公务员考试行测选言命题中的“至少”和“至多”
公务员行测逻辑思维训练基础题型解析
公务员行测逻辑思维训练基础题型解析在公务员行测考试中,逻辑思维能力的考察占据着重要的地位。
具备良好的逻辑思维能力,不仅能够帮助我们在考试中快速准确地解题,还对日后的工作和生活有着积极的影响。
接下来,我们就来深入探讨一下行测中逻辑思维训练的基础题型。
一、直言命题直言命题是逻辑判断中最基础的题型之一。
它是直接对事物的性质进行断定的简单命题,比如“所有的苹果都是红色的”“有的学生是勤奋的”等。
对于直言命题,我们需要掌握其六种类型:全称肯定命题(所有 S都是 P)、全称否定命题(所有 S 都不是 P)、特称肯定命题(有的 S 是 P)、特称否定命题(有的 S 不是 P)、单称肯定命题(某个 S 是P)、单称否定命题(某个 S 不是 P)。
在解题时,要特别注意直言命题的对当关系,包括矛盾关系、反对关系、下反对关系和从属关系。
例如,“所有的苹果都是红色的”与“有的苹果不是红色的”就是矛盾关系。
二、联言命题联言命题是指同时断定几种事物情况同时存在的复合命题,其表达形式为“p 且q”。
例如,“小明既聪明又勤奋”。
对于联言命题,只有当“p”和“q”都为真时,整个联言命题才为真。
只要“p”或者“q”中有一个为假,整个联言命题就为假。
在解题时,要注意题干中给出的联言命题的真假情况,结合其他条件进行推理。
三、选言命题选言命题分为相容选言命题和不相容选言命题。
相容选言命题的表达形式为“p 或者q”,只要“p”或者“q”中有一个为真,整个相容选言命题就为真。
不相容选言命题的表达形式为“要么 p,要么q”,只有“p”和“q”一真一假时,不相容选言命题才为真。
在解题时,需要根据题目所给定的选言命题的类型,以及其真假情况进行分析推理。
四、假言命题假言命题是逻辑思维训练中的重点和难点。
它是反映事物情况之间条件关系的命题,包括充分条件假言命题、必要条件假言命题和充分必要条件假言命题。
充分条件假言命题的表达形式为“如果 p,那么q”,其推理规则为“肯前必肯后,否后必否前,否前肯后无必然”。
公务员行测逻辑推理知识点剖析
公务员行测逻辑推理知识点剖析在公务员行测考试中,逻辑推理是一个重要的板块,它对于考生的思维能力和分析能力有着较高的要求。
掌握逻辑推理的知识点,不仅有助于在考试中取得好成绩,也能在日常生活和工作中提升我们的思考和判断能力。
一、直言命题直言命题是逻辑推理中最基础的部分。
它是指断定事物具有或不具有某种性质的命题。
比如“所有的苹果都是甜的”“有的花是红色的”等等。
在直言命题中,我们需要理解“全称肯定”“全称否定”“特称肯定”“特称否定”这四种基本形式以及它们之间的对当关系。
比如,“所有的 S都是P”和“有的 S 不是P”是矛盾关系,“所有的 S 都不是P”和“有的 S是P”也是矛盾关系。
通过对直言命题的深入理解,我们可以快速准确地进行推理和判断。
例如,已知“所有的公务员都要遵守纪律”为真,那么“有的公务员不遵守纪律”就一定为假。
二、联言命题联言命题是指多个命题同时成立的情况。
比如“小明既聪明又勤奋”。
联言命题的真假取决于其组成部分的真假。
只有当所有组成部分都为真时,整个联言命题才为真。
如果其中有一个部分为假,那么整个联言命题就为假。
在解题时,我们要注意关联词,如“并且”“既……又……”“不但……而且……”等,通过这些关联词来判断是联言命题,然后根据其真假规则进行推理。
三、选言命题选言命题分为相容选言命题和不相容选言命题。
相容选言命题是指几个命题至少有一个成立,比如“小明或者喜欢数学,或者喜欢语文”。
其真假规则是只要有一个选言支为真,整个命题就为真。
不相容选言命题则是指几个命题有且只有一个成立,比如“今天要么是晴天,要么是阴天”。
对于选言命题,我们要准确判断是相容还是不相容,然后根据相应的规则进行推理。
四、假言命题假言命题是逻辑推理中的重点和难点。
它是指一种条件关系的命题。
