高中物理模型-子弹打木块模型
“子弹打木块”模型和“滑块—木板”模型-高考物理复习课件
B.子弹对木块做的功W=50 J
C.木块和子弹系统机械能守恒
D.子弹打入木块过程中产生的热量Q=350 J
图3
01 02 03 04 05 06 07 08
目录
提升素养能力
解析 根据动量守恒可得 mv0=(M+m)v,解得子弹打入木块后子弹和木块的 共同速度为 v=Mm+v0m=10 m/s,故 A 正确;根据动能定理可知,子弹对木块做 的功为 W=12Mv2-0=45 J,故 B 错误;根据能量守恒可知,子弹打入木块过 程中产生的热量为 Q=21mv20-21(M+m)v2=450 J,可知木块和子弹系统机械能 不守恒,故 C、D 错误。
(A)
图4
01 02 03 04 05 06 07 08
目录
提升素养能力
解析 木板碰到挡板前,物块与木板一直做匀速运动,速度为 v0;木板碰到挡 板后,物块向右做匀减速运动,速度减至零后向左做匀加速运动,木板向左做 匀减速运动,最终两者速度相同,设为 v1。设木板的质量为 M,物块的质量为 m,取向左为正方向,则由动量守恒定律得 Mv0-mv0=(M+m)v1,解得 v1= MM- +mmv0<v0,故 A 正确,B、C、D 错误。
01 02 03 04 05 06 07 08
目录
提升素养能力
4.如图4所示,光滑水平面上有一矩形长木板,木板左端放一小物块,已知木板 质量大于物块质量,t=0时两者从图中位置以相同的水平速度v0向右运动,碰 到右面的竖直挡板后木板以与原来等大反向的速度被反弹回来,运动过程中物 块一直未离开木板,则关于物块运动的速度v随时间t变化的图像可能正确的是
“子弹打木块”模型和“滑块—木板”模型
学习目标
1.会用动量观点和能量观点分析计算子弹打木块模型。 2.会用动量观点和能量观点分析计算滑块—木板模型。
高考物理 打木块模型之一
高考物理打木块模型之一高考物理打木块模型之一滑块和子弹击中木块的模型之一子弹打木块模型:包括一物块在木板上滑动等。
μns相=δek系统=q,q为摩擦在系统中产生的热量。
②小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动:包括小车上悬一单摆单摆的摆动过程等。
小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其它形式的能,因此过程中系统机械能守恒。
示例:质量为M、长度为L的木块仍然位于光滑的水平面上。
有一颗质量为m的子弹,以水平初始速度V0进入木块,子弹射出时的速度为v。
计算子弹与木块相互作用过程中系统损失的机械能。
解:如图,设子弹穿过木块时所受阻力为f,突出时木块速度为v,位移为s,则子弹位移为(s+l)。
水平方向不受外力,由动量守恒定律得:mv0=mv+mv①112由动能定理,对子弹-f(s+l)=mv2?mv0②221对木块FS=MV2?0③2lv0vs由①式得v=将m1m2(V0?V)替换为③, 其中FS=m?2(V0?V)2④ M2M1111M22② + ④ 得到FL=MV0?mv2?mv2?mv0?{mv2?m[(v0?v)]2}222222m由能量守恒知,系统减少的机械能等于子弹与木块摩擦而产生的内能。
即q=fl,l为子弹现木块的相对位移。
结论:系统损失的机械能等于摩擦产生的内能、摩擦与两物体相对位移的乘积。
即q=δe系统=μns相分量公式为:q=F1s阶段1+F2s阶段2+…+FNS相位n=δE系统1.在光滑水平面上并排放两个相同的木板,长度均为l=1.00m,一质量与木板相同的金属块,以v0=2.00m/s的初速度向右滑上木板a,金属块与木板间动摩擦因数为μ=0.1,g取10m/s。
求两木板的最后速度。
2.如图所示,在光滑的水平面上放置一个质量为M、长度为L的矩形木块B,在其右端放置一个质量为M的小木块a。
现在,以地面为基准,给a和B一个大小相同、方向相反的初始速度(如图所示),这样a开始向左移动,B开始向右移动,但最终,a不会从板B上滑开。
动量定理、动能定理专题-子弹打木块模型
动量定理、动能定理专题-⼦弹打⽊块模型动量定理、动能定理专题----⼦弹打⽊块模型⼀、模型描述:此模型主要是指⼦弹击中未固定的光滑⽊块的物理场景,如图所⽰。
其本质是⼦弹和⽊块在⼀对⼒和反作⽤⼒(系统内⼒)的作⽤下,实现系统内物体动量和能量的转移或转化。
⼆、⽅法策略:(1) 运动性质:在该模型中,默认⼦弹撞击⽊块过程中的相互作⽤⼒是恒恒⼒,则⼦弹在阻⼒的作⽤下会做匀减速直线性运动;⽊块将在动⼒的作⽤下做匀加速直线运动。
这会存在两种情况:(1)最终⼦弹尚未穿透⽊块,(2)⼦弹穿透⽊块。
(2) 基本规律:如图所⽰,研究⼦弹未穿透⽊块的情况:三、图象描述:在同⼀个v-t坐标中,两者的速度图线如图甲所⽰。
图线的纵坐标给出各时刻两者的速度,图线的斜率反映了两者的加速度。
两图线间阴影部分⾯积则对应了两者间的相对位移:d=s1-s2。
如果打穿图象如图⼄所⽰。
