数学史(第2章古希腊数学)

合集下载

期末 数学史知识提要

期末 数学史知识提要

《数学简史》知识提要1 数学史的意义及研究对象:数学史是研究数学概念、数学方法和数学思想的产生、发展及其规律的科学。

主要对象包括:重要数学成果、重大数学事件和重要数学人物,及其与社会、政治、经济和一般文化的联系。

2 数学文化的特点数学史在整个人类文明史上有着特殊地位,这是由数学的文化特点决定的。

数学文化特点有以下几个方面:(1)数学以抽象的形式,追求高度精确、可靠的知识。

(2)数学追求最大限度的一般性模式特别是一般性算法的倾向。

(3)数学是创造性活动的结果,追求艺术和美的特征。

3历史上对数学的认识:亚里斯多德:量的科学;笛卡儿:顺序与度量的科学;恩格斯:空间形式与数量关系;美国学者:关于模式的科学。

第二章古代希腊数学主题:论证数学的形成与发展1论证数学的开端:论证数学的鼻祖:泰勒斯(前625-前547)和毕达哥拉斯(前580-前500)。

(1)泰勒斯:发现了许多几何命题(圆被直径平分……);开创了几何命题的逻辑论证;天文测量。

他的逸闻趣事具有很好的教育意义。

(2)毕达哥拉斯及其学派致力于哲学与数学的研究,提出了“万物皆数”是信念,推动了证明的逻辑信念的形成。

主要成果:发现毕达哥拉斯定理及其数组;几何定理的证明;正多边形(正五和正十边形)与正多面体作图;形数(把数看成形进行研究);完全数(一个整数互为另一个的不包括自身的因数之和);亲和数(两个整数互为另一个的因数(不包括自身)之和);不可公度量(实质是证明了2是无理数)的发现。

(注:什么是“可公度量”?对于任何两条给定的线段,总能找到某第三线段,以它为单位线段能将给定的两条线段划分为整数段。

这样的两条线段为“可公度量”,即有公共度量的度量单位。

这是古希腊毕达哥拉斯学派对世界任何量都能表示成两个整数比信念的反映。

)3亚历山大时期(全盛时期)主要代表人物:欧几里得、阿基米德和阿波罗里奥斯(1)欧几里得:主要代表作《原本》(又称为《几何原本》)。

他用公理化方法对当时的数学知识作了系统化、理论化的总结。

数学史概论复习题及参考答案

数学史概论复习题及参考答案
九、阿基米德数学研究的最大功绩是什么?
十、阿波罗尼奥斯最重要的数学成就是什么?
一、希腊数学一般是指什么时期,活动于 什么地方的数学家创造的数学?P32
答:希腊数学一般指从公元前600年至公元 600年间,活动于希腊半岛、爱琴海区域、 马其顿与色雷斯地区、意大利半岛、小亚 细亚以及非州北部的数学家们创造的数学。
答:1.古埃及的象形数字〔公元前3400年 左右〕:十进制数系
2.巴比伦楔〔xie〕形数字〔公元前2400年 左右〕:六十进制数系
3.中国甲骨文数字〔公元前1600年左右〕: 十进制数系
4.希腊阿提卡数字〔公元前500年左右〕: 十进制数系
5.中国筹算数码数字〔公元前500年左右〕: 十进制数系
6.印度婆罗门数字〔公元前300年左右〕: 十进制数系
7.玛雅数字〔?〕:二十进制数系
二、 “河谷文明〞指的是什么?P16
答:历史学家往往把兴起于埃及。美索不大 米亚、中国和印度等地域的古代文明称为 “河谷文明〞。
三、 关于古埃及数学的知识主要依据哪两 部纸草书?P17,纸草书中问题绝大局部都是 实用性质,但有个别例外,请举例。P23
答:古埃及数学的知识主要依据莱茵德纸草 书和莫斯科纸草书两部纸草书。
3、在17世纪,笛卡儿(1596—1650) 认为: “但凡以研究顺序(order)和度量(measure)为 目的的科学都与数学有关〞。
4、19世纪恩格斯这样来论述数学:“纯数学 的对象是现实世界的空间形式与数量关系〞。 根据恩格斯的论述,数学可以定义为:“数 学是研究现实世界的空间形式与数量关系的 科学。〞
4、现代数学时期(1820年一现在) (1)现代数学酝酿时期(1820’一1870) (2)现代数学形成时期(1870—1940’) (3)现代数学繁荣时期(当代数学时期,1950

《数学史》古希腊数学 ppt课件

《数学史》古希腊数学  ppt课件

ppt课件
20
2.3 亚历山大后期和希腊数学的衰落
通常从公元前30-公元6世纪的这一段时期,称为 希腊数学的“亚历山大后期”。
亚历山大后期的希腊几何,已失去前期的光辉。这一时期开 始阶段唯一值得一提的是几何学家海伦(Heron,公元前1世纪公元1世纪间),代表作《量度》,主要讨论各种几何图形的面 积和体积的计算,其中包括后来以它的名字命名的三角形面积公 式
ppt课件
19
总评
▪ 《圆锥曲线论》可以说是希腊演绎几何的最高成 就。阿波罗尼奥斯用纯几何的手段达到了今日解 析几何的一些主要结论,这是令人惊叹的。
▪ 另一方面,这种纯几何的形式,也使其后数千年 间的几何学裹足不前。几何学中的新时代,要到 17世纪,笛卡尔等人打破希腊式的演绎传统后, 才得以来临。
▪ 此书集前人之大成,且提出很多新的性质。他推广了梅内赫莫斯 (公元前4 世纪,最早系统研究圆锥曲线的希腊数学家)的方法,证 明三种圆锥曲线都可以由同一个圆锥体截取而得,并给出抛物线、 椭圆、双曲线、正焦弦等名称。
▪ 书中已有坐标制思想。他以圆锥体底面直径作为横坐标,过顶点的 垂线作为纵坐标,这给后世坐标几何的建立以很大的启发。他在解 释太阳系内5大行星的运动时, 提出了本轮均轮偏心模型,为托勒密 的地心说提供了工具。
ppt课件
18
《圆锥曲线论》中包含了许多即使是按今天的 眼光看也是很深奥的结果,尤其突出的是第5卷关于 从定点到圆锥曲线的最长和最短线段的探讨,其中 实质上提出了圆锥曲线的法线包络即渐屈线的概念, 它们是近代微分几何的课题。
第3、4卷中关于圆锥曲线的极点与极限的调和 性质的论述,则包含了射影几何的萌芽思想。
ppt课件
15
亚历山大里亚时期的希腊数学