常见的假言命题有“如果……那么……”“只有……才……”“当且仅当”等。
比如“如果天下雨,那么地面会湿”“只有努力学习,才能取得好成绩”。
公务员考试行测判断推理之逻辑推理
公务员考试⾏测判断推理之逻辑推理⼀、假⾔命题1.如果那么(前推后):肯前肯后,否后否前2.只有才(后推前):肯前肯后,否后否前⼆、联⾔命题1. A且B为真,则AB均为真2. A且B为假,则AB⾄少⼀个为假三、选⾔命题1. A或B为真,则AB⾄少⼀个为真2. A或B为假,则AB均为假3.不相容选⾔命题:要么A真B假,要么A假B真四、三个定理1.逆否定理:A推B è -B 推 –A2.摩根定理:1) - (A或B) = -A 且 -B2) - (A且B) = -A 或 –B3.鲁滨逊定理: - (A 推 B) = A 且 -B五、集合推理1.四个基本1)所有A都是B 》A推B2)所有A都不是B 》A推-B3)有的A是B 》有的A推B4)有的A不是B 》有的A推-B2.三个换位1)所有A都是B 》有的B是A2)所有A都不是B 》所有B都不是A3)有的A是B 》有的B是A4)有的A不是B 》不能换位3.两个推出1)所有A都是B 》某个A是B 》有的A是B2)所有A都不是B 》某个A不是B 》有的A不是B4.⼀个递推1) A 推 B ,所有B 推 C 》A推C六、模态命题1.并⾮可能 = 必然不2.并⾮所有 = 有的不3.移动否定词,所有变有的,有的变所有,可能变必然,必然变可能七、真假推理1.⽭盾关系1)某个是和某个不是2)所有的A都是B和有的A不是B3)所有的A都不是B和有的A是B4) A推B和A且-B5) A且B和-A或-B6) A或B和-A且-B2.反对关系1)所有的A都不是B和所有的A都是B2)有的A是B和有的A不是B3.包容关系所有都是(不是)》某个是(不是)》有些是(不是)A且B 》 A(B)》 A或B⼋、四个原则1.话题⼀致原则2.整体优先原则3.可能优先原则4.敏感词汇原则九、七种逻辑关系1.对应关系2.条件关系3.属性关系4.全同关系5.并列关系6.包容关系7.交叉关系更多精彩,关注秋风!。
公务员考试 02.行测逻辑判断:且命题和或命题知识点详解
1.联言命题的翻译推理(1)表现形式:p且q♦联言命题反映的是若干种情况或者性质同时存在(2)常用联结词表示并列关系:且、和、都、既...又...表示递进关系:不但...而且...、甚至、还表示转折关系:虽然...但是...、然而、却联言命题的推理规则:肯定一个联言命题,则可以分别肯定每个支命题,即(p且q)→p,(p且q)→q。
举例说明:在年底评优活动中,小张或小王获得最佳员工奖。
那么:小张获得员工奖→小王没有获得员工奖,小王获得员工奖→小张没有获得员工奖【例题】在一次班会上,老师问大家:“成功的心态应该是怎样的?”郑磊说:“要不断的努力,活到老学到老。
”刘连说:“要保持知足的心态,肯定自己已经取得的成绩”。
老师说:“你们的观点都是好的,结合起来才准确:成功的心态既要不断努力,也要知足常乐”。
根据老师说法不能推出的是()。
A.郑磊和刘连的观点都不全面B.一个具有知足常乐心态的人,可能是具有成功心态的人C.一个具有成功心态的人,必定是具有不断努力心态的人D.不断努力的心态和知足常乐的心态同等重要【解析】“成功的心态既要不断努力,也要知足常乐”可翻译为:成功的心态→努力且知足。
A项,“你们的观点都是好的,结合起来才准确”说明郑磊和刘连的观点都不全面,可以推出,排除;B项,知足→可能有成功的心态,肯定原命题的部分后件,只能得出可能性的前件,故可以推出,排除;C项,成功的心态→努力,肯定原命题的前件,可以得出后件即“努为且知足”,则“努力”这一支命题也必为真,故C项可以推出,排除;D项,题干中并未提到努力和知足这两种心态的重要性问题,所以不能推出,当选。