点评:由此可见图象可以直观形象反映两者的速度的变化规律,也可以直接对⽐出物块的对地位移和⼦弹的相对位移,从⽽从能量的⾓度快速分析出系统产⽣的热量⼀定⼤于物块动能的⼤⼩。
四、模型迁移⼦弹打⽊块模型的本质特征是物体在⼀对作⽤⼒与反作⽤⼒(系统内⼒)的冲量作⽤下,实现系统内物体的动量、能量的转移或转化。
故物块在粗糙⽊板上滑动、⼀静⼀动的同种电荷追碰运动,⼀静⼀动的导体棒在光滑导轨上切割磁感线运动、⼩球从光滑⽔平⾯上的竖直平⾯内弧形光滑轨道最低点上滑等等,如图所⽰。
(1)典型例题:例1.如图所⽰,质量为M的⽊块静⽌于光滑的⽔平⾯上,⼀质量为m、速度为的⼦弹⽔平射⼊⽊块且未穿出,设⽊块对⼦弹的阻⼒恒为F,求:(1)⼦弹与⽊块相对静⽌时⼆者共同速度为多⼤?(2)射⼊过程中产⽣的内能和⼦弹对⽊块所做的功分别为多少?(3)⽊块⾄少为多长时⼦弹才不会穿出?1. ⼀颗速度较⼤的⼦弹,以速度v ⽔平击穿原来静⽌在光滑⽔平⾯上的⽊块,设⽊块对⼦弹的阻⼒恒定,则当⼦弹⼊射速度增⼤为2v 时,下列说法正确的是( )A. ⼦弹对⽊块做的功不变B. ⼦弹对⽊块做的功变⼤C. 系统损耗的机械能不变D. 系统损耗的机械能增加解析:⼦弹的⼊射速度越⼤,⼦弹击中⽊块所⽤的时间越短,⽊块相对地⾯的位移越⼩,⼦弹对⽊块做的功W =fs 变⼩,选项AB 错误;⼦弹相对⽊块的位移不变,由Q =f s 相对知Q 不变,系统损失的机械能等于产⽣的热量,则系统损耗的机械能不变,选项C 正确,D 错误。
高中物理模型:子弹打木块模型
模型/题型:子弹打木块模型一.模型概述子弹射击木块的两种典型情况1.木块放置在光滑的水平面上运动性质:子弹对地在滑动摩擦力作用下做匀减速直线运动;木块在滑动摩擦力作用下做匀加速运动。
处理方法:把子弹和木块看成一个系统,①系统水平方向动量守恒;②系统的机械能不守恒;③对木块和子弹分别利用动能定理。
2.木块固定在水平面上运动性质:子弹对地在滑动摩擦力作用下做匀减速直线运动;木块静止不动。
处理方法:对子弹应用动能定理或牛顿第二定律。
两种类型的共同点:(1)系统内相互作用的两物体间的一对滑动摩擦力做功的总和恒为负值(因为有一部分机械能转化为内能);系统损失的动能等于系统增加的内能.(2)摩擦生热的条件:必须存在滑动摩擦力和相对滑行的路程,大小为Q =F f ·x 相,其中f 是滑动摩擦力的大小,x 是两个物体的相对路程(在一段时间内“子弹”射入“木块”的深度,就是这段时间内两者的相对路程,所以说是一个相对运动问题)。
(3)系统产生的内能,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积.(4)当子弹速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相等,但穿透过程中系统的动量仍守恒,系统损失的动能为ΔE k =F f ·L (L 为木块的长度).二、标准模型标准模型:一质量为M 的木块放在光滑的水平面上,一质量为m 的子弹以初速度v 0水平打进木块并留在其中,设子弹与木块之间的相互作用力为F f .则:(1)子弹、木块相对静止时的速度是多少?(2)子弹在木块内运动的时间为多长?(3)子弹、木块相互作用过程中子弹、木块发生的位移以及子弹打进木块的深度分别是多少?(4)系统损失的机械能、系统增加的内能分别是多少?(5)要使子弹不射出木块,木块至少多长?答案 (1)m M +m v 0 (2)Mm v 0F f (M +m ) (3)Mm (M +2m )v 022F f (M +m )2 Mm 2v 022F f (M +m )2 Mm v 022F f (M +m ) (4)Mm v 022(M +m ) Mm v 022(M +m ) (5)Mm v 022F f (M +m )解析(1)设子弹、木块相对静止时的速度为v ,以子弹初速度的方向为正方向,由动量守恒定律得 mv 0=(M +m )v 解得v =mM +mv 0 (2)设子弹在木块内运动的时间为t ,由动量定理得对木块:F f t =Mv -0 解得t =Mmv 0F f (M +m )(3)设子弹、木块发生的位移分别为x 1、x 2,如图所示,由动能定理得对子弹:-F f x 1=12mv 2-12mv 02 解得:x 1=Mm (M +2m )v 022F f (M +m )2 对木块:F f x 2=12Mv 2 解得:x 2=Mm 2v 022F f (M +m )2子弹打进木块的深度等于相对位移,即x 相=x 1-x 2=Mmv 022F f (M +m ) (4)系统损失的机械能为E 损=12mv 02-12(M +m )v 2=Mmv 022(M +m )系统增加的内能为Q =F f ·x 相=Mmv 022(M +m ),系统增加的内能等于系统损失的机械能 (5)假设子弹恰好不射出木块,此时有F f L =12mv 02-12(M +m )v 2 解得L =Mmv 022F f (M +m ) 因此木块的长度至少为Mmv 022F f (M +m ).