线性化微波功放现状及发展趋势1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性化微波功放现状及发展趋势
学院:电子工程学院
专业:电磁场与微波技术
教师:徐瑞敏教授
:XXX
学号:2014210202XX
报告日期:2014.10.26
线性化微波功放现状及发展趋势
一、引言
电磁波和低频率端相比高频率端拥有其独特的优点,近年来尤其是微波毫米波电路作为航空航天的无线通信手段得到广泛应用。但是在几乎所有的微波电子系统中,要将信号放大都需要微波功放,因此微波功放在微波有源电路中拥有了无可比拟的重要地位。对微波功放,除了有一定的功率输出和增益指标以外,线性度也是一个十分重要的指标。例如在微波测试设备中,由于功放的非线性失真所产生的谐波往往影响了测试精度;在移动通信的基站和移动站中,功放的非线性失真往往会产生邻道干扰,从而引起信号失真。因此,在这些设备中对功放的线性度提出了很高的要求。
对功放线性度的衡量可从两个指标来考察:一为谐波抑制度,当放大器输人频率为f0的单频信号时,由于非线性失真,会产生频率为nf0等的谐波,如图1所示,输出主频与谐波的功率电平之差即为谐波抑制度,用dBc表示。
第二个衡量指标为三阶交调系数。当放大器输人一定频率间隔(例如SMH:)、幅度相同的频率为f,和f:两信号时,由于非线性失真,在放大器输出端除了放大的f’,和f:外,还有2j,;一J:和2j:一f,,此为三阶交调频率,如图1(b)所示,主频与三阶交调频率的功率电平之差即为功放的三阶交调系数,用(IBc表示也可用一分贝压缩点来表示功放的线性度的,一分贝压缩点与三阶交调之间具有换算关系。
二、功率放大器的非线性特性
现在一方面人们追求更高的功率利用率,另一方面是日益发展的无线通信产业的要求迫使我们不得不给予功率放大器的线性化问题以足够重视。要研究线性化技术,首先必须了解功率放大器的非线性失真特性,以做到有的放矢。
理想情况下,功率放大器工作在线性状态,传输系数与输入信号的幅度和相位无关。但在实际情况中并非这么简单,由于晶体管的特性,在达到一定输入功率时,放大器将呈现出非线性。信号的输入输出不在是上面简单的函数关系。放大器随着输入信号的增大,从线性区进入非线性区,此时功放的增益不再是常数,而是一个与输入信号有关的变量,输入输出呈非线性,甚至在达到一定输入功率后,功放输出将不再增加。此外功率放大器输出端产生了与输入频率有关的新的频率分量,当信号输入时,除了基波分量,还会出现各阶互调分量和高次谐波分量。这种非线性特性,在通信系统中对相邻信道的干扰,降低系统的性能。对于
功放的非线性程度可以用特定的特性参数来表示。
2.1谐波失真
谐波失真是衡量功放线性化程度的一个重要指标,为了简化分析,可以将功率放大器看做一个无记忆非线性系统模型,即输出电压是当前输入电压的函数,放大器的传输特性可以表示为:
根据幂级数分析法,假设
,
此时为:
从上式不难发现,输出信号中除了输入信号频率外,还产生了新的频率分量,这将影响放大器的性能指标。对此,我们通常用谐波抑制度来表示功放对于谐波的抑制能力,即:
其中Pn和 P 分别是第 n 次谐波和基波的功率,HDn表示第 n 次的谐波抑制。
2.2交调失真
交叉调制是指在非线性系统中同时存在有用信号和干扰信号,当通过放大器
时,干扰信号被转移到有用信号的载波上形成的一种失真。假设输入信号是由幅度相同的一个干扰信号与一个调制信号组成,表达式
为:
则经过非线性功率放大器后得到的输出信号为:
通过非线性功率放大器后,调幅信号的载波频率发生了改变。
2.3互调失真
如果放大器输入端同时有两个输入信号V1 和V2 ,在经过非线性放大器后,输出端还会产生互调失真。
已知
则进一步展开得到:
则可以得到,除去直流分量外还产生新的频率分量,把频率表示为:
这种变化引起了放大器输出信号的频谱失真。这种失真成为互调失真。
下图为三阶和五阶互调。
2.4 AM-AM 特性
AM-AM 特性表示的是功放输出信号幅度受输入信号幅度影响的关系。一般情
况下如信号包络引起的 AM-AM 失真并不是很大,但在信号幅度波动较大的调制方式中,AM-AM 失真就较为明显了。输出信号中带有输入信号频率的幅度项为:
可以看出,它的值将随输入信号幅度的改变而改变,如果K3>0,成为增益扩,反之,称为增益压缩。通过 MATLAB 可以直观看到增益随输入信号的变化。
2.5 AM-PM 特性
AM-PM 特性主要是由功放的记忆效应造成的,由输入信号的幅度变化引起了相位变化。工作在线性区的功放,相位变化比较小,当工作在饱和状态时这种现象就会比较明显。而功率放大器一般要求较高的效率都工作在饱和或接近饱和的状态,其随输入信号幅度的变化曲线如图所示,
三、功率放大器的线性化方法现状
功率放大器线性化技术的研究开始于上世纪六十年代,当时主要在移动通信系统和广播系统中运用较广。在现代通信系统中,复杂调制技术的广泛使用,使得对功率放大器的线性度要求很高,所以功放的线性化技术也就越来越受到科研人员的重视。目前,较为常用的线性化技术主要有功率回退技术,负反馈技术,前馈技术,LINC,包络消除和恢复(EE&R)和预失真技术。其中前馈预失真技术运用较广,但前馈技术也存在缺点,他的研发成本高,电路实现复杂,上下支路相位要求严格。其他线性化技术也都各自存在缺点,而预失真技术因其性能稳定,自适应强等特点成为目前研究的主流,且随着数字电路的发展,其性能有很大的提升空间。
3.1 功率回退技术
这是最常用的方法,即选用功率较大的管子作小功率使用,也就是牺牲直流功耗来提高功放的线性度。由于任意输人功率的三阶交调系数满足公式;
功率回退技术利用这个特点,在实际使用中,把功率放大器的输入功率从ldB压缩点向后回退几个分贝,工作在远小于ldB压缩点的电平上,使功率放大器脱离饱和区,进入线性工作区,从而改善功率放大器的三阶交调系数。这种方法简单易行,不需要增加任何附加设备,是改善放大器线性度常用而有效的方法。其缺点是功率放大器的功率利用率大为降低;另外,当功率回退到一定程度,即当IM3达到一40dB。以下时,继续回退将不再改善放大器的线性度。因此,在线性度要求很高的场合,完全靠功率回退是不够的,而必须将功率回退法与其他线性化措施结合在一起使术。
3,2前馈法
前馈的构思源于反馈,不同的是在输出端进行校准。在各种功率放大器的线性化技术中,前馈技术应该是最先进的。如图所示,前馈电路原理包括两部分:失真信号的提取和消除。在失真信号提取环路中,親合器3的输出端是反相的失真信号。然后反相的失真信号经PA2后