不锈钢部件的化学钝化处理的标准技术规范(精)

合集下载

ASTM A967-2001 不锈钢零件化学钝化处理的标准规范

ASTM A967-2001 不锈钢零件化学钝化处理的标准规范

Designation:A967–01e1Standard Specification forChemical Passivation Treatments for Stainless Steel Parts1 This standard is issued under thefixed designation A967;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval.e1N OTE—Paragraph3.1.1.5was deleted editorially in April2002.Paragraph10.2was corrected editorially in April2002.1.Scope1.1This specification covers several different types of chemical passivation treatments for stainless steel parts.It includes recommendations and precautions for descaling, cleaning,and passivation of stainless steel parts.It includes several alternative tests,with acceptance criteria,for confirma-tion of effectiveness of such treatments for stainless steel parts.1.2Practices for the mechanical and chemical treatments of stainless steel surfaces are discussed more thoroughly in Practice A380.1.3Several alternative chemical treatments are defined for passivation of stainless steel parts.Appendix X1gives some nonmandatory information and provides some general guide-lines regarding the selection of passivation treatment appropri-ate to particular grades of stainless steel but makes no recommendations regarding the suitability of any grade,treat-ment,and acceptance criteria for any particular application or class of applications.1.4The tests in this specification are intended to confirm the effectiveness of passivation,particularly with regard to the removal of free iron and other exogenous matter.These tests include the following practices:1.4.1Practice A—Water Immersion Test,1.4.2Practice B—High Humidity Test,1.4.3Practice C—Salt Spray Test,1.4.4Practice D—Copper Sulfate Test,1.4.5Practice E—Potassium Ferricyanide–Nitric Acid Test, and1.4.6Practice F—Free Iron Test.1.5The values stated in inch-pound units are to be regarded as the standard.The SI units given in parentheses are for information only.1.6The following precautionary caveat pertains only to the test method portions,Sections14through18of this specifica-tion:This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.2.Referenced Documents2.1ASTM Standards:A380Practice for Cleaning,Descaling,and Depassivation of Stainless Steel Parts,Equipment,and Systems2B117Practice for Operating Salt Spray(Fog)Apparatus3 B254Practice for Preparation of and Electroplating on Stainless Steel42.2Federal Specification:QQ-P-35C Passivation Treatments for Corrosion-Resistant Steels53.Terminology3.1Definition of Term Specific to This Standard—It is necessary to define which of the several commonly used definitions of the term passivation will be used in this specification.(See Discussion.)3.1.1Discussion—Stainless steels are autopassivating in the sense that the protective passivefilm is formed spontaneously on exposure to air or moisture.The presence of exogenous surface contamination,including dirt,grease,free iron from contact with steel tooling,and so forth,may interfere with the formation of the passivefilm.The cleaning of these contami-nants from the stainless steel surface will facilitate the spon-taneous passivation by allowing the oxygen uniform access to the surface.The passivefilm may be augmented by chemical treatments that provide an oxidizing environment for the stainless steel surface.3.1.1.1In this specification,passivation,unless otherwise specified,is defined as the chemical treatment of a stainless steel with a mild oxidant,such as a nitric acid solution,for the purpose of the removal of free iron or other foreign matter,but which is generally not effective in removal of heat tint or oxide scale on stainless steel.In the case of stainless steels with additions of sulfur for the purpose of improved machinability,1This specification is under the jurisdiction of ASTM Committee A01on Steel, Stainless Steel,and Related Alloys and is the direct responsibility of Subcommittee A01.14on Methods of Corrosion Testing.Current edition approved Oct.10,2001.Published December2001.Originally published as A967–st previoius edition A967–99.2Annual Book of ASTM Standards,V ol01.03.3Annual Book of ASTM Standards,V ol03.02.4Annual Book of ASTM Standards,V ol02.05.5Available from Superintendent of Documents,ernment Printing Office,Washington,DC20402.1Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.passivation may also include the removal of sulfides from the surface of the metal for the purpose of maximizing corrosion resistance.3.1.1.2The formation of the protective passivefilm on a stainless steel,also called passivation in a more general context,will occur spontaneously in air or other oxygen-containing environment when the stainless steel surface is free of oxide scale and exogenous matter.3.1.1.3Chemical treatments,such as sodium dichromate solutions,may facilitate the more rapid formation of the passivefilm on a stainless steel surface already free of scale or foreign matter.Such treatments,also sometimes called passi-vation in common usage,are designated as post-cleaning treatments in this specification in order to distinguish them from chemical treatments capable of removing free iron from stainless steels.3.1.1.4The chemical treatments capable of removing heat tint or oxide scale from stainless steel and capable of dissolving the stainless steel itself,typically called pickling,are substan-tially more aggressive than treatments used for passivation,as defined in3.1.1.1.The surface of stainless steel that has been pickled is free of scale,free iron,and exogenous foreign matter,and does not require a separate treatment for passiva-tion as defined in3.1.1.1.The passivation process defined in 3.1.1.2will occur without further chemical treatment but may be augmented and improved by the post-cleaning treatments defined in3.1.1.3.3.1.1.5Electrochemical treatments,including electropick-ling and electropolishing capable of removing heat tint or oxide scale from stainless steel and capable of dissolving the stainless steel itself,are substantially more aggressive than treatments used for passivation,as defined in3.1.1.1.The surface of stainless steel resulting from these treatments is free of scale, free iron,and exogenous foreign matter,and does not require a separate treatment for passivation as defined in3.1.1.1.The passivation process defined in 3.1.1.2will occur without further chemical treatment,but may be augmented and im-proved by the post-cleaning treatments defined in 3.1.1.3. Statements regarding chemical treatments,unless otherwise specified,are taken to include electrochemical treatments.4.Ordering Information4.1It is the responsibility of the purchaser to specify a test practice appropriate to any particular material and application. This specification was written for the purpose of providing an alternative to United States Federal Specification QQ-P-35C. Determination of the suitability of this specification for that purpose is the responsibility of the purchaser.4.2Unless specified by the purchaser,the chemical treat-ment applied to the stainless steel parts shall be selected by the seller from among the listed passivation treatments.5.Materials and Preparation for Passivation Treatments 5.1The passivation treatments shall be of one or more of the following types.The effectiveness of a particular treatment for a particular grade of stainless steel in a particular application is demonstrated by meeting the specified testing requirements: 5.1.1Treatments in nitric acid,5.1.2Treatments in citric acid,5.1.3Other chemical treatments,including electrochemical treatments,5.1.4Neutralization,and5.1.5Post-cleaning treatments.5.2Materials:5.2.1The chemicals used for passivation treatments shall produce passivated surfaces that meet the requirements of one or more of the tests of this specification.Attention shall be given to maintaining adequate volume,concentration,purity, and temperature control appropriate to the size and amount of stainless steel to be treated.5.2.2The processor shall maintain a record with regard to concentration and temperature of the passivation solution sufficient to demonstrate that the specified passivation condi-tions were maintained for each lot of stainless steel parts processed.Such records shall be available for inspection when specified in the purchase order.The processor is not required to reveal the precise composition of proprietary chemical mix-tures but shall maintain a unique identification of the mixture that will ensure its accurate representation for subsequent use.5.2.3The processor shall be responsible for the safe dis-posal of all material generated by this process.5.3Preparation for Passivation Treatments:5.3.1The pretreatment methods and procedures used prior to the passivation treatment,including mechanical and chemi-cal methods,singly or in combination,for descaling and pickling,shall be in accordance with Practice A380.When electrochemical cleaning is required,it shall be performed in accordance with Practice B254.5.3.2The resulting pretreated surface shall be substantially free of oil,grease,rust,scale,and other foreign matter.5.3.3When thefinal pretreatment of a part includes pickling of the entire surface of the part,no further passivation treatment is required prior to testing of the surface unless specified by the purchaser.6.Treatments in Nitric Acid Solutions6.1Passivation Treatment:6.1.1Stainless steel parts shall be treated in one of the following aqueous solutions and maintained within the speci-fied temperature range for the specified time.6.1.1.1Nitric1—The solution shall contain20to25volume percent of nitric acid and2.5+0.5weight percent of sodium dichromate.The parts shall be immersed for a minimum of20 min at a temperature in the range from120to130°F(49to 54°C).6.1.1.2Nitric2—The solution shall contain20to45volume percent of nitric acid.The parts shall be immersed for a minimum of30min at a temperature in the range from70to 90°F(21to32°C).6.1.1.3Nitric3—The solution shall contain20to25volume percent nitric acid.The parts shall be immersed for a minimum of20min at a temperature in the range from120to140°F(49 to60°C).6.1.1.4Nitric4—The solution shall contain45to55volume percent of nitric acid.The parts shall be immersed for a minimum of30min at a temperature in the range from120to 130°F(49to54°C).6.1.1.5Nitric5—Other combinations of temperature,time, and concentration of nitric acid,with or without other chemi-cals,including accelerants,inhibitors,or proprietary solutions, capable of producing parts that pass the specified test require-ments.6.2Water Rinse—Immediately after removal from the pas-sivating solution the parts shall be thoroughly rinsed,using stagnant,countercurrent,or spray washes singly or in combi-nation,with or without a separate chemical treatment for neutralization(see9.1)of the passivation media,with afinal rinse being carried out using water with a maximum total solids content of200ppm.7.Treatments in Citric Acid7.1Passivation Treatment:7.1.1Stainless steel parts shall be treated in one of the following aqueous solutions and maintained within the speci-fied temperature range for the specified time.7.1.1.1Citric1—The solution shall contain4to10weight percent of citric acid.The parts shall be immersed for a minimum of4min at a temperature in the range from140to 160°F(60to71°C).7.1.1.2Citric2—The solution shall contain4to10weight percent of citric acid.The parts shall be immersed for a minimum of10min at a temperature in the range from120to 140°F(49to60°C).7.1.1.3Citric3—The solution shall contain4to10weight percent of citric acid.The parts shall be immersed for a minimum of20min at a temperature in the range from70to 120°F(21to49°C).7.1.1.4Citric4—Other combinations of temperature,time, and concentration of citric acid,with or without other chemi-cals to enhance cleaning,including accelerants,inhibitors,or proprietary solutions capable of producing parts that pass the specified test requirements.7.1.1.5Citric5—Other combinations of temperature,time, and concentrations of citric acid,with or without other chemi-cals to enhance cleaning,including accelerants,inhibitors,or proprietary solutions capable of producing parts that pass the specified test requirements.Immersion bath to be controlled ata pH of1.8–2.2.7.2Water Rinse—Immediately after removal from the pas-sivating solution,the parts shall be thoroughly rinsed,using stagnant,countercurrent,or spray washes,singly or in combi-nation,with or without a separate chemical treatment for neutralization of the passivation media(see9.2),with afinal rinse being carried out using water with a maximum total solids content of200ppm.8.Treatments in Other Chemical Solutions,IncludingElectrochemical Treatments8.1It is recognized that the purpose of removal of all exogenous matter from a stainless steel surface,including the removal of free iron,can be accomplished by different media, with potential for benefits to be gained from use of proprietary skills and art,including proprietary passivation media.Such treatments may include externally applying an electrical po-tential on the stainless steel parts,as in the case of electropol-ishing.The suitability of such passivation treatments for use in meeting the requirements of this specification shall be deter-mined by the capability of the processed parts meeting the specified test requirements.8.2Stainless steel parts shall be treated in a specified aqueous solution,with or without externally applied electrical potential,and maintained within a specified temperature range for a time sufficient for the processed parts to meet the specified test requirement.8.3Water Rinse—Immediately after removal from the pas-sivating solution,the parts shall be thoroughly rinsed,using stagnant,countercurrent,or spray washes,singly or in combi-nation,with or without a separate chemical treatment for neutralization of the passivation media(see9.2),with afinal rinse being carried out using water with a maximum total solids content of200ppm.9.Neutralization9.1The chemical reactions of the passivating media on the surface of the stainless steel shall be stopped by rinsing of the stainless steel part,with or without a separate neutralization treatment.9.2The suitability of a neutralization procedure is deter-mined by the capability of the processed parts meeting the specified test requirements.