三、典型例题1.(子弹打木块的能量) (多选)如图所示,质量为m 的子弹水平射入质量为M 、放在光滑水平地面上静止的木块,子弹未穿透木块,则从子弹接触木块到随木块一起匀速运动的过程中木块动能增加了5 J ,那么此过程中系统产生的内能可能为( )A .16 JB .11.2 JC .4.8 JD .3.4 J答案 AB.解析法二:本题也可用图象法,画出子弹和木块的v -t 图象如图所示,根据v -t 图象与坐标轴所围面积表示位移,ΔOAt 的面积表示木块的位移s ,ΔOAv 0的面积表示子弹相对木块的位移d ,系统产生的内能Q =fd ,木块得到的动能E k1=fs ,从图象中很明显可以看出d >s ,故系统产生的内能大于木块得到的动能.2.一质量为M 、长为l 的长方形木板B 放在光滑的水平地面上,在其右端放一质量为m 的小木块A ,m <M 。
高中物理建模:“子弹打木块”模型
滑斜面,斜面和水平面通过与ab和bc均相切的长度可忽略的光滑圆弧
连接。现有一质量为m的木块以大小为v0的水平初速度从a点向左运动 ,在斜面上上升的最大高度为h,返回后在到达a点前与物体P相对静
止。重力加速度为g。求
(1)木块在ab段受到的摩擦力f;
(2)木块最后距a点的距离s。
答案
(1)mv20-3mgh 3L
面的动摩擦因数μ=0.8,认为最大静摩擦力等于滑动摩擦力。取g
=10 m/s2,求:
(1)子弹相对小车静止时
小车速度的大小;
(2)小车的长度L。
答案 (1)10 m/s (2)2 m
转到解析
3.备选训练
【备选训练】如图示,质量为M的木块静置于光滑的水平面上,一质量为m、 速度为v0的子弹水平射入木块且未穿出。设木块对子弹的阻力恒为F,求: (1)射入过程中产生的内能为多少?木块至少为多长时子弹才不会穿出? (2)子弹在木块中运动了多长时间?
(2)vv2020--63gghhL
转到解析
【变式训练2】(2017·山西模拟)如图4所示一质量m1=0.45 kg的平 顶小车静止在光滑的水平轨道上。质量m2=0.5 kg的小物块(可视为 质点)静止在车顶的右端。一质量为m0=0.05 kg的子弹、以水平速 度v0=100 m/s射中小车左端并留在车中,最终小物块相对地面以2 m/s的速度滑离小车。已知子弹与车的作用时间极短,物块与车顶
审题导析 1.木块与子弹间产生的内能可由 哪个规律进行表达? 2.子弹射与木块过程中,子弹与 木块各自遵从什么运动规律?
转到解析Biblioteka (等3)于根系据统能其量他守形恒式,能系的统增损加失。的动能ΔEk=m+MMEk0,
(4)解决该类问题,既可以从动量、能量两方面解题,也 可以从力和运动的角度借助图象求解.
专题21子弹打木块模型和板块模型(精讲)
专题21子弹打木块模型和板块模型1.子弹打木块模型分类模型特点示例子弹嵌入木块中(1)子弹水平打进木块的过程中,系统的动量守恒.(2)系统的机械能有损失.两者速度相等,机械能损失最多(完全非弹性碰撞) 动量守恒:m v0=(m+M)v能量守恒:Q=F f·s=12m v02-12(M+m)v2子弹穿透木块(1)子弹水平打进木块的过程中,系统的动量守恒.(2)系统的机械能有损失.动量守恒:m v0=m v1+M v2能量守恒:Q=F f·d=12m v02-(12M v22+12m v12)2.子板块模型分类模型特点示例滑块未滑离木板木板M放在光滑的水平地面上,滑块m以速度v0滑上木板,两者间的摩擦力大小为f。
①系统的动量守恒;②系统减少的机械能等于摩擦力与两者相对位移大小的乘积,即摩擦生成的热量。
类似于子弹打木块模型中子弹未穿出的情况。
①系统动量守恒:mv0=(M+m)v;②系统能量守恒:Q=f·x=12m v02-12(M+m)v2。
滑块滑离木板M放在光滑的水平地面上,滑块m以速度v0滑上木板,两者间的摩擦力大小为f。
模型归纳木板 ①系统的动量守恒;②系统减少的机械能等于摩擦力与两者相对位移大小的乘积,即摩擦生成的热量。
类似于子弹穿出的情况。
①系统动量守恒:mv 0=mv 1+Mv 2; ②系统能量守恒:Q =fl =12m v 02-(12mv 12+12Mv 22)。
1.三个角度求解子弹打木块过程中损失的机械能 (1)利用系统前、后的机械能之差求解; (2)利用Q =f ·x 相对求解;(3)利用打击过程中子弹克服阻力做的功与阻力对木块做的功的差值进行求解。
2.板块模型求解方法(1)求速度:根据动量守恒定律求解,研究对象为一个系统; (2)求时间:根据动量定理求解,研究对象为一个物体;(3)求系统产生的内能或相对位移:根据能量守恒定律Q =F f Δx 或Q =E 初-E 末,研究对象为一个系统.模型1 子弹击木块模型【例1】(2023秋•渝中区校级月考)如图所示,木块静止在光滑水平面上,子弹A 、B 从两侧同时水平射入木块,木块始终保持静止,子弹A 射入木块的深度是B 的3倍。
动量定理、动能定理专题-子弹打木块模型