2.选言命题的翻译推理(1)相容选言命题♦概念:事物若干种情况或性质中至少有一种情况存在的命题,p 或者q♦翻译:p或q翻译为:-p→q或者-q→p♦常用关联词:...或者...、可能...也可能...、也许...也许、至少有一个【例题】苗苗是某少儿舞蹈班的学生,她喜欢民族舞。
2023年公务员行测考试朴素逻辑题示例
2023年公务员行测考试朴素逻辑题示例由各类公职考试考情可知,在行测判断推理题型中一般都会涉及朴素逻辑的考查,朴素逻辑的难点在于考查形式比较多变、但其实只要抓准题目的突破口,就可以保证解题的速度与准确性。
下面小编给大家带来关于公务员行测考试朴素逻辑题示例。
公务员行测考试朴素逻辑题示例一、确定性信息分类1.最值描述信息题干出现“最多”“最少”“最大”“最小”等描述的信息可以用作确定性信息进行入手。
【示例】甜品店有四种甜点:双皮奶、布丁、蛋糕和冰淇淋。
B 比 A 贵,C 最便宜,双皮奶比布丁贵,蛋糕最贵,冰淇淋比 D 贵。
关于这四种甜点,下列说法正确的是:A.A 是双皮奶,B 是蛋糕,C 是冰淇淋,D 是布丁B.A 是布丁,B 是冰淇淋,C 是蛋糕,D 是双皮奶C.A 是冰淇淋,B 是蛋糕,C 是布丁,D 是双皮奶D.A 是冰淇淋,B 是蛋糕,C 是双皮奶,D 是布丁【答案】C。
解析:题干中出现的“蛋糕最贵”、“C最便宜”为最值性表述,可以通过这两个条件入手,结合“冰淇淋比 D 贵”“双皮奶比布丁贵”可知,双皮奶、蛋糕和冰淇淋均不是最便宜的,可得 C 是布丁。
故答案选 C。
2.肯定性描述信息一般情况下,肯定式描述的条件,确定性较强【示例】A、B、C、D 为四位漂亮女生,她们喜欢穿漂亮衣服,某天,她们穿的衣服颜色各不相同,有黄色、绿色、蓝色和红色四种。
在问到她们各自衣服的颜色时,A 说:“B 的衣服不是黄色的。
”B 说:“C 的衣服是绿色的。
”C 说:“D 的衣服不是蓝色的。
”D 说:“A、B、C 三人中有一个人的衣服是绿色的,而且只有这个人说的是实话。
”如果 D 说的是实话,那么以下说法中正确的是:A.C 的衣服是蓝色的,D 的衣服是绿色的B.B 的衣服是蓝色的,C 的衣服是红色的C.A 的衣服是绿色的,B 的衣服是红色的D.D 的衣服是绿色的,A 的衣服是红色的【答案】C。
解析:由 D 的话可知,说实话的人的衣服是绿色的。
行测判断推理演绎推理与归纳推理技巧
行测判断推理演绎推理与归纳推理技巧在公务员行测考试中,判断推理是一个重要的板块,而其中的演绎推理与归纳推理更是关键的考点。
掌握好这两种推理的技巧,对于提高我们的解题能力和得分有着至关重要的作用。
一、演绎推理技巧演绎推理是从一般性的前提出发,通过推导即“演绎”,得出具体陈述或个别结论的过程。
1、直言命题推理直言命题是表达事物是否具有某种性质的命题。
比如“所有的苹果都是水果”“有的学生是优秀的”等。
在解题时,要牢记直言命题的六种关系:全称肯定、全称否定、特称肯定、特称否定、单称肯定和单称否定。
同时,要熟练掌握对当关系,即矛盾关系、反对关系和下反对关系。
例如,“所有的 S 都是P”与“有的 S 不是P”是矛盾关系。
通过这些关系,可以快速判断命题的真假。
2、联言命题和选言命题推理联言命题表示几种情况同时存在,比如“小明既聪明又勤奋”。
选言命题分为相容选言命题和不相容选言命题。
相容选言命题表示几种情况至少有一种存在,例如“小明或者喜欢数学,或者喜欢语文”;不相容选言命题表示几种情况有且只有一种存在,如“要么今天下雨,要么今天晴天”。
对于联言命题,只有当所有联言支都为真时,整个命题才为真;对于选言命题,要根据其类型来判断真假。
3、假言命题推理假言命题是反映事物情况之间条件关系的命题。
常见的有充分条件假言命题和必要条件假言命题。
例如“如果天下雨,那么地面湿”是充分条件假言命题;“只有努力学习,才能取得好成绩”是必要条件假言命题。
在解题时,要明确条件之间的逻辑关系,通过逆否命题来进行推理。
4、三段论推理三段论由两个包含着一个共同项的性质判断作前提,得出一个新的性质判断为结论。
比如“所有的金属都能导电,铁是金属,所以铁能导电”。