数学史与数学思想

数学史与数学思想

数学史与数学思想数学,作为一门抽象而精确的科学,扮演着推动人类文明进步的重要角色。

本文将从数学史的角度,探讨数学思想的演进与影响。

第一部分:古代数学古代数学源远流长,最早的数学思想可以追溯到古巴比伦、古埃及和古印度。

这些古代文明的数学成就,在农业、建筑和天文学等领域都发挥了重要作用。

1. 古巴比伦数学古巴比伦人发展了一套基于60进制的计数系统,并开发了用于计算乘法和除法的算法。

他们还提出了一些几何问题,并发现了勾股定理的特例。

2. 古埃及数学古埃及人主要应用数学知识于土地测量、建筑和商业交易。

他们制定了计算面积和体积的方法,并发展了以10为基数的计数系统。

3. 古印度数学古印度人在数学领域有许多重要贡献,这些贡献对现代数学产生了深远影响。

他们首先提出了零的概念,并发展了一套精确的计数系统。

此外,他们还发现了平方根、立方根,以及一些三角函数的近似值。

第二部分:古希腊数学古希腊数学是数学史上一个重要的里程碑,它代表着理性思维的巅峰,并为后世数学家提供了许多启示。

1. 毕达哥拉斯学派毕达哥拉斯学派强调数与形的关系,提出了许多几何定理,如勾股定理。

他们还发现了数学中的整数、有理数和无理数的概念,为数论的发展奠定了基础。

2. 现代几何的奠基人:欧几里得欧几里得的《几何原本》被视为几何学的经典之作。

他以严谨的推理方式,系统整理了古希腊几何学的知识,并提出了许多著名的定理,如平行线之间的角度和等角定理。

第三部分:近代数学革命自17世纪开始,数学经历了一系列革命性的变革,这些变革深刻地改变了人们对数学的认识。

1. 微积分的创立牛顿和莱布尼茨同时独立发现了微积分的基本原理,从而为数学打开了新的大门。

微积分的发展和应用,解决了众多自然科学和工程学中的问题,为现代科学的发展做出了重要贡献。

2. 非欧几何学在19世纪,黎曼和庞加莱提出了非欧几何学的概念,打破了古希腊几何学的局限性。

他们探索了曲线和曲面的性质,为后来的广义相对论等科学理论的发展奠定了基础。

《数学史教案》word版

《数学史教案》word版

《数学史教案》word版一、教学目标1. 知识与技能:(1)了解古代数学的发展历程及其代表性人物和成就;(2)掌握数学的基本概念、原理和方法,提高数学思维能力。

2. 过程与方法:(1)通过探究数学历史,培养学生的自主学习能力和团队合作精神;(2)学会运用数学知识解决实际问题,提高解决问题的能力。

3. 情感态度与价值观:(1)感受数学的博大精深和魅力,增强对数学的兴趣和信心;(2)培养严谨治学、不断探索的科学研究态度。

二、教学内容1. 第一章:中国古代数学(1)概述中国古代数学的发展历程;(2)介绍《九章算术》和《周髀算经》等古代数学著作;(3)讲解中国古代数学家的成就和贡献。

2. 第二章:古希腊数学(1)概述古希腊数学的发展历程;(2)介绍毕达哥拉斯、欧几里得等古希腊数学家及其主要成就;(3)讲解勾股定理和圆的周长、面积等几何概念。

3. 第三章:阿拉伯数学(1)概述阿拉伯数学的发展历程;(2)介绍阿拉伯数学家花拉子密及其主要成就;(3)讲解阿拉伯数字和代数学的发展。

4. 第四章:欧洲中世纪数学(1)概述欧洲中世纪数学的发展历程;(2)介绍莱昂纳多·斐波那契及其主要成就;(3)讲解斐波那契数列和黄金分割等概念。

5. 第五章:欧洲近代数学(1)概述欧洲近代数学的发展历程;(2)介绍笛卡尔、牛顿等欧洲近代数学家及其主要成就;(3)讲解解析几何和微积分等概念。

三、教学方法1. 采用讲授法、讨论法、探究法等多种教学方法;2. 使用多媒体课件、实物模型等辅助教学;3. 组织学生进行小组合作、研究性学习等活动。

四、教学评价1. 平时成绩:包括课堂表现、作业完成情况等;2. 期中考试:考察学生对数学史知识的掌握和理解;3. 期末考试:综合考察学生的数学知识和运用能力。

五、教学资源1. 教材:《数学史教程》等;2. 参考书籍:《数学简史》、《数学发展史》等;3. 网络资源:数学史相关网站、视频等;4. 教具:多媒体课件、实物模型等。

