复数的几何意义
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复数的几何意义
一、复数的几何意义
1、复数的几何表示:bi a z +=与复平面内的点)(b ,a Z 之间是一一对应的,即任何复数bi a z +=都可以用复平面内的点)(b ,a Z 来表示。
2、复数的向量表示:直角坐标系内的点)(b ,a Z 与始点在原点的向量)(b ,a OZ =是一一对应的,因此,复数bi a z +=也与向量)(b ,a OZ =一一对应,其中复数0对应零向量,任何复数bi a z +=可以表示为复平面内以原点O 为起点的向量OZ ,我们把这种表示像是叫做复数的向量表示法。
复数z=a+bi ↔复平面内的点Z (a ,b )↔平面向量OZ 3、复数的模的几何意义
复数z=a+bi 在复平面上对应的点Z(a,b)到原点的距离. 即 |Z |=|a+bi |=
4、复数的加法与减法的几何意义
加法的几何意义 减法的几何意义
22b a + Z( )
x
o
Z 1
Z 2
Z
Z 2
Z
1
y
y o
x
z 1z 2≠0时, z 1+z 2对应的向量是以OZ 1、OZ 2、为邻边的平行四边形OZ 1ZZ 2的对角线OZ , z 2-z 1对应的向量是Z 1Z 2 5、 复数乘法与除法的几何意义
z 1=r 1(cos θ1+i sin θ1) z 2=r 2(cos θ2+i sin θ2)
①乘法:z=z 1· z 2=r 1·r 2 [cos(θ1+θ2)+i sin(θ1+θ2)]
如图:其对应的向量分别为oz oz oz 12→
→
→
显然积对应的辐角是θ1+θ2 < 1 > 若θ2 > 0 则由oz 1→
逆时针旋
转θ2角模变为oz 1
→
的r 2倍所得向量
便是积z 1·z 2=z 的向量oz →
。
< 2 >若θ2< 0 则由向量oz 1→
顺时针旋转θ2角模变为r 1·r 2所得向量便是积z 1·z 2=z 的向量oz →。
为此,若已知复数z 1的辐角为α,z 2的辐角为β求α+β时便可求出z 1·z 2=z a z 对应的辐角就是α+β这样便可将求“角”的问题转化为求“复数的积”的运算。
②除法
'=÷=
=-+-z z z z z r r i 12121
2
1212[cos()sin()]θθθθ (其中 z 2≠
0)
除法对于辐角主要是“相减”(被除数的辐角一除数的辐角)依向量旋转同乘法简述如下:
< 1 >θθ210>→
时顺时针旋转角2oz 。
< 2 >θθ22时逆时针旋转角<→
01oz 。
二、综合应用
例1
例2、满足3<|z|<5(z ∈C)的复数z 对应的点在复平面上将构成怎样的图形? 解
:
设
z=x+yi(x,y ∈R)
图形: 以原点为圆心, 半径3至5的圆环内
例3.若Z ∈c ,|Z-2|≤1,求|Z|的最大,最小值和argZ 范围.
上22
2.求实数m 取何值时,
z =(m +5m +6)+(m -2m -15)i 对应的点,(1)在x 轴方(2)在第四象限
(3)在直线x +y +9=0上
()北京2
3.2004当 3 对应的点在第_____象限 4.若3-5i ,1-i 和-2+ai 在复平面内所对应的点在同一条直线上,则实数a =____ 5 32 2<+ 2 <+ 解:法一,数形结合 由|Z-2|≤1,知Z的轨迹为复平面上以(2,0)为圆心,1 为半径的圆面(包括圆周),|Z|表示圆面上任一点到原点的 距离. 显然1≤|Z|≤3, ∴|Z|max=3, |Z|min=1, 另设圆的两条切线为OA,OB,A,B为切点,由|CA|=1,|OC|=2知 ∠AOC=∠BOC=,∴argZ∈[0,]∪[π,2π) 法二:用代数形式求解|Z|的最大,最小值,设Z=x+yi(x,y∈R) 则由|Z-2|≤1得(x-2)2+y2≤1, ∴|Z|=≤=, ∵(x-2)2+y2≤1, ∴(x-2)2≤1, ∴-1≤x-2≤1, ∴1≤x≤3, ∴1≤4x-3≤9, ∴1≤|Z|≤3. 例4.复数Z满足arg(Z+3)=π,求|z+6|+|z-3i|最小值. 分析:由两个复数模的和取最小值,联想到一个点到两个定点距离和的最小值,将之转化为几何问题来解决应比较简便. 解法一:由arg(Z+3)=π,知Z+3的轨迹是一条射线OA,∠ xOA=π,而 |Z+6|+|Z-3i|=|(z+3)-(-3)|+|(Z+3)-(3+3i)| 将B(-3,0)与C(3,3)连结,BC连线与OA交点为D,取Z+3为D点,表示复数时, |Z+6|+|Z-3i|=|BD|+|DC|=|BC|=3 , ∴所求最小值=3. 法二:由arg(Z+3)=π, 知Z+3的轨迹是射线OA,则Z轨迹应是平行于OA,且过点(-3,0)的射线BM, ∴|Z+6|+|Z-3i|就表示射线BM上点到点P(-6,0)和点Q(0,3)距离之和,连结PQ与射线BM交于点N,取E为N点表示复数时, |Z+6|+|Z-3i|=|PN|+|NQ|=|PQ|=3, ∴所求最小值=3. 例5.若与分别表示复数Z1=1+2i, Z2=7+i, 求∠ Z2OZ1并判断ΔOZ1Z2的形状. 解:欲求∠Z2OZ1,可计算