高中物理建模:“人船模型”类问题的处理方法

合集下载

高中物理“人船模型”题型解析

高中物理“人船模型”题型解析
( 3 ) 解此类的题 目. 注意速度 必须相对 同 参照物。 二、 人船模型的变形 例2 : 如 图( 一) 气球 的质量为 M. 下 面拖 条质 量不计 的软 梯 . 质量为 m 的人 站在软 梯上端距地面为 H, 气球保持静止状态 , 求: ( 1 ) 人安全到地面软梯的最小长度 。
D . 质点达 到右边最高点 . M 方形盒 向左
移1 . 5 c m r 1


解析 : 如图三 L = 5 c i n . S = L s i n 3 7  ̄ , 质点在
系统
底部时 . 斜形物体移动的距 离是 多少 ?
高考试题命题组和命题专 家们为了突 出 重 围. 必然要 “ 标新立 意” “ 挖 空心思” 和“ 绞尽 脑汁 ” 在动量守恒定律~章 中最常见 的题型 就是 “ 人船模 型” . 下 面我对此 类问题进 行分 析解答 。
人船模型适用条件 是由两个物体组 成的 系统 . 在水平方 向动量守恒 例l : 载 人气球原静 止于高 h的高 空 , 气 球质量为 M. 人 的质量为 n 1 . 若人沿绳梯滑至 地面 . 则绳梯至少 为多长 7 解析 : 气球和人原静止 于空中 . 说明系统

解析: 令 小球 的水 平位移 为 S 1 . 大球 的 水平 位移为 S 2 .两 圆心之间 的距 离为 R . 则 有: m s l + M S 2 = R 根据人船模型有 : m s l = M S 2 解之得 s 2 = R / 3 三、 多个物体组成 的人船模型两个物体组 成 的人船模型也 同样使用 于多个 物体 组成的
学 羁 2 堡 0 1 垒 4 耳 量 第 3 期
玲 实 践 讲 堂 令
高 中 物 理 ¨ 人 船 模 型 "题 型 解 析

高中物理教研论文巧解人船模型问题(最全)word资料

高中物理教研论文巧解人船模型问题(最全)word资料

高中物理教研论文巧解人船模型问题(最全)word资料巧解人船模型问题——平均动量守恒定律的应用1.平均动量守恒定律当系统在全过程中动量守恒时,则这一系统在全过程中的平均动量也守恒。

在符合动量守恒的条件下,如果物体做变速运动,为了求解位移,可用平均动量及其守恒规律来处理。

2. 人船模型如果系统是由两(或多)个物体组成的,合外力为零,且相互作用前合动量为零,我们称为人船模型。

(1)一人一船模型:如图1所示人由左端走到右端的过程中, 由动量守恒定律,得 02211=-v m v m由于在全过程动量都守恒,所以有 0211=---v m v m同乘以时间t ,得 0211=---t v m t v m即 2211s m s m =此为一人一船模型的平均动量守恒方程,且知位移与质量成反比。

又由图知 L s s =+21,解得两物体位移分别为L m m m s 2121+= Lm m m s 2112+=(2)二人一船模型:如图2所示,a 、b 两人交换位置过程中,设船c 向左运动,同理可得平均动量守恒定律的方程c c b b a a s m s m s m +=3.一题三法求解人船模型例题 如图2所示,a 、b 两人质量分别为a m 和b m ,船c 的质量为c m ,船长为L ,现在a 、b 交换位置,求船c 在该过程的位移?法1 由二人一船模型得 c c b b a a s m s m s m +=位移关系 L s s c a =+ L s s c b =-联立解得Lm m m m m s cb a ba c ++-=此解法作图较简单,但位移关系和解方程都较复杂。

法2 如图3所示,先令b 不动,a 走到右端,由一人一船模型,得 Lm m m m s cb a ac ++=1再令a 不动,让b 走到左端,在该过程中同理可得L m m m m s cb a bc ++=2由图知L m m m m m s s s cb a ba c c c ++-=-=21此解法把问题化为两个一人一船模型,根据位移和质量的反比关系可直得到结果。