第二章 古代希腊数学

第二章 古代希腊数学

上述诸派多以哲学探讨为主,但他们的研究活动极大地加强 了希腊数学的理论化色彩,主要表现在以下几个方面。
(一)三大几何问题
古希腊三大著名几何问题是: ⊙化圆为方,即作一个与给定的圆面积相等的正方形。 ⊙倍立方体,即求作一立方体,使其体积等于已知立方体的两倍。 ⊙三等分角,即分任意角为三等分。
三大几何问题的起源涉及一些古老的传说。如 倍立方体问题:说神话中的米诺斯王(King Minos)嫌儿子格劳 卡斯(Glaucus)为他建造的坟墓太小,命令将其扩大一倍。
虽然泰勒斯沿着论证数学的方向迈出了第一步,但希腊数学著 作的评注者主要是将数学中这一新方向的成长归功于毕达哥拉斯 学派。
一般认为,欧几里得《原本》前二卷的大部分材料来源于毕达 哥拉斯学派,包括西方文献中一直以毕达哥拉斯的名字命名勾股定 理。但迄今并没有毕达哥拉斯发现和证明了勾股定理的直接证据。
尽管如此,人们仍然对毕达哥拉斯证明勾股定理的方 法给出了种种猜测,其中最著名的是普鲁塔克(Plutarch, 约46-120)的面积剖分法。
毕达哥拉斯生于靠近小亚细亚西部海岸的萨摩斯岛,曾游历 埃及和巴比伦,可能还到过印度,回希腊后定居于当时的大希腊 (Magna Graecia),即今意大利东南沿海的克洛托内(Crotone),并 在那里建立了一个秘密会社,也就是今天所称的毕达哥拉斯学派。 这是一个宗教式的组织。
相传“哲学”(希腊原词φιλοσοφια意为“智力爱好”)和数学 (希腊原词µαθηµατιχα,意为“可学到的知识”)这两个词正是毕 达哥拉斯本人所创。
''
用 DA 和 A B 分别表示这两条移动线段在任一时刻的位置, 那么他们的交点P产生的曲线就是割圆曲线。
希腊波斯战争(公元前492-前449)以后,雅典成为希腊 民主政治与经济文化的中心,希腊数学也随之走向繁荣,学派 林立,主要有: ●伊利亚学派 以居住在意大利南部依利亚(Eles)地方的芝 诺(Zeno,约公元前490-前430)为代表。 ●诡辩学派 活跃于公元前5世纪下半叶的雅典城,主要代 表人 物有希比阿斯(Hippias,约生于公元前460年)、安 提丰(Antiphon,约公元前480-411)等,均以雄辩著称。 ●雅典学院(柏拉图学派) 柏拉图(Plato,公元前427-前 347)曾师从毕达哥拉斯学派的学者,约公元前387年在雅典 创办学院,讲授哲学与数学,形成了自己的学派。 ●亚里士多德学派 亚里士多德(Aristotle,公元前384前322)是柏拉图的学生,公元前335年建立自己的学派。

数学史--第二讲-古希腊数学--课件

数学史--第二讲-古希腊数学--课件
• 崛起于意大利半岛中部的罗马民族,在公元前1世纪 完全征服希腊各国夺得了地中海地区的霸权,建立了 强大的罗马帝国。唯理的希腊文明被务实的罗马文明 所取代。同影响深远的罗马法典和气势恢弘的罗马建 筑相比,罗马人在数学领域却谈不上有什么显赫的功 绩。
• 通常把公元前30年到公元6世纪(641年,阿拉伯人占 领亚历山大)称为希腊数学的“亚历山大后期”。
趣事
• 欧几里得是希腊论证几何的集大成者。 • 在公元前300年左右,欧几里得受托勒密一世之邀到亚
历山大,成为亚历山大学派得奠基人。据说受托勒密 曾问欧几里德有无学习几何的捷径?欧几里德回答说 :“几何学无王者之道”。 • 有一次一个学生刚学了第一个几何命题便问“学了这些 我能获得什么呢?”欧几里德叫来一个仆人吩咐说:“ 给这位先生三个分币,因为他一心想从学过的东西中 捞点什么”。--欧几里德反对狭隘的实用观点
毕达哥拉斯学派的数学成就
• 数的研究 完全数:12,28;亲和数:220和284;形数: “三角 形数”、“正方形数”、 “五角形数”等等;勾股数:
• 几何成就 欧几里得《原本》第8卷附注指出五个正多面体的作图 的其中前三个归功于毕达哥拉斯学派,后两个归功于 蒂奥泰德(毕达哥拉斯学派晚期成员西奥多罗斯的学 生,深受毕达哥拉斯学派影响)。 一般认为,欧几里得《原本》第1卷和第2卷的大部分 资料来源于毕达哥拉斯学派,包括西方文献中一直以 毕达哥拉斯的名字命名的勾股定理。
其贡献涉及几何学和天文学。最重要的数学成就是在 前人基础上创立了相当完美的圆锥曲线论。《圆锥曲 线论》就是这方面的系统总结。
评价:
(1)他对圆锥曲线的研究所达到的高度,直到17世纪 笛卡尔和帕斯卡出场之前,始终无人能够超越。
(2)他的工作中包含了近代微分几何的课题和射影几 何学的萌芽思想。

