高1.20米记作 +0.20米,那么-0.05米所表示的高是0.95米.
2.用正数或负数表示下列各题中的数量:
(1)如果火车向东开出400千米记作+400千米, 那么火车向西开出4000千米,记作______;
正数集合{ 负数集合{ 整数集合{ 分数集合{ 有理数集合{
…}; …}; …}; …}; …};
例题3、某检修队从A 地出发,在东西方向 的公路上检修线路,如果规定向东行驶为 正,向西行驶为负,这个检修队一天中行 驶的距离记录如下(单位千米):-4, +7,-9,+8,+6,-5,-3。 若检修队所乘的汽车每千米所耗油0.3升, 问在收工时在A地的什么位置?从出发到收 工时总共耗油多少升?
6、一个数小于它的相反数,且在数轴上到-1的距离 是1.5,则这个数是_________。
7、写出绝对值大于2且小于5的所有整数_________。
8、说出下面一列数排列的特点(至少2条)你知道 下一个数是什么吗?50,39,17,6,-5,-16……
9、点P从数轴上的原点出发,先向右移动1个单位, 再向左移动2个单位,然后向右移动3个单位,再向 左移动4个单位,求点P共移动了几个单位长度?终 止时点P对应的的数是多少?想一想本题能否再进一 步拓展?
浙教版七年级上册数学课件:从自然数到有理数复习
有理数的加法、减法、乘法和 除法运算可以推广到自然数上。
例如,两个自然数的乘法运算 可以转化为两个整数的乘法运 算,再取整数部分作为结果。
自然数的除法运算可以转化为 整数的除法运算,再取商的整 数部分作为结果。
自然数和有理数在实际问题中的应用
在日常生活中,我们经常使用自 然数来计数和度量,如人数、物
详细描述
通过设计一些具有迷惑性的题目和较为复杂的运 算题目,提高学生的解题能力和对有理数运算规 则的掌握程度,帮助学生更好地理解和运用有理 数知识。
巩固练习题
01 总结词
强化运算训练
02
详细描述
巩固练习题主要是针对有理数 的四则运算进行训练,通过大 量的练习题,让学生熟练掌握 有理数的加、减、乘、除运算 ,提高运算速度和准确性。
自然数在生活中的应用
总结词
自然数在日常生活中被广泛使用,如计数、测量、时间等。
详细描述
在购物时,我们使用自然数来计算找零和计算折扣。在制作 物品时,我们使用自然数来测量长度、宽度和高度。在日常 生活和工作中,我们使用时间单位如秒、分、小时和天等自 然数。
03
有理数复习
有理数的定义与性质
01
02
03
04
总结词:有理数的定义 与性质
有理数是可以表示为两 个整数之比的数,包括 整数、分数和十进制数。
有理数具有封闭性,即 加、减、乘、除四则运 算后仍为有理数。
有理数具有传递性、结 合性和交换性等性质。
有理数的运算规则
加法
同号相加,异号相 减,绝对值相加。
乘法
同底数相乘,积为 正;异底数相乘, 积为负。
乘法规则
同号有理数相乘,取相同的符号,并 把绝对值相乘;异号有理数相乘,取 绝对值较大的数的符号,并用较大的 绝对值减去较小的绝对值。
浙教版(2024)数学七年级上册《从自然数到有理数》教案及反思
浙教版(2024)数学七年级上册《从自然数到有理数》教案及反思一、教学目标:【知识与技能目标】:1.理解自然数、分数的产生和发展过程。
2.会用正数、负数表示具有相反意义的量。
3.掌握有理数的概念,能对有理数进行分类。
【过程与方法目标】:1.通过对生活中实例的分析,体会从实际问题中抽象出数学概念的过程。
2.在有理数分类的过程中,培养学生的归纳、概括能力。
【情感价值观目标】:1.感受数学与生活的紧密联系,提高学习数学的兴趣。
2.体会数学的简洁美和逻辑性,培养严谨的治学态度。
二、学情分析:七年级学生思维活跃,好奇心强,但抽象思维能力相对较弱,需要通过具体实例来引导理解抽象概念。
学生在日常生活中可能已经接触过一些具有相反意义的量,如气温的零上和零下等,但对于用正数、负数准确表示还需要进一步学习。
三、教学分析:《从自然数到有理数》是浙教版数学七年级上册的内容。
主要旨在从自然数的复习引入,逐步拓展到分数、负数,使学生对有理数的概念有一个完整的认识,教材通过大量的生活实例,让学生体会数学来源于生活又服务于生活。
四、教学重难点:【教学重点】:1.理解正数、负数的意义,会用正数、负数表示具有相反意义的量。
2.掌握有理数的概念及分类。
【教学难点】:1.对负数概念的理解。
2.有理数分类的准确性。
五、教学方法和策略:【教学方法】:1.讲授法:对于自然数、分数、小数和有理数的概念进行详细讲解,确保学生准确理解每个概念的定义和特点。
2.举例法:通过大量的生活实例帮助学生理解抽象的数学概念。
3.情境创设法:创设生动有趣的情境,让学生在计算商品价格折扣、总价等过程中体会有理数的实际应用,激发学生的学习兴趣。
4.实践法:让学生动手操作,通过图形表示分数,培养学生的合作能力和思维能力。
5.提问法:在教学过程中,适时提出问题,引导学生思考。
6.归纳法:在教学的各个阶段,引导学生对所学内容进行归纳总结,培养学生的归纳总结能力,帮助他们建立系统的知识框架。