(See Note1.)N OTE1—The selection of medium and procedures for a neutralization depends of the chemistry of the passivation and on economic consider-ations.An example of a neutralizing treatment would be immersion of the part for a minimum of30min in a solution of5%NaOH at160to180°F (71to82°C),followed by a water rinse.10.Post-Cleaning Treatments10.1Although the passivefilm characteristic of stainless steel will form spontaneously in air or any other oxygen-containing environment,the processor shall,when specified, apply a chemical treatment that will accelerate the formation of the passivefilm on a chemically clean stainless steel surface. An example of a medium that serves to accelerate the forma-tion of the passivefilm but does not contribute to the removal of free iron from the stainless steel surface would be an aqueous solution of sodium dichromate.10.2When specified,within one hour after thefinal water rinse as required in6.2,7.2,or8.3,all ferritic and martensitic steel parts shall be immersed in an aqueous solution containing 4to6weight percent of sodium dichromate at a temperature in the range from140to160°F(60to71°C)for a minimum of30 min,followed by a rinse in accordance with6.2,7.2,or8.3. The parts shall then be thoroughly dried.10.3The purchaser may specify other post-cleaning treat-ments.11.Finish11.1The passivated parts shall exhibit a chemically clean surface and shall,on visual inspection,show no etching, pitting,or frosting resulting from the passivation procedures.12.Testing Agency12.1When required,the purchaser shall be permitted to perform such inspections as necessary to determine that the testing agency is capable of performing the specifiedtest.13.Lot,Frequency of Testing,and Selection of Test13.1Definition of Lot—A lot shall consist of one of the following,at the option of the processor:13.1.1The passivated parts of similar alloy and manufac-turing methods that are pretreated and passivated in a single day or within a time frame that will ensure consistent passiva-tion results;13.1.2The passivated parts of the same product of one size from one heat in one shipment;or13.1.3When few parts are involved,the passivated parts from an entire production run.13.2Unless a greater frequency of testing is specified on the purchase order,one test per lot shall be sufficient.13.3One or more of the following tests,when specified on the purchase order,shall be performed on each lot of stainless steel parts.Not all of the following tests are suitable for all grades of stainless steel.(See Note2.)13.3.1Practice A—Water Immersion Test,13.3.2Practice B—High Humidity Test,13.3.3Practice C—Salt Spray Test,13.3.4Practice D—Copper Sulfate Test,and13.3.5Practice E—Potassium Ferricyanide–Nitric Acid Test.N OTE2—Some of the tests may produce positive indications not associated with the presence of free iron on the stainless steel surface.An example would be application of Practice C on some lesser-alloyed martensitic or ferritic stainless steels.14.Practice A—Water Immersion Test14.1This test is used for the detection of free iron or any other anodic surface contaminants on stainless steel.14.2The sample representing the lot of passivated parts shall be alternately immersed in a non-rusting tank of distilled water for1h and allowed to dry in air for1h.This cycle shall be repeated a minimum of twelve times.14.3The tested sample shall not exhibit rust or staining attributable to the presence of free iron particles embedded in the surface.15.Practice B—High Humidity Test15.1This test is used for the detection of free iron or any other anodic surface contaminants on stainless steel.15.2The test shall be performed using a humidity cabinet capable of maintaining the specified test conditions.15.3The sample representing the lot of passivated parts shall be cleaned by immersion in acetone or methyl alcohol or by swabbing with a clean gauze saturated with acetone or methyl alcohol,and dried in an inert atmosphere or desiccated container.The cleaned and dried part shall be subjected to97 63%humidity at10065°F(3863°C)for a minimum of 24h.15.4The tested sample shall not exhibit rust or staining attributable to the presence of free iron particles imbedded in the surface.16.Practice C—Salt Spray Test16.1This test is used for the detection of free iron or any other anodic surface contaminants on stainless steel.16.2The sample representing the lot of passivated parts shall be tested by the salt spray test conducted in accordance with Practice B117for a minimum of2h using a5%salt solution.16.3The tested sample shall not exhibit rust or staining attributable to the presence of free iron particles imbedded in the surface.17.Practice D—Copper Sulfate Test17.1This test is recommended for the detection of free iron on the surface of austenitic stainless steels in the200and300 series,precipitation hardened stainless steels,and ferritic400 series stainless steels having a minimum of16%chromium. This test is not recommended for martensitic400series stainless steels or for ferritic400series stainless steels with less than16%chromium because these steels will give a positive indication irrespective of the presence or absence of anodic surface contaminants.This test shall not be applied to parts to be used in food processing.17.2The test solution is prepared by dissolving4g of copper sulfate pentahydrate(CuSO4·5H2O)in250mL of distilled water to which1mL of sulfuric acid(H2SO4,sp gr 1.84)has been added.Aqueous copper sulfate solutions more than two weeks old shall not be used for this test.17.3The test solution is swabbed on the surface of the sample representing the lot of passivated parts,applying additional solution as needed to keep the surface wet for a period of at least6min.At the end of this period,the surface shall be carefully rinsed and dried with care taken not to disturb copper deposits if present.17.4The tested sample shall not exhibit copper deposits.18.Practice E—Potassium Ferricyanide–Nitric Acid Test 18.1This test is recommended when detection of very small amounts of free iron is required.It is recommended for detection of free iron on austenitic200and300series stainless steels.This test is not recommended for detection of free iron on ferritic or martensitic400series stainless steels,because these steels will give a positive indication irrespective of the presence or absence of anodic surface contaminants.This test shall not be applied to parts to be used in food processing. 18.2The test solution is prepared by adding10g of chemically pure potassium ferricyanide to500mL of distilled water,adding30mL of70%nitric acid,agitating until all of the ferricyanide is dissolved,and diluting to1000mL with distilled water.The test solution shall be mixed fresh on the day of the test.18.3The test solution is swabbed on the surface of the sample representing the lot of passivated parts.The formation of a dark blue color within30s denotes the presence of metallic iron.18.4The tested sample shall not exhibit the dark blue color indicative of free iron on the surface.18.5When the test is negative,the surface shall be thor-oughly washed with warm water to removal all traces of the test solution.When the test is positive,the dark blue stain shall be removed with a solution of10%acetic acid and8%oxalic acid,followed by a thorough hot waterrinse.19.Practice F—Free Iron Test19.1This test is used for the detection of free iron on the surface of stainless steel.It is especially useful for large parts that have been uniformly cleaned but that are inconvenient for reasons of size of equipment or ease of handling of the part to place in the environments defined in Practice A(Section14)or Practice B(Section15).Unless otherwise specified by the purchaser,the number of tests and the locations of the tests shall be at the option of the processor to assure a representative testing of the part.19.2The test is performed by placing a clean cloth pad that has been thoroughly soaked with distilled or deminaralized water on the surface of the part at a part temperature of50°F (10°C)or greater for a period of not less than60minutes.The cloth shall be in contact with the steel for an area of at least20 square inches(130cm2).The pad shall be maintained wet through the test period,either by a method of retarding external evaporation,by the further addition of potable water,or by backing the pad with a sponge or similar water source.The cloth pad used shall be used for only one such test,being changed for each test so as to avoid risk of contamination. After removal of the cloth pad,the surface of the part shall be allowed to dry in air before inspection.19.3The tested part shall not exhibit rust or staining attributable to the presence of free iron particles embedded in the surface.20.Rejection and Retest20.1Any lot failing to meet the specified test requirements of the purchase order shall be rejected.A rejected lot may,at the option of the processor,be re-passivated,with or without re-pretreatment,and then be retested.The number of samples tested from a lot subject to retest shall be twice the original specified test frequency,to the limit of the number of pieces in the lot.All samples must pass the specified acceptance criterion for the specified test for the retested lot to be accepted. 21.Precision and Bias21.1No statement is made concerning either the precision or bias of Practices A,B,C,D,and E because the results state merely whether there is conformance to the criteria for success specified in the procedure.22.Certification22.1When specified in the purchase order,a report of the practice and tests used,including the record of process condi-tions when specified in accordance with 3.1.1.2,shall be supplied to the purchaser.APPENDIX(Nonmandatory Information)RMATION REGARDING PASSIV ATION TREATMENTSN OTE X1.1—The following information is based on a section of Federal Specification QQ-P-35C(Oct.28,1988)identified as information of a general or explanatory nature that may be helpful,but is not mandatory. Minor changes have been made in the text to facilitate references to the main document and to correct technical inaccuracies.X1.1Intended Use—The passivation treatments provided by this specification are intended to improve the corrosion resistance of parts made from stainless steels of all types.X1.1.1During processing operations such as forming,ma-chining,tumbling,and lapping,iron particles or other foreign particles may become smeared over or imbedded into the surface of stainless steel parts.These particles must be re-moved or they will appear as rust or stain spots.This condition may be prevented by chemically treating the parts to remove the iron particles or other foreign particles,and then allowing the passivefilm to form on the cleaned surface,with or without chemical enhancement of the formation of this oxidefilm.X1.1.2This specification is not intended for the black oxide coating of parts typically used for photographic or optical instruments.X1.2Ordering Data—Purchasers should select the pre-ferred options permitted by this specification and include the following information in the purchase order:X1.2.1Title,number,and date of this specification;X1.2.2Identification of material by type and applicable product specification;X1.2.3Test practices to be imposed(see1.4);X1.2.4Definition of lot size,if other than described in this specification;andX1.2.5Required documentation,if other than the minimum required by this specification.X1.3Grades of Stainless Steel—Different types of stainless steel are selected on a basis of properties required,for example, corrosion resistance and design criteria,and fabrication re-quirements.Table X1.1is a compilation that serves as a guide for the selection of passivation treatment for different grades, but is far from complete either in grades or in passivation treatments.X1.4Clean Water—Clean water is defined as water con-taining a maximum total solid content of200ppm.Rinsing can be accomplished by a combination of stagnant,countercurrent or spray rinses,or both,prior tofinal rinse.X1.5Chemically Clean Surface—A chemically clean sur-face is defined as a surface upon which water,when applied momentarily to the surface,will remain on that surface in an even,continuousfilm,and in addition is free of any foreign material or residualfilm deposit which would be detrimental to the quality of thepart.X1.6Test Specimens —When using test specimens instead of parts,the specimens can effectively represent the parts only if they have been exposed to the same processing steps,such as machining,grinding,heat treating,welding,and so forth,as the parts they are to represent.X1.7Carburized Surfaces —Stainless steel parts with car-burized surfaces cannot be passivated because the carbon combines with the chromium forming chromium carbides on the surface.X1.8Nitrided Surfaces —Stainless steel parts with nitrided surfaces should not be passivated because the treatment will severely corrode the nitrided case.X1.9This specification provides for the same passivation treatments as Fed.Spec.QQ-P-35C,but also includes a number of alternative passivation treatments.The effectiveness of any passivation treatment is demonstrated by the parts meeting the specified testing requirements after treatment.X1.10Martensitic Grade 440C —High-strength grades such as 440C are subject to hydrogen embrittlement or intergranular attack when exposed to acids.Cleaning by mechanical methods or other chemical methods is recom-mended.X1.11The salt spray test is typically used to evaluate austenitic stainless steels and may not be applicable to all martensitic or ferritic stainless steels.ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this ers of this standard are expressly advised that determination of the validity of any such patent rights,and the risk of infringement of such rights,are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards,at the address shownbelow.FIG.X1.1Recommended Nitric Acid Passivation Treatments for Different Grades of StainlessSteel。