数学史古希腊数学

数学史古希腊数学
在平面。 ▪ 命题16 二直线为平行平面所截,所截得的线段成比例。 ▪ 命题32 等高平行六面体的比等于底的比。
几何《原本》第十二卷
▪ 第十二卷主要论述棱柱、棱锥、圆柱、圆锥和球等立体的体积定理。 并用穷竭法加以证明。
▪ 命题5 等高三棱锥之比等于它们底之比。 ▪ 命题7 三棱柱可以分成三个彼此相等的三棱锥。 ▪ 命题10 圆锥是同底等高圆柱的三分之一。
欧几里得与几何《原本》
• 《原本》在我国传播 • 1607年徐光启(1562-1633)与意大利传教士利玛窦(M.Ricci,
1552-1610)合译O.Clauvius(1537-1612)校订、增订的拉丁文本 《原本》前6卷。 • 1857年,李善兰(1811-1882)与英国传教士伟烈亚历(A.Wylie, 1815-1887)续译后9卷。
▪ 命题14 同圆内等弦的弦心距相等;弦心距相等则弦相等。 ▪ 命题22 内接于圆的四边形,其对角和是二直角。 ▪ 命题32 直线切于一圆,弦与切线的夹角等于弦所对圆周角。 ▪ 命题35 圆内有相交二弦,其中一弦上所截线段围成的长方形等于
另一弦上所截线段围成的长方形。
几何《原本》第四卷
▪ 第四卷,有16个命题,主要论述圆的内接和外切图形 ▪ 命题12 作已给圆的外切正五边形。 ▪ 命题15 作已给圆的内接正六边形。
▪ 命题2 求不互素数的最大公约数。 ▪ 命题19 四数成比例,则第一、四两数乘积等于第二、三两数乘积,
反之亦然。
几何《原本》第七、八、九卷
▪ 命题35:给出了关于完全数的一个著名定理:若几何
级数(从1开始)一些项之和 1 2 22 2n1是
质数,那么这个和同最末一项的乘积是完全数,即
(1 2 22 2n1 )2n1

(完整版)数学史(第2章古希腊数学)

(完整版)数学史(第2章古希腊数学)

第2章古代希腊数学主题:希腊文化与理论数学的起源人类理性思维的形成在唯理的社会气氛中,希腊人将埃及和美索不达米亚的数学经验算术和几何法则加工成具有初步逻辑结构的论证数学体系。

概述:希腊数学分为三个阶段:一是从公元前6C到约公元前3C,这一时期以雅典为中心,形成了论证几何数学的思想基础和有关方法上的基础;二是从约公元前3C到约公元前30年,这一时期主要以亚历山大为中心,形成的系统的论证几何体系,建立理论方法,为数学的发展提供了一种基本的观点和方法。

三是从约公元前30年到公元6C,这是希腊数学发展后期,主要发展带有实用特点的数学。

同时也有对前人进行评述和整理工作。

主要成就:1 论证数学的鼻祖及主要贡献:泰勒斯(前625-前547)泰勒斯领导的爱奥尼亚学派据说开了希腊命题论证之先河,并证明了四条定理和“泰勒斯定理”。

毕达哥拉斯(前580-前500)毕达哥拉斯创立了毕达哥拉斯学派,从事哲学和数学研究。

普鲁克鲁斯在《评注》中论述了毕达哥拉斯学派的主要成就有:(1)证明了毕达哥拉斯定理,即勾股定理。

其方法最著名的猜测是“面积剖分法”。

(2)正多面体作图(包括正四、六、八、十二、二十面体)。

以正十二面体的作图最为著名,它的每个面都是正五边形,并且和“黄金分割”相关(注:黄金分割这一名字并不是来源该学派,见书36页注)。

(3)关于数的研究,毕达哥拉斯学派的基本信条是“万物皆数”(这里指整数),并讨论了许多数论的性质,如偶数与奇数,完全数等。

该学派还有关于“形数”的研究,他们把数作为几何思维元素的精神,“形数”体现了数与形的结合。

(4)发现了不可公度量。

评论:毕达哥拉斯学派把数看成是世界的基础,客观上形成对世界数量关系的认识,是人类认识上的一大进步。

加强了数概念中的理论倾向,推动了几何学的抽象化倾向,这些研究使人类抽象思维能力达到了一个高的水平。

不可公度量的发现,由此产生了“第一次数学危机”,这一问题的根本解决是人们对连续性有更精确的定义后才完全解决。

数学史教学大纲

数学史教学大纲

《数学史》教学大纲第一部分课程性质与目的要求一、课程性质:《数学史教程》是我系数学与应用数学专业的一门选修课。

二、课程目的要求目的要求:本课程主要讲述数学思想是怎样经过漫长的历史岁月,经过多个朝代、多个地区、多个民族发展而成,要揭示人民和数学家们用怎样卓越的思想方法攻克数学难题,以无畏的胆略和远见卓识的精神推动数学史发展的。

从教育工作者的角度掌握数学教育的根本方法,开阔眼界,激发兴趣,提高文化素养。

第二部分教学时数本课程学分为2学分。

教学时间具体分配见下表:教学内容教学时数第0章数学史─人类文明史的重要篇章第1章数学的起源与早期发展2第2章古代希腊数学4第3章中世纪的中国数学4第4章印度与阿拉伯的数学2第5章近代数学的兴起2第6章微积分的创立4第7章分析时代2第8章代数的新生2第9章几何学的变革2第10章分析的严格化2第11章20世纪数学概观(1)纯粹数学的主要趋势2第12章20世纪数学概观(2)空前发展的应用数学2第13章20世纪数学概观(3)现代数学成果10例2第14章数学与社会2合计36第三部分教学内容与要求一、教学内容:第0章数学史--人类文明史的重要篇章数学史的意义、什么是数学--历史的理解、关于数学史的分期第1章数学的起源与早期发展数与形概念的产生、河谷文明与早期数学第2章古代希腊数学论证数学的发端、黄金时代--亚历山大学派、亚历山大后期和希腊数学的衰落第3章中世纪的中国数学《周髀算经》与《九章算术》、从刘徽到祖冲之、宋元数学第4章印度与阿拉伯的数学印度数学、阿拉伯数学第5章近代数学的兴起中世纪的欧洲、向近代数学的过渡、解析几何的诞生第6章微积分的创立半个世纪的酝酿、牛顿的"流数术"、莱布尼茨的微积分、牛顿与莱布尼茨第7章分析时代微积分的发展、微积分的应用与新分支的形成、18世纪的几何与代数第8章代数的新生代数方程的可解性与群的发现、从四元数到超复数、布尔代数、代数数论第9章几何学的变革欧几里德平行公设、非欧几何的诞生、射影几何的繁荣、几何学的统一第10章分析的严格化柯西与分析基础、分析的算术化、分析的扩展第11章20世纪数学概观(Ⅰ)纯粹数学的主要趋势新世纪的序幕、更高的抽象、数学的统一化、对基础的深入探讨第12章20世纪数学概观(Ⅱ)空前发展的应用数学应用数学的新时代、数学向其他科学的渗透、独立的应用学科、计算机与现代数学第13章20世纪数学概观(Ⅲ)现代数学成果10例哥德尔不完全性定理、高斯-博内公式的推广、米尔诺怪球、阿蒂亚-辛格指标定理、孤立子与非线性偏微分方程、四色问题、分形与混沌、有限单群分类、费马大定理的证明、若干著名未决猜想的进展第14章数学与社会数学与社会进步、数学发展中心的迁移、数学的社会化二、教学要求:了解教材中所介绍的数学概念、数学方法的起源与发展,掌握数学思想的起源与发展。