0衡水中学物理最经典-物理建模系列(十) 人船模型问题

0衡水中学物理最经典-物理建模系列(十) 人船模型问题

物理建模系列(十) 人船模型问题1.“人船模型”问题的特征:两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为“人船模型”问题.2.运动特点:两个物体的运动特点是“人”走“船”行,“人”停“船”停. 3.处理“人船模型”问题的两个关键:(1)处理思路:利用动量守恒,先确定两物体的速度关系,再确定两物体通过的位移的关系.①用动量守恒定律求位移的题目,大都是系统原来处于静止状态,然后系统内物体相互作用,此时动量守恒表达式经常写成m 1v 1-m 2v 2=0的形式,式中v 1、v 2是m 1、m 2末状态时的瞬时速率.②此种状态下动量守恒的过程中,任意时刻的系统总动量为零,因此任意时刻的瞬时速率v 1和v 2都与各物体的质量成反比,所以全过程的平均速度也与质量成反比,即有m 1v 1-m 2v 2=0.③如果两物体相互作用的时间为t ,在这段时间内两物体的位移大小分别为x 1和x 2,则有m 1x 1t -m 2x 2t=0,即m 1x 1-m 2x 2=0.(2)画出各物体的位移关系图,找出它们相对地面的位移的关系.4.推广:原来静止的系统在某一个方向上动量守恒,运动过程中,在该方向上速度方向相反,也可应用处理“人船模型”问题的思路来处理.例如,小球沿弧形槽滑下,求弧形槽移动距离的问题.例 长为L 、质量为M 的小船停在静水中,一个质量为m 的人立在船头,若不计水的黏滞阻力,当人从船头走到船尾的过程中,人和船对地面的位移各是多少?【思路点拨】【解析】 选人和船组成的系统为研究对象,因系统在水平方向不受力,所以动量守恒,人未走时系统的总动量为零.当人起步加速前进时,船同时加速后退;当人匀速前进时,船匀速后退;当人减速前进时,船减速后退;当人速度为零时,船速度也为零.设某时刻人对地的速率为v 1,船对地的速率为v 2,根据动量守恒得m v 1-M v 2=0①因为在人从船头走到船尾的整个过程中时刻满足动量守恒,对①式两边同乘以Δt ,得mx 1-Mx 2=0②②式为人对地的位移和船对地的位移关系,由图还可看出: x 1+x 2=L ③联立②③两式得⎩⎨⎧x 1=M M +mLx 2=mM +m L【答案】M M +m L mM +mL[高考真题]1.(2017·课标卷Ⅰ,14)将质量为1.00 kg 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( )A .30 kg·m/sB .5.7×102 kg·m/sC .6.0×102 kg·m/sD .6.3×102 kg·m/s【解析】 由于喷气时间短,且不计重力和空气阻力,则火箭和燃气组成的系统动量守恒.燃气的动量p 1=m v =0.05×600 kg·m/s =30 kg·m/s , 则火箭的动量p 2=p 1=30 kg·m/s ,选项A 正确. 【答案】 A2.(2017·课标卷Ⅲ,20)一质量为2 kg 的物块在合外力F 的作用下从静止开始沿直线运动.F 随时间t 变化的图线如图所示,则( )A .t =1 s 时物块的速率为1 m/sB .t =2 s 时物块的动量大小为4 kg·m/sC .t =3 s 时物块的动量大小为5 kg·m/sD .t =4 s 时物块的速度为零【解析】 A 对:前2 s 内物块做初速度为零的匀加速直线运动,加速度a 1=F 1m =22 m/s 2=1 m/s 2,t =1 s 时物块的速率v 1=a 1t 1=1 m/s.B 对:t =2 s 时物块的速率v 2=a 1t 2=2 m/s ,动量大小为p 2=m v 2=4 kg·m/s.C 错:物块在2~4 s 内做匀减速直线运动,加速度的大小a 2=F 2m =0.5 m/s 2,t =3 s 时物块的速率v 3=v 2-a 2t 3=(2-0.5×1)m/s =1.5 m/s ,动量大小p 3=m v 3=3 kg·m/s.D 错:t =4 s 时物块的速度v 4=v 2-a 2t 4=(2-0.5×2)m/s =1 m/s. 【答案】 AB3.(2017·天津卷,4)“天津之眼”是一座跨河建设、桥轮合一的摩天轮,是天津市的地标之一.摩天轮悬挂透明座舱,乘客随座舱在竖直面内做匀速圆周运动.下列叙述正确的是( )A .摩天轮转动过程中,乘客的机械能保持不变B .在最高点时,乘客重力大于座椅对他的支持力C .摩天轮转动一周的过程中,乘客重力的冲量为零D .摩天轮转动过程中,乘客重力的瞬时功率保持不变【解析】 A 错:摩天轮转动过程中,乘客的动能不变,重力势能不断变化,故乘客的机械能不断变化.B 对:乘客在最高点时,具有向下的加速度,处于失重状态.C 错:根据I =Ft 知,重力的冲量不为0.D 错:根据P =mg v cos θ,θ为力方向与速度方向之间的夹角,摩天轮转动过程中,θ不断变化,重力的瞬时功率不断变化.【答案】 B[名校模拟]4.(2018·山东临沂高三上学期期中)如图所示,曲线是某质点只在一恒力作用下的部分运动轨迹.质点从M点出发经P点到达N点,已知质点从M点到P点的路程大于从P点到N点的路程,质点由M点运动到P点与由P点运动到N点的时间相等.下列说法中正确的是()A.质点从M到N过程中速度大小保持不变B.质点在M、N间的运动不是匀变速运动C.质点在这两段时间内的动量变化量大小相等,方向相同D.质点在这两段时间内的动量变化量大小不相等,但方向相同【解析】质点在恒力作用下从M到N的过程速度减小,确定是匀变速运动,故A、B均错;由动量定理F·Δt=Δp可知,质点在这两段时间内动量变化量大小相等,方向相同,C对,D错.【答案】 C5.(2018·山东烟台高三上学期期中)A、B两物体的质量之比m A∶m B=2∶1,它们以相同的初速度v0在水平面上在摩擦阻力的作用下做匀减速直线运动,直到停止.则在此过程中,A、B两物体所受摩擦力的冲量之比I A∶I B与A、B两物体克服摩擦力做的功之比W A∶W B分别为()A.4∶12∶1 B.2∶14∶1C.2∶12∶1 D.1∶21∶4【解析】由动量定理可知I=m v,再由动能和动量的关系可知,E k=I22m,所以W A∶W B=(I A∶I B)2·(m B∶m A)=2∶1,故C正确.【答案】 C6.(2018·山东潍坊高三上学期期中)质量为m的子弹,以水平速度v0射入静止在光滑水平面上质量为M的木块,并留在其中.在子弹进入木块过程中,下列说法正确的是() A.子弹动能减少量等于木块动能增加量B.子弹动量减少量等于木块动量增加量C.子弹动能减少量等于子弹和木块内能增加量D.子弹对木块的冲量大于木块对子弹的冲量【解析】子弹动能的减少量一部分转化为系统内能,一部分转化为木块动能,A、C 均错;由动量守恒可知,子弹动量减少量等于木块动量的增加量,B对;力的作用是相互的,故子弹对木块的冲量等于木块对子弹的冲量,D 错.【答案】 B课时作业(十八) [基础小题练]1.如图所示,质量为m 的物体(可视为质点),从h 高处的A 点由静止开始沿斜面下滑,停在水平地面上的B 点(斜面和水平面之间有小圆弧平滑连接).要使物体能原路返回,在B 点需给物体的瞬时冲量最小应是( )A .2m ghB .m gh C.m gh 2D .4m gh【解析】 物体从A 到B 的过程,根据动能定理,有mgh -W f =0,物体从B 返回A 的过程,根据动能定理,有-mgh -W f =0-12m v 2,联立解得v =2gh ,在B 点需给物体的瞬时冲量等于动量的增加量,故I =m v =2m gh ,故A 正确,B 、C 、D 错误.【答案】 A2.下列四幅图所反映的物理过程中,系统动量守恒的是( )【解析】 A 中子弹和木块的系统在水平方向不受外力,竖直方向所受合力为零,系统动量守恒;B 中在弹簧恢复原长过程中,系统在水平方向始终受到墙的作用力,系统动量不守恒;C 中剪断细线后,以整体为研究对象,木球与铁球的系统所受合外力为零,系统动量守恒;D 中木块下滑过程中,斜面始终受挡板作用力,系统动量不守恒.【答案】 AC3.(2018·山东潍坊高三上学期期中)在光滑水平地面上有两个完全相同的弹性小球a 、b ,质量均为m .现b 球静止,a 球向b 球运动,发生弹性正碰.当碰撞过程中达到最大弹性势能E p 时,a 球的速度等于( )A. E pm B . E p2m C .2E p mD .22E pm【解析】 设碰前a 球速度为v 0,弹性势能最大时刻即为两球共速之时,设共同速度为v ,则由动量守恒和能量守恒得:m v 0=(m +m )v ① 12m v 20=12(m +m )v 2+E p ② 由①②两式解得v = E pm,故A 正确. 