动量定理、动能定理专题----子弹打木块模型一、模型描述:此模型主要是指子弹击中未固定的光滑木块的物理场景,如图所示。
其本质是子弹和木块在一对力和反作用力(系统内力)的作用下,实现系统内物体动量和能量的转移或转化。
二、方法策略:(1) 运动性质:在该模型中,默认子弹撞击木块过程中的相互作用力是恒恒力,则子弹在阻力的作用下会做匀减速直线性运动;木块将在动力的作用下做匀加速直线运动。
这会存在两种情况:(1)最终子弹尚未穿透木块,(2)子弹穿透木块。
(2) 基本规律:如图所示,研究子弹未穿透木块的情况:三、图象描述:在同一个v-t坐标中,两者的速度图线如图甲所示。
图线的纵坐标给出各时刻两者的速度,图线的斜率反映了两者的加速度。
两图线间阴影部分面积则对应了两者间的相对位移:d=s1-s2。
如果打穿图象如图乙所示。
点评:由此可见图象可以直观形象反映两者的速度的变化规律,也可以直接对比出物块的对地位移和子弹的相对位移,从而从能量的角度快速分析出系统产生的热量一定大于物块动能的大小。
四、模型迁移子弹打木块模型的本质特征是物体在一对作用力与反作用力(系统内力)的冲量作用下,实现系统内物体的动量、能量的转移或转化。
故物块在粗糙木板上滑动、一静一动的同种电荷追碰运动,一静一动的导体棒在光滑导轨上切割磁感线运动、小球从光滑水平面上的竖直平面内弧形光滑轨道最低点上滑等等,如图所示。
(1)典型例题:例1.如图所示,质量为M的木块静止于光滑的水平面上,一质量为m、速度为的子弹水平射入木块且未穿出,设木块对子弹的阻力恒为F,求:(1)子弹与木块相对静止时二者共同速度为多大?(2)射入过程中产生的内能和子弹对木块所做的功分别为多少?(3)木块至少为多长时子弹才不会穿出?1. 一颗速度较大的子弹,以速度v 水平击穿原来静止在光滑水平面上的木块,设木块对子弹的阻力恒定,则当子弹入射速度增大为2v 时,下列说法正确的是( )A. 子弹对木块做的功不变B. 子弹对木块做的功变大C. 系统损耗的机械能不变D. 系统损耗的机械能增加解析:子弹的入射速度越大,子弹击中木块所用的时间越短,木块相对地面的位移越小,子弹对木块做的功W =fs 变小,选项AB 错误;子弹相对木块的位移不变,由Q =f s 相对知Q 不变,系统损失的机械能等于产生的热量,则系统损耗的机械能不变,选项C 正确,D 错误。
2024年人教版高中物理选择性必修第一册专题突破课二 子弹打木块模型和板块模型中的动量守恒
专题突破课二 子弹打木块模型和板块模型中的动量守恒任务一 子弹打木块模型【核心归纳】1.模型图示2.模型特点(1)子弹水平打进木块的过程中,系统的动量守恒。
(2)系统的机械能有损失。
3.两种情景(1)子弹嵌入木块中,两者速度相等,机械能损失最多(完全非弹性碰撞) 动量守恒:mv 0=(m +M )v能量守恒:Q =F f ·s =12m v 02-12(M +m )v 2(2)子弹穿透木块 动量守恒:mv 0=mv 1+Mv 2能量守恒:Q =F f ·d =12m v 02-(12M v 22+12m v 12)【典题例析】角度1 子弹嵌入木块中【典例1】(多选)如图所示,两个质量和速度均相同的子弹分别水平射入静止在光滑水平地面上质量相等、材料不同的两矩形滑块A 、B 中,射入A 中的深度是射入B 中深度的两倍。
已知A 、B 足够长,两种射入过程相比较( )A.射入滑块A 的子弹速度变化大B.整个射入过程中两滑块受到的冲量一样大C.射入滑块A 中时阻力对子弹做功是射入滑块B 中时的两倍D.两个过程中系统产生的热量相等【解析】选B 、D 。
子弹射入滑块过程中,子弹与滑块构成的系统动量守恒,有mv 0=(m +M )v ,两个子弹的末速度相等,所以子弹速度的变化量相等,A 错误;滑块A 、B 动量变化量相等,受到的冲量相等,B 正确;对子弹运用动能定理,有W f =12mv 2-12m v 02,由于末速度v 相等,所以阻力对子弹做功相等,C 错误;对系统,由能量守恒可知,产生的热量满足Q =12m v 02-12(m +M )v 2,所以系统产生的热量相等,D 正确。
角度2 子弹穿透木块【典例2】(多选)(2023·成都高二检测)水平飞行的子弹打穿固定在水平面上的木块,经历时间为t 1,子弹损失的动能为ΔE k1损,系统机械能的损失为E 1损 ,穿透后系统的总动量为p 1;同样的子弹以同样的速度打穿放在光滑水平面上的同样的木块,经历时间为t 2,子弹损失的动能为ΔE k2损,系统机械能的损失为E 2损,穿透后系统的总动量为p 2。
子弹打木块模型
C
F
F对C做的功 W=F(S+L)=30J
Q=μmgL=5J
S A
B
例4.如图所示,在光滑水平面上有A、B两辆小车,水平面 的左侧有一竖直墙,在小车B上坐着一个小孩,小孩与B车 的总质量是A车质量的10倍。两车开始都处于静止状态,小 孩把A车以相对于地面的速度v推出,A车与墙壁碰后仍以原 速率返回,小孩接到A车后,又把它以相对于地面的速度v 推出。每次推出,A车相对于地面的速度都是v,方向向左。 则小孩把A车推出几次后,A车返回时小孩不能再接到A车? 解:取水平向右为正方向,小孩第一次推出A车时; mBv1-mAv=0 即:
根据动量守恒定律有 根据能量守恒定律有
(mA mB )v2 (mA mB mC )v3 ①
1 1 2 2 (m A mB ) gL (m A mB )v2 (m A mB mC )v3 2 2
联立①②式代入数据解得
②
L 0.375
h
B
C
例3:长L=1m,质量M=1kg的木板AB静止于光滑水 平面上。在AB的左端有一质量m=1kg的小木块C,现 以水平恒力F=20N作用于C,使其由静止开始向右运 动至AB的右端,C与AB间动摩擦因数μ=0.5,求F对C 做的功及系统产生的热量 解:由于C受到外力作用所以系统动量不守恒,设木板 向前运动的位移是S,则木块的位移为S+L, 时间为t 对C: F(S+L)-μmg(S+L)=1/2×mvm2 m=1kg (F-μmg)t = mvm F=20N C 2 对AB:μmgS = 1/2×MvM A B μmg t = M vM M=1kg 解以上四式得: vm=3vM 摩擦生的热 S=0.5 m
子弹打木块模型
四、子弹打木块模型子弹打木块模型包括木块在长木板上滑动的模型,其实是一类题型解决方法基本相同。
一般要用到动量守恒、动量定理、动能定理及动力学等规律,综合性强、能力要求高,是高中物理中常见的题型之一,也是高考中经常出现的题型。
例题分析:例1:质量为2m 、长为L 的木块置于光滑的水平面上,质量为m 的子弹以初速度V 0水平向右射穿木块后,速度为V 0/2。
设木块对子弹的阻力F 恒定。
求:(1)子弹穿过木块的过程中木块的位移(2)若木块固定在传送带上,使木块随传送带始终以恒定速度u<V 0水平向右运动,则子弹的最终速度是多少解析:(1)木块的过程中,系统动量守恒,而机械能要损失,且损失的机械能等于阻力F 和木块长L 的乘积。
由系统动量守恒得:mV 0=mV 0/2+2mv (v 是子弹穿过木块后木块获得的速度) (1)由能量守恒得: FL=21m V 02-212m V 2-81m V 02 (2) 对木块有: FS=212m V 2 (3) 解以上三式得:木块的位移S=51L 木块对子弹的阻力F=L 165m V 02 解析:(2)在此过程中,由于木块受到传送带的作用力,所以系统动量不守恒。
此题不能用动量守恒解。
由题的条件,我们可以用运动学来处理此题。
选木块为参照系,则:子弹的初速度为(V 0-u) 末速度为(V-u ) 位移为L 加速度a=F/m=165mV 02 对子弹有:(V 0-u)2-(V –u )2=2as 解得:V=u+20852)0(v u v -- 当 (V 0-u)2>5/8 V 02 即u<(1-410) V 0时 V=u+20852)0(v u v -- 当(V 0-u)2<5/8 V 02 即u>(1-410) V 0时 V=u 解法二:以子弹为研究对象由动量定理和动能定理得:mV 0-mv=Ft (1) 21mV 02-21m V 2=F(ut+L) (2) 解以上两式得V ,后面的解与第一种方法相同题型变化:上题中子弹变为木块,木块变为长木板其它条件不变,求第一问解法相同例2:质量为M 的平板车在光滑的水平面上。
模型6子弹打木块模型-动量守恒的九种模型解读
联立解得△E=220J
(2)设滑块A刚滑上滑块B时速度为vA',小滑块A冲上滑块B,并恰好能达到滑块B的最高点时系统速度相等,设为v,由动量守恒定律,mAv1’+(m0+mB)v2=(mA+m0+mB)v
由机械能守恒定律, mAv1’2+ (m0+mB)v22= (mA+m0+mB)v2+mAgR
A. B. C. D.
【答案】BC
【解析】设子弹在木块中运动的时间为 ,以子弹为对象,根据动量定理可得 ,解得 ,设子弹射出木块时,木块的速度为 ,根据系统动量守恒可得 ,解得
根据位移关系可得 ,解得 ,故选BC。 公众号高中物理学习研究
3. (2024安徽芜湖重点高中二模)如图所示,质量均为m的物块A、B放在光滑的水平面上,中间用轻弹簧相连,弹簧处于原长,一颗质量为 的子弹以水平速度 射入木块A并留在物块中(时间极短),则下列说法正确的是( )
解得:vB=4 m/s
子弹、A、B和弹簧所组成的系统动量守恒,弹簧弹性势能最大时A、B、子弹具有相同的速度v,由动量守恒定律:
mAvA+(m+mB)vB=(m+mA+mB)v
解得:v=5 m/s
由能量关系:Ep= mAvA2+ (m+mB)vB2- (m+mA+mB)v2
解得:Ep=6 J。
(3)从子弹射入B中到弹簧再次恢复原长,系统总动量守恒,总动能不变,则:
(1)子弹击中木块后的速度;
(2)木块在斜面上向上运动的时间和返回斜面底端时速度大小。
【解析】(1)从子弹射击木块到子弹和木块一起运动过程中,子弹和ห้องสมุดไป่ตู้块组成系统动量守恒,设共同运动速度为v1,v0方向为正方向,则mv0=(m+M)v1解得v1=2m/s