数学史第二讲古代希腊数学ppt课件

数学史第二讲古代希腊数学ppt课件
想的来源
希腊化时期的数学
• 5公理
1. 等于同量的量彼此相等. 2. 等量加等量, 和相等. 3. 等量减等量, 差相等. 4. 彼此重合的图形是全等的. 5. 整体大于部分.
• 5公设
1. 假定从任意一点到任意一点可作一直线. 2. 一条有限直线可不断延长. 3. 以任意中心和直径可以画圆. 4. 凡直角都彼此相等. 5. 若一直线落在两直线上所构成的同旁内角和小 于两直角, 那么把两直线无限延长, 它们都在同旁内 角和小于两直角的一侧相交.
机械上
阿基米德对于机械的研究源自于他在亚历山大城求学时期,有一天阿基米德在 久旱的尼罗河边散步,看到农民提水浇地相当费力,经过思考之后他发明了一种 利用螺旋作用在水管里旋转而把水吸上来的工具,后世的人叫它做“阿基米德螺 旋提水器”。埃及一直到二千年后的现代,还有人使用这种器械。
这个工具成了后来螺旋推进器的先祖。
希腊化时期的数学
数学之神
“给我一个支点,我 就可以移动地球。”
阿基米德 (公元前287-前212年)
希腊化时期的数学
阿基米德(公元前287-前212年) (希腊, 1983)
用穷竭法计算 平面图形面积
数学上:几何
将一个曲边图形“细”分成若干个 “小的矩形或三角形”(即各种简单 “直边形”)。 首先分别求这些“小直边形的面积”
投石器和起重机
阿基米德利用杠杆原理制造了一种叫作石弩的抛石机,能把 大石块投向罗马军队的战舰,或者使用发射机把矛和石块射向罗 马士兵,凡是靠近城墙的敌人,都难逃他的飞石或标枪······
阿基米德还发明了多种武器,来阻挡罗马军队的前进。根据一 些年代较晚的记载,当时他造了巨大的起重机,可以将敌人的战 舰吊到半空中,然后重重地摔下使战舰在水面上粉碎。

第二讲古代希腊数学(精)

第二讲古代希腊数学(精)

5
一、论证数学的发端 1、泰勒斯与毕达哥拉斯
毕达哥拉斯
在今意大利东南沿海的克洛托内建立毕达哥拉斯学 派。这是一个宗教式的组织,但致力于哲学与数 学的研究,相传“哲学”和“数学”这两个词正 是毕达哥拉斯本人所创。
毕达哥拉斯学派的几何成就: 证明了勾股定理 正多面体作图
2007年9月
古代希腊数学
6
一、论证数学的发端 1、泰勒斯与毕达哥拉斯
思考:用几何方法,证
明第Ⅱ卷命题4,即
ab
b2
b
证明代数关系式
a b2 a2 2ab b2
a
a2
ab
a
b
2007年9月
古代希腊数学
27
二、黄金时代——亚历山大学派 2、阿基米德的数学成就
阿基米德
阿基米德(Archimedes), 生卒年代:前287-212 。 古希腊伟大的数学家、力 学家。早年在当时的文化 中心亚历山大跟随欧几里 得的学生学习。
2007年9月
古代希腊数学
17
一、论证数学的发端 2、雅典时期的希腊数学
2007年9月
古代希腊数学
18
一、论证数学的发端 2、雅典时期的希腊数学
三大几何问题 古希腊的三大著名几何问题: ⑴化圆为方,即作一个与给定的圆面积相等的正方
形; ⑵倍立方体,即求作一立方体,使其体积等于已知
立方体的两倍; ⑶三等分角,即分任意角为三等分。
后人对阿基米德给以极高的 评价,常把他和I.牛顿、 C.F.高斯并列为有史以来 三个贡献最大的数学家。
2007年9月
古代希腊数学
28
二、黄金时代——亚历山大学派 2、阿基米德的数学成就
“平衡法”简介