【答案】 A4.在光滑的水平面上,有a 、b 两球,其质量分别为m a 、m b ,两球在t 0时刻发生正碰,并且在碰撞过程中无机械能损失,两球在碰撞前后的速度—时间图象如图所示,下列关系正确的是( )A .m a >m bB .m a <m bC .m a =m bD .无法判断【解析】 由动量守恒定律得m a v a =m a v a ′+m b v b ′,由于v a ′<0,则b 球获得的动量大于a 球最初的动量.若m a =m b ,则两球交换速度,与图象不符;由E k =p 22m 知,若m a>m b ,则b 球的动能将会大于a 球最初的动能,违背能量守恒定律,则必然满足m a <m b .【答案】 B5.小船相对于静止的湖水以速度v 向东航行.某人将船上两个质量相同的沙袋,以相对于湖水相同的速率v 先后从船上水平向东、向西抛出船外.那么当两个沙袋都被抛出后,小船的速度将( )A .仍为vB .大于vC .小于vD .可能反向【解析】 以两沙袋和船为系统,抛沙袋的过程系统满足动量守恒定律的条件,即(M +2m )v =m v -m v +M v ′,解得v ′=M +2mMv >v ,故B 正确.【答案】 B6.如图所示,静止在光滑水平面上的木板,右端有一根轻质弹簧沿水平方向与木板相连,木板质量M =4 kg.质量m =2 kg 的小铁块以水平速度v 0=6 m/s ,从木板的左端沿板面向右滑行,压缩弹簧后又被弹回,最后恰好到达木板的左端并与木板保持相对静止.在上述过程中弹簧具有的最大弹性势能为( )A .9 JB .12 JC .3 JD .24 J【解析】 当弹簧压缩至最短时,E p 最大,m v 0=(M +m )v ,v =2 m/s ,全程摩擦力做功W f =12m v 20-12(M +m )v 2=24 J ,E p =12m v 20-12(M +m )v 2-W f2=12 J. 【答案】 B[创新导向练]7.动量定理的实际应用——打篮球时的传球技巧篮球运动员通常伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前.这样做可以( )A .减小球对手的冲量B .减小球对手的冲击力C .减小球的动量变化量D .减小球的动能变化量【解析】 由动量定理Ft =Δp 知,接球时两手随球迅速收缩至胸前,延长了手与球接触的时间,从而减小了球对手的冲击力,选项B 正确. 【答案】 B8.动量守恒定律在航天科技中的实际应用一质量为M 的航天器,正以速度v 0在太空中飞行,某一时刻航天器接到加速的指令后,发动机瞬间向后喷出一定质量的气体,气体喷出时速度大小为v 1,加速后航天器的速度大小为v 2,则喷出气体的质量m 为( )A.v 2-v 0v 1MB .v 2v 2+v 1MC.v 2-v 0v 2+v 1M D .v 2-v 0v 2-v 1M【解析】 规定航天器的速度方向为正方向,由动量守恒定律可得M v 0=(M -m )v 2-m v 1,解得m =v 2-v 0v 2+v 1M ,故C 正确.【答案】 C9.应用动量守恒定律分析碰撞中的实际问题某研究小组通过实验测得两滑块碰撞前后运动的实验数据,得到如图所示的位移—时间图象.图中的线段a 、b 、c 分别表示沿光滑水平面上同一条直线运动的滑块Ⅰ、Ⅱ和它们发生正碰后结合体的位移变化关系.已知相互作用时间极短,由图象给出的信息可知( )A .碰前滑块Ⅰ与滑块Ⅱ速度大小之比为7∶2B .碰前滑块Ⅰ的动量大小比滑块Ⅱ的动量大小大C .碰前滑块Ⅰ的动能比滑块Ⅱ的动能小D .滑块Ⅰ的质量是滑块Ⅱ的质量的16【解析】 根据s -t 图象的斜率等于速度,可知碰前滑块Ⅰ的速度v 1=-2 m/s ,滑块Ⅱ的速度v 2=0.8 m/s ,则碰前速度大小之比为5∶2,故A 错误;碰撞前后系统动量守恒,碰撞前,滑块Ⅰ的动量为负,滑块Ⅱ的动量为正,由于碰撞后总动量为正,故碰撞前总动量也为正,故碰撞前滑块Ⅰ的动量大小比滑块Ⅱ的小,故B 错误;碰撞后的共同速度为v =0.4 m/s ,根据动量守恒定律,有m 1v 1+m 2v 2=(m 1+m 2)v ,解得m 2=6m 1,由动能的表达式可知,12m 1v 21>12m 2v 22,故C 错误,D 正确.【答案】 D10.应用动量定理分析安全带受力问题质量是60 kg 的建筑工人,不慎从高空跌下,由于弹性安全带的保护,他被悬挂起来.已知安全带的缓冲时间是1.2 s ,安全带长5 m ,取g =10 m/s 2,则安全带所受的平均冲力的大小为( )A .500 NB .600 NC .1 100 ND .100 N【解析】 安全带长5 m ,人在这段距离上做自由落体运动,获得速度v =2gh =10 m/s.受安全带的保护经1.2 s 速度减小为0,对此过程应用动量定理,以向上为正方向,有(F -mg )t =0-(-m v ),则F =m vt+mg =1 100 N ,C 正确.【答案】 C[综合提升练]11.(2018·山东潍坊高三上学期期中)如图所示,质量为M 的轨道由上表面粗糙的水平轨道和竖直平面内的半径为R 的14光滑圆弧轨道紧密连接组成,置于光滑水平面上.一质量为m 的小物块以水平初速度v 0由左端滑上轨道,恰能到达圆弧轨道最高点.已知M ∶m =3∶1,物块与水平轨道之间的动摩擦因数为μ.求:(1)小物块到达圆弧轨道最高点时的速度; (2)水平轨道的长度.【解析】 设小物块到达圆弧轨道最高点时速度为v 1(1)从小物块滑上轨道到到达最高点的过程中,由动量守恒定律得m v 0=(M +m )v 1① 联立解得:v 1=14v 0.②(2)由能量守恒定律得:μmgL +mgR +12(m +M )v 21=12m v 20③ 由②③联立得:L =3v 208μg -R μ.④【答案】 (1)14v 0 (2)3v 208μg -R μ12.(2018·山东淄博一中高三上学期期中)如图所示,AOB 是光滑水平轨道,BC 是半径为R 的光滑的14固定圆弧轨道,两轨道恰好相切于B 点.质量为M 的小木块静止在O 点,一颗质量为m 的子弹以某一初速度水平向右射入小木块内,并留在其中和小木块一起运动,且恰能到达圆弧轨道的最高点C (木块和子弹均看作质点).(1)求子弹射入木块前的速度;(2)若每当小木块返回到O 点或停止在O 点时,立即有一颗相同的子弹射入小木块,并留在其中,则当第17颗子弹射入小木块后,小木块沿圆弧轨道能上升的最大高度为多少?【解析】 (1)由子弹射入木块过程动量守恒有m v 0=(m +M )v 1 木块和子弹滑到点C 处的过程中机械能守恒,有 12(m +M )v 21=(m +M )gR 联立两式解得 v 0=M +m m2gR .(2)以后当偶数子弹射中木块时,木块与子弹恰好静止,奇数子弹射中木块时,向右运动.第17颗子弹射中时,由动量守恒定律可知 (M +17m )v =m v 0射入17颗子弹后的木块滑到最高点的过程中机械能守恒,有 12(M +17m )v 2=(M +17m )gH 由以上两式解得 H =(M +m )2(M +17m )2R .【答案】 (1)M +m m 2gR (2)(M +m )2(M +17m )2R。

人船模型的经典例题讲解

人船模型的经典例题讲解

人船模型的经典例题讲解
人船模型是一种物理模型,用于描述两个物体在相互作用下各自的运动情况,其中物体所受的合外力为零,总动量守恒。

下面通过一个例题来讲解人船模型的运用。

题目:在平静的湖面上停泊着一条长为L,质量为M的船。

如果有一质量
为m的人从船的一端走到另一端,求船和人相对水面的位移各为多少?
解析:
1. 设人从船的一端走到另一端所用时间为t,人、船的速度分别为v和u。

2. 由人和船组成的系统在水平方向上满足动量守恒,则mv=Mu。

3. 由于人在走动过程中任意时刻人和船的速度v和u均满足上述关系,所
以运动过程中,人和船平均速度大小也应满足相似的关系,即mv=Mu。

而v=x/t,u=y/t,所以上式可以转化为:mx=My。

4. 又因为x+y=L,得:x=[M/(m+M)]L,y=[m/(m+M)]L。

综上,人和船相对于水面的位移只与人和船的质量有关,与运动情况无关。

以上就是运用人船模型解决的一个经典例题。

如需更多信息,建议查阅相关文献或咨询专业物理老师。

浅析“类似人船模型”问题的求解方法

浅析“类似人船模型”问题的求解方法

浅析“类似人船模型”问题的求解方法作者:王永源来源:《试题与研究·教学论坛》2017年第13期“人船模型问题”是力学中动量部分司空见惯的问题,可有一些问题从表面上不易看出属于“人船模型”问题,但由于这类问题往往涉及相对运动,不易求解速度之间的关系,所以对于部分学生来讲求解和分析此类问题时感觉非常棘手。