不锈钢酸洗钝化标准

不锈钢酸洗钝化标准

不锈钢酸洗钝化标准不锈钢酸洗钝化是一种重要的表面处理工艺,它可以有效地改善不锈钢的表面性能,提高其耐腐蚀性和机械性能。

不锈钢酸洗钝化标准是对这一工艺的要求和规定,它对不锈钢酸洗钝化的工艺流程、操作要求、质量控制等方面进行了详细的规定,是不锈钢酸洗钝化工艺的重要依据。

本文将对不锈钢酸洗钝化标准进行详细介绍,希望能对相关人员有所帮助。

一、不锈钢酸洗钝化的工艺流程。

不锈钢酸洗钝化的工艺流程一般包括酸洗、中和、清洗、钝化等环节。

首先是酸洗环节,主要是利用酸性溶液将不锈钢表面的氧化皮和杂质去除,以达到清洁表面的目的。

接下来是中和环节,通过中和处理将酸洗残留物中的酸性物质中和掉,以免对后续工艺产生影响。

然后是清洗环节,清洗的目的是将中和后的残留物和其他杂质彻底清洗干净,以保证表面的干净度。

最后是钝化环节,通过钝化处理形成一层致密的氧化膜,提高不锈钢的耐腐蚀性能。

二、不锈钢酸洗钝化的操作要求。

在进行不锈钢酸洗钝化工艺时,操作人员必须严格按照标准要求进行操作。

首先是操作人员必须穿戴好相应的防护用具,以免因操作不慎造成伤害。

其次是要严格按照工艺流程进行操作,不得随意更改或省略任何一个环节。

同时,操作人员必须严格按照配方要求配置酸洗、中和、清洗和钝化溶液,不得随意调整配方比例。

另外,操作人员在进行酸洗、中和、清洗和钝化处理时,必须注意操作规程,严禁违章操作。

三、不锈钢酸洗钝化的质量控制。

不锈钢酸洗钝化的质量控制是保证工艺品质的关键。

在进行不锈钢酸洗钝化工艺时,必须对酸洗、中和、清洗和钝化溶液进行严格的质量控制,确保其浓度、温度和PH值等符合标准要求。

同时,对酸洗后的不锈钢表面进行检测,确保其清洁度符合要求。

在钝化处理后,还需对不锈钢的耐蚀性进行测试,以确保其性能符合标准要求。

四、不锈钢酸洗钝化标准的重要性。

不锈钢酸洗钝化标准的制定和执行对于保证不锈钢产品的质量和性能具有重要意义。

它可以规范不锈钢酸洗钝化工艺,提高工艺的稳定性和可控性,保证产品的一致性和稳定性。

不锈钢酸洗与钝化规范标准

不锈钢酸洗与钝化规范标准

不锈钢酸洗与钝化规范——奥氏体不锈钢压力容器的酸洗钝化晨怡热管1 前言在我公司生产中,经常有不锈钢设备的制作,不锈钢设备由于接触到腐蚀性介质,会造成设备表面有明显的腐蚀痕迹及颜色不均匀的斑痕,因此对不锈钢设备表面的处理尤为关键,不锈钢设备表面的钝化处理就是一个重要环节。

设备表面钝化膜形成不完善,与铁离子接触造成污染,在使用过程中就会出现锈蚀现象,造成运行介质指标变化等。

下面就奥氏体不锈钢设备表面的酸洗钝化处理原理及实际操作的常规工艺过程谈一些看法,以供有关人员参考。

2 概述奥氏体不锈钢具有良好的耐腐蚀性能,而且还有良好的冷热加工性能,因此被广泛地用于制造各类具有防腐蚀要求的压力容器,奥氏体不锈钢表面的钝化膜,对其耐腐蚀有很大影响。

奥氏体不锈钢的钝化膜主要是通过对其表面进行酸洗钝化处理得来的。

3 酸洗钝化的原理3.1钝化:金属经氧化性介质处理后,其腐蚀速度比原来未处理前有显著下降的现象称金属的钝化。

其钝化机理主要可用薄膜理论来解释,即认为钝化是由于金属与氧化性介质作用,作用时在金属表面生成一种非常薄的、致密的、覆盖性能良好的、能中固地附在金属表面上的钝化膜。

这层膜成独立相存在,通常是氧和金属的化合物。

它起着把金属与腐蚀介质完全隔开的作用,防止金属与腐蚀介质直接接触,从而使金属基本停止溶解。

奥氏体不锈钢经氧化性介质处理后其表面能形成满足上述要求的钝化膜,但该钝化膜在起活化作用的Cl-、Br-、F-等卤素离子作用下,极易受到破坏。

这也就是虽经酸洗钝化处理的奥氏体不锈钢压力容器在进行水压试验后若不能将水渍除干净,但应控制水的Cl-含量不超过25ppm的原因之一。

另外并非任何金属的氧化膜都可视作钝化膜,如碳钢在高温氧化后形成的氧化膜由于不能满足牢固地附在金属表面的要求而不能充作钝化膜。

对于奥氏体不锈钢一般采用氧化性强的以硝酸为主剂的溶液来进行处理,为确保钝化处理的效果,在钝化前先对被钝化表面进行酸洗处理。

不锈钢化学钝化检测及处理

不锈钢化学钝化检测及处理

不锈钢化学钝化检测及处理不锈钢化学钝化检测及处理本文研究了马氏体不锈钢化学钝化、硅烷处理和复合处理的耐蚀性及其机理。

采用蓝点法比较了不同表面处理后试样变色时间的长短,利用盐水浸泡试验区分了不同表面处理后试样腐蚀速率的大小,采用中性盐雾试验辨别了不同表面处理后试样耐盐雾性的优劣,利用电化学测试方法对比了不同表面处理后试样耐点蚀性能的差异和对腐蚀介质的阻挡能力的区别,采用膜重测试对硅烷膜的膜厚进行了间接表征,以及利用扫描电子显微镜、能谱仪、X射线衍射仪、X射线光电子能谱仪和全反射傅里叶变换红外光谱仪表征了不同表面处理试样表面薄膜,分析了不同薄膜的结构组成和耐蚀机理。

研究结果:(1)综合比较,四种耐蚀性测试方法表明了不锈钢不同表面处理的耐蚀效果差异性:单独硅烷处理后试样的耐蚀性优于传统硝酸-重铬酸盐钝化处理后的耐蚀性,先柠檬酸钝化后酸性硅烷体系处理的复合处理试样耐蚀性较单独酸性硅烷体系处理的得到进一步增强。

先柠檬酸钝化后酸性硅烷体系处理的复合处理方式兼具优异的耐蚀性和环保特性,有望替代传统的硝酸-重铬酸盐钝化处理。

(2)根据膜重测试结果,先柠檬酸钝化后酸性硅烷体系处理的复合处理试样表面硅烷膜膜重低于单独酸性硅烷体系处理后试样的膜重,说明复合膜优异的耐蚀性不仅仅依靠表层硅烷膜,更得益于其双层膜结构。

(3)结合表面分析可知,钝化膜有完整性、致密性,硝酸-重铬酸盐钝化膜中主要含有Cr、Fe、O三种元素,其物质组成包括CrOOH、Cr(OH)3、Cr2O3、FeOOH、Fe3O4、Fe2O3。

(4)结合表面分析可知,硅烷膜和复合膜均具有完整性、致密性,硅烷膜和复合膜中均主要含有Si、C、O三种元素。

(5)根据ATR-FTIR分析可知,硅烷膜与基材之间、复合膜的内外层膜之间均发生了化学吸附,生成结合牢靠的Si-O-Fe的化学键。

(6)根据 XPS、ATR-FTIR分析可知,硅烷膜和复合膜的外层硅烷膜中存在C-O、C-Si、Si-O、C=O、-OH等基团,硅醇羟基之间发生脱水缩合反应,形成了相互交联网状结构的三维薄膜,从而构成了致密的硅烷膜。