教师资格证考试《数学史(二)》

教师资格证考试《数学史(二)》
现代数学的深度和广度
现代数学的深度和广度不断拓展,对数学本身和相关领域产生了深 远的影响。
现代数学的应用价值
现代数学在解决实际问题中具有很高的应用价值,推动了科学技术 的发展和创新。
THANKS
感谢观看
科学方法的兴起
文艺复兴时期的数学家开始采用实证 和推理的方法进行研究,推动了科学 方法的兴起和发展。
对后世的影响
文艺复兴时期的数学为后来的数学发 展奠定了基础,许多数学概念和方法 至今仍在使用。
04
近代数学的兴起
解析几何的创立与发展
解析几何的创立
解析几何是由笛卡尔创立的,通过引 入坐标系,将几何问题转化为代数问 题,为数学的发展开辟了新的道路。
数学史的发展阶段
古代数学
古埃及、古巴比伦、古印度和 古希腊等文明古国的数学发展 ,代表人物有毕达哥拉斯、欧
几里得等。
中世纪数学
阿拉伯和欧洲中世纪的数学发 展,代表人物有斐波那契、牛 顿等。
近代数学
17世纪至19世纪的数学发展, 代表人物有莱布尼茨、欧拉等 。
现代数学
20世纪的数学发展,包括抽象 代数、拓扑学、实分析等领域
教师资格证考试《数学史 (二)》
• 数学史概述 • 中世纪数学的发展 • 文艺复兴时期的数学 • 近代数学的兴起 • 现代数学的发展
01
数学史概述
数学史的定义与意义
数学史的定义
数学史是研究数学概念、方法和数学 思想的起源、演变及其影响的历史学 科。
数学史的意义
通过研究数学史,可以深入理解数学 的本质和发展规律,促进数学教育的 发展,提高数学素养和数学思维能力。
的突破。
数学史的研究方法
文献研究法
通过查阅和分析历史文献,了解数学概念、 方法和思想的起源和演变。

数学史古希腊数学

数学史古希腊数学

▪ 即
▪ 两角1 和的余 c 弦公 式2 : r c 0 d c r 1 r d 8 c d c 0 r 1 r d 8 d0
▪即
co s cc oo s ss i sn in
1 c 1 2 r 8 0 d c 0 1 r c 8 d 1 r 0 8 c d0 rd
从而估测圆周率为3. ▪ 圆周率 ▪ 海伦借助阿基米德的结论计算密率为 ▪即
211872 195882
67441 62351
3.14159 043.1 24 71601578
亚历山大里亚时期的希腊数学
▪ 弓形面积
B
D
E
▪ 其推A导思路1是bhh
2
▪ (1)取弧AB,BC中点M,N,得
A
C
▪ (2)同理,继续分割,得弓形面积
sin 1 Crd2
120
弦表(相当于正弦三角函数表): 给出了(1/2) 0 到1800 每隔 (1/2) 0 的圆心角所对的弦的长度,相当于给出了从 00 到 900 每隔 (1/4)0 的角的正弦。
托勒密定理: 圆内接四边形中,两条对角线长的乘积等于两对对边长乘积之和。
《大成》中的球面三角关系 C
海伦公式
▪ 《量度》共三卷 ▪ 斜三角形面积 ▪ 已知三角形的三条边求其面积的海伦公式.
S p p a p b p c
p a b c 2
H
A
F
E
O
B
C
KD
L
亚历山大里亚时期的希腊数学
▪ 圆内接正多边形面积与边长的关系 ▪ 依次计算正三角形、正五边形、六边形、…、正十二边形的面积与边长的关系,得出圆内接正多边形面积,
▪ 《圆锥曲线》 ▪ 《圆锥曲线》分8卷,共487个命题。现存前7卷,共382个命题。 ▪ 第一卷给出了圆锥曲线的定义和基本性质。 ▪ 从一个对顶(直圆或斜圆)锥得到3种圆锥曲线。双曲线有两个分支,也是他首先发现的。

第二讲 古代希腊数学(上)

第二讲 古代希腊数学(上)

柏拉图学派
柏拉图不是数学家,却赢得了“数学家的 缔造者”的美称,公元前387年以万贯家财在雅 典创办学院,讲授哲学与数学,直到529年东罗 马君王查士丁尼下令关闭所有的希腊学校才告 终止。 柏拉图曾师从毕达哥拉斯学派,是哲学家苏 格拉底(公元前469-前399年)的学生。 同时柏拉图还是古希腊最著名的哲学家、科 学家亚里士多德的老师。
应用之妙 精神之美
多边形数
多面体数
?
案例——从多边形数到棱锥数

2006广东数学高考题
在德国不莱梅举行的第48届世乒赛期间,某商场橱窗里用同 样的乒乓球成若干堆“正三棱锥”形的展品,其中第一堆只 有一层,就一个球,第2、3、4 堆最底层(第一层)分别按 图所示方式固定摆放,从第二层开始,每层的小球自然垒放 在下一层之上,第 n 堆第 n 层就放一个乒乓球,以 f(n) 表 示第 n 堆的乒乓球总数,则 f (3) =______, f (n) =______。
毕达哥拉斯学派—正五边形与五角星
在五种正多面体中,除正十二面体外,每个 正多面体的界面都是三角形或正方形,而正 十二面体的界面则是正五边形。 正五边形作图与著名的“黄金分割”有关。 五条对角线中每一条均以特殊的方式被对角 线的交点分割。据说毕达哥拉斯学派就是以 五角星作为自己学派的标志的。


黄金分割
罗马帝国:公元前27年-公元395年
东罗马帝国:公元395年-公元1453年
(610年改称拜占廷帝国)
数学作为一门有组织、独立的和理性的学科 来说,在古希腊学者登场之前是不存在的。
---M· 克莱因
伊奥尼亚学派 亚里士多德学派