但由于此类问题本质上是属于“人船模型”问题,所以采取人船模型问题的求解方法进行解答往往得到事半功倍的效果。

现举例如下:一、斜面上的情况问题如图1所示,质量为M的斜面体长为L,倾角为θ。

一个质量为m且可以看作质点的小物块从斜面体的最高点由静止释放,一切摩擦均不计,求小物块下滑过程中斜面体的位移?解析:将m和M作为一个系统,系统水平方向不受外力,所以系统水平方向动量守恒。

其实这两个物体组成的系统水平方向属于“人船模型”,不妨称之为“类似人船模型”,简称为“类人船模型”。

设小物块在下滑过程中斜面体的位移大小为x,方向是水平向右的。

则小物块在下滑过程中的水平位移大小为L-x,任一时刻m的水平速度为v1,M的水平速度为v2。

由水平方向的动量守恒可得:mv1=Mv2,设微小时间为Δt,则mv1Δt=Mv2Δt,m?鄱(v1Δt)=M?鄱(v2Δt),即m(L-x)=Mx,所以x=■。

即小物块下滑过程中斜面体的位移大小为■,方是水平向右的。

二、竖直方向上的情况问题如图2所示,气球和梯子用不可伸长的绳子连接,总质量为M,质量为m的人站立在梯子的最下端,悬在空中静止不动。

不考虑刮风的情况,若此人沿梯子向上爬的距离为L,最后仍站立在梯子上。

求在此人向上爬的过程中梯子的位移?解析:将气球、绳子、梯子和人作为一个系统,竖直方向合外力为零,所以竖直方向动量守恒,其实质属于竖直方向的“类人船模型”问题。

设此人在向上爬的过程中梯子的位移为x,方向竖直向下,则人竖直向上的位移为L-x,任一时刻m的竖直速度为v1,M的竖直速度为v2。

“人船”模型及应用

“人船”模型及应用

“人船”模型及应用重庆市 垫江中学(408300) 张 雄“人船”模型,不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一。

利用“人船”模型及其典型变形,通过类比和等效方法,可以使许多动量守恒问题的分析思路和解答步骤变得极为简捷,有时甚至一眼就看出结果。

一、“人船”模型原理——质心运动守恒 一个质点系的动量等于质点系的总质量与质心速度之积,方向与质心速度方向一致。

所以,当系统不受外力或所受合外力为零时,质心的动量守恒——质心将保持原来的匀速直线运动状态或静止状态,即当0F =或0F =∑时0υ=或υ=恒量二、“人船”模型的基本公式和适用条件 如图1所示,长为L 、质量为M 的船停在静水中,一个质量为m 的人站立在船头。

设船的质心在O 处,距船头、船尾分别为1L 和2L 。

当人在船头时,人、船系统的质心在1O 处,距离O 为1l ;当人走到船尾时,人、船系统的质心在2O 处,距离O 为2l 。

若不计水的粘滞阻力,在人丛船头走到船尾的过程中,系统在水平方向不受外力作用,动量守恒,即水平方向的总动量始终为零——系统的质心位置不变。

所以,当人向右相对船移动距离L ,引起系统的质心向右移动(12l l +)时,船将向左移动同样的距离,即12l l l =+船根据人和船的质量与到质心距离之积相等,有111()m L l Ml -=222()m L l Ml -=将两式相加,可得1212()m m l l L L L M m M m +=+=++所以,当人对船的位移为L 时,船对地的位移为m l L M m=+船 ①人对地的位移为Ml L l L M m=-=+人船 ②若人相对船以水平初速度υ跳出,可以认为在极短的时间t 内,人相对于船的位移为L 。

根据①②式和速度的定义Ltυ=,所以船和人对地的速度分别为mM m υυ=+船 ③MM mυυ=+人 ④这就是“人船”模型的四个基本公式,其物理意义和适用条件如下1、人、船对地的位移与其相对位移和对方的质量之积成正比,与系统的总质量成反比,而与运动性质无关。

高中物理“人船模型” 题型解析

高中物理“人船模型” 题型解析

高中物理“人船模型” 题型解析作者:安永娟来源:《学周刊·C》2014年第03期摘要:每年高考都牵动了广大师生的心,而高考命题和高考试题则始终是关注的焦点。

就物理这门学科而言,几十年来考查的知识方法范畴几乎没有太大的变化,所以大家都会发现近年来高考物理试卷中真正有新意的题不多,绝大部分是陈题翻新。

本文重点将“人船模型”的题型进行归类解答,为以后遇到此类问题提供解答基础。

关键词:人船模型解答习题高考试题命题组和命题专家们为了突出重围,必然要“标新立意”“挖空心思”和“绞尽脑汁”。

在动量守恒定律一章中最常见的题型就是“人船模型”,下面我对此类问题进行分析解答。

一、人船模型适用条件是由两个物体组成的系统,在水平方向动量守恒例1:载人气球原静止于高h的高空,气球质量为M,人的质量为m,若人沿绳梯滑至地面,则绳梯至少为多长?解析:气球和人原静止于空中,说明系统所受合力为零,故人下滑过程中系统动量守恒,人着地时,绳梯至少应触及地面。

因为人下滑过程中,人和气球任意时刻的动量大小都相等,所以整个过程中系统平均动量守恒。

若设绳梯长为l,人沿绳梯滑至地面的时间为 t,气球对地移动的平均速度为(l-h)/t,人对地移动的平均速度为-h/t(以向上为正方向)。

根据动量守恒定律,有M(l-h)/t-m h/t=0.解得 l= h. 答案: h说明:(1)当问题符合动量守恒定律的条件,而又仅涉及位移而不涉及速度时,通常可用平均动量求解。

(2)画出反映位移关系的草图,对求解此类题目会有很大的帮助。

(3)解此类的题目,注意速度必须相对同一参照物。

二、人船模型的变形例2:如图(一)气球的质量为M,下面拖一条质量不计的软梯,质量为m的人站在软梯上端距地面为H,气球保持静止状态,求:(1)人安全到地面软梯的最小长度。

(2)若软梯的长为H,则人从软梯上端到下端时,人距地面多高。

解:(1)令气球上升的距离为h,而人对地下降H,根据人船模型的结论有mH=Mh,L=H+h,L=(M+m)H/M(2)令气球上移S1,人下降S2,根据人船模型的结论有:MS1=mS2,S1+S2=H,h1=H-S2,解之得h1=mH/(m+M)例3:如图(二)一个质量为M,底边边长为b的斜形物体静止在光滑的水平面上,有一质量为m的小球由斜面顶部无初速滑到底部时,斜形物体移动的距离是多少?解析:斜形物体和小球组成的系统在水平面不受外力,故在水平方向动量守恒,令S1和S2为m和M对地的位移。

高三物理人船模型用动量守恒处理问题

高三物理人船模型用动量守恒处理问题

咐呼州鸣咏市呢岸学校人船模型用动量守恒处理问题动量守恒律的要点:1。

矢量表达式:m1v1+m2v2=m1v1/+m2v2/2。

条件:⑴系统不受合外力或系统所受合外力为零。

⑵系统在某一方向合外力为零,那么该方向动量守恒⑶系统内力远大于外力〔如爆炸过程中的重力、碰撞过程中的摩擦力〕3、各物体的速度取地为参考系4、系统在一维空间相互作用,规正方向,以确每个动量的正、负。

假设待求量的方向未知,直接代入该量的符号,所求结果为正值,那么该量的方向与规方向相同,所求结果为负值,那么该量的方向与规方向相反。

用平均动量守恒处理问题的方法假设系统在全过程中动量守恒〔包括单方向动量守恒〕,那么这一系统在全过程中的平均动量也必守恒。

如果系统是由两个物体组成,且相互作用前均静止,相互作用后均发生运动,那么由 0=m1v1-m2v2〔其中v1、v2是平均速度〕得推论:m1s1=m2s2,使用时明确s1、s2必须是相对同一参照物体的大小。

人船模型在静水上浮着一只长为L=3m、质量为m船=300kg的小船,船尾站着一质量m人=60kg的人,开始时人和船都静止。

假设人匀速从船尾走到船头,不计水的阻力。

那么船将〔〕〔A〕后退0.5m 〔B〕后退0.6m〔C〕后退0.75m 〔D〕一直匀速后退在静水上浮着一只长为L=3m、质量为m船=300kg的小船,船尾站着一质量m人=60kg的人,开始时人和船都静止。

假设人匀速从船尾走到船头,不计水的阻力。

那么船将〔 A 〕〔A〕后退0.5m 〔B〕后退0.6m 〔C〕后退0.75m 〔D〕一直匀速后退分析与解:取人和小船为对象,它们所受合外力为零,初动量 m人v人+m船v船=0 〔均静止〕根据动量守恒律 m人v人+m船v船= m人v/人+m船v/船取人的走向为正方向 0= m人v/人- m船v/船设走完时间为t 那么0= m人v/人t - m船v/船tm人S人=m船S船注意S1、s2均为相对地的位移60×〔3-S船〕=300×S船S船=0.5mS船S人=L-S船人船模型的综合发散一、人船模型〔水平方向〕二、劈和物块〔水平方向〕三、气球和人〔竖直方向〕劈和物块一个质量为M,底面边长为 b 的劈静止在光滑的水平面上,见左图,有一质量为 m 的物块由斜面顶部无初2,要沿轻绳梯返回地面,那么绳梯的长度至少为多长?解:取人和气球为对象,系统开始静止且同时开始运动,人下到地面时,人相对地的位移为h,设气球对地位移L,那么根据推论有ML=mh 得L =M m h 因此绳的长度至少为L+h=Mh m M )( 小结用平均动量守恒解题的要点 如果系统是由两个物体组成,且相互作用前均静止,相互作用后均发生运动,那么1、表达式 0=m 1v 1-m 2v 2〔其中v 1、v 2是平均速度〕2、推论: m 1s 1=m 2s 2 3、使用时明确v 1、 v 2 、s 1、s 2必须是相对同一参照物体的大小。