不锈钢钝化操作规程

不锈钢钝化操作规程

不锈钢钝化操作规程不锈钢钝化操作规程第一章总则第一条为了保证不锈钢表面的美观性和耐腐蚀性能,规范不锈钢钝化操作,制定本规程。

第二条不锈钢钝化操作应遵循安全、环保、规范、高效的原则。

第三条本规程适用于工业生产过程中的不锈钢钝化操作。

第二章术语和定义第四条不锈钢:指含铬量不低于10.5%的铁基合金。

第五条钝化:指通过化学处理,表面形成一层致密、均匀、抗腐蚀的氧化膜,提高不锈钢耐腐蚀性能。

第六条钝化剂:指用于不锈钢钝化过程中的化学药剂。

第七条原液:指未经稀释的钝化剂。

第三章设备和材料第八条钝化槽:应采用耐腐蚀材料制作,有良好的密封性能,防止钝化剂泄漏。

第九条前处理设备:应配备清洗槽、酸洗槽等设备,确保表面无污物。

第十条不锈钢钝化剂:应选择符合国家标准的产品,严禁使用过期的钝化剂。

第四章操作流程第十一条准备工作:将待钝化的不锈钢表面清洗干净,去除油污和锈蚀物。

第十二条配制钝化液:按照钝化剂的使用说明书,根据不锈钢的种类和数量,正确配比钝化液。

第十三条钝化槽处理:将准备好的钝化液倒入钝化槽中,使其表面充分浸泡。

第十四条设定时间:根据不锈钢的种类和厚度,设定合适的钝化时间。

第十五条钝化处理:将待钝化的不锈钢表面浸泡在钝化槽中,保证不锈钢表面完全与钝化液接触。

第十六条清洗处理:钝化处理完成后,将不锈钢表面用清水进行充分冲洗,去除残留的钝化液。

第十七条检验合格:经过钝化处理的不锈钢表面应均匀、致密,无色差、斑点和脱层等现象,并且经化学验收合格。

第五章安全和环保措施第十八条操作人员应穿戴好防护设备,如防护眼镜、手套、防护服等。

第十九条操作过程中应注意通风,避免钝化剂气味对人体造成危害。

第二十条不锈钢钝化液及废弃料应进行专门收集和储存,严禁直接排放到水体中。

第六章附则第二十一条针对特殊材质和工艺的不锈钢钝化操作,应编制相应的专项规程。

第二十二条违反本规程的操作行为,将依据相关安全和环保法律法规予以处理。

第二十三条本规程由不锈钢钝化操作管理人员执行,并在作业现场随时提供给操作人员。

不锈钢钝化处理标准

不锈钢钝化处理标准

不锈钢钝化处理标准不锈钢钝化处理是指在不锈钢表面形成一层致密、均匀、不易脱落的钝化膜,以提高不锈钢的耐蚀性和耐磨性。

不锈钢钝化处理标准的制定和执行,对于保障不锈钢产品的质量和使用寿命具有重要意义。

本文将对不锈钢钝化处理标准进行详细介绍。

首先,不锈钢钝化处理的标准主要包括处理工艺、处理方法、处理设备和处理条件等方面。

在处理工艺方面,应当明确不锈钢钝化处理的步骤和流程,确保每一个环节都符合标准要求。

处理方法应当根据不同的不锈钢材质和使用环境,选择合适的处理方法,确保钝化膜的质量和性能。

处理设备应当具备相应的功能和性能,保证不锈钢钝化处理的效果。

处理条件包括处理温度、处理时间、处理液体成分等,应当严格执行标准规定,确保不锈钢钝化处理的一致性和稳定性。

其次,不锈钢钝化处理标准的制定应当参考国家相关标准和行业标准,结合不同企业的实际情况和需求,制定适合自身的标准体系。

标准体系应当包括不锈钢钝化处理的基本要求、技术规范、质量控制和检测方法等内容,确保不锈钢钝化处理的全面、系统和科学。

此外,不锈钢钝化处理标准的执行应当严格按照标准要求进行,对于不符合标准要求的产品,应当及时进行整改和处理,确保产品质量和安全。

同时,应当建立不锈钢钝化处理的质量跟踪和追溯体系,对每一批产品进行记录和归档,确保产品的质量可追溯。

最后,不锈钢钝化处理标准的执行效果应当进行定期评估和检查,发现问题及时进行整改和改进,确保不锈钢钝化处理标准的持续有效性和可靠性。

同时,应当加强对不锈钢钝化处理技术的研发和创新,不断提高不锈钢钝化处理的质量和效率。

总之,不锈钢钝化处理标准的制定和执行对于提高不锈钢产品的质量和使用寿命具有重要意义。

只有严格执行标准要求,不断进行技术创新和改进,才能确保不锈钢钝化处理的质量和效果。

希望本文对不锈钢钝化处理标准的制定和执行有所帮助。

不锈钢酸洗与钝化规范

不锈钢酸洗与钝化规范

不锈钢酸洗与钝化规范——奥氏体不锈钢压力容器的酸洗钝化晨怡热管1 前言在我公司生产中,经常有不锈钢设备的制作,不锈钢设备由于接触到腐蚀性介质,会造成设备表面有明显的腐蚀痕迹及颜色不均匀的斑痕,因此对不锈钢设备表面的处理尤为关键,不锈钢设备表面的钝化处理就是一个重要环节。

设备表面钝化膜形成不完善,与铁离子接触造成污染,在使用过程中就会出现锈蚀现象,造成运行介质指标变化等。

下面就奥氏体不锈钢设备表面的酸洗钝化处理原理及实际操作的常规工艺过程谈一些看法,以供有关人员参考。

2 概述奥氏体不锈钢具有良好的耐腐蚀性能,而且还有良好的冷热加工性能,因此被广泛地用于制造各类具有防腐蚀要求的压力容器,奥氏体不锈钢表面的钝化膜,对其耐腐蚀有很大影响。

奥氏体不锈钢的钝化膜主要是通过对其表面进行酸洗钝化处理得来的。

3 酸洗钝化的原理3.1钝化:金属经氧化性介质处理后,其腐蚀速度比原来未处理前有显著下降的现象称金属的钝化。

其钝化机理主要可用薄膜理论来解释,即认为钝化是由于金属与氧化性介质作用,作用时在金属表面生成一种非常薄的、致密的、覆盖性能良好的、能中固地附在金属表面上的钝化膜。

这层膜成独立相存在,通常是氧和金属的化合物。

它起着把金属与腐蚀介质完全隔开的作用,防止金属与腐蚀介质直接接触,从而使金属基本停止溶解。

奥氏体不锈钢经氧化性介质处理后其表面能形成满足上述要求的钝化膜,但该钝化膜在起活化作用的Cl-、Br-、F-等卤素离子作用下,极易受到破坏。

这也就是虽经酸洗钝化处理的奥氏体不锈钢压力容器在进行水压实验后若不能将水渍除干净,但应控制水的Cl-含量不超过25ppm的原因之一。

另外并非任何金属的氧化膜都可视作钝化膜,如碳钢在高温氧化后形成的氧化膜由于不能满足牢固地附在金属表面的要求而不能充作钝化膜。

对于奥氏体不锈钢一般采用氧化性强的以硝酸为主剂的溶液来进行处理,为确保钝化处理的效果,在钝化前先对被钝化表面进行酸洗处理。

不锈钢酸洗与钝化处理规范

不锈钢酸洗与钝化处理规范

不锈钢酸洗与钝化处理规范不锈钢酸洗与钝化处理规范1前言不锈钢设备由于接触到腐蚀性介质,会造成设备表面有明显的腐蚀痕迹及颜色不均匀的斑痕,因此对不锈钢设备表面的处理尤为关键,不锈钢设备表面的钝化处理就是一个重要环节。

设备表面钝化膜形成不完善,与铁离子接触造成污染,在使用过程中就会出现锈蚀现象,造成运行介质指标变化等。

下面就奥氏体不锈钢设备表面的酸洗钝化处理原理及实际操作的常规工艺过程谈一些看法,以供有关人员参考。

2 概述奥氏体不锈钢具有良好的耐腐蚀性能,而且还有良好的冷热加工性能,因此被广泛地用于制造各类具有防腐蚀要求的压力容器,奥氏体不锈钢表面的钝化膜,对其耐腐蚀有很大影响。

奥氏体不锈钢的钝化膜主要是通过对其表面进行酸洗钝化处理得来的。

3 酸洗钝化的原理3.1钝化:金属经氧化性介质处理后,其腐蚀速度比原来未处理前有显著下降的现象称金属的钝化。

其钝化机理主要可用薄膜理论来解释,即认为钝化是由于金属与氧化性介质作用,作用时在金属表面生成一种非常薄的、致密的、覆盖性能良好的、能牢固地附在金属表面上的钝化膜。

这层膜成独立相存在,通常是氧和金属的化合物。

它起着把金属与腐蚀介质完全隔开的作用,防止金属与腐蚀介质直接接触,从而使金属基本停止溶解。

奥氏体不锈钢经氧化性介质处理后其表面能形成满足上述要求的钝化膜,但该钝化膜在起活化作用的Cl-、Br-、F-等卤素离子作用下,极易受到破坏。

这也就是虽经酸洗钝化处理的奥氏体不锈钢压力容器在进行水压试验后若不能将水渍除干净,但应控制水的Cl-含量不超过25ppm的原因之一。

另外并非任何金属的氧化膜都可视作钝化膜,如碳钢在高温氧化后形成的氧化膜由于不能满足牢固地附在金属表面的要求而不能充作钝化膜。

3.2 对于奥氏体不锈钢一般采用氧化性强的以硝酸为主剂的溶液来进行处理,为确保钝化处理的效果,在钝化前先对被钝化表面进行酸洗处理。

整个处理过程就称为酸洗钝化处理,简称酸洗钝化。

4 酸洗液、钝化液及酸洗膏配方酸洗液:20%硝酸+5%氢氟酸+75%水钝化液:5%硝酸+2%重铬酸钾十93%水酸洗钝化液(二合一):20%硝酸+10%氢氟酸+70%水酸洗钝化膏(二合一)配方:盐酸20毫升,水100毫升,硝酸30毫升,澎润土150克搅拌成糊状。

不锈钢酸洗与钝化规范

不锈钢酸洗与钝化规范

不锈钢酸洗与钝化规范——奥氏体不锈钢压力容器的酸洗钝化晨怡热管1 前言在我公司生产中,经常有不锈钢设备的制作,不锈钢设备由于接触到腐蚀性介质,会造成设备表面有明显的腐蚀痕迹及颜色不均匀的斑痕,因此对不锈钢设备表面的处理尤为关键,不锈钢设备表面的钝化处理就是一个重要环节。

设备表面钝化膜形成不完善,与铁离子接触造成污染,在使用过程中就会出现锈蚀现象,造成运行介质指标变化等。

下面就奥氏体不锈钢设备表面的酸洗钝化处理原理及实际操作的常规工艺过程谈一些看法,以供有关人员参考。

2 概述奥氏体不锈钢具有良好的耐腐蚀性能,而且还有良好的冷热加工性能,因此被广泛地用于制造各类具有防腐蚀要求的压力容器,奥氏体不锈钢表面的钝化膜,对其耐腐蚀有很大影响。

奥氏体不锈钢的钝化膜主要是通过对其表面进行酸洗钝化处理得来的。

3 酸洗钝化的原理3.1钝化:金属经氧化性介质处理后,其腐蚀速度比原来未处理前有显著下降的现象称金属的钝化。

其钝化机理主要可用薄膜理论来解释,即认为钝化是由于金属与氧化性介质作用,作用时在金属表面生成一种非常薄的、致密的、覆盖性能良好的、能中固地附在金属表面上的钝化膜。

这层膜成独立相存在,通常是氧和金属的化合物。

它起着把金属与腐蚀介质完全隔开的作用,防止金属与腐蚀介质直接接触,从而使金属基本停止溶解。

奥氏体不锈钢经氧化性介质处理后其表面能形成满足上述要求的钝化膜,但该钝化膜在起活化作用的Cl-、Br-、F-等卤素离子作用下,极易受到破坏。

这也就是虽经酸洗钝化处理的奥氏体不锈钢压力容器在进行水压实验后若不能将水渍除干净,但应控制水的Cl-含量不超过25ppm的原因之一。

另外并非任何金属的氧化膜都可视作钝化膜,如碳钢在高温氧化后形成的氧化膜由于不能满足牢固地附在金属表面的要求而不能充作钝化膜。

对于奥氏体不锈钢一般采用氧化性强的以硝酸为主剂的溶液来进行处理,为确保钝化处理的效果,在钝化前先对被钝化表面进行酸洗处理。

不锈钢的酸洗钝化

不锈钢的酸洗钝化

不锈钢酸洗钝化处理技术规范1.简介不锈钢的钝化处理就是在钢板表面和焊接处镀上一层氧化铬膜,从而提高不锈钢的耐腐蚀性能。

钝化也是除污一个有效途径。

例如,金属表面和焊缝处沉积的铁粒子就可通过这种方式除掉(这些铁粒子往往是由于切割、成型、器械摩擦或者金属刷等的作用所形成的)。

钝化处理前的酸洗能除去所有的污染物,并且能选择性的除去金属表面较小的抗腐蚀区域。

为了能有效的酸洗和钝化,在进行酸洗钝化前必须除掉所有的有机污物、油脂等。

因此,常用的操作步骤如下:A、预清洗/除油脂B、一次清洗C、酸洗D、二次清洗E、钝化/除污F、最终清洗和干燥通常情况下,产品应尽可能的使用喷镀。

对小的产品或者管件,应当优先考虑通过浸入到浴液中进行处理。

小区域(焊缝、修补处),或者当喷镀对某些产品(例如已安装好的管式热交换器的表面)有害时间,最好使用膏剂进行处理。

生产车间应当根据本说明书建立一个书面的文档。

,并将此书面文档提交给买方并给与确认。

注:钝化物不能含有任何的盐酸,甚至是任何的氯化物。

温度太低时酸洗钝化物可能失效,因此酸洗钝化处理应当在足够高的室温下不锈钢酸洗钝化处理技术规范进行(>10℃)。

任何情况下都因当在供应商的指导下进行处理。

处理过程中所用到的水(如浴液、稀释液、清洗液等)应当进行处理以保证低的氯化物含量(理论最大氯化物含量为30ppm)。

2.预清洗与除油脂为了保证有效的酸洗和钝化,必须除掉金属表面所有的有机污物,例如油脂和其他杂物。

有机污物会阻止酸洗钝化作用,并且有潜在的导致点腐蚀的危险。

预清洗物喷洒在金属表面进行清洗与除油,完毕后必须使用高压水枪清洗掉以提高后处理的质量。

可使用水膜的方法来检查预清洗的效果(见第8节)。

3.浴液中的酸洗钝化预清洗与除油后的处理如下:3.1 将每块产品浸入到如下的溶液中;硝酸36℃ Be 100升65%氢氟酸或 20升氟化钠 20kg水 900升3.2 处理液为60℃时浸泡十分钟即可,溶液为室温时需浸泡两小时。