在运用三段论时,要注意中项在前提中至少周延一次,以及两个否定前提不能得出结论等规则。
二、归纳推理技巧归纳推理是从个别性知识推出一般性结论的推理。
1、完全归纳推理完全归纳推理是对某类事物的全部对象都进行考察后得出的结论。
砖题库:选言命题-不相容选言命题
公务员考试行测、申论真题、模拟题尽收其中,千名业界权威名师精心解析,精细化试题分析、完美申论范文一网打尽!在线做题就选砖题库:/选言命题又称为析取命题,是反映事物的若干种情况或性质至少有一种存在的命题。
根据选言支之间是否具有并存关系,选言命题可分为相容选言命题和不相容选言命题。
选言命题由逻辑联结词“或者”连接支命题而成。
其支命题称为选言支,通常用p、q表示。
选言命题的逻辑形式可以写成:p或者q,符号为:p∨q(“p或者q”)。
∨称为析取词。
不相容选言命题又称为强析取命题,是反映事物的若干种情况或性质中有且只有一种情况存在的命题。
在逻辑结构上,不相容选言命题由逻辑联结词“要么,要么”连接支命题而成。
其支命题称为联言支,通常用p、q表示。
这样,不相容选言命题的逻辑形式可以写成:要么p,要么q符号为:p∨q(∨号上要加上·)(读作“要么p,要么q”)。
不相容选言命题与选言支之间存在着这样一种真假关系:选言支有且只有一个是真的,则由它们所组成的不相容选言命题是真的;如果选言支都是真的或者都是假的,则由它们所组成的不相容选言命题是假的。
不相容选言命题与联言支之间的真假关系可以用下面的真值表来表示:日常生活中我们还用“或……或……,二者不可得兼”、“不是……就是……”等表示不相容选言命题。
【题1】一桩投毒谋杀案,作案者要么是甲,要么是乙,二者必有其一;所用毒药或者是毒鼠强,或者是乐果,二者至少其一。
如果上述断定为真,则以下哪项推断一定成立?Ⅰ。
该投毒案不是甲投毒鼠强所为。
因此,一定是乙投乐果所为Ⅱ。
在该案侦破中,发现甲投了毒鼠强。
因此,案中的毒药不可能是乐果Ⅲ。
该投毒案的作者不是甲,并且所投的毒药不是毒鼠强。
因此,一定是乙投乐果所为A.只有ⅠB.只有ⅡC.只有ⅢD.只有Ⅰ和Ⅲ【解析】题干中“作案者要么是甲,要么是乙,二者必有其一”是不相容选言命题,其两个肢命题分别为“作案者是甲”和“作案者是乙”;“所用毒药或者是毒鼠强,或者是乐果,二者至少其一”是相容选言命题,两个肢命题分别为“所用毒药是毒鼠强”和“所用毒药是乐果”。
公务员考试行测极值问题中的抽屉原理
纵观公务员考试行测中的数量关系部分,不管是省公务员考试还是国家公务员考试都有一类题型,题干中问的是求最多、最少或至少、至多,这类问法一般意义上来说,我们称之为极值问题。
而其中的至少、至多的问法便是大部分考生所熟知的抽屉问题。
针对这类问题,我们该如何解决呢?教育专家下面就以一些例子来与大家一起分享此类问题的解法。
抽屉原理:将多于m×n件物品任意放在m个抽屉中,那么至少有一个抽屉中的物品件数不少于n+1件。
1、有120名职工投票从甲、乙、丙三人中选举一人为劳模,每人只能投一次,且只能选一个人,得票最多的人当选。
统计票数的过程发现,在前81张票中,甲得21票,乙得25票,丙得35票。
在余下的选票中,丙至少再得几张选票就一定能当选?( )A.15B.18C.21D.31【答案】A【解析】此题是问丙至少再得几张选票就一定能当选,由题干中可以看出共有三位候选人,甲得21票,乙得25票,丙得35票,要使至少再得到几张选票丙一定能当选,那么还是首先应该考虑到,丙竞选中遇到的最不利的情况,丙遇到的最不利的情况其实就是来看,谁对丙当选的竞争最大,从开始的选票中,可以看到甲的选票比较少,对丙当选的威胁较小,可以排除;而乙得到的选票与丙是最接近的,对丙的当选最有威胁。
120名职工投票,已有的81张票中,得票最少的是甲21张,只考虑乙丙即可。
120-21=99,若丙最后当选,至少得50张票,所以丙至少再得50-35=15张票。
【命题特点与规律】最不利原则解题。