【高考物理】模型构建:模型13、子弹打木块模型(解析版)Word(18页)
模型13、子弹打木块模型动量守恒定律、机械能守恒定律、动能定理等解决动力学问题的三大观点:力学观点:牛顿运动定律、运动学公式能量观点:动能定理、机械能守恒定律、能量守恒定律、功能关系动量观点:动量守恒定律(4nmgLn8nmgLn,对子弹射入木块后的上升过程,由机械能守恒定律得C.498m/s 【详解】第一粒弹丸射入木块中,根据动量守恒可得1()mv M m v=+.子弹射入沙箱的过程系统满足动量守恒、机械能守恒.子弹和沙箱合为一体的瞬间轻绳的拉力为()F m M g =++.子弹和沙箱合为一体后一起上升的最大高度与轻绳的长度有关.子弹和沙箱合为一体后一起上升的最大高度为2m v h =C.50J D C.5J Dv=.子弹打入木块后子弹和木块的共同速度为8m/s500J的过程中,两物块的动量守恒的过程中,子弹对物块A的冲量大小大于物块.子弹开始打物块到与物块共速,子弹、物块组成的系统动量守恒.子弹开始打物块到弹簧压缩至最短,子弹、物块、弹簧组成的系统机械能守恒.子弹开始打物块到弹簧压缩至最短,子弹、物块、弹簧组成的系统动量守恒.子弹物块以相同速度压弹簧的过程中,物块、子弹、弹簧组成的系统动量守恒【答案】A【详解】A.由于子弹和物块作用时间极短,则在打击过程中,内力远远大于外力,可知子弹开始打物块到与物块共速,子弹、物块组成的系统动量守恒,A正确;B.根据上述,子弹开始打物块到与物块共速过程类似完全非弹性碰撞,该过程有一部分动能转化为内能,则子弹开始打物块到弹簧压缩至最短,子弹、物块、弹簧组成的系统机械能减小,不守恒,B错误;C.打击过程子弹与物块动量守恒,打击完成后,子弹与木块向右压缩弹簧,系统所受外力的合力不为0,该过程动量不守恒,可知子弹开始打物块到弹簧压缩至最短,子弹、物块、弹簧组成的系统动量不守恒,C错误;D.根据上述可知,子弹物块以相同速度压弹簧的过程中,物块、子弹、弹簧组成的系统动量不守恒,D错误。
子弹打木块模型
四、子弹打木块模型子弹打木块模型包括木块在长木板上滑动的模型,其实是一类题型解决方法基本相同。
一般要用到动量守恒、动量定理、动能定理及动力学等规律,综合性强、能力要求高,是高中物理中常见的题型之一,也是高考中经常出现的题型。
例题分析:例1:质量为2m 、长为L 的木块置于光滑的水平面上,质量为m 的子弹以初速度V 0水平向右射穿木块后,速度为V 0/2。
设木块对子弹的阻力F 恒定。
求:(1)子弹穿过木块的过程中木块的位移(2)若木块固定在传送带上,使木块随传送带始终以恒定速度u<V 0水平向右运动,则子弹的最终速度是多少解析:(1)木块的过程中,系统动量守恒,而机械能要损失,且损失的机械能等于阻力F 和木块长L 的乘积。
设子弹穿过木块后木块获得的速度是v 由系统动量守恒得:mV 0=mV 0/2+2mv (1)由能量守恒得:FL=21m V 02-212m V 2-81m V 02(2) 对木块有: FS=212mV 2 (3)解以上三式得:木块的位移S=51L木块对子弹的阻力F=L165m V 02(2)在此过程中,由于木块受到传送带的作用力,所以系统动量不守恒。
此题不能用动量守恒解。
由题的条件,我们可以用运动学来处理此题。
选木块为参照系,则:子弹的初速度为(V 0-u) 末速度为(V-u ) 位移为L加速度a=F/m=165mV 02 对子弹有:(V 0-u)2-(V –u )2=2as 解得:V=u+20852)0(v u v --当 (V 0-u)2>5/8 V 02 即u<(1-410) V 0时 V=u+20852)0(v u v --当(V 0-u)2<5/8 V 02 即u>(1-410) V 0时 V=u解法二:以子弹为研究对象由动量定理和动能定理得: mV 0-mv=Ft (1) 21mV02-21m V 2=F(ut+L) (2) 解以上两式得V ,后面的解与第一种方法相同题型变化:上题中子弹变为木块,木块变为长木板其它条件不变,求第一问。
高三物理复习:子弹打木块模型
两根足够长的固定的平行金属导轨位于同一水平内,两轨间的距离为L。导 轨上面横放着两根导体棒ab和cd,如图所示,两根导体棒的质量皆为m,电 阻皆为m,电阻皆为R。回路中其余部分的电阻可不计。在整个导轨平面内 都有数值向上的匀强磁场,磁感应强度为B。设两导体棒均可沿导轨无摩擦 滑行。开始时,棒cd精致,棒ab有指向棒cd的初速度v0。若两导体棒在运动 中始终不接触,求:
mv0 (m M )v
m v m M v0
2.子弹在木块内运动的时间 动量定理(冲量定理)
对木块:Ft Mv
v
m
m M
v0
t Mmv0 F(M m)
3.子弹、木块的位移以及子弹打进木块mv2
1 2
mv02
s2 d s1
s1
Mm(M 2m)v02 2F (M m)2
1.在运动中产生的焦耳热最多是多少? 2.当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少?