高考物理专题分析:人船模型之一

高考物理专题分析:人船模型之一

人船模型之一“人船模型”,不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一.对“人船模型”及其典型变形的研究,将直接影响着力学过程的发生,发展和变化,在将直接影响着力学过程的分析思路,通过类比和等效方法,可以使许多动量守恒问题的分析思路和解答步骤变得极为简捷。

1、“人船模型” 质量为M 的船停在静止的水面上,船长为L ,一质量为m 的人,由船头走到船尾,若不计水的阻力,则整个过程人和船相对于水面移动的距离? 分析:“人船模型”是由人和船两个物体构成的系统;该系统在人和船相互作用下各自运动,运动过程中该系统所受到的合外力为零;即人和船组成的系统在运动过程中总动量守恒。

解答:设人在运动过程中,人和船相对于水面的速度分别为和u ,则由动量守恒定律得:m v =Mu由于人在走动过程中任意时刻人和船的速度和u 均满足上述关系,所以运动过程中,人和船平均速度大小也应满足相似的关系,即 m =M 而,,所以上式可以转化为: mx=My 又有,x+y=L,得: ννu ν 和 νu x t ν=y u t=M x L m M=+ML mM L xy以上就是典型的“人船模型”,说明人和船相对于水面的位移只与人和船的质量有关,与运动情况无关。

该模型适用的条件:一个原来处于静止状态的系统,且在系统发生相对运动的过程中,至少有一个方向(如水平方向或者竖直方向)动量守恒。

2、“人船模型”的变形变形1:质量为M 的气球下挂着长为L 的绳梯,一质量为m 的人站在绳梯的下端,人和气球静止在空中,现人从绳梯的下端往上爬到顶端时,人和气球相对于地面移动的距离? 分析:由于开始人和气球组成的系统静止在空中,竖直方向系统所受外力之和为零,即系统竖直方向系统总动量守恒。

得:mx=Myx+y=L这与“人船模型”的结果一样。

变形2:如图所示,质量为M 的圆弧轨道静止于光滑水平面上,轨道半径为R ,今把质量为m 的小球自轨道左测最高处静止释放,小球滑至最低点时,求小球和轨道相对于地面各自滑行的距离?分析:设小球和轨道相对于地面各自滑行的距离为x 和y ,将小球和轨道看成系统,该系统在水平方向总动量守恒,由动量守恒定律得: mx=Myx+y=L m y L m M=+14mMxy这又是一个“人船模型”。

2010年经典高中物理模型--人船模型之一

2010年经典高中物理模型--人船模型之一

人船模型之一“人船模型”,不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一.对“人船模型”及其典型变形的研究,将直接影响着力学过程的发生,发展和变化,在将直接影响着力学过程的分析思路,通过类比和等效方法,可以使许多动量守恒问题的分析思路和解答步骤变得极为简捷。

1、“人船模型” 质量为M 的船停在静止的水面上,船长为L ,一质量为m 的人,由船头走到船尾,若不计水的阻力,则整个过程人和船相对于水面移动的距离?分析:“人船模型”是由人和船两个物体构成的系统;该系统在人和船相互作用下各自运动,运动过程中该系统所受到的合外力为零;即人和船组成的系统在运动过程中总动量守恒。

解答:设人在运动过程中,人和船相对于水面的速度分别为ν和u ,则由动量守恒定律得:m v =Mu由于人在走动过程中任意时刻人和船的速度ν和u 均满足上述关系,所以运动过程中,人和船平均速度大小u ν 和 也应满足相似的关系,即 m ν=M u 而x t ν=,y u t=,所以上式可以转化为: mx=My又有,x+y=L,得: M x L m M=+ m y L m M=+ 以上就是典型的“人船模型”,说明人和船相对于水面的位移只与人和船的质量有关,与运动情况无关。

该模型适用的条件:一个原来处于静止状态的系统,且在系统发生相对运动的过程中,至少有一个方向(如水平方向或者竖直方向)动量守恒。

2、“人船模型”的变形变形1:质量为M的气球下挂着长为L的绳梯,一质量为m的人站在绳梯的下端,人和气球静止在空中,现人从绳梯的下端往上爬到顶端时,人和气球相对于地面移动的距离?分析:由于开始人和气球组成的系统静止在空中,竖直方向系统所受外力之和为零,即系统竖直方向系统总动量守恒。

得:mx=Myx+y=L这与“人船模型”的结果一样。

变形2:如图所示,质量为M的14圆弧轨道静止于光滑水平面上,轨道半径为R,今把质量为m的小球自轨道左测最高处静止释放,小球滑至最低点时,求小球和轨道相对于地面各自滑行的距离?分析:设小球和轨道相对于地面各自滑行的距离为x和y,将小球和轨道看成系统,该系统在水平方向总动量守恒,由动量守恒定律得:mx=Myx+y=L这又是一个“人船模型”。

高中物理“人船模型”问题的特点和分析

高中物理“人船模型”问题的特点和分析

高中物理“人船模型”问题的特点和分析1.“人船模型”问题两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为“人船模型”问题.2.人船模型的特点(1)两物体满足动量守恒定律:m 1v 1-m 2v 2=0.(2)运动特点:人动船动,人静船静,人快船快,人慢船慢,人左船右;人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x 1x 2=v 1v 2=m 2m 1. (3)应用此关系时要注意一个问题:公式v 1、v 2和x 一般都是相对地面而言的.典例1 如图7所示,长为L 、质量为M 的小船停在静水中,质量为m 的人从静止开始从船头走到船尾,不计水的阻力,求船和人相对地面的位移各为多少?图7答案 m m +M L M m +ML 解析 设任一时刻人与船的速度大小分别为v 1、v 2,作用前都静止.因整个过程中动量守恒, 所以有m v 1=M v 2.而整个过程中的平均速度大小为v 1、v 2,则有m v 1=M v 2.两边乘以时间t 有m v 1t =M v 2t ,即mx 1=Mx 2.且x 1+x 2=L ,可求出x 1=M m +M L ,x 2=m m +ML . 典例2 如图8所示,一个倾角为α的直角斜面体静置于光滑水平面上,斜面体质量为M ,顶端高度为h ,今有一质量为m 的小物体,沿光滑斜面下滑,当小物体从斜面顶端自由下滑到底端时,斜面体在水平面上移动的距离是( )图8A.mhM+m B.Mh M+mC.mh(M+m)tan αD.Mh (M+m)tan α答案C解析此题属“人船模型”问题.m与M组成的系统在水平方向上动量守恒,设m在水平方向上对地位移为x1,M在水平方向上对地位移为x2,因此有0=mx1-Mx2. ①且x1+x2=htan α.②由①②可得x2=mh(M+m)tan α,故选C.“人船模型”问题应注意以下两点1.适用条件:(1)系统由两个物体组成且相互作用前静止,系统总动量为零;(2)在系统内发生相对运动的过程中至少有一个方向的动量守恒(如水平方向或竖直方向).2.画草图:解题时要画出各物体的位移关系草图,找出各长度间的关系,注意两物体的位移是相对同一参考系的位移.。

应用“人船模型”巧解难题

应用“人船模型”巧解难题
பைடு நூலகம்
My M+( 一1m] , =[ )
51= f,
维普资讯
解题方法与技巧
— — 7£ l ,
滑, 可视为质点 的质 量为 m 的物块 , A点 由静 止释 从

得 S ̄ m 1- - n L
放 , 后到 C点停止 , 最 求滑 块 M 的水平位移 . 解析 : 滑块与物块组成系统 只有水 平方 向动量守
恒, 由人船模型 ms=Ms ,
s+ s r L, — +

解 法二 : 应用人 船模 型求 解 , 过程 可简化 处理 ,
颗子 弹间断发 出过程等效成 颗 子弹一次射 出, 从船
的一端移到另一端 , 由人 船模型可知 Ms一


m ( - L) r+ -
+ — L,
如 图 2所 示 , 质 量 为 m 长 为 n 的 汽 车 静 止 开 始 从 质 量 为 M 长 为 b 的 平 板 图2 车一端行 至另一端时 , 求平 板车对地位移大小. 不计 ( 车 与地 面 之 间 摩 擦 )
求得 s ( i = m


m 1 十 m ’1 _I 1 V 十 m ,十
【 1 例 】
同样找出各物体对 地位 移 s、z s… …的关 系 , s、s 即可求得各物体位移 的大小 .
移方 向相同 , 位移关 系如 图 4所示 , 由平均 动量 守恒 表达式 m1l =m2 s 靶+A ,
s + s L, l — 5 一 s L, 2 +
维普资讯
解题方法与技圬
应 用
江 苏郑 集 高级 中学 (2 13 李素 玲 214 )
何为“ 船模型” 人 “ 人船模 型” 问题是 动量 守恒 定律 的一 种特殊 形 式, 其物理过程类 似于反 冲模 型 , 以人 在船 上运 动为 原 型 , 以称 为“ 所 人船模型 问题” 满足人动 船动 、 . 人停 船停 、 人快船快 、 人慢船慢这样 的物理 过程 , 与船相 人 互作 用过程中人与船 的运动是变速 的 , 但在运 动的过 程 中始终满足动量守恒 , 又称平均动量守恒 问题. 【 1 如 图 1所 例 】 示 , 和 船 质 量 分 别 为 人 m mz 不计水面阻力 , 、 , 人 由船尾走到船头 时有 :