2、有红、黄、绿三种颜色的手套各6双,装在一个黑色的布袋里,从袋子里任意取出手套来,为确保至少有2双手套不同颜色,则至少要取出的手套只数是( )。
A.15只B.13只C.12只D.10只【答案】A【解析】“为确保至少有”,考虑最坏的情况,首先取出了一种颜色的全部6双手套和其他两种颜色的手套各一只,再任意取出一只,必然得到2双不同颜色的手套。
因此至少要取出2×6+2+1=15只。
公务员考试02.行测逻辑判断:且命题和或命题知识点详解
公务员考试02.⾏测逻辑判断:且命题和或命题知识点详解1.联⾔命题的翻译推理(1)表现形式:p且q联⾔命题反映的是若⼲种情况或者性质同时存在(2)常⽤联结词表⽰并列关系:且、和、都、既...⼜...表⽰递进关系:不但...⽽且...、甚⾄、还表⽰转折关系:虽然...但是...、然⽽、却联⾔命题的推理规则:肯定⼀个联⾔命题,则可以分别肯定每个⽀命题,即(p且q)→p,(p且q)→q。
举例说明:在年底评优活动中,⼩张或⼩王获得最佳员⼯奖。
那么:⼩张获得员⼯奖→⼩王没有获得员⼯奖,⼩王获得员⼯奖→⼩张没有获得员⼯奖【例题】在⼀次班会上,⽼师问⼤家:“成功的⼼态应该是怎样的?”郑磊说:“要不断的努⼒,活到⽼学到⽼。
”刘连说:“要保持知⾜的⼼态,肯定⾃⼰已经取得的成绩”。
⽼师说:“你们的观点都是好的,结合起来才准确:成功的⼼态既要不断努⼒,也要知⾜常乐”。
根据⽼师说法不能推出的是()。
A.郑磊和刘连的观点都不全⾯B.⼀个具有知⾜常乐⼼态的⼈,可能是具有成功⼼态的⼈C.⼀个具有成功⼼态的⼈,必定是具有不断努⼒⼼态的⼈D.不断努⼒的⼼态和知⾜常乐的⼼态同等重要【解析】“成功的⼼态既要不断努⼒,也要知⾜常乐”可翻译为:成功的⼼态→努⼒且知⾜。
A项,“你们的观点都是好的,结合起来才准确”说明郑磊和刘连的观点都不全⾯,可以推出,排除;B项,知⾜→可能有成功的⼼态,肯定原命题的部分后件,只能得出可能性的前件,故可以推出,排除;C项,成功的⼼态→努⼒,肯定原命题的前件,可以得出后件即“努为且知⾜”,则“努⼒”这⼀⽀命题也必为真,故C项可以推出,排除;D项,题⼲中并未提到努⼒和知⾜这两种⼼态的重要性问题,所以不能推出,当选。
2.选⾔命题的翻译推理(1)相容选⾔命题概念:事物若⼲种情况或性质中⾄少有⼀种情况存在的命题,p 或者q翻译:p或q翻译为:-p→q或者-q→p常⽤关联词:...或者...、可能...也可能...、也许...也许、⾄少有⼀个【例题】苗苗是某少⼉舞蹈班的学⽣,她喜欢民族舞。
2018国家公务员考试:判断推理的“最多”“最少”需谨记
2018国家公务员考试:判断推理的“最多”“最少”需谨记判断推理中的分析推理无论在是公务员的国考、联考,还是省直事业单位、银行、国家电网、公安现役的考试中都是必出题型,考官对其的热衷度始终不减。
而它的出题形式也是灵活多变,一般的解题思路和方法,在书本上或者培训班都介绍给大家,大家多多的练习,将其融化贯通,也都不在话下。
可是涉及到“最多”“最少”的这类题型是不是还是难倒大家了呢?记住四条基本原则,快速准确的做出此类题目吧,希望一下内容对正在备考2017年国家公务员考试的你有所帮助。
(1)已知交叉的一定交叉。
如:题目中有四个北方人,两个是北京人,那么这两个北京人一定是北方人。
(2)已知不交叉的一定不交叉。
如:题目中说四人考上了大学,两人没有考上大学,这样考上大学的四人和没有考上大学的两人一定不交叉。
(3)“最少”的情况是能交叉的尽量交叉,其值为一定不交叉的数值之和。
如:题目中说学校有十名老师是硕士及以上学历,两名老师是本科及以下学历,三名优秀教师,如果题目让求最少有几名老师,就可以把三名优秀教师包含到十名老师当中去,尽量交叉;“最少”的值为一定不交叉的硕士及以上学历的十名老师、本科及以下学历的两名老师之和,即十二名老师。
(4)“最多”的情况是能不交叉就不交叉,其值为尽量不交叉的数值之和。