小结
“子弹打木块”这类问题,关键是抓住动量和能量这 两条线,弄清楚系统内参与做功的是什么力?相对 位移是多少?从而顺利的建立等量关系,虽然出题 的形式不同、条件不同、问法不同,但解题思路是 一样的。
1
能量:
2
mv02
1 2
mv12
1 2
Mv22
FL
模型扩展
“子弹打木块”模型的实质是两物体在一对大小相等、 方向相反的力的作用下的运动(动量守恒),并通 过做功实现了不同形式能量之间的相互转化(能量 守恒)。因此,我们可以把这种模型扩展到其他问 题当中。
木板M放置在光滑水平桌面上,木块m以速度v0滑 上木板,最终与木板一起运动,两者之间动摩擦因
动量、能量的综合应用
考点目标:
第六章 微专题 “子弹打木块”模型
[模型突破练 ] 1. (2017· 河南省八市联考 )如图所示,质量为 mB = 2 kg 的平板车 B 上表面水平, 在平板车左端相 对于车静止着一块质量为 mA= 2 kg 的物块 A, A、 B 一起以大小为 v1= 0.5 m/s 的速度向左运动,一颗质量为 m0= 0.01 kg 的子弹 以大小为 v0= 600 m/s 的水平初速度向右瞬间射穿 A 后,速度变为 v= 200 m/s. 已知 A 与 B 之间的动摩擦因数不为零,且 A 与 B 最终达到相对静止时 A 刚好 停在 B 的右端,车长 L= 1 m, g 取 10 m/s2,求: (1)子弹穿过物块 A 的一瞬间,物块 A 的速度的大小; (2)A 与 B 间的动摩擦因数.
根据功能关系得 1 1 1 2 2 μmAgL= mAvA + mBv1 - (mA+ mB)v22 2 2 2 解得 μ= 0.1.
答案:(1)1.5 m/s
(2)0.1
2.如图所示,一质量为 M 的木块静止在水平轨道 AB 的 B 端,水平轨 道与光滑圆弧轨道 BC 相切,现有一质量为 m 的子弹以 v0 的水平速度 从左边射入木块且未穿出.求:
(1)子弹射入木块过程中系统损失的机械能和子弹与木块一起在圆弧轨 道上上升的最大高度; (2)从木块开始运动到木块返回 B 点的过程中木块(含子弹)所受合外力的 冲量大小.
解析:(1)设子弹射入木块后与木块的共同速度为 v,子弹射入木块的过 程系统动量守恒,由动量守恒定律有 mv0= (m+ M)v m 解得 v= v m+ M 0 损失的机械能
[解析] (1)设子弹、 木块相对静止时的速度为 v, 由动量守恒定律得 mv0 = (M+ m)v m 解得 v= v M+ m 0 (2)设子弹在木块内运动的时间为 t,对木块由动量定理得 ft= Mv- 0 Mmv0 解得 t= f M+ m
子弹打木块模型
(1)带电环进入电容器后在电场力的作用下做初速 度为v0的匀减速直线运动,而电容器则在电场力的作 用下做匀加速直线运动,当它们的速度相等时,带电 环与电容器的左极板相距最近,由系统动量守恒定律 可得: 动量观点: 力与运动观点: 设电场力为F
(2)能量观点(在第(1)问基础上): 对m: 对M: 所以运动学观点: 对M: ,对m: ,
[跟踪练习]
1.在光滑水平面上并排放两个相同的木板,长度均 为L=1.00m,一质量与木板相同的金属块,v0=2.00m/s 的初速度向右滑上木板A,金属块与木板间动摩擦因数 为μ=0.1,g取10m/s2。求两木板的最后速度。 v0 A B 金属块在板上滑动过程中,系统动量守恒。要金属块最 终停在什么位置要进行判断。假设金属块最终停在A上。 三者有相同速度v,相对位移为x,则有
5、如图4所示,电容器固定在一个绝缘座上,绝缘座放在光滑 水平面上,平行板电容器板间的距离为d,右极板上有一小孔, 通过孔有一左端固定在电容器左极板上的水平绝缘光滑细杆, 电容器极板以及底座、绝缘杆总质量为M,给电容器充电后, 有一质量为m的带正电小环恰套在杆上以某一初速度v0对准小 孔向左运动,并从小孔进入电容器,设带电环不影响电容器板 间电场分布。带电环进入电容器后距左板的最小距离为0.5d, 试求: (1)带电环与左极板相距最近时的速度v; (2)此过程中电容器移动的距离s。 (3)此过程中能量如何变化?