古希腊数学(公元前6世纪至公元6世纪) 特殊的地理位置与文化.社会制度

数学史概论 ppt课件

数学史概论 ppt课件

(正8边形面积–正4边形面积)
>1/2(圆面积–正4边形面积)
数学史概论
31
欧几里得的《几何原本》是一部划时代的著作。其伟 大的历史意义在于它是用公理法建立起演绎体系的最早典 范。过去所积累下来的数学知识,是零碎的、片断的,可 以比作砖瓦木石;只有借助于逻辑方法,把这些知识组织 起来,加以分类、比较,揭露彼此间的内在联系,整理在 一个严密的系统之中,才能建成宏伟的大厦。《几何原本》 体现了这种精神,它对整个数学的发展产生深远的影响。
穷竭法(卷 XII)
数学史概论
37
比例的定义:设 A, B, C, D是任意四个量, 其中A 和B同类(即均为线段、角或面积等), C和D同类. 如果对于任何两个正整数 m 和n ,关系m A n B 是否成立, 相应地取决于关系m C n D是否成立, 则称A与B 之比等于C与D 之比,即四量 A, B, C, D 成比例.
希波克拉底:解决了化月牙形为方
安提芬:
首先提出用圆内接正多边形逼近圆面积的方法来化圆为
方。他从圆内接正方形开始,将边数逐次加倍,并一直进
行下去,则随着圆面积的逐渐“穷竭”,将得到一个边长
极其微小的内接正多边形。1882林德曼π的超越性。
数学史概论
18
倍立方: 即求一个立方体,使其体积等于已知立方体的两倍
第一次数学危机
2 是一个不可公度的数
数学史希概论帕苏斯 Hippasus(公元前470年左14右)
1
2
b
c
a
1
c2a2b2
勾股定理导致了无理量的发现. 假设直角三角形是等腰的,直
角边是1,那么弦是 2 ,它不可能用任何的“数”(有理数)
表示出来,即直角边与弦是不数学可史概通论 约的.

古希腊数学发展史

古希腊数学发展史

古希腊数学地中海的灿烂阳光——古希腊文明著称于世。

拥有特殊的地理环境的克里特岛是希腊文明的发端,同时,政治和经济的发展造就了希腊文化。

希腊文化汲取了各种各样的优秀东方文化。

其中,希腊数学就是希腊文化中的一个主要分支。

希腊数学汇集了巴比伦精湛的算术和埃及神奇的几何学。

以希波战争为界限划分为前后2个历史时期。

希波战争前的希腊数学就是以爱奥尼亚学派和毕达哥拉斯学派为主要代表的。

希波战争之后,则以巧辩学派,埃利亚学派,原子论学派柏拉图学派的成就为代表。

尤其是从BC480年到BC336年,数学史上又称为雅典时期。

雅典时期哲学和经济的空前繁荣诞生了像亚里斯多德这样的百科全书般的杰出人物。

BC4世纪以后的希腊数学慢慢成为了独立的学科。

数学的历史进入了一个新的阶段——初等数学时期。

在这一个时期里,初等几何,算术,初等代数大体已经分化出来。

同17世纪出现的解析几何学,微积分学相比,这一时期的研究内容可以用“初等数学”来概括,因此叫做初等数学时期。

在这一大时期里,希腊各地涌现了许许多多的学派,他们共同作用于希腊数学的发展。

在这些学派中最有影响力的主要有三大流派;(一)爱奥尼亚学派——古希腊历史上的第一个学派爱奥尼亚学派是由彼赋盛名的“希腊科学之父”泰勒斯创立。

泰勒斯是一个精明的商人,他流转于各地经商,并从巴比伦河埃及等地带回了数学知识,故而创立了爱奥尼亚学派。

他在数学上的最著名的业绩是测量金字塔的高度,而划时代的贡献是开始引入了命题证明的思想,因而被认为是希腊几何的先驱。

关于泰勒斯,希腊史诗并无明确的记载,但据可靠的材料我们可以推断出下列五大命题的发现时归功于泰勒斯:(1)圆的直径将圆平分。

(2)等腰三角形两底角相等。

(3)两条直线相交,对顶角相等。

(4)有两角夹一边分别相等的两个三角形全等。

(5)对半圆的圆周角是直角。

其中,第五个命题还被人们称为“泰勒斯定理”。

泰勒斯证明了或视图证明这些命题,使得数学从具体的,实验的阶段开始向抽象的,理论的阶段过渡,这是数学史上的一个重大创举。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章古代希腊数学
主题:
希腊文化与理论数学的起源
人类理性思维的形成
在唯理的社会气氛中,希腊人将埃及和美索不达米亚的数学经验算术和几何法则加工成具有初步逻辑结构的论证数学体系。

概述:
希腊数学分为三个阶段:一是从公元前6C到约公元前3C,这一时期以雅典为中心,形成了论证几何数学的思想基础和有关方法上的基础;二是从约公元前3C到约公元前30年,这一时期主要以亚历山大为中心,形成的系统的论证几何体系,建立理论方法,为数学的发展提供了一种基本的观点和方法。

三是从约公元前30年到公元6C,这是希腊数学发展后期,主要发展带有实用特点的数学。

同时也有对前人进行评述和整理工作。

主要成就:
1 论证数学的鼻祖及主要贡献:
泰勒斯(前625-前547)泰勒斯领导的爱奥尼亚学派据说开了希腊命题论证之先河,并证明了四条定理和“泰勒斯定理”。

毕达哥拉斯(前580-前500)毕达哥拉斯创立了毕达哥拉斯学派,从事哲学和数学研究。

普鲁克鲁斯在《评注》中论述了毕达哥拉斯学派的主要成就有:(1)证明了毕达哥拉斯定理,即勾股定理。

其方法最著名的猜测是“面积剖分法”。

(2)正多面体作图(包括正四、六、八、十二、二十面体)。

以正十二面体的作图最为著名,它的每个面都是正五边形,并且和“黄金分割”相关(注:黄金分割这一名字并不是来源该学派,见书36页注)。

(3)关于数的研究,毕达哥拉斯学派的基本信条是“万物皆数”(这里指整数),并讨论了许多数论的性质,如偶数与奇数,完全数等。

该学派还有关于“形数”的研究,他们把数作为几何思维元素的精神,“形数”体现了数与形的结合。

(4)发现了不可公度量。

评论:毕达哥拉斯学派把数看成是世界的基础,客观上形成对世界数量关系的认识,是人类认识上的一大进步。

加强了数概念中的理论倾向,推动了几何学的抽象化倾向,这些研究使人类抽象思维能力达到了一个高的水平。

不可公度量的发现,由此产生了“第一次数学危机”,这一问题的根本解决是人们对连续性有更精确的定义后才完全解决。

2 雅典时期的希腊学派活动
这一时期,雅典是希腊的政治经济文化中心,学派林立(这些学派有哪些?)。

学派主要讨论哲学问题。

但是一些讨论涉及到了无限性、连续性等深刻概念。

讨论极大地强化了数学的理论色彩。

这一时期的主要成就表现在下面的一些方面:一三大几何问题:
化圆为方倍立方体三等分任意角(你知道这些问题的具体含义吗?)
在化圆为方的研究中诡辩学派的代表人物安提丰产生了“穷竭法”的思想而被称为“穷竭法”的始祖。