如:题目中说学校有十名老师是湖北的,三名优秀教师,如果题目让求最多有几名老师,就可以不把三名优秀教师包含到十名湖北老师当中去,即十三名老师。
下面结合题目分析一下:【例1】某个会议的与会人员的情况如下:(1) 3人是由基层提升上来的;(2) 4人是北方人;(3) 2人是黑龙江人;(4) 5人具有博士学位;(5) 黑龙江人没有博士学位;(6) 上述情况包含了与会的所有人员。
那么,与会人员的人数是( )。
A. 最少5人,最多12人B. 最少7人,最多12人C. 最少5人,最多14人D. 最少7人,最多14人正确选项是B。
【解析】已知(3)和(4)一定不交叉,所以最少人数为2+5=7;黑龙江人一定是北方人,所以(2)(3)一定交叉,所以四项就变成了(1)(2)(4)这三项,所以求人数最多的情况,也就是(1)(2)(4)这三项都不交叉,即3+4+5=12。
行测考试数算中的至多至少问题(含答案及解析)
行测考试数算中的至多至少问题(含答案及解析)行测考试的数学运算经常会考查一些至多至少问题,解决这些问题要从题目要求的极端情况(至多或至少)进行考虑。
例1:(2014·浙江A、B卷)有30名学生,参加一次满分为100分的考试,已知该次考试的平均分是86分,问不及格(小于60分)的学生最多有几人?A.9人B.10人C.11人D.12人【答案】B【解析】要使不及格的最多,则及格的最少,且分数都应该最高,即应使及格的都为100分,不及格的都为59分,设不及格的有x人,则及格的有30-x人,于是有100(30-x)+59x=30×86,解得x=101041,故不及格的最多有10人。
故选B。
例2:(2014·国考)某连锁企业在10个城市共有100家专卖店,每个城市的专卖店数量都不同。
如果专卖店数量排名第5多的城市有12家专卖店,那么专卖店数量排名最后的城市,最多有几家专卖店?A.2 B.3 C.4 D.5【答案】C【解析】要使专卖店数量排名最后的城市专卖店数量最多,应使其他城市专卖店数量尽量少,故排名第4、3、2、1名的城市所拥有的专卖店数量依次为13、14、15、16家,设排名第10的城市专卖店数量为x家,排名第9、8、7、6的城市专卖店数量依次为x+1、x+2、x+3、x+4家,则有16+15+14+13+12+(x+4)+(x+3)+(x+2)+(x+1)+x=100,解得x=4。
故选C。
例3:(2014·上半年联考安徽卷)某市电价为一个自然月内用电量在100度以内的每度电0.5元,在101度到200度之间的每度电1元,在201度以上的每度电2元。
张先生家第三季度缴纳电费370元,该季度用电最多的月份用电量不超过用电最少月份的2倍,问他第三季度最少用了多少度电?A.300 B.420 C.480 D.512【答案】C【解析】要使用电最少,应使尽量多的用电位于高电价区间,故应使用电最少的两个月用电量相同,且均为用电最多的月份电量的一半,设为x。
行测解题技巧:概率中的“至少”问题
行测解题技巧:概率中的“至少”问题概率问题在行测考试中经常出现。
公务员的日常工作会涉及统计相关知识,因此这部分题型会愈加被重视。
中公网校专家通过研究历年真题发现,概率中的“至少”问题是概率题型中的一类常考题型。
“至少”类题目通常所给的特殊条件较多或者较复杂,直接求事件A 发生的概率较难,则此时结合正难则反的思想,从反面入手来解决这类题目,在算法上将会得到很大的简化。
以上是“至少”类问题的一些例题,在解决这些题中,它的难点在于A事件的对立面是什么。
比如上面的:至少有一处遇到绿灯的反面为4处都遇到红灯;至少有2个号码相邻的概率反面为三个都不相邻概率;至少有一个男职业参加培训的对立事件都是女职员参加。
对立面寻找的准确性决定了最后答案的准确度。
但有些题中它的对立面不仅仅是上面的一个方面,有可能是多方面的,比如至少有两处遇到绿灯的对立面为4处都遇到红灯和有一处为绿灯的情况。
所以在做这类题时需要特别注意。
以上是中公网校专家对相关知识的一个总结。