不锈钢酸洗钝化通用工艺规程

不锈钢酸洗钝化通用工艺规程

不锈钢酸洗钝化通用工艺规程1主题内容与适应范围1.1 本规程规定了不锈钢容器和零部件酸洗钝化处理的方法和要求。

1.2 本规程适用于本公司制造的不锈钢容器和零部件的酸洗钝化处理。

2总则2.1 本公司生产的不锈钢容器和零部件的酸洗钝化除应符合本规程的规定外,还应遵照国家及行业颁布的有关法令、法规和标准及本公司其它相应规程的规定,并符合图样和专用工艺文件的要求。

2.2 酸洗钝化前,应彻底检查容器和零部件表面,表面的凹坑、焊疤、焊接飞溅物、油污等必须清除干净。

2.3 有抛光要求的容器表面应在抛光后进行酸洗钝化。

2.4 容器和零部件应经检验人员检查合格后方可进行酸洗钝化。

3酸洗钝化材料3.1如无特殊要求,不锈钢容器和零部件表面的酸洗钝化可采用本公司以硝酸、氢氟酸及缓蚀剂等配制的酸洗钝化液。

本公司配制的酸洗、钝化液配方(体积百分比)见表3-1:表3-13.2 如有必要,不锈钢容器和零部件表面的酸洗钝化也可采用上海材料研究所生产的酸洗膏及钝化膏。

牌号为:酸洗膏:SM2A钝化膏:SM9。

4酸洗4.1当采用本公司配制的酸洗液进行酸洗时,将配制好的酸洗液均匀布满需要酸洗钝化的表面,反复数次(不少于3次)后用流动清水冲净,呈中性后将水迹擦除干净。

4.2当采用酸洗膏进行酸洗时,将酸洗膏均匀涂抹在需要酸洗钝化的表面,在常温下30分钟后用流动清水冲净,呈中性后将水迹擦除干净。

5钝化5.1当采用本公司配制的钝化液进行钝化时,将配制好的钝化液均匀布满需要钝化的表面,出现钝化膜后用流动清水冲净,呈中性后将水迹擦干净。

5.2当采用钝化膏进行钝化时,将钝化膏均匀涂抹在需要钝化的表面,常温下30~60分钟后,出现钝化膜后用清水冲洗,呈中性后用布擦干水迹。

PH值大于6为合格,用石蕊试纸测试纸不变色为合格。

6 检验及要求6.1酸洗钝化后不锈钢表面不得有明显的腐蚀痕迹,不得有颜色不均匀的斑纹,焊接接头表面不得有氧化色。

6.2图样规定进行钝化膜检查的容器,要进行钝化膜检查,一般采用蓝点法进行检查,钝化膜检查应避免在接触介质面进行。

不锈钢酸洗与钝化规范

不锈钢酸洗与钝化规范

不锈钢酸洗与钝化规范——奥氏体不锈钢压力容器的酸洗钝化晨怡热管1 前言在我公司生产中,经常有不锈钢设备的制作,不锈钢设备由于接触到腐蚀性介质,会造成设备表面有明显的腐蚀痕迹及颜色不均匀的斑痕,因此对不锈钢设备表面的处理尤为关键,不锈钢设备表面的钝化处理就是一个重要环节。

设备表面钝化膜形成不完善,与铁离子接触造成污染,在使用过程中就会出现锈蚀现象,造成运行介质指标变化等。

下面就奥氏体不锈钢设备表面的酸洗钝化处理原理及实际操作的常规工艺过程谈一些看法,以供有关人员参考。

2 概述奥氏体不锈钢具有良好的耐腐蚀性能,而且还有良好的冷热加工性能,因此被广泛地用于制造各类具有防腐蚀要求的压力容器,奥氏体不锈钢表面的钝化膜,对其耐腐蚀有很大影响。

奥氏体不锈钢的钝化膜主要是通过对其表面进行酸洗钝化处理得来的。

3 酸洗钝化的原理3.1钝化:金属经氧化性介质处理后,其腐蚀速度比原来未处理前有显著下降的现象称金属的钝化。

其钝化机理主要可用薄膜理论来解释,即认为钝化是由于金属与氧化性介质作用,作用时在金属表面生成一种非常薄的、致密的、覆盖性能良好的、能中固地附在金属表面上的钝化膜。

这层膜成独立相存在,通常是氧和金属的化合物。

它起着把金属与腐蚀介质完全隔开的作用,防止金属与腐蚀介质直接接触,从而使金属基本停止溶解。

奥氏体不锈钢经氧化性介质处理后其表面能形成满足上述要求的钝化膜,但该钝化膜在起活化作用的Cl-、Br-、F-等卤素离子作用下,极易受到破坏。

这也就是虽经酸洗钝化处理的奥氏体不锈钢压力容器在进行水压实验后若不能将水渍除干净,但应控制水的Cl-含量不超过25ppm的原因之一。

另外并非任何金属的氧化膜都可视作钝化膜,如碳钢在高温氧化后形成的氧化膜由于不能满足牢固地附在金属表面的要求而不能充作钝化膜。

对于奥氏体不锈钢一般采用氧化性强的以硝酸为主剂的溶液来进行处理,为确保钝化处理的效果,在钝化前先对被钝化表面进行酸洗处理。

不锈钢部件化学钝化处理的标准规范.

不锈钢部件化学钝化处理的标准规范.

不锈钢部件化学钝化处理的标准规范1.范围1.1该规范包含了不同种类的不锈钢不见化学钝化处理的方法。

它包含对不锈钢不见进行除锈,清洗及钝化处理的优点和注意事项。

它列明了一些可替换用的测试方法保证对不锈钢部件的此类处理的有效性,并且这些方法都是符合相关标准的。

1.2实践A380中全面讨论了对不锈钢部件表面进行机械处理和化学处理的实验。

1.3为不锈钢部件钝化定义了一些可供选择的化学处理方法。

附录X1给出了一些非强制性信息,提供了对于不同级别的不锈钢如何正确选择钝化处理方法的一般指导,但是没有提出对特殊适应性或适应分类的级别,处理及规则的正确性提出参考建议。

1.4该规范提及的测试方法是为了证明钝化的有效性,特别是对于处理多余的铁和其他氧化物质时的有效性。

这些测试方法包括:1.4.1实验A-水浸测试1.4.2实验B-高湿度测试1.4.3实验C-喷盐测试1.4.4实验D-硫酸铜测试1.4.5实验E-铁氰化钾硝酸盐测试1.4.6实验F-铁离子测试1.5测试值的标准单位为英寸/磅。

括弧里的SI单位仅提供参考。

1.6以下注意事项的警告只针对测试方法部分,即该规范的14-18章节:该标准并不旨在提出所有的安全问题,如果有的话,与其使用相关。

该标准的使用者有责任建立安全健康的实验并在使用前确定规则限制的适用性。

2.相关文献2.1美国材料试验学会标准:A380对不锈钢部件,设备和ASTM年度图书卷01.03.中材料的清洗,除锈及去钝化的实验B117对ASTM年度图书卷03.02.中材料进行喷盐(雾化的实验C254对不锈钢材料(ASTM年度图书卷02.05.中材料编制及电镀的实验2.2联邦的规范标准:QQ-P-35C耐腐蚀钢材的钝化处理方法3.术语3.1该标准特定的术语定义-在该标准规范中定义常用的术语passivation是必要的(详见讨论。

3.1.1讨论-如果不锈钢暴露在空气或潮湿的环境下产生了防钝化膜,它会自动钝化。

ASTMA967-2001不锈钢零件化学钝化处理的标准规范(精)

ASTMA967-2001不锈钢零件化学钝化处理的标准规范(精)