关于被倍立方体问题,柏拉图学派的梅内赫莫斯发现了圆锥曲线。

但是,真正对问题的解决是到了19世纪,数学家才弄清三大问题是不可解的。

二无限的早期探索:
主要以芝诺悖论为代表,提出了四个悖论,(具体是什么?)揭示了无限性概念的矛盾(即:事物一方面需要无限可,另一方面又不可分无限小量)。

这些问题的解决最终是借助极限、连续等抽象概念才解决。

三逻辑演绎结果的倡导
这一时期,数学中的演绎化倾向有了实质性的进展,主要归功于柏拉图、亚里斯多德和他们的学派。

柏拉图认为数学是一切学问的基础(学院大门上写着“不懂几何者莫入”),这一学派对数学研究方法有颇多的贡献(分析法和归谬法)。

亚里斯多德是柏拉图的学生,他发展和完善了柏拉图的方法,最大的贡献是将前人使用的数学推理规律规范化和系统化,独立创立了逻辑学,即形式逻辑。

其中的矛盾律和排中律是数学间接证法(如反证法)的核心。

为欧几里得的演绎几何体系奠定了方法论的基础。

3 亚历山大学派——希腊数学黄金时代(前338年-前30)(重点)
主要人物:欧几里得、阿基米德和阿波罗里奥斯
欧几里得
希腊论证几何学的集大成者。

两个典故:“几何学无王者之道”;“不要希望从几何中捞点什么”。

欧几里得写了很多著作,包括数学、天文、光学和音乐。

最重要的是《原本》。

《原本》:用公理化方法对当时的数学知识作了系统化、理论化的总结,全书分为13卷,包括有5条公理、5条公设、119个定义和465条命题,构成了历史上第一个数学公理体系。

(注:这里公理是指一切科学公有的真理(基本原理),公设是为某一学科所接受的第一性原理。


《原本》包括了平面几何的基本内容,如全等形、平行线、多边形、圆、毕达哥
拉斯定理、初等作图及相似形等。

“几何代数”内容,体现了数形结合的思想。

“比例论”消除了部分当时对不可公度量认识上的危机(注:在对不可公度量的根本解决,到19世纪,出现在借助于极限过程对无理数作出严格定义之后)。

还有数论内容,不可分度量的讨论,立体几何内容。

详细陈述了“穷竭法”。

评论:《原本》是数学史上的一座丰碑,最大的功绩就在于数学中的演绎范式的确立,即公理化思想。

阿基米德(前287-前212)
阿基米德的成就涉及数学、力学和天文学,有流传于世的丰富文稿,其中数学著作集中探讨与面积和体积计算相关的问题,比如用穷竭法计算圆的周长和面积公式。

求出了球的表面积和体积公式。

阿基米德是数学工作的严格证明和创造技巧相结合的典范,用“平衡法”求球的体积公式,实质上是一种原始的积分法。

发现与求证是阿基米德的独特思维方式。

阿波罗里奥斯(前262-前190)
主要贡献涉及几何学和天文学,最主要的是数学成就,创立了完美的圆锥曲线理论,直至17世纪笛卡儿和帕斯卡之前无人超越。

《圆锥曲线论》共8卷,有487各命题。

阿波罗里奥斯第一次从一个对顶圆锥得到所有的圆锥曲线,并命名现在的椭圆(elipse)、双曲线(huperbola)和抛物线(parabola),还广泛讨论了圆锥曲线的性质,甚至包含了现代微分几何和射影几何的思想和萌芽。

《圆锥曲线论》是希腊演绎几何的最高成就,阿波罗里奥斯用纯几何的形式,推出了今天解析几何的主要结论。

4 亚历山大后期(公元30年-公元6世纪)和希腊数学的衰落
从论证数学转向实用的数学
海伦:主要讨论几何图形的面积和体积计算,如海伦公式(阿基米德发现,命名是海伦公式)。

建立三角学:代表人物是托勒枚《大成》:弦表和托勒枚定理,他是第一个有明确的构造原理并流传于世系统的三角函数表。

突破了前期以几何学为中心的传统,算术和代数成为独立的学科。

丢番图的《算术》,用纯分析的途径处理数论与代数问题,是希腊算术与代数成就的最高标志。

丢番图的《算术》是希腊算术与代数成就的最高标志。

共10卷,含290个问题。

主要对不定方程问题进行了广泛的讨论,最出名的一个不定方程是勾股定理的整数解问题。

还创立了“简写代数”。

局限是代数问题的解法缺乏一般性。

帕波斯《数学汇编》:主要荟萃总结前人的成果,同时也有创造性的成果。

许多宝贵资料正是《数学汇编》的记载得以保存。

5 本章研讨题目
1、希腊文化与理论数学的起源
2、“穷竭法”的历史起源及其价值
3、“圆锥曲线”的历史起源
4、“公理化”思想方法的起源与发展
5、托勒枚“弦表”算法与三角公式。

相关文档
最新文档