“至少”类问题对于初学者来说理解起来有一定的难度,但是在熟练之后,运用上面的解题技巧,将会在很大程度上简化算法,让考生有更多时间去做别的题目。
行测数量:极值问题
行测数量:极值问题公务员考试虽然有一定的难度,出题的形式也千变万化,但是总有一些经典的题型常出常新,经久不衰。
为备考国家机关公务员录用考试,现特将国考中出题频率较高的题型予以汇总,并给予技巧点拨,希望广大考生能从中有所体会,把握出题规律、理顺知识脉络、掌握复习技巧、考出理想成绩。
题型总结如下:▲极值问题极值问题的提问方式经常为:“最多”、“至少”、“最少”等,是国家公务员考试中出题频率最高的题型之一。
一、本类试题基本解题思路如下:1.根据题目条件,设计解题方案;2.结合解题方案,确定最后数量;二、常见设计解题方案原则如下:(一)和固定题目给出几个数的和,求“极值”,解题方案为:如果求“最大值”,则:假设其余数均为最小,用和减去其余数,即为所求;如果求“最小值”,则:假设其余数均为最大,用和减去其余数,即为所求。
真题一:2009年国考第118题100人参加7项活动,已知每人只参加一项活动,而且每项活动参加的人数都不一样,那么,参加人数第四多的活动最多有几个人参加?()A.22B.21D.23【解析】A.这是一道“至多”问题。
若要参加人数第四多的活动的人最多,则前三组的人数必须为1,2,3,并且后三组与第四多的人数必须依次相差最少。
设第四多的人数为x,则后三组人数依次是x+1,x+2,x+3,则1+2+3+x+x+1+x+2+x+3=100,解得x=22.真题二:2005年国考第50题现有21朵鲜花分给5人,若每个人分得的鲜花数各不相同,则分得鲜花最多的人至少分得()朵鲜花。
A.7B.8C.9D.10【解析】A.题目问“分得鲜花最多的人至少”可以分多少朵,则可以假设分得鲜花最少的到最多的依次为:x、x+1、x+2、x+3、x+m(其中:x+m是分得鲜花数最多的,但是只比前四个人多一点,即m﹥3),则列方程为:x+x+1+x+2+x+3+x+m=21,得:5x=15-m因为m﹥3,故m=5,所以x=2,因此这5个人分得鲜花数可以为:2、3、4、5、7,故分得鲜花最多的人至少分7朵,也就是不能再少了。
公务员行测逻辑思维知识点与题型解析
公务员行测逻辑思维知识点与题型解析在公务员行测考试中,逻辑思维部分一直是重点和难点,需要考生具备较强的分析、推理和判断能力。
这部分内容涵盖了多种知识点和题型,下面我们就来详细探讨一下。
一、直言命题直言命题是逻辑思维中最基础的部分。
它表达了对事物的直接判断,比如“所有的公务员都是为人民服务的”“有的学生是勤奋好学的”等。
在直言命题中,要重点掌握对命题的真假判断以及命题之间的关系。
例如,“所有的 S 都是P”与“有的 S 不是P”是矛盾关系,“所有的 S都不是P”与“有的 S 是P”也是矛盾关系。
通过掌握这些关系,可以快速进行真假推理。
二、联言命题与选言命题联言命题表示几种情况同时存在,例如“小明既聪明又勤奋”。
其真假判断规则是只有当所有联言支都为真时,整个联言命题才为真。
选言命题则分为相容选言命题和不相容选言命题。
相容选言命题表示几种情况至少有一种存在,比如“小王或者喜欢唱歌,或者喜欢跳舞”;不相容选言命题表示几种情况有且只有一种存在,例如“要么今天下雨,要么今天晴天”。
在解题时,要根据不同的命题类型和题目条件进行推理。
三、假言命题假言命题是逻辑思维中的重点和难点,包括充分条件假言命题和必要条件假言命题。
充分条件假言命题,常见的表述有“如果……那么……”,比如“如果天下雨,那么地面就会湿”。
其推理规则是“肯前必肯后,否后必否前,否前肯后无必然”。
必要条件假言命题,常见表述为“只有……才……”,例如“只有努力学习,才能取得好成绩”。
推理规则是“肯后必肯前,否前必否后,肯前否后无必然”。
四、朴素逻辑朴素逻辑是没有明显的命题特征,需要通过综合分析和推理来解题的题型。
常见的解题方法有代入排除法、假设法等。