物理建模系列(十) 人船模型问题

物理建模系列(十) 人船模型问题

物理建模系列(十) 人船模型问题1.“人船模型”问题的特征:两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为“人船模型”问题.2.运动特点:两个物体的运动特点是“人”走“船”行,“人”停“船”停. 3.处理“人船模型”问题的两个关键:(1)处理思路:利用动量守恒,先确定两物体的速度关系,再确定两物体通过的位移的关系.①用动量守恒定律求位移的题目,大都是系统原来处于静止状态,然后系统内物体相互作用,此时动量守恒表达式经常写成m 1v 1-m 2v 2=0的形式,式中v 1、v 2是m 1、m 2末状态时的瞬时速率.②此种状态下动量守恒的过程中,任意时刻的系统总动量为零,因此任意时刻的瞬时速率v 1和v 2都与各物体的质量成反比,所以全过程的平均速度也与质量成反比,即有m 1v 1-m 2v 2=0.③如果两物体相互作用的时间为t ,在这段时间内两物体的位移大小分别为x 1和x 2,则有m 1x 1t -m 2x 2t=0,即m 1x 1-m 2x 2=0.(2)画出各物体的位移关系图,找出它们相对地面的位移的关系.4.推广:原来静止的系统在某一个方向上动量守恒,运动过程中,在该方向上速度方向相反,也可应用处理“人船模型”问题的思路来处理.例如,小球沿弧形槽滑下,求弧形槽移动距离的问题.例 长为L 、质量为M 的小船停在静水中,一个质量为m 的人立在船头,若不计水的黏滞阻力,当人从船头走到船尾的过程中,人和船对地面的位移各是多少?【思路点拨】【解析】 选人和船组成的系统为研究对象,因系统在水平方向不受力,所以动量守恒,人未走时系统的总动量为零.当人起步加速前进时,船同时加速后退;当人匀速前进时,船匀速后退;当人减速前进时,船减速后退;当人速度为零时,船速度也为零.设某时刻人对地的速率为v 1,船对地的速率为v 2,根据动量守恒得m v 1-M v 2=0①因为在人从船头走到船尾的整个过程中时刻满足动量守恒,对①式两边同乘以Δt ,得mx 1-Mx 2=0②②式为人对地的位移和船对地的位移关系,由图还可看出: x 1+x 2=L ③联立②③两式得⎩⎨⎧x 1=M M +mLx 2=mM +m L【答案】M M +m L mM +mL[高考真题]1.(2017·课标卷Ⅰ,14)将质量为1.00 kg 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( )A .30 kg·m/sB .5.7×102 kg·m/sC .6.0×102 kg·m/sD .6.3×102 kg·m/s【解析】 由于喷气时间短,且不计重力和空气阻力,则火箭和燃气组成的系统动量守恒.燃气的动量p 1=m v =0.05×600 kg·m/s =30 kg·m/s , 则火箭的动量p 2=p 1=30 kg·m/s ,选项A 正确. 【答案】 A2.(2017·课标卷Ⅲ,20)一质量为2 kg 的物块在合外力F 的作用下从静止开始沿直线运动.F 随时间t 变化的图线如图所示,则( )A .t =1 s 时物块的速率为1 m/sB .t =2 s 时物块的动量大小为4 kg·m/sC .t =3 s 时物块的动量大小为5 kg·m/sD .t =4 s 时物块的速度为零【解析】 A 对:前2 s 内物块做初速度为零的匀加速直线运动,加速度a 1=F 1m =22 m/s 2=1 m/s 2,t =1 s 时物块的速率v 1=a 1t 1=1 m/s.B 对:t =2 s 时物块的速率v 2=a 1t 2=2 m/s ,动量大小为p 2=m v 2=4 kg·m/s.C 错:物块在2~4 s 内做匀减速直线运动,加速度的大小a 2=F 2m =0.5 m/s 2,t =3 s 时物块的速率v 3=v 2-a 2t 3=(2-0.5×1)m/s =1.5 m/s ,动量大小p 3=m v 3=3 kg·m/s.D 错:t =4 s 时物块的速度v 4=v 2-a 2t 4=(2-0.5×2)m/s =1 m/s. 【答案】 AB3.(2017·天津卷,4)“天津之眼”是一座跨河建设、桥轮合一的摩天轮,是天津市的地标之一.摩天轮悬挂透明座舱,乘客随座舱在竖直面内做匀速圆周运动.下列叙述正确的是( )A .摩天轮转动过程中,乘客的机械能保持不变B .在最高点时,乘客重力大于座椅对他的支持力C .摩天轮转动一周的过程中,乘客重力的冲量为零D .摩天轮转动过程中,乘客重力的瞬时功率保持不变【解析】 A 错:摩天轮转动过程中,乘客的动能不变,重力势能不断变化,故乘客的机械能不断变化.B 对:乘客在最高点时,具有向下的加速度,处于失重状态.C 错:根据I =Ft 知,重力的冲量不为0.D 错:根据P =mg v cos θ,θ为力方向与速度方向之间的夹角,摩天轮转动过程中,θ不断变化,重力的瞬时功率不断变化.【答案】 B[名校模拟]4.(2018·山东临沂高三上学期期中)如图所示,曲线是某质点只在一恒力作用下的部分运动轨迹.质点从M点出发经P点到达N点,已知质点从M点到P点的路程大于从P点到N点的路程,质点由M点运动到P点与由P点运动到N点的时间相等.下列说法中正确的是()A.质点从M到N过程中速度大小保持不变B.质点在M、N间的运动不是匀变速运动C.质点在这两段时间内的动量变化量大小相等,方向相同D.质点在这两段时间内的动量变化量大小不相等,但方向相同【解析】质点在恒力作用下从M到N的过程速度减小,确定是匀变速运动,故A、B均错;由动量定理F·Δt=Δp可知,质点在这两段时间内动量变化量大小相等,方向相同,C对,D错.【答案】 C5.(2018·山东烟台高三上学期期中)A、B两物体的质量之比m A∶m B=2∶1,它们以相同的初速度v0在水平面上在摩擦阻力的作用下做匀减速直线运动,直到停止.则在此过程中,A、B两物体所受摩擦力的冲量之比I A∶I B与A、B两物体克服摩擦力做的功之比W A∶W B分别为()A.4∶12∶1 B.2∶14∶1C.2∶12∶1 D.1∶21∶4【解析】由动量定理可知I=m v,再由动能和动量的关系可知,E k=I22m,所以W A∶W B=(I A∶I B)2·(m B∶m A)=2∶1,故C正确.【答案】 C6.(2018·山东潍坊高三上学期期中)质量为m的子弹,以水平速度v0射入静止在光滑水平面上质量为M的木块,并留在其中.在子弹进入木块过程中,下列说法正确的是() A.子弹动能减少量等于木块动能增加量B.子弹动量减少量等于木块动量增加量C.子弹动能减少量等于子弹和木块内能增加量D.子弹对木块的冲量大于木块对子弹的冲量【解析】子弹动能的减少量一部分转化为系统内能,一部分转化为木块动能,A、C 均错;由动量守恒可知,子弹动量减少量等于木块动量的增加量,B对;力的作用是相互的,故子弹对木块的冲量等于木块对子弹的冲量,D 错.【答案】 B课时作业(十八) [基础小题练]1.如图所示,质量为m 的物体(可视为质点),从h 高处的A 点由静止开始沿斜面下滑,停在水平地面上的B 点(斜面和水平面之间有小圆弧平滑连接).要使物体能原路返回,在B 点需给物体的瞬时冲量最小应是( )A .2m ghB .m gh C.m gh 2D .4m gh【解析】 物体从A 到B 的过程,根据动能定理,有mgh -W f =0,物体从B 返回A 的过程,根据动能定理,有-mgh -W f =0-12m v 2,联立解得v =2gh ,在B 点需给物体的瞬时冲量等于动量的增加量,故I =m v =2m gh ,故A 正确,B 、C 、D 错误.【答案】 A2.下列四幅图所反映的物理过程中,系统动量守恒的是( )【解析】 A 中子弹和木块的系统在水平方向不受外力,竖直方向所受合力为零,系统动量守恒;B 中在弹簧恢复原长过程中,系统在水平方向始终受到墙的作用力,系统动量不守恒;C 中剪断细线后,以整体为研究对象,木球与铁球的系统所受合外力为零,系统动量守恒;D 中木块下滑过程中,斜面始终受挡板作用力,系统动量不守恒.【答案】 AC3.(2018·山东潍坊高三上学期期中)在光滑水平地面上有两个完全相同的弹性小球a 、b ,质量均为m .现b 球静止,a 球向b 球运动,发生弹性正碰.当碰撞过程中达到最大弹性势能E p 时,a 球的速度等于( )A. E pm B . E p2m C .2E p mD .22E pm【解析】 设碰前a 球速度为v 0,弹性势能最大时刻即为两球共速之时,设共同速度为v ,则由动量守恒和能量守恒得:m v 0=(m +m )v ① 12m v 20=12(m +m )v 2+E p ② 由①②两式解得v = E pm,故A 正确. 【答案】 A4.在光滑的水平面上,有a 、b 两球,其质量分别为m a 、m b ,两球在t 0时刻发生正碰,并且在碰撞过程中无机械能损失,两球在碰撞前后的速度—时间图象如图所示,下列关系正确的是( )A .m a >m bB .m a <m bC .m a =m bD .无法判断【解析】 由动量守恒定律得m a v a =m a v a ′+m b v b ′,由于v a ′<0,则b 球获得的动量大于a 球最初的动量.若m a =m b ,则两球交换速度,与图象不符;由E k =p 22m 知,若m a>m b ,则b 球的动能将会大于a 球最初的动能,违背能量守恒定律,则必然满足m a <m b .【答案】 B5.小船相对于静止的湖水以速度v 向东航行.某人将船上两个质量相同的沙袋,以相对于湖水相同的速率v 先后从船上水平向东、向西抛出船外.那么当两个沙袋都被抛出后,小船的速度将( )A .仍为vB .大于vC .小于vD .可能反向【解析】 以两沙袋和船为系统,抛沙袋的过程系统满足动量守恒定律的条件,即(M +2m )v =m v -m v +M v ′,解得v ′=M +2mMv >v ,故B 正确.【答案】 B6.如图所示,静止在光滑水平面上的木板,右端有一根轻质弹簧沿水平方向与木板相连,木板质量M =4 kg.质量m =2 kg 的小铁块以水平速度v 0=6 m/s ,从木板的左端沿板面向右滑行,压缩弹簧后又被弹回,最后恰好到达木板的左端并与木板保持相对静止.在上述过程中弹簧具有的最大弹性势能为( )A .9 JB .12 JC .3 JD .24 J【解析】 当弹簧压缩至最短时,E p 最大,m v 0=(M +m )v ,v =2 m/s ,全程摩擦力做功W f =12m v 20-12(M +m )v 2=24 J ,E p =12m v 20-12(M +m )v 2-W f2=12 J. 【答案】 B[创新导向练]7.动量定理的实际应用——打篮球时的传球技巧篮球运动员通常伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前.这样做可以( )A .减小球对手的冲量B .减小球对手的冲击力C .减小球的动量变化量D .减小球的动能变化量【解析】 由动量定理Ft =Δp 知,接球时两手随球迅速收缩至胸前,延长了手与球接触的时间,从而减小了球对手的冲击力,选项B 正确. 【答案】 B8.动量守恒定律在航天科技中的实际应用一质量为M 的航天器,正以速度v 0在太空中飞行,某一时刻航天器接到加速的指令后,发动机瞬间向后喷出一定质量的气体,气体喷出时速度大小为v 1,加速后航天器的速度大小为v 2,则喷出气体的质量m 为( )A.v 2-v 0v 1MB .v 2v 2+v 1MC.v 2-v 0v 2+v 1M D .v 2-v 0v 2-v 1M【解析】 规定航天器的速度方向为正方向,由动量守恒定律可得M v 0=(M -m )v 2-m v 1,解得m =v 2-v 0v 2+v 1M ,故C 正确.【答案】 C9.应用动量守恒定律分析碰撞中的实际问题某研究小组通过实验测得两滑块碰撞前后运动的实验数据,得到如图所示的位移—时间图象.图中的线段a 、b 、c 分别表示沿光滑水平面上同一条直线运动的滑块Ⅰ、Ⅱ和它们发生正碰后结合体的位移变化关系.已知相互作用时间极短,由图象给出的信息可知( )A .碰前滑块Ⅰ与滑块Ⅱ速度大小之比为7∶2B .碰前滑块Ⅰ的动量大小比滑块Ⅱ的动量大小大C .碰前滑块Ⅰ的动能比滑块Ⅱ的动能小D .滑块Ⅰ的质量是滑块Ⅱ的质量的16【解析】 根据s -t 图象的斜率等于速度,可知碰前滑块Ⅰ的速度v 1=-2 m/s ,滑块Ⅱ的速度v 2=0.8 m/s ,则碰前速度大小之比为5∶2,故A 错误;碰撞前后系统动量守恒,碰撞前,滑块Ⅰ的动量为负,滑块Ⅱ的动量为正,由于碰撞后总动量为正,故碰撞前总动量也为正,故碰撞前滑块Ⅰ的动量大小比滑块Ⅱ的小,故B 错误;碰撞后的共同速度为v =0.4 m/s ,根据动量守恒定律,有m 1v 1+m 2v 2=(m 1+m 2)v ,解得m 2=6m 1,由动能的表达式可知,12m 1v 21>12m 2v 22,故C 错误,D 正确.【答案】 D10.应用动量定理分析安全带受力问题质量是60 kg 的建筑工人,不慎从高空跌下,由于弹性安全带的保护,他被悬挂起来.已知安全带的缓冲时间是1.2 s ,安全带长5 m ,取g =10 m/s 2,则安全带所受的平均冲力的大小为( )A .500 NB .600 NC .1 100 ND .100 N【解析】 安全带长5 m ,人在这段距离上做自由落体运动,获得速度v =2gh =10 m/s.受安全带的保护经1.2 s 速度减小为0,对此过程应用动量定理,以向上为正方向,有(F -mg )t =0-(-m v ),则F =m vt+mg =1 100 N ,C 正确.【答案】 C[综合提升练]11.(2018·山东潍坊高三上学期期中)如图所示,质量为M 的轨道由上表面粗糙的水平轨道和竖直平面内的半径为R 的14光滑圆弧轨道紧密连接组成,置于光滑水平面上.一质量为m 的小物块以水平初速度v 0由左端滑上轨道,恰能到达圆弧轨道最高点.已知M ∶m =3∶1,物块与水平轨道之间的动摩擦因数为μ.求:(1)小物块到达圆弧轨道最高点时的速度; (2)水平轨道的长度.【解析】 设小物块到达圆弧轨道最高点时速度为v 1(1)从小物块滑上轨道到到达最高点的过程中,由动量守恒定律得m v 0=(M +m )v 1① 联立解得:v 1=14v 0.②(2)由能量守恒定律得:μmgL +mgR +12(m +M )v 21=12m v 20③ 由②③联立得:L =3v 208μg -R μ.④【答案】 (1)14v 0 (2)3v 208μg -R μ12.(2018·山东淄博一中高三上学期期中)如图所示,AOB 是光滑水平轨道,BC 是半径为R 的光滑的14固定圆弧轨道,两轨道恰好相切于B 点.质量为M 的小木块静止在O 点,一颗质量为m 的子弹以某一初速度水平向右射入小木块内,并留在其中和小木块一起运动,且恰能到达圆弧轨道的最高点C (木块和子弹均看作质点).(1)求子弹射入木块前的速度;(2)若每当小木块返回到O 点或停止在O 点时,立即有一颗相同的子弹射入小木块,并留在其中,则当第17颗子弹射入小木块后,小木块沿圆弧轨道能上升的最大高度为多少?【解析】 (1)由子弹射入木块过程动量守恒有m v 0=(m +M )v 1 木块和子弹滑到点C 处的过程中机械能守恒,有 12(m +M )v 21=(m +M )gR 联立两式解得 v 0=M +m m2gR .(2)以后当偶数子弹射中木块时,木块与子弹恰好静止,奇数子弹射中木块时,向右运动.第17颗子弹射中时,由动量守恒定律可知 (M +17m )v =m v 0射入17颗子弹后的木块滑到最高点的过程中机械能守恒,有 12(M +17m )v 2=(M +17m )gH 由以上两式解得 H =(M +m )2(M +17m )2R .【答案】 (1)M +m m 2gR (2)(M +m )2(M +17m )2R。