Designation:A967–01e1Standard Specification forChemical Passivation Treatments for Stainless Steel Parts1 This standard is issued under thefixed designation A967;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscriptepsilon(eindicates an editorial change since the last revision or reapproval.e1N OTE—Paragraph3.1.1.5was deleted editorially in April2002.Paragraph10.2was corrected editorially in April2002.1.Scope1.1This specification covers several different types of chemical passivation treatments for stainless steel parts.It includes recommendations and precautions for descaling, cleaning,and passivation of stainless steel parts.It includes several alternative tests,with acceptance criteria,for confirma-tion of effectiveness of such treatments for stainless steel parts.1.2Practices for the mechanical and chemical treatments of stainless steel surfaces are discussed more thoroughly in Practice A380.1.3Several alternative chemical treatments are defined for passivation of stainless steel parts.Appendix X1gives some nonmandatory information and provides some general guide-lines regarding the selection of passivation treatment appropri-ate to particular grades of stainless steel but makes no recommendations regarding the suitability of any grade,treat-ment,and acceptance criteria for any particular application or class of applications.1.4The tests i n this specification are intended to confirm the effectiveness of passivation,particularly with regard to the removal of free iron and other exogenous matter.These tests include the following practices:1.4.1Practice A—Water Immersion Test,1.4.2Practice B—High Humidity Test,1.4.3Practice C—Salt Spray Test,1.4.4Practice D—Copper Sulfate Test,1.4.5Practice E—Potassium Ferricyanide–Nitric Acid Test, and1.4.6Practice F—Free Iron Test.1.5The values stated in inch-pound units are to be regarded as the standard.The SI units given in parentheses are for information only.1.6The following precautionary caveat pertains only to the test methodportions,Sections14through18of this specifica-tion:This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.2.Referenced Documents2.1ASTM Standards:A380Practice for Cleaning,Descaling,and Depassivation of Stainless SteelParts,Equipment,and Systems2B117Practice for Operating Salt Spray(FogApparatus3 B254Practice for Preparation of and Electroplating on Stainless Steel42.2Federal Specification:QQ-P-35C Passivation Treatments for Corrosion-Resistant Steels53.Terminology3.1Definition of Term Specific to This Standard—It is necessary to define which of the several commonly used definitions of the term passivation will be used in thisspecification.(See Discussion.3.1.1Discussion—Stainless steels are autopassivating in the sense that the protective passivefilm is formed spontaneously on exposure to air or moisture.The presence of exogenous surface contamination,including dirt,grease,free iron from contact with steel tooling,and so forth,may interfere with the formation of the passivefilm.The cleaning of these contami-nants from the stainless steel surface will facilitate the spon-taneous passivation by allowing the oxygen uniform access to the surface.The passivefilm ma y be augmented by chemical treatments that provide an oxidizing environment for the stainless steel surface.3.1.1.1In this specification,passivation,unless otherwise specified,is defined as the chemical treatment of a stainless steel with a mild oxidant,such as a nitric acid solution,for the purpose of the removal of free iron or other foreign matter,but which is generally not effective in removal of heat tint or oxide scale on stainless steel.In the case of stainless steels with additions of sulfur for the purpose of improved machinability,1This specification is under the jurisdiction of ASTM Committee A01on Steel, Stainless Steel,and Related Alloys and is the direct responsibility of SubcommitteeA01.14on Methods of Corrosion Testing.Current edition approved Oct.10,2001.Published December2001.Originally published as A967–st previoius edition A967–99.2Annual Book of ASTM Standards,V ol01.03.3Annual Book of ASTM Standards,V ol03.02.4Annual Book of ASTM Standards,V ol02.05.5Available from Superintendent of Documents,ernment Printing Office,Washington,DC20402.1Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,UnitedStates.passivation may also include the removal of sulfides from the surface of the m etal for the purpose of maximizing corrosion resistance.3.1.1.2The formation of the protective passivefilm on a stainless steel,also called passivation in a more general context,will occur spontaneously in air or other oxygen-containing environment when the stainless steel surface is free of oxide scale and exogenous matter.3.1.1.3Chemical treatments,such as sodium dichromate solutions,may facilitate the more rapid formation of the passivefilm on a stainless steel surface already free of scale or foreign matter.Such treatments,also sometimes called passi-vation in common usage,are designated as post-cleaning treatments in this specification in order to distinguish them from chemical treatments capable of removing free iron from stainless steels.3.1.1.4The chemical treatments capable of removing heat tint or oxide scale from stainless steel and capable of dissolving the stainless steel itself,typically called pickling,are substan-tially more aggressive than treatments used for passivation,asdefined in3.1.1.1.T he surface of stainless steel that has been pickled is free of scale,free iron,and exogenous foreign matter,and does not require a separate treatment for passiva-tion as defined in3.1.1.1.The passivation process defined in 3.1.1.2will occur without further chemical treatment but may be augmented and improved by the post-cleaning treatments defined in3.1.1.3.3.1.1.5Electrochemical treatments,including electropick-ling and electropolishing capable of removing heat tint or oxide scale from stainless steel and capable of dissolving the stainless steel itself,are substantially more aggressive than treatments used for passivation,as defined in3.1.1.1.The surface of stainless steel resulting from these treatments is free of scale, free iron,and exogenous foreign matter,and does not require a separate treatment for passivation as defined in3.1.1.1.The passivation process defined in 3.1.1.2will occur without further chemical treatment,but may be augmented and im-proved by the post-cleaning treatments defined in 3.1.1.3. Sta tements regarding chemical treatments,unless otherwise specified,are taken to include electrochemical treatments.4.Ordering Information4.1It is the responsibility of the purchaser to specify a test practice appropriate to any particular material and appli cation. This specification was written for the purpose of providing an alternative to United States Federal Specification QQ-P-35C. Determination of the suitability of this specification for that purpose is the responsibility of the purchaser.4.2Unless specified by the purchaser,the chemical treat-ment applied to the stainless steel parts shall be selected by the seller from among the listed passivation treatments.5.Materials and Preparation for Passivation Treatments 5.1The passivation treatments shall be of one or more of the following types.The effectiveness of a particular treatment for a particular grade of stainless steel in a particular application is demonstrated by meeting the specified testing requirements: 5.1.1Treatments in nitric acid,5.1.2Treatments in citric acid,5.1.3Other chemical treatments,including electrochemical treatments,5.1.4Neutralization,and5.1.5Post-cleaning treatments.5.2Materials:5.2.1The chemicals used for passivation treatments shall produce passivated surfaces that meet the requirements of one or more of the tests of thisspecification.Attention shall be given to maintaining adequatevolume,concentration,purity, and temperature control appropriate to the size and amount of stainless steel to be treated.5.2.2The processor shall maintain a record with regard to concentration and temperature of the passivation solution sufficient to demonstrate that the specified passivation condi-tions were maintained for each lot of stainless steel partsprocessed.Such records shall be availabl e for inspection when specified in the purchase order.The processor is not required to reveal the precise composition of proprietary chemical mix-tures but shall maintain a unique identification of the mixture that will ensure its accurate representation for subsequent use.5.2.3The processor shall be responsible for the safe dis-posal of all material generated by this process.5.3Preparation for Passivation Treatments:5.3.1The pretreatment methods and procedures used prior to the passivation treatment,including mechanical and chemi-cal methods,singly or in combination,for descaling and pickling,shall be in accordance with Practice A380.When electrochemical cleaning is required,it shall be performed in accordance with Practice B254.5.3.2The resulting pretreated surface shall be substantially free ofoil,grease,rust,scale,and other foreign matter.5.3.3When thefinal pretreatment of a part includes pickling of the entire surface of the part,no further passivation treatment is required prior to testing of the surface unless specified by the purchaser.6.Treatments in Nitric Acid Solutions6.1Passivation Treatment:6.1.1Stainless steel parts shall be treated in one of the following aqueous solutions and maintained within the speci-fied temperature range for the specified time.6.1.1.1Nitric1—The solution shall contain20to25volume percent of nitric acid and2.5+0.5weight percent of sodium dichromate.The parts shall be immersed for a minimum of20 min at a temperature in the range from120to130°F(49to 54°C.6.1.1.2Nitric2—The solution shall contain20to45volume percent of nitric acid.The parts shall be immersed for a minimum of30min at a temperature in the range from70to 90°F(21to32°C.6.1.1.3Nitric3—The solution shall contain20to25volume percent nitric acid.The parts shall be immersed for a minimum of20min at a temperature in the rangefrom120to140°F(49 to60°C.6.1.1.4Nitric4—The solution shall contain45to55volume percent of nitric acid.The parts shall be immersed for a minimum of30min at a temperature in the range from120to 130°F(49to54°C.6.1.1.5Nitric5—Other combinations of temperature,time, and concentration of nitric acid,with or without other chemi-cals,including accelerants,inhibitors,or proprietary solutions, capable of producing parts that pass the specified test r equire-ments.6.2Water Rinse—Immediately after removal from the pas-sivating solution the parts shall be thoroughly rinsed,using stagnant,countercurrent,or spray washes singly or in combi-nation,with or without a separate chemical treatment for neutralization(see9.1of the passivation media,with afinal rinse being carried out using water with a maximum total solids content of200ppm.7.Treatments in Citric Acid7.1Passivation Treatment:7.1.1Stainless steel parts shall be treated in one of the following aqueous solutions and maintained within the speci-fied temperature range for the specified time.7.1.1.1Citric1—The solution shall contain4to10weight percent of citric acid.The parts shall be immersed for a minimum of4min at a temperature in the range from140to 160°F(60to71°C.7.1.1.2Citric2—The solution shall contain4to10weight percent of citric acid.The parts shall be immersed for a minimum of10min at a temperature in the range from120to 140°F(49to60°C.7.1.1.3Citric3—The solution shall contain4to10weight percent of citric acid.The parts shall be immersed for a minimum of20min at a temperature in the range from70to 120°F(21to49°C.7.1.1.4Citric4—Other combinations of temperature,time, and concentration of citric acid,with or without other chemi-cals to enhance cleaning,includingaccelerants,inhibitors,or proprietary solutions capable of producing parts that pass the specified test requirements.7.1.1.5Citric5—Other combinations of temperature,time, and concentrations of citric acid,with or without other chemi-cals to enhance cleaning,includingaccelerants,inhibitors,or proprietary solutions capable of producing parts that pass the specified test requirements.Immersion bath to be controlled ata pH of1.8–2.2.7.2Water Rinse—Immediately after removal from the pas-sivating solution,the parts shall be thoroughly rinsed,using stagnant,countercurrent,or spray washes,singly or in combi-nation,with or without a separate chemical treatment for neutralization of the passivation media(see9.2,with afinal rinse being carried out usi ng water with a maximum total solids content of200ppm.8.Treatments in Other Chemical Solutions,IncludingElectrochemical Treatments8.1It is recognized that the purpose of removal of all exogenous matter from a stainless steel surface,including the removal of free iron,can be accomplished by different media, with potential for benefits to be gained from use of proprietary skills andart,including proprietary passivation media.Such treatments may include externally applying an electrical po-tential on the stainless steel parts,as in the case of electropol-ishing.The suitability of such passivation treatments for use in meeting the requirements of this specification shall be deter-mined by the capability of the processed parts meeting the specified test requirem ents.8.2Stainless steel parts shall be treated in a specified aqueous solution,with or without externally applied electrical potential,and maintained within a specified temperature range for a time sufficient for the processed parts to meet the specified tes t requirement.8.3Water Rinse—Immediately after removal from the pas-sivating solution,the parts shall be thoroughly rinsed,using stagnant,countercurrent,or spray washes,singly or in combi-nation,with or without a separate chemical treatment for neutralization of the passivation media(see9.2,with afinal rinse being carried out using water with a maximum total solids content of200ppm.9.Neutralization9.1The chemical reactions of the passivating media on the surface of the stainless steel shall be stopped by rinsing of the stainless steel part,with or without a separate neutralization treatment.9.2The suitability of a neutralization procedure is deter-mined by the capability of the processed parts meeting the specified test requirements.(See Note1.N OTE1—The selection of medium and procedures for a neutralization depends of the chemistry of the passivation and on economic consider-ations.An example of a neutralizing treatment would be immersion of the part for a minimum of30min in a solution of5%NaOH at160to180°F (71to82°C,followed by a water rinse.10.Post-Cleaning Treatments10.1Although the passivefilm characteristic of stainless steel will form spontaneously in air or any other oxygen-containing environment,the processorshall,when specified, apply a chemical treatment that will accelerate the formation of the passivefilm on a chemically clean stainless steel surface. An example of a medium that serves to accelerate the forma-tion of the passivefilm but does not contribute to the removal of free iron from the stainless steel surface would be an aqueous solution of sodium dichromate.10.2When specified,within one hour after thefinal water rinse as requiredin6.2,7.2,or8.3,all ferritic and martensitic steel parts shall be immersed in an aqueous solution containing 4to6weight percent of sodium dichromate at a temperature in the range from140to160°F(60to71°Cfor a minimum of30 min,followed by a rinse in accordance with6.2,7.2,or8.3. The parts shall then be thoroughly dried.10.3The purchaser may specify other post-cleaning treat-ments.11.Finish11.1The passivated parts shall exhibit a chemically clean surface and shall,on visual inspection,show no etching, pitting,or frosting resulting from the passivation procedures.12.Testing Agency12.1When required,the purchaser shall be permitted to perform such inspections as necessary to determine that the testing agency is capable of performing the specifiedtest.13.Lot,Frequency of Testing,and Selection of Test13.1Definition of Lot—A lot shall consist of one of the following,at the option of the processor:13.1.1The passivated parts of similar alloy and manufac-turing methods that are pretreated and passivated in a single day or within a time frame that will ensure consistent passiva-tion results;13.1.2The passivated parts of the same product of one size from one heat in one shipment;or13.1.3When few parts are involved,the passivated parts from an entire production run.13.2Unless a greater frequency of testing is specified on the purchase order,one test per lot shall be sufficient.13.3One or more of the following tests,when specified on the purchase order,shall be performed on each lot of stainless steel parts.Not all of the following tests are suitable for all grades of stainless steel.(See Note2.13.3.1Practice A—Water Immersion Test,13.3.2Practice B—High Humidity Test,13.3.3Practice C—Salt Spray Test,13.3.4Practice D—Copper Sulfate Test,and13.3.5Practice E—Potassium Ferricyanide–Nitric Acid Test.N OTE2—Some of the tests may produce positive indications not associated with the presence of free iron on the stainless steel surface.An example would be application of Practice C on some lesser-alloyed martensitic or ferritic stainless steels.14.Practice A—Water Immersion Test14.1This test is used for the detection of free iron or any other anodic surface contaminants on stainless steel.14.2The sample representing the lot of passivated parts shall be alternately immersed in a non-rusting tank of distilled water for1h and allowed to dry in airfor1h.This cycle shall be repeated a minimum of twelve times.14.3The tested sample shall not exhibit rust or staining attributable to the presence of free iron particles embedded in the surface.15.Practice B—High Humidity Test15.1This test is used for the detection of free iron or any other anodic surface contaminants on stainless steel.15.2The test shall be performed using a humidity cabinet capable of maintaining the specified test conditions.15.3The sample representing the lot of passivated parts shall be cleaned by immersion in acetone or methyl alcohol or by swabbing with a clean gauze saturated with acetone or methyl alcohol,and dried in an inert atmosphere or desiccated container.The cleaned and dried part shall be subjected to97 63%humidity at10065°F(3863°Cfor a minimum of 24h.15.4The tested sample shall not exhibit rust or staining attributable to the presence of free iron particles imbedded in the surface.16.Practice C—Salt Spray Test16.1This test is used for the detection of free iron or any other anodic surface contaminants on stainless steel.16.2The sample representing the lot of passivated parts shall be tested by the salt spray test conducted in accordance with Practice B117for a minimum of2h using a5%salt solution.16.3The tested sample shall not exhibit rust or staining attributable to the presence of free iron particles imbedded in the surface.17.Practice D—Copper Sulfate Test17.1This test is recommended for the detection of free iron on the surface of austenitic stainless steels in the200and300 series,precipitation hardened stainless steels,and ferritic400 series stainless steels having a minimum of16%chromium. This test is not recommended for martensitic400series stainless steels or for ferritic400series stainless steels with less than16%chromium because these steels will give a positive indication irrespective of the presence or absence of anodic surface contaminants.This test shall not be applied to parts to be used in food processing.17.2The test solution is prepared by dissolving4g of copper sulfatepentahydrate(CuSO4·5H2Oin250mL of distilled water to which1mL of sulfuricacid(H2SO4,sp gr 1.84has been added.Aqueous copper sulfate solutions more than two weeks old shall not be used for this test.17.3The test solution is swabbed on the surface of the sample representing the lot of passivated parts,applying additional solution as needed to keep the surface wet for aperiod of at least6min.At the end of this period,the surface shall be carefully rinsed and dried with care taken not to disturb copper deposits if present.17.4The tested sample shall not exhibit copper deposits.18.Practice E—Potassium Ferricyanide–Nitric Acid Test 18.1This test is recommended when detection of very small amounts of free iron is required.It is recommended for detection of free iron on austenitic200and300series stainless steels.This test is not recommended for detection of free iron on ferritic or martensitic400series stainless steels,because these steels will give a positive indication irrespective of the presence or absence of anodic surface contaminants.This test shall not be applied to parts to be used in food processing. 18.2The test solution is prepared by adding10g of chemically pure potassium ferricyanide to500mL of distilled water,adding30mLof70%nitric acid,agitating until all of the ferricyanide is dissolved,and diluting to1000mL with distilled water.The test solution shall be mixed fresh on the day of the test.18.3The test solution is swabbed on the surface of the sample representing the lot of passivated parts.The formation of a dark blue color within30s denotes the presence of metallic iron.18.4The tested sample shall not exhibit the dark blue color indicative of free iron on the surface.18.5When the test is negative,the surface shall be thor-oughly washed with warm water to removal all traces of the test solution.When the test is positive,the dark blue stain shall be removed with a solution of10%acetic acid and8%oxalic acid,followed by a thorough hot waterrinse.19.Practice F—Free Iron Test19.1This test is used for the detection of free iron on the surface of stainless steel.It is especially useful for large parts that have been uniformly cleaned but that are inconvenient for reasons of size of equipment or ease of handling of the part to place in the environments defined in Practice A(Section14or Practice B(Section15.Unless otherwise specified by the purchaser,the number of tests and the locations of the tests shall be at the option of the processor to assure a representative testing of the part.19.2The test is performed by placing a clean cloth pad that has been thoroughly soaked with distilled or deminaralized water on the surface of the part at a part temperature of50°F (10°Cor greater for a period of not less than60minutes.The cloth shall be in contact with the steel for an area of at least20 square inches(130cm2.The pad shall be maintained wet through the test period,either by a method of retarding external evaporation,by the further addition of potable water,or by backing the pad with a sponge or similar water source.The cloth pad used shall be used for only one such test,being changed for each test so as to avoid risk of contamination. After removal of the cloth pad,the surface of the part shall be allowed to dry in air before inspection.19.3The tested part shall not exhibit rust or staining attributable to the presence of free iron particles embedded in the surface.20.Rejection and Retest20.1Any lot failing to meet the specified test requirements of the purchase order shall be rejected.A rejected lot may,at the option of the processor,be re-passivated,with or without re-pretreatment,and then be retested.The number of samples tested from a lot subject to retest shall be twice the original specified test frequency,to the limit of thenumber of pieces in the lot.All samp les must pass the specified acceptance criterion for the specified test for the retested lot to be accepted. 21.Precision and Bias21.1No statement is made concerning either the precision or bias of PracticesA,B,C,D,and E because the results state merely whether there is conformance to the criteria for success specified in the procedure.22.Certification22.1When specified in the purchase order,a report of the practice and testsused,including the record of process condi-tions when specified in accordance with3.1.1.2,shall be supplied to the purchaser.APPENDIX(Nonmandatory InformationRMATION REGARDING PASSIV ATION TREATMENTSN OTE X1.1—The following information is based on a section of FederalSpecification QQ-P-35C(Oct.28,1988identified as information o f a general or explanatory nature that may be helpful,but is not mandatory. Minor changes have been made in the text to facilitate references to the main document and to correct technical inaccuracies.X1.1Intended Use—The passivation treatments provided b y this specification are intended to improve the corrosion resistance of parts made from stainless steels of all types.X1.1.1During processing operations such as forming,ma-chining,tumbling,and lapping,iron particles or other foreign particles may become smeared over or imbedded into the surface of stainless steel parts.These particles must be re-moved or they will appear as rust or stain spots.This condition may be prevented by chemically treating the parts to remove the iron particles or other foreign particles,and then allowing thepassivefilm to form on the cleaned surface,with or without chemical enhancement of the formation of this oxidefilm.X1.1.2This specification is not intended for the black oxide coating of parts typically used for photographic or optical instruments.X1.2Ordering Data—Purchasers should select the pre-ferred options permitted by this specification and include the following information in the purchase order:X1.2.1Title,number,and date of this specification;X1.2.2Identification of material by type and applicable product specification;X1.2.3Test practices to be imposed(see1.4;X1.2.4Definition of lot size,if other than described in this specification;andX1.2.5Required documentation,if other than the minimum required by thisspecification.X1.3Grades of Stainless Steel—Different types of stainless steel are selected on a basis of properties required,for example, corrosion resistance and design criteria,and fabrication re-quirements.Table X1.1is a compilation that serves as a guide for the selection of passivation treatment for different grades, but is far from complete either in grades or in passivation treatments.X1.4Clean Water—Clean water is defined as water con-taining a maximum total solid content of200ppm.Rinsing can be accomplished by a combination ofstagnant,countercurrent or spray rinses,or both,prior tofinal rinse.X1.5Chemically Clean Surface—A chemically clean sur-face is defined as a surface upon which water,when applied momentarily to the surface,will remain on that surface inan e ven,continuousfilm,and in addition is free of any foreign material or residualfilm deposit which would be detrimental to the quality of thepart.A 967 – 01e1 FIG. X1.1 Recommended Nitric Acid Passivation Treatments for Different Grades of Stainless Steel X1.6 Test Specimens—When using test specimens instead of parts, the specimens can effectively represent the parts only if they have been exposed to the same processing steps, such as machining, grinding, heat treating, welding, and so forth, as the parts they are to represent. X1.7 Carburized Surfaces—Stainless steel parts with carburized surfaces cannot be passivated because the carbon combines with the chromium forming chromium carbides on the surface. X1.8 Nitrided Surfaces—Stainless steel parts with nitrided surfaces should not be passivated because the treatment will severely corrode the nitrided case. X1.9 This specification provides for the same passivation treatments as Fed. Spec. QQ-P-35C, but also includes a number of alternative passivation treatments. The effectiveness of any passivation treatment is demonstrated by the parts meeting the specified testing requirements after treatment. X1.10 Martensitic Grade 440C—High-strength grades such as 440C are subject to hydrogen embrittlement or intergranular attack when exposed to acids. Cleaning by mechanical methods or other chemical methods is recommended. X1.11 The salt spray test is typically used to evaluate austenitic stainless steels and may not be applicable to all martensitic or ferritic stainless steels. ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility. This standard is。