解得:
带电环与电容器的速度图像如图所示。由三角形面积 可得:
(3)在此过程,系统中,带电小环动能减少,电势能增 加,同时电容器等的动能增加,系统中减少的动能全部转 化为电势能。
解得:
如图所示,带弧形轨道的小车放在光滑的水平地面上, 车左端被固定在地面上的竖直档板挡住,已知小车的弧 形轨道和水平部分在B点相切,AB段光滑,BC段粗 糙, BC段长度为L=0.75m。现有一小木块(可视为质点) 从距BC面高为h=0.2m的A点无初速释放,恰好未从车 上滑落。已知木块质量m1=1kg,小车质量m2=3kg, g取10m/s2。求: (1)木块滑到B点时的速度; (2)木块与BC面之间的动摩擦因数; (3)在整个过程中,小车给档板的冲量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模型组合讲解——子弹打木块模型
赵胜华
[模型概述]
子弹打木块模型:包括一物块在木板上滑动等。
Q E s F k N =∆=系统相μ,Q 为摩擦在系统中产生的热量;小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动;一静一动的同种电荷追碰运动等。
[模型讲解]
例. 如图1所示,一个长为L 、质量为M 的长方形木块,静止在光滑水平面上,一个质量为m 的物块(可视为质点),以水平初速度0v 从木块的左端滑向右端,设物块与木块间的动摩擦因数为μ,当物块与木块达到相对静止时,物块仍在长木块上,求系统机械能转化成内能的量Q 。
图1
解析:可先根据动量守恒定律求出m 和M 的共同速度,再根据动能定理或能量守恒求出转化为内能的量Q 。
对物块,滑动摩擦力f F 做负功,由动能定理得:
2022
121)(mv mv s d F t f -=
+- 即f F 对物块做负功,使物块动能减少。
对木块,滑动摩擦力f F 对木块做正功,由动能定理得22
1
Mv s F f =,即f F 对木块做正功,使木块动能增加,系统减少的机械能为:
><=-+=--1)(2
1
21212220d F s F s d F Mv mv mv f f f t
本题中mg F f μ=,物块与木块相对静止时,v v t =,则上式可简化为:
><+-=2)(2
121
2
20t v M m mv mgd μ
又以物块、木块为系统,系统在水平方向不受外力,动量守恒,则:
><+=3)(0t
v M m mv
联立式<2>、<3>得:
)
(220
m M g Mv d +=μ
故系统机械能转化为内能的量为:
)
(2)(220
20m M Mmv m M g Mv mg d F Q f +=+⋅==μμ
点评:系统内一对滑动摩擦力做功之和(净功)为负值,在数值上等于滑动摩擦力与相对位移的乘积,其绝对值等于系统机械能的减少量,即E s F f ∆=。
从牛顿运动定律和运动学公式出发,也可以得出同样的结论。
由于子弹和木块都在恒力作用下做匀变速运动,位移与平均速度成正比:
v
v
v v v v s d s +=+=+00222/2/)( 所以
d m
M m
s m m M v v s d +=+==202, 一般情况下m M >>,所以d s <<2,这说明,在子弹射入木块过程中,木块的位移很
小,可以忽略不计。
这就为分阶段处理问题提供了依据。
象这种运动物体与静止物体相互作用,动量守恒,最后共同运动的类型,全过程动能的损失量可用公式:
2
0)
(2v m M Mm E k +=
∆
[模型要点]
子弹打木块的两种常见类型:
①木块放在光滑的水平面上,子弹以初速度v 0射击木块。
运动性质:子弹对地在滑动摩擦力作用下做匀减速直线运动;木块在滑动摩擦力作用下做匀加速运动。
图象描述:从子弹击中木块时刻开始,在同一个v —t 坐标中,两者的速度图线如下图中甲(子弹穿出木块)或乙(子弹停留在木块中)
图2
图中,图线的纵坐标给出各时刻两者的速度,图线的斜率反映了两者的加速度。
两图线间阴影部分面积则对应了两者间的相对位移。
方法:把子弹和木块看成一个系统,利用A :系统水平方向动量守恒;B :系统的能量守恒(机械能不守恒);C :对木块和子弹分别利用动能定理。
推论:系统损失的机械能等于阻力乘以相对位移,即ΔE =F f d
②物块固定在水平面,子弹以初速度v 0射击木块,对子弹利用动能定理,可得:
2
022
121mv mv d F t f -=
- 两种类型的共同点:
A 、系统内相互作用的两物体间的一对摩擦力做功的总和恒为负值。
(因为有一部分机械
能转化为内能)。
B 、摩擦生热的条件:必须存在滑动摩擦力和相对滑行的路程。
大小为Q =F f ·s ,其中F f 是滑动摩擦力的大小,s 是两个物体的相对位移(在一段时间内“子弹”射入“木块”的深度,就是这段时间内两者相对位移的大小,所以说是一个相对运动问题)。
C 、静摩擦力可对物体做功,但不能产生内能(因为两物体的相对位移为零)。
[误区点拨]
静摩擦力即使对物体做功,由于相对位移为零而没有内能产生,系统内相互作用的两物体间的一对静摩擦力做功的总和恒等于零。
不明确动量守恒的条件性与阶段性,如图3所示,不明确动量守恒的瞬间性如速度问题。
图3
[模型演练]
如图4所示,电容器固定在一个绝缘座上,绝缘座放在光滑水平面上,平行板电容器板
间的距离为d ,右极板上有一小孔,通过孔有一左端固定在电容器左极板上的水平绝缘光滑细杆,电容器极板以及底座、绝缘杆总质量为M ,给电容器充电后,有一质量为m 的带正电小环恰套在杆上以某一初速度v 0对准小孔向左运动,并从小孔进入电容器,设带电环不影响电容器板间电场分布。
带电环进入电容器后距左板的最小距离为0.5d ,试求:
图4
(1)带电环与左极板相距最近时的速度v ; (2)此过程中电容器移动的距离s 。
(3)此过程中能量如何变化?
答案:(1)带电环进入电容器后在电场力的作用下做初速度为v 0的匀减速直线运动,而电容器则在电场力的作用下做匀加速直线运动,当它们的速度相等时,带电环与电容器的左极板相距最近,由系统动量守恒定律可得: 动量观点:
m
M mv v v m M mv +=
+=0
0)(,
力与运动观点: 设电场力为F
m
M mv v v t M F
t m F v +===-
00, (2)能量观点(在第(1)问基础上): 对m :2
22
121)2(mv mv d s Eq -=+⋅- 对M :02
1
2-=
Mv Eqs 2
221)(212mv v M m d Eq
-+=- 所以2
d
m M m s ⋅+=
运动学观点: 对M :
s t v
=2
,对m :'20s t v v =+
2
'd
s s =
-,解得:)(2m M md s +=
带电环与电容器的速度图像如图5所示。
由三角形面积可得:
图5
0002
1
212vt s t v d ==, 解得:)
(2m M md
s +=
(3)在此过程,系统中,带电小环动能减少,电势能增加,同时电容器等的动能增加,系统中减少的动能全部转化为电势能。