专题19 动量守恒定律(人船模型)-2019高考物理一轮复习专题详解(解析版)

专题19 动量守恒定律(人船模型)-2019高考物理一轮复习专题详解(解析版)

知识回顾“人船模型”类习题,是利用动量守恒定律解决位移问题的例子,在这类问题中,尽管人从船头走向船尾的具体运动形式未知,但人船系统在任何时刻动量都守恒,故可以用平均动量守恒来求解,则由11220m v m v -=得:1122m s m s =使用时应明确:1s 、2s 必须是相对同一参照系的位移大小。

当符合动量守恒定律的条件,而又涉及位移而不涉及速度时,通常可用平均动量求解。

解此类题一定要画出反映位移关系的草图。

“人船模型”的问题针对的时初状态静止状态,所以当人在船上运动时,由于整个装置不受外力的作用,所以这个装置的重心不会动,并且用了平均速度代替瞬时速度,从而推导出来位移之间的关系式子。

例题分析【例1】 一质量为M ,长为s 0的船静止于水面上,一质量为m 的人站在船头,当人从船头走到船尾时,求船前进的位移s 的大小.(不计水的阻力) 【答案】s =mM +m s 0【解析】 因不计水的阻力,人和船组成的系统动量守恒,设人、船相对地的平均速度分别为v 、v 0,【例2】. 如图所示,一个倾角为α的直角斜面体静置于光滑水平面上,斜面体质量为M ,顶端高度为h ,今有一质量为m 的小物体,沿光滑斜面下滑,当小物体从斜面顶端自由下滑到底端时,斜面体在水平面上移动的距离是( )A .B .C .D .【答案】C【例3】(2017年广东省三校五月模拟)某小组在探究反冲运动时,将质量为m 1的一个小液化瓶固定在质量为m 2的小船上,利用液化瓶向外喷射气体作为船的动力.现在整个装置静止放在平静的水面上,已知打开液化瓶后向外喷射气体的对地速度为v 1,如果在Δt 的时间内向后喷射的气体的质量为Δm ,忽略水的阻力,则(1)喷射出质量为Δm 的液体后,小船的速度是多少?(2)喷射出Δm 液体的过程中,小船所受气体的平均作用力的大小是多少? 【答案】v 2=Δmv 1m 1+m 2-Δm,方向与喷射气体的速度方向相反; F =Δmv 1Δt【解析】:设小船的速度大小为v 2,由动量守恒定律得 Δmv 1-(m 1+m 2-Δm )v 2=0解得v 2=Δmv 1m 1+m 2-Δm ,方向与喷射气体的速度方向相反(2)设对喷射气体的平均作用力为F ,由动量定理得 FΔt =Δmv 1-0 解得F =Δmv 1Δt由牛顿第三定律得气体对小船的平均作用力为 F ′=F =Δmv 1Δt.1 、如图所示,一个质量为m 1=50 kg 的人爬在一只大气球下方,气球下面有一根长绳.气球和长绳的总质量为m2=20 kg,长绳的下端刚好和水平面接触.当静止时人离地面的高度为h=5 m.如果这个人开始沿绳向下滑,忽略重力和空气阻力,当他滑到绳下端时,他离地面的高度是(可以把人看做质点)()A.5 m B.3.6 m C.2.6 m D.8 m【答案】B【解析】设在此过程中人、气球对地发生的位移分别是x、x′,由动量守恒定律有m1x=m2x′,又因为x +x′=h,解得x′≈3.57 m,选B项.学科&网2 、如图所示,质量为m的小球A系在长为l的轻绳一端,轻绳的另一端系在质量为M的小车支架的O 点.现用手将小球拉至水平,此时小车静止于光滑水平面上,放手让小球摆下与B处固定的橡皮泥碰击后粘在一起,则在此过程中小车的位移是()A.向右,大小为lB.向左,大小为lC.向右,大小为lD.向左,大小为l【答案】D3 、如图所示,静止在光滑水平面上的小车质量为M,固定在小车上的杆用长为l的轻绳与质量为m的小球相连,将小球拉至水平右端后放手,则小车向右移动的最大距离为()A.B.C.D.【答案】C4 、质量为m、半径为R的小球,放在半径为2R、质量为2m的大空心球壳内,如图所示,当小球从图示位置无初速度沿内壁滚到最低点时,大球移动的位移为()A.,方向水平向右B.,方向水平向左C.,方向水平向右D.,方向水平向左【答案】D【解析】设小球滑到最低点所用的时间为t,发生的水平位移大小为R-x,大球的位移大小为x,取水平向左方向为正方向.则根据水平方向平均动量守恒得:2m2-m1=0,即:m=2m,解得:x=R,方向向左,故D正确,A、B、C错误5 、(多选)如图所示,质量均为M的甲、乙两车静置在光滑的水平面上,两车相距为L.乙车上站立着一个质量为m的人,他通过一条轻绳拉甲车,甲、乙两车最后相接触,以下说法正确的是()A.甲、乙两车运动中速度之比为B.甲、乙两车运动中速度之比为C.甲车移动的距离为LD.乙车移动的距离为L【答案】ACD6 、(多选)小车静止在光滑水平面上,站在车上的人练习打靶,靶装在车上的另一端,如图所示.已知车、人、枪和靶的总质量为M(不含子弹),每颗子弹质量为m,共n发,打靶时,枪口到靶的距离为d.若每发子弹打入靶中,就留在靶里,且待前一发打入靶中后,再打下一发.则以下说法中正确的是()A.待打完n发子弹后,小车将以一定的速度向右匀速运动B.待打完n发子弹后,小车应停在射击之前位置的右方C.在每一发子弹的射击过程中,小车所发生的位移相同,大小均为D.在每一发子弹的射击过程中,小车所发生的位移不相同【答案】BC【解析】车、人、枪、靶和n颗子弹组成的系统动量守恒,系统初动量为0,故末动量为0,A错误;每发子弹打入靶中,就留在靶里,且待前一发打入靶中后,再打下一发,因此每次射击,以一颗子弹和车、人、枪、靶、(n-1)颗子弹为研究对象,动量守恒,则:0=m-[M+(n-1)m]·,由位移关系有:x车+x子=d,解得x车=,故C正确;每射击一次,车子都会右移,故B正确7 、(多选)小车AB 静置于光滑的水平面上,A 端固定一个轻质弹簧,B 端粘有橡皮泥,AB 车的质量为M 、长为L ,质量为m 的木块C 放在小车上,用细绳连接于小车的A 端并使弹簧压缩,开始时AB 与C 都处于静止状态,如图所示,当突然烧断细绳,弹簧被释放,使物体C 离开弹簧向B 端冲去,并跟B 端橡皮泥黏在一起,以下说法中正确的是( )A . 如果AB 车内表面光滑,整个系统任何时刻机械能都守恒 B . 整个系统任何时刻动量都守恒C . 当木块对地运动速度大小为v 时,小车对地运动速度大小为vD . AB 车向左运动最大位移大于【答案】BC8.(2017年高考·课标全国卷Ⅰ)将质量为1.00 kg 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( ) A .30 kg·m/sB .5.7×102 kg·m/sC .6.0×102 kg·m/s D. 6.3×102 kg·m/s 【答案】:A【解析】:燃气从火箭喷口喷出的瞬间,火箭和燃气组成的系统动量守恒,设燃气喷出后的瞬间,火箭的动量大小为p ,根据动量守恒定律,可得p -mv 0=0,解得p =mv 0=0.050 kg×600 m/s =30 kg·m/s ,选项A 正确.9.将静置在地面上,质量为M (含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度v 0竖直向下喷出质量为m 的炽热气体.忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是( )A.m M v 0B.M m v 0C.M M -m v 0D.mM -m v【答案】D【解析】:喷气过程内力远远大于外力,动量守恒.由动量守恒定律得0=(M -m )v -mv 0,得v =mM -m v 0,D 正确.学科&网10.(多选)(2017年长沙模拟)如图所示,在光滑水平面上停放着质量为m 、装有光滑弧形槽的小车,一质量也为m 的小球以水平初速度v 0沿槽口向小车滑去,到达某一高度后,小球又返回右端,则( )A .小球以后将向右做平抛运动B .小球将做自由落体运动C .此过程小球对小车做的功为mv 202D .小球在弧形槽内上升的最大高度为v 202g【答案】:BC11.(多选)(2017年北京东城区模拟)两物体组成的系统总动量守恒,这个系统中( ) A .一个物体增加的速度等于另一个物体减少的速度 B .一物体受合力的冲量与另一物体所受合力的冲量相同 C .两个物体的动量变化总是大小相等、方向相反 D .系统总动量的变化为零 【答案】CD【解析】:两个物体组成的系统总动量守恒,则p 1+p 2=p ′1+p ′2,等式变形后得p 1-p ′1=p ′2-p 2,即-Δp 1=Δp 2,-m 1Δv 1=m 2Δv 2,所以每个物体的动量变化大小相等,方向相反,但是只有在两物体质量相等的情况下才有一个物体增加的速度等于另一个物体减少的速度,故A 错误,C 正确;根据动量定理得I 1=Δp 1,I 2=Δp 2,每个物体的动量变化大小相等,方向相反,所以每个物体受到的冲量大小相等,方向相反,故B 错误;两物体组成的系统总动量守恒,即系统总动量的变化为零,D 正确.12.(2017·课标全国Ⅰ)将质量为1.00 kg 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( )A .30 kg ·m/sB .5.7×102 kg ·m/sC .6.0×102 kg ·m/sD .6.3×102 kg ·m/s 【答案】 A13.(2017·福州模拟)一质量为M 的航天器正以速度v 0在太空中飞行,某一时刻航天器接到加速的指令后,发动机瞬间向后喷出一定质量的气体,气体喷出时速度大小为v 1,加速后航天器的速度大小v 2,则喷出气体的质量m 为( )A .m =v 2-v 1v 1MB .m =v 2v 2-v 1MC .m =v 2-v 0v 2+v 1MD .m =v 2-v 0v 2-v 1M【答案】 C【解析】规定航天器的速度方向为正方向,由动量守恒定律可得Mv 0=(M -m)v 2-mv 1,解得m =v 2-v 0v 2+v 1M ,故C 项正确.14.(2017·沈阳一模)在光滑的水平地面上放有一质量为M 带光滑14圆弧形槽的小车,一质量为m 的小铁块以速度v 0沿水平槽口滑去,如图所示,若M =m ,则铁块离开车时将( )A .向左平抛B .向右平抛C .自由落体D .无法判断 【答案】 C【解析】小铁块和小车组成的系统水平方向不受外力,系统水平方向的动量守恒,以向左为正方向,由动量守恒定律得:mv 0=Mv 车+mv 铁系统的机械能守恒,由机械能守恒定律得:12mv 02=12Mv 车2+12mv 铁2解得铁块离开车时:v 铁=0,v 车=v 0.所以铁块离开车时将做自由落体运动,故A、B、D三项错误,C项正确.15.如图所示,质量为M的小车静止在光滑的水平面上,小车上AB部分是半径为R的四分之一光滑圆弧,BC部分是粗糙的水平面.今把质量为m的小物体从A点由静止释放,m与BC部分间的动摩擦因数为μ,最终小物体与小车相对静止于B、C之间的D点,则B、D间的距离x随各量变化的情况是()A.其他量不变,R越大x越大B.其他量不变,μ越大x越大C.其他量不变,m越大x越大D.其他量不变,M越大x越大【答案】 A16.如图所示,将质量为M1、半径为R且内壁光滑的半圆槽置于光滑水平面上,左侧靠墙角,右侧靠一质量为M2的物块.今让一质量为m的小球自左侧槽口A的正上方h高处从静止开始落下,与圆弧槽相切自A点进入槽内,则以下结论中正确的是()A.小球在槽内运动的全过程中,小球与半圆槽在水平方向动量守恒B.小球在槽内运动的全过程中,小球、半圆槽和物块组成的系统动量守恒C.小球离开C点以后,将做竖直上抛运动D.槽将不会再次与墙接触【答案】 D【解析】小球从A→B的过程中,小球与半圆槽在水平方向受到外力作用,动量并不守恒,而由小球、半圆槽和物块组成的系统动量也不守恒;从B→C的过程中,小球对半圆槽的压力方向向右下方,所以半圆槽要向右推动物块一起运动,此过程中,小球、半圆槽和物块组成的系统在水平方向动量守恒,A、B两项错误;当小球运动到C点时,它的两个分运动的合速度方向并不是竖直向上,所以此后小球做斜上抛运动,即C项错误;因为全过程中,整个系统在水平方向上获得了水平向右的冲量,最终槽将与墙不会再次接触,D项正确.17、质量m=100 kg的小船静止在平静水面上,船两端载着m甲=40 kg、m乙=60 kg的游泳者,在同一水平线上甲向左、乙向右同时以相对于岸3 m/s的速度跃入水中,如图所示,水的阻力不计,则小船的运动速率和方向为()A.0.6 m/s,向左B.3 m/s,向左C.0.6 m/s,向右D.3 m/s,向右【答案】A。

专题29 动量守恒定律的应用之人船模型-2017-2018学年高一物理专题提升之力学 含解析 精品

专题29 动量守恒定律的应用之人船模型-2017-2018学年高一物理专题提升之力学 含解析 精品

【专题概述】“人船模型”类习题,是利用动量守恒定律解决位移问题的例子,在这类问题中,尽管人从船头走向船尾的具体运动形式未知,但人船系统在任何时刻动量都守恒,故可以用平均动量守恒来求解,则由11220m v m v -= 得 1122m s m s =使用时应明确:1s 、2s 必须是相对同一参照系的位移大小。

当符合动量守恒定律的条件,而又涉及位移而不涉及速度时,通常可用平均动量求解。

解此类题一定要画出反映位移关系的草图。

【典例精讲】典例1 如图所示,有一只小船停靠在湖边码头,小船又窄又长(估计重一吨左右).一位同学想用一个卷尺粗略测定它的质量.他进行了如下操作:首先将船平行于码头自由停泊,轻轻从船尾上船,走到船头停下,而后轻轻下船.用卷尺测出船后退的距离d ,然后用卷尺测出船长L.已知他的自身质量为m ,水的阻力不计,船的质量为( )A .B .C .D .【答案】B典例2 如图所示,一个倾角为α的直角斜面体静置于光滑水平面上,斜面体质量为M ,顶端高度为h ,今有一质量为m 的小物体,沿光滑斜面下滑,当小物体从斜面顶端自由下滑到底端时,斜面体在水平面上移动的距离是( )A. B. C. D.【答案】C典例3质量m=100 kg的小船静止在平静水面上,船两端载着m甲=40 kg、m乙=60 kg的游泳者,在同一水平线上甲向左、乙向右同时以相对于岸3 m/s的速度跃入水中,如图所示,水的阻力不计,则小船的运动速率和方向为( )A. 0.6 m/s,向左B. 3 m/s,向左C. 0.6 m/s,向右D. 3 m/s,向右【答案】A【解析】甲、乙和船组成的系统动量守恒,以水平向右为正方向,开始时系统总动量为零,根据动量守恒定律有0=-m甲v甲+m乙v乙+mv,代入数据解得v=-0.6 m/s,负号说明小船的速度方向向左,故选项A正确.【总结提升】“人船模型”的问题针对的时初状态静止状态,所以当人在船上运动时,由于整个装置不受外力的作用,所以这个装置的重心不会动,并且用了平均速度代替瞬时速度,从而推导出来位移之间的关系式子。