不锈钢钝化技术标准

不锈钢钝化技术标准

不锈钢钝化技术标准
1. 化学成分标准,不同类型的不锈钢材料需要遵循不同的化学成分标准,以确保钝化处理后的表面质量和耐腐蚀性能符合要求。

这包括钝化溶液中的化学成分和浓度等方面的标准。

2. 处理工艺标准,钝化处理的工艺包括预处理、钝化处理和后处理等环节,需要遵循一定的工艺标准,如处理温度、处理时间、搅拌速度、PH值等参数的控制要求。

3. 膜层性能标准,钝化处理后形成的膜层应具有一定的厚度、致密性、耐蚀性和装饰性能。

因此,钝化技术标准中通常包括对膜层性能的测试方法和要求。

4. 环保标准,钝化处理液及废水处理应符合环保要求,需要遵循相关的环保标准,确保不对环境造成污染。

5. 检测标准,对钝化处理后的不锈钢材料需要进行一系列的检测,如耐蚀性测试、膜层厚度测试等,这些检测需要符合相应的标准和方法。

总的来说,不锈钢钝化技术标准涵盖了材料、工艺、环保和质量检测等多个方面的要求,旨在确保钝化处理后的不锈钢材料具有良好的耐腐蚀性能和装饰性能,并且符合相关的法律法规和环保要求。

制定和遵循这些标准对于保障不锈钢制品的质量和安全具有重要意义。

不锈钢酸洗与钝化规范标准[详]

不锈钢酸洗与钝化规范标准[详]