代入排除法适用于选项信息充分的题目,将选项代入题干,逐一验证是否符合条件。
假设法适用于题干信息较为复杂,难以直接推理的情况,通过假设某种情况来进行推理,如果假设推出矛盾,则假设不成立,反之假设成立。
五、削弱加强型题目这类题目要求考生对给定的论点和论据进行分析,判断选项对论点的削弱或加强作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在做题的过程中,同学们较为熟悉的题目表述方式是“在ab中至少选择一个”。对于这种题目,大多数同学都可以轻松地用逻辑语言将其写为“a或b”的形式。但是,如果题干中表述为“在ab中至多选择一个”,我们又该如何理解呢?实际上,“在ab中至多选择一个”存在着三种情况:①选择a,不选择b;②选择b,不选择a;③ab都不选择。综合这三种情况,就可以发现,其实“在ab中至多选择一个”就等价于“a和b中至少有一个不选择”,不选a即为非a,不选b即为非b,我们就可以将其写为“非a或非b”。类似可以写为“非a或非b”的题干还有“并非ab全部都选”、“ab中最少有一个不选”等。
下面跟着中公教育研究与辅导专家来看一看考试中如何应用这一点。
【例】副校长:我主张王老师和邱老师中至多有一人可以被推荐为国家级教学名师候选人。
校长:我不同意。
以下哪项最准确地表达了校长的意见?
A.王老师和邱老师都不可以被推荐为国家级教学名师候选人
B.王老师和邱老师中至少有一人可以被推荐为国家级教学名师候选人
公务员考试行测选言命题中的“至少”和“至多”
公务员考试行政职业能力测验主要测查与公务员职业密切相关的、适合通过客观化纸笔测验方式进行考查的基本素质和能力要素,包括言语理解与表达、数量关系、判断推理、资料分析和常识判断等部分。行政职业能力测验涉及多种题目类型,试题将根据考试目的、报考群体情况,在题型、数量、难度等方面进行组合。了解公务员成绩计算方法,可以让你做到心中有数,认真备考。
在做题过程中,除了在ab两种事务中进行选择的情况外,我们有时候还会遇到需要在多个事物中进行选择的题目,这种情况下“至多”和“至少”又有什么关系呢?举个例子,题干要在八个水果中至少选择三个,我们又该如何找到题干的矛盾命题呢?这时候我们可以先把所有的情况一一列出,包括选择0个、1个、2个、3个、4个、5个、6个、7个、8个一共九种情况。至少选择三个也就是从3个到8个这六种情况。那么,它的矛盾就是选择0个、1个、2个三种情况,换句话说就是至多选择两个。由此可见,若题干说“至少选择n个”,那么它的矛盾命题我们就可以表示为“至多选择(n-1)个”。
B.秋菊、阿春、秀秀和楠楠四人都不能参加
C.秋菊、阿春、秀秀和楠楠四人都能参加
D.如果秋菊、阿春都参加,那么秀秀和楠楠也都能参加
【中公解析】由“团支书说得对”可知班长说得不对,则需找到“秋菊、阿春、秀秀和楠楠最多有两人能参加”的矛盾命题,即“秋菊、阿春、秀秀和楠楠最少有三人能参加”,则A、C正确。D项是一个假言命题,当秋菊、阿春都参加时,秀秀和楠楠也都参加,符合题意,因此D项也可能为真。故答案选B。
C.王老师和邱老师都可以被推荐为国家级教学名师候选人
D.如果王老师可以被推荐为国家级教学名师候选人,则邱老师也可以
【中公解析】校长说他不同意,表明校长的意见是副校长所说命题的矛盾命题。“王老师和邱老师中至多有一人”可以理解为“非王老师或非邱老师”,它的矛盾命题就是“王老师且邱老师”,即“王老师和邱老师都被推荐为国家级教学名师候选人”。 故答案选C。
我们再来通过一道题目来看看应该如何应用这一点。
【例】某硕士班同学举办毕业20周年聚会,联络人王宁说班里有同学不能参加。班长说:“我看513宿舍的4名同学秋菊、阿春、秀秀和楠楠最多有两人能参加。”团支书说则下列哪项必定为假?
A.秋菊、阿春、秀秀和楠楠四人中有三人能参加
了解了选言命题中的“至多”和“至少”问题,以后同学们只需要擦亮眼睛,认真读题,就可以避开题干陷阱,从容得分了。