一道人追船问题的八种解法

一道人追船问题的八种解法

一道人追船问题的八种解法姚㊀平(扬州市广陵区红桥高级中学ꎬ江苏扬州225108)摘㊀要:文章从等效法㊁假设极值法㊁作图法㊁相对运动㊁数学方法等角度给出一道人追船问题的八种解法ꎬ以期为读者提供人船模型的更多解题思路与方法.关键词:直线运动ꎻ速度ꎻ人船模型ꎻ八种解法中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2024)09-0091-03收稿日期:2023-12-25作者简介:姚平(1977.12 )ꎬ男ꎬ江苏省扬州人ꎬ本科ꎬ中学一级教师ꎬ从事高中物理教学研究.㊀㊀人船模型是高中物理教学中的一个重要模型.下面以人追船问题为例ꎬ从不同角度给出问题的八种解法.1人追船问题如图1所示ꎬ有一个很大的湖(位于OM上方)ꎬ岸边OM(可视为直线)停放着一艘小船(可视为质点)ꎬ突然缆绳断开ꎬ小船被风吹走ꎬ使小船沿15ʎ角匀速远离岸边ꎬ岸上的人第一时间发现ꎬ马上去追赶.已知他在岸上跑的速度为v1=4m/sꎬ在水中游泳的速度为v2=2m/s.问:此人若能追上小船ꎬ小船的速度v不能超过多少?图1㊀人追船模型图2问题的八种解法解法1㊀等效法1:把陆地变成湖面.如图2所示ꎬ沿着水平线OM(即岸边)斜向右下作30ʎ角的一条直线OBꎬ假定人在图2中A点ꎬ入水后刚好在P点追上小船.从A点向OB作垂线ABꎬ考虑到v1v2=2ꎬ所以可以把下半部分全部等效为湖面ꎬ这样人在岸边沿直线运动到A点所花的时间t1=OAv1ꎬ与在湖面中从B点运动到A点所用的时间t2=BAv2=OAv1是相等的.假定追上小船的位置为P点ꎬ整个问题就被简化为从直线OB上任意点向P点找出最短折线的问题ꎬ显然最短时间对应的折线是从P点向OB作出的垂线PQ.在әOPQ中ꎬ显然有OP=2PQꎬ即vt=2v2tꎬ所以v=2v2=22m/s.图2㊀解法1示意图解法2㊀等效法2:光的全反射.可以把人的运动等效为光在两种不同介质中的折射现象ꎬ将地面和湖面等效为光学中的空气介质和水介质ꎬ所以相对折射率为n=v1v2=2.如图3所示ꎬ假定光从空气介质打到分界面后19沿界面表面掠射(折射角为90ʎ)ꎬ则其折射角满足sinβ=1nꎬ即β=30ʎꎬα=90ʎ-30ʎ-15ʎ=45ʎ.在әOAP中应用正弦定理ꎬ则有vtsin120ʎ=v1t1sin45ʎ=v2t2sin15ʎꎬt=t1+t2ꎬ联立解得v=v1v2sin120ʎv1sin15ʎ+v2sin45ʎ.注意到sin15ʎ=6-24ꎬ所以v=22m/s.图3㊀解法2示意图解法3㊀假设极值法:如图4所示ꎬ假设人沿着路径OAP刚好在P点追上小船用时最短ꎬ我们总可以在这个路径的左右两侧(离OAP极近)找到时间相同的两条路径ꎬ如图4中所示的OBP和OCP.图4㊀解法3示意图观察两条路径ꎬ它们在OB段是重合的ꎬ时间相同ꎬ可以不计ꎬ所以必然有tBP=tBCP.在PB中截取出PD=PCꎬ因为非常接近ꎬ所以әPCD是一个微元等腰直角三角形ꎬ且PBʅCDꎬ这样就可以把在水中的相等时间去掉(PD=PC)ꎬ剩下的时间必须相等ꎬ即BDv2=BCv1ꎬ所以cosθ=BDBC=v2v1=12ꎬ即θ=60ʎ.剩下的计算可以参考解法2即可ꎬ或者用以下方式计算:如图5所示ꎬ延长OA至点Eꎬ使AE=2APꎬ这样tOAP=tOAEꎬ则明显有OPv=OEv1.而OPOE=sin30ʎsin180ʎ-15ʎ-30ʎ()=12ꎬ所以v=22m/s.图5㊀构造直角三角形解法4㊀作图法:若人在O点就下水ꎬ在时间t内能到达的区域是一个半径为v1t的半圆形区域.若先在岸边跑一阵再下水则下水后的时间会略少ꎬ其能到达的范围如图6中的各个半圆形区域.人在岸上跑动的时间越长ꎬ他在水中能到达的范围越小ꎬ在时间t内能到达的范围就是图6中包络线所示的区域[1].然后作出直线OPꎬ其与包络线的交点P就是最远能到达的位置ꎬ小船超过这个位置人就绝对没办法追回小船了.在әOPK中ꎬ应用正弦定理得vtsin30ʎ=v1tsin135ʎꎬ计算可得v=22m/s.图6㊀解法4示意图解法5㊀相对运动:矢量图.以小船为参考系观察人的运动ꎬ看到人先远离它然后又靠近它ꎬ最后相对位移为零.我们可以画出速度矢量图来快速求解.如图7所示ꎬ人在岸上时ꎬ以船为参考系看到人的运动速度为u1=v1+(-v).人在水中ꎬ船上参考系看到人的运动速度为u2=v2+(-v).由题意得u1+u2=0.据矢量图可知ꎬ当v2ʅu2时ꎬv最小.因此通过简单计算可得v=22m/s.解法6㊀数学演绎法1:极值法.如图8所示ꎬ假29图7㊀解法5示意图㊀㊀㊀㊀㊀㊀图8㊀解法6示意图定人在A处下水到达点PꎬOA用时为t1ꎬAP用时为t2ꎬ而船沿直线直接到达点P.在OP上截取出PB=PAꎬ标记的角度αꎬβꎬθ如图8中所示.在әOBA中ꎬ应用正弦定理得v1t1vt1=sin(π-θ)sin(θ-α)ꎬ①在әPBA中ꎬ再次应用正弦定理得v2t2vt2=sinθsin(π-θ-β)ꎬ②联立①②两式ꎬ可得sin(θ+β)=2sin(θ-α).观察上式右侧ꎬα=15ʎ为定值ꎬ不断提高θꎬ由于sin(θ+β)ɤ1决定了sin(θ-α)的上限为12ꎬ即θm-α=30ʎꎬ所以θm=45ʎ.将θm代入(1)式ꎬ可得v=v12=22m/s.点评㊀数学演绎的本质就是不管任何物理绘景都可直接计算ꎬ是一种暴力美学ꎬ下面再介绍两种方法.解法7㊀数学演绎法2:余弦定理.如图9所示ꎬ假设OAP就是最佳路径ꎬs=OP=vtꎬ再设O到A用时为t1=kt(0<k<1)ꎬA到P用时为t2=(1-k)t.则s1=v1ktꎬs2=v2(1-k)t.在әOAP中应用余弦定理ꎬ得cosα=s2+s21-s222ss1ꎬ代入数据并化简整理ꎬ得12k2-[2(6+2)v-8]k+v2-4()=0.考查上式ꎬ最佳路径时对应k取重根ꎬ所以要求上式的ә=0ꎬ计算可得v=22m/sꎬv=2(6+2)m/s(舍去).解法8㊀数学演绎法3:导数.既然是求极值ꎬ数学上来说就是先找出一个函数关系ꎬ然后令其导数图9㊀解法7示意图为零即可.如图10所示ꎬ假定OꎬP已经确定ꎬP与岸边的距离为hꎬ投影点与O点的距离为Lꎬ人从图中A点下水ꎬ图10中夹角为θꎬ则总时间为t=L-hcotθv1+h/sinθv2=Lv1+1v2sinθ-1v1tanθæèçöø÷h.令t关于θ的导数为零ꎬ即dtdθ=-hcosθv2sin2θæèçöø÷--hv1æèçöø÷-1sin2θæèçöø÷=0ꎬ解得cosθ=12ꎬ即θ=60ʎ.剩下的计算不再赘述.图10㊀解法8示意图3结束语直线运动看起来不起眼㊁无难度ꎬ但其实它是运动学的基础.配合牛顿第二定律ꎬ原则上可以解出所有的直线运动的规律.比如雨滴从空中下落时受到了形如f=-kv的阻力作用ꎬ那么其速度为v=mgk1-e-kmt().对于物理中的重要模型ꎬ读者必须亲自做一遍ꎬ体会多种方法解同一问题的乐趣.从多个角度出发看待同一个问题会是读者提升解题能力与核心素养的重要手段.参考文献:[1]韦叶平.也谈人船模型[J].数理化解题研究(高中版)ꎬ2007(11):31-32.[责任编辑:李㊀璟]39。

高考经典物理模型:人船模型(一)

高考经典物理模型:人船模型(一)

人船模型之一“人船模型”,不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一.对“人船模型”及其典型变形的研究,将直接影响着力学过程的发生,发展和变化,在将直接影响着力学过程的分析思路,通过类比和等效方法,可以使许多动量守恒问题的分析思路和解答步骤变得极为简捷1、“人船模型”质量为M的船停在静止的水面上,船长为L,一质量为m的人,由船头走到船尾,若不计水的阻力,则整个过程人和船相对于水面移动的距离?分析:“人船模型”是由人和船两个物体构成的系统;该系统在人和船相互作用下各自运动,运动过程中该系统所受到的合外力为零;即人和船组成的系统在运动过程中总动量守恒。

解答:设人在运动过程中,人和船相对于水面的速度分别为ν和u,则由动量守恒定律得:m v=Mu由于人在走动过程中任意时刻人和船的速度ν和u均满足上述关系,所以运动过程中,人和船平均速度大小uν和也应满足相似的关系,即mν=M u而x tν=,yut=,所以上式可以转化为:mx=My又有,x+y=L,得:Mx Lm M=+my Lm M=+以上就是典型的“人船模型”,说明人和船相对于水面的位移只与人和船的质量有关,与运动情况无关。

该模型适用的条件:一个原来处于静止状态的系统,且在系统发生相对运动的过程中,至少有一个方向(如水平方向或者竖直方向)动量守恒。

2、“人船模型”的变形变形1:质量为M的气球下挂着长为L的绳梯,一质量为m的人站在绳梯的下端,人和气球静止在空中,现人从绳梯的下端往上爬到顶端时,人和气球相对于地面移动的距离?分析:由于开始人和气球组成的系统静止在空中,竖直方向系统所受外力之和为零,即系统竖直方向系统总动量守恒。

得:mx=Myx+y=L这与“人船模型”的结果一样。

变形2:如图所示,质量为M的14圆弧轨道静止于光滑水平面上,轨道半径为R,今把质量为m的小球自轨道左测最高处静止释放,小球滑至最低点时,求小球和轨道相对于地面各自滑行的距离?分析:设小球和轨道相对于地面各自滑行的距离为x和y,将小球和轨道看成系统,该系统在水平方向总动量守恒,由动量守恒定律得:mx=Myx+y=L这又是一个“人船模型”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平状态,现给小球一个竖直向上的初速度v0=4 m/s,g取10 m/s2。
(1)若锁定滑块,试求小球通过最高点
P时对轻杆的作用力大小及方向;
(2)若解除对滑块的锁定,试求小球通
过最高点轨道位置点与小球起始位置
点间的距离。
转到解析
t
t
x 人+x 船=L
即 x 人= M L,x 船= m L
M+m
M+m
mv 人-Mv 船=0
2.典例剖析
【思维训练】如图9所示,质量M=2 kg的滑块套在光滑的水平轨道
上,质量m=1 kg的小球通过L=0.5 m的轻质细杆与滑块上的光滑轴O
连接,小球和轻杆可在竖直平面内绕O轴自由转动,开始轻杆处于水
目录页
Contents Page
物理建模: “人船模型”类问题的处理方法
1.模型特点 2.典例剖析
基础课
1.模型特点
1.人船模型的适用条件
物体组成的系统动量守恒且系统中物体原来均处于静止状态,合动
量为0。
2.人船模型的特点
(1)遵从动量守恒定律,如图8所示。
x人 x船
(2)两物体的位移满足:m -M =0
相关文档
最新文档