不锈钢酸洗与钝化规范——奥氏体不锈钢压力容器的酸洗钝化晨怡热管1 前言在我公司生产中,经常有不锈钢设备的制作,不锈钢设备由于接触到腐蚀性介质,会造成设备表面有明显的腐蚀痕迹及颜色不均匀的斑痕,因此对不锈钢设备表面的处理尤为关键,不锈钢设备表面的钝化处理就是一个重要环节。

设备表面钝化膜形成不完善,与铁离子接触造成污染,在使用过程中就会出现锈蚀现象,造成运行介质指标变化等。

下面就奥氏体不锈钢设备表面的酸洗钝化处理原理及实际操作的常规工艺过程谈一些看法,以供有关人员参考。

2 概述奥氏体不锈钢具有良好的耐腐蚀性能,而且还有良好的冷热加工性能,因此被广泛地用于制造各类具有防腐蚀要求的压力容器,奥氏体不锈钢表面的钝化膜,对其耐腐蚀有很大影响。

奥氏体不锈钢的钝化膜主要是通过对其表面进行酸洗钝化处理得来的。

3 酸洗钝化的原理3.1钝化:金属经氧化性介质处理后,其腐蚀速度比原来未处理前有显著下降的现象称金属的钝化。

其钝化机理主要可用薄膜理论来解释,即认为钝化是由于金属与氧化性介质作用,作用时在金属表面生成一种非常薄的、致密的、覆盖性能良好的、能中固地附在金属表面上的钝化膜。

这层膜成独立相存在,通常是氧和金属的化合物。

它起着把金属与腐蚀介质完全隔开的作用,防止金属与腐蚀介质直接接触,从而使金属基本停止溶解。

奥氏体不锈钢经氧化性介质处理后其表面能形成满足上述要求的钝化膜,但该钝化膜在起活化作用的Cl-、Br-、F-等卤素离子作用下,极易受到破坏。

这也就是虽经酸洗钝化处理的奥氏体不锈钢压力容器在进行水压试验后若不能将水渍除干净,但应控制水的Cl-含量不超过25ppm的原因之一。

另外并非任何金属的氧化膜都可视作钝化膜,如碳钢在高温氧化后形成的氧化膜由于不能满足牢固地附在金属表面的要求而不能充作钝化膜。

对于奥氏体不锈钢一般采用氧化性强的以硝酸为主剂的溶液来进行处理,为确保钝化处理的效果,在钝化前先对被钝化表面进行酸洗处理。

不锈钢部件的化学钝化处理的标准技术规范(精)

不锈钢部件的化学钝化处理的标准技术规范(精)

不锈钢部件的化学钝化处理的标准技术规范(中英文对照1. Scope1.范围1.1 This specification covers several different types of chemical passivation treatments for stainless steel parts. It includes recommendations and precautions for descaling, cleaning, and passivation of stainless steel parts. It includes several alternative tests, with acceptance criteria, for confirmation of effectiveness of such treatments for stainless steel parts.1.1本技术规范适用于几种不同类型不锈钢部件的化学钝化处理。

本技术规范包括:不锈钢部件除垢、清洁、钝化的建议和防护;本技术规范包括了几种可供选择的有验收标准的不锈钢部件处理效果确认的检测。

1.2 Practices for the mechanical and chemical treatments of stainless steel surfaces are discussed more thoroughly in Practice A 380.1.2 不锈钢表面物理和化学处理的作业在作业A380里有更详尽的论述。

1.3 Several alternative chemical treatments are defined for passivation of stainless steel parts. Appendix X1 gives some nonmandatory information and provides some general guidelines regarding the selection of passivation treatment appropriate to particular grades of stainless steel. It makes no recommendations regarding the suitability of any grade, treatment, or acceptance criteria for any particular application or class of applications.1.3几种可供选择的不锈钢部件化学钝化处理在此有详细规定。

不锈钢酸洗钝化 执行标准

不锈钢酸洗钝化 执行标准

不锈钢酸洗钝化执行标准
本标准规定了不锈钢酸洗钝化的操作流程和执行要求。

1.酸洗液成分
2.酸洗液应采用质量分数为10%~15%的硝酸溶液,并加入适量的氢氟酸或
草酸,根据材料种类和油污程度可适当调整溶液浓度和加入量。

3.酸洗温度
4.酸洗温度应控制在50℃~70℃之间,以避免温度过高导致材料表面氧化或
腐蚀。

5.浸泡时间
6.浸泡时间应根据材料种类、油污程度和酸洗液成分而定,一般为10分钟~
30分钟。

对于较重油污的材料,可适当延长浸泡时间。

7.钝化液浓度
8.钝化液应采用质量分数为2%~5%的硝酸溶液,根据材料种类和钝化要求
可适当调整溶液浓度。

9.钝化温度
10.钝化温度应控制在50℃~70℃之间,以避免温度过高导致材料表面氧化或
腐蚀。

11.钝化浸泡时间
12.钝化浸泡时间应根据材料种类、钝化要求和钝化液成分而定,一般为10分
钟~30分钟。

对于要求较高的材料,可适当延长浸泡时间。

13.预处理要求
14.在酸洗钝化之前,应对不锈钢表面进行清理,去除表面的油污、杂质、氧
化皮等,并用水冲洗干净。

对于一些特殊材料,如不锈钢合金或含有较高合金元素的不锈钢,应先进行试验,以确定最佳的酸洗钝化工艺参数。

15.后处理要求
16.酸洗钝化完成后,应对不锈钢表面进行清洗,去除残留的酸洗钝化液,并
用水冲洗干净。

对于一些要求较高的材料,可进行涂装或封闭处理,以增强防腐蚀性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不锈钢部件的化学钝化处理的标准技术规范(中英文对照1. Scope1.范围1.1 This specification covers several different types of chemical passivation treatments for stainless steel parts. It includes recommendations and precautions for descaling, cleaning, and passivation of stainless steel parts. It includes several alternative tests, with acceptance criteria, for confirmation of effectiveness of such treatments for stainless steel parts.1.1本技术规范适用于几种不同类型不锈钢部件的化学钝化处理。

本技术规范包括:不锈钢部件除垢、清洁、钝化的建议和防护;本技术规范包括了几种可供选择的有验收标准的不锈钢部件处理效果确认的检测。

1.2 Practices for the mechanical and chemical treatments of stainless steel surfaces are discussed more thoroughly in Practice A 380.1.2 不锈钢表面物理和化学处理的作业在作业A380里有更详尽的论述。

1.3 Several alternative chemical treatments are defined for passivation of stainless steel parts. Appendix X1 gives some nonmandatory information and provides some general guidelines regarding the selection of passivation treatment appropriate to particular grades of stainless steel. It makes no recommendations regarding the suitability of any grade, treatment, or acceptance criteria for any particular application or class of applications.1.3 几种可供选择的不锈钢部件化学钝化处理在此有详细规定。

附录X1提供了一些适用于特殊等级不锈钢钝化处理选择的非强制性的技术资料并提供了总的指导方针。

关于特殊的应用或应用种类的等级、处理和验收标准的适宜性,它没有作出建议。

1.4 The tests in this specification are intended to confirm the effectiveness of passivation, particularly with regard to the removal of free iron and other exogenous matter. These tests include the following practices:1.4 本技术规范之中的检测意在证实钝化的效果,尤其是关于游离铁和其它外生物质(杂质的去除问题。

这些检测包括下列的作业:1.4.1 Practice A—Water Immersion Test,1.4.2 Practice B—High Humidity Test,1.4.3 Practice C—Salt Spray Test,1.4.4 Practice D—Copper Sulfate Test,1.4.5 Practice E—Potassium Ferricyanide–Nitric Acid Test, and1.4.6 Practice F—Free Iron Test.1.4.1 作业A—水浸检测1.4.2 作业B—高湿检测1.4.3 作业C—盐雾检测1.4.4 作业D—硫酸铜检测1.4.5 作业E—铁氰化钾--硝酸检测1.4.6 作业F—游离铁检测1.5 The values stated in inch-pound units are to be regarded as the standard. The SI units given in parentheses are for information only.1.5 以用磅/寸单位表示的数值作为标准,在括号内给出的国际单位制的单位仅供参考。

1.6 The following precautionary caveat pertains only to the test method portions, Sections 14 through 18 of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.6 下列预防性的告诫仅属于检测方法部分,本技术规范的第14节至18节:如有安全问题,此标准不意在处理所有涉及到使用的安全问题。

使用前,确立适当的安全措施、卫生的作业和确定管理限制的适用性责任在于标准的使用者。

2. Referenced Documents2. 参考的文献2.1 ASTM Standards: 22.1 ASTM(美国材料实验协会标准:A 380 Practice for Cleaning, Descaling, and Depassivation of Stainless Steel Parts, Equipment, and Systems.A380 不锈钢部件、设备和系统的清洗、除垢、钝化的作业。

B 117 Practice for Operating Salt Spray (Fog ApparatusB117 操作喷盐(雾设备的作业B 254 Practice for Preparation of and Electroplating on Stainless SteelB254 电镀不锈钢的准备作业和电镀不锈钢的作业。

2.2 Federal Specification:32.2 联邦的技术规范QQ-P-35C Passivation Treatments for Corrosion-Resistant SteelsQQ-P-35-C抗蚀钢(不锈钢钝化处理3. Terminology3. 术语3.1 Definition of Term Specific to This Standard—It is necessary to define which of the several commonly used definitions of the term passivation will be used in this specification. (See Discussion.3.1 本标准的术语定义——在本技术规范将经常使用到的几个术语“钝化”的定义有必要作出规定。

(见论述3.1.1 Discussion—Stainless steels are autopassivating in the sense that the protective passive film is formed spontaneously on exposure to air or moisture. The presence of exogenous surface contamination, including dirt, grease, free iron from contact with steel tooling, and so forth, may interfere with the formation of the passive film. The cleaning of these contaminants from the stainless steel surface will facilitate the spontaneous passivation by allowing the oxygen uniform access to the surface. The passive film may be augmented by chemical treatments that provide an oxidizing environment for the stainless steel surface.3.1.1 论述——在某种意义上说,在暴露到空气和湿气的情况下,保护性的钝化膜自动生成是不锈钢在自动钝化。

外生的表面污染,包括:尘土、油脂、来自钢铁加工的游离铁等等,可以影响到钝化膜的生成。

通过允许氧气均衡地接触到不锈钢表面,不锈钢表面污染的清洗将会有助于自动钝化。

通过为不锈钢表面提供一个氧化环境的化学处理,钝化膜可以得到增强。

3.1.1.1 In this specification, passivation, unless otherwise specified, is defined as the chemical treatment of a stainless steel with a mild oxidant, such as a nitric acid solution, for the purpose of the removal of free iron or other foreign matter, but which is generally not effective in removal of heat tint or oxide scale on stainless steel. In the case of stainless steels with additions of sulfur for the purpose of improved machinability, passivation may also include the removal of sulfides from the surface of the metal for the purpose of maximizing corrosion resistance.3.1.1.1 在本技术规范中,除非另有规定,“钝化”被定义为:为了消除游离铁和其它杂质,用温和的氧化剂对不锈钢进行化学处理,例如硝酸溶液,但是“钝化”对于消除不锈钢回火颜色和氧化膜(皮通常是无效的。

相关文档
最新文档