高中物理模型-子弹打木块模型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模型组合讲解——子弹打木块模型
赵胜华
[模型概述]
子弹打木块模型:包括一物块在木板上滑动等。Q E s F k N =∆=系统相μ,Q 为摩擦在系统中产生的热量;小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动;一静一动的同种电荷追碰运动等。
[模型讲解]
例. 如图1所示,一个长为L 、质量为M 的长方形木块,静止在光滑水平面上,一个质量为m 的物块(可视为质点),以水平初速度0v 从木块的左端滑向右端,设物块与木块间的动摩擦因数为μ,当物块与木块达到相对静止时,物块仍在长木块上,求系统机械能转化成内能的量Q 。
图1
解析:可先根据动量守恒定律求出m 和M 的共同速度,再根据动能定理或能量守恒求出转化为内能的量Q 。
对物块,滑动摩擦力f F 做负功,由动能定理得:
2022
121)(mv mv s d F t f -=
+- 即f F 对物块做负功,使物块动能减少。
对木块,滑动摩擦力f F 对木块做正功,由动能定理得22
1
Mv s F f =,即f F 对木块做正功,使木块动能增加,系统减少的机械能为:
><=-+=--1)(2
1
21212220d F s F s d F Mv mv mv f f f t
本题中mg F f μ=,物块与木块相对静止时,v v t =,则上式可简化为:
><+-=2)(2
121
2
20t v M m mv mgd μ
又以物块、木块为系统,系统在水平方向不受外力,动量守恒,则:
><+=3)(0t
v M m mv
联立式<2>、<3>得:
)
(220
m M g Mv d +=μ
故系统机械能转化为内能的量为:
)
(2)(220
20m M Mmv m M g Mv mg d F Q f +=+⋅==μμ
点评:系统内一对滑动摩擦力做功之和(净功)为负值,在数值上等于滑动摩擦力与相对位移的乘积,其绝对值等于系统机械能的减少量,即E s F f ∆=。
从牛顿运动定律和运动学公式出发,也可以得出同样的结论。由于子弹和木块都在恒力作用下做匀变速运动,位移与平均速度成正比:
v
v
v v v v s d s +=+=+00222/2/)( 所以
d m
M m
s m m M v v s d +=+==202, 一般情况下m M >>,所以d s <<2,这说明,在子弹射入木块过程中,木块的位移很
小,可以忽略不计。这就为分阶段处理问题提供了依据。象这种运动物体与静止物体相互作用,动量守恒,最后共同运动的类型,全过程动能的损失量可用公式:
2
0)
(2v m M Mm E k +=
∆
[模型要点]
子弹打木块的两种常见类型:
①木块放在光滑的水平面上,子弹以初速度v 0射击木块。
运动性质:子弹对地在滑动摩擦力作用下做匀减速直线运动;木块在滑动摩擦力作用下做匀加速运动。
图象描述:从子弹击中木块时刻开始,在同一个v —t 坐标中,两者的速度图线如下图中甲(子弹穿出木块)或乙(子弹停留在木块中)
图2
图中,图线的纵坐标给出各时刻两者的速度,图线的斜率反映了两者的加速度。两图线间阴影部分面积则对应了两者间的相对位移。
方法:把子弹和木块看成一个系统,利用A :系统水平方向动量守恒;B :系统的能量守恒(机械能不守恒);C :对木块和子弹分别利用动能定理。 推论:系统损失的机械能等于阻力乘以相对位移,即ΔE =F f d
②物块固定在水平面,子弹以初速度v 0射击木块,对子弹利用动能定理,可得:
2
022
121mv mv d F t f -=
- 两种类型的共同点:
A 、系统内相互作用的两物体间的一对摩擦力做功的总和恒为负值。(因为有一部分机械
能转化为内能)。 B 、摩擦生热的条件:必须存在滑动摩擦力和相对滑行的路程。大小为Q =F f ·s ,其中F f 是滑动摩擦力的大小,s 是两个物体的相对位移(在一段时间内“子弹”射入“木块”的深度,就是这段时间内两者相对位移的大小,所以说是一个相对运动问题)。 C 、静摩擦力可对物体做功,但不能产生内能(因为两物体的相对位移为零)。
[误区点拨]
静摩擦力即使对物体做功,由于相对位移为零而没有内能产生,系统内相互作用的两物体间的一对静摩擦力做功的总和恒等于零。
不明确动量守恒的条件性与阶段性,如图3所示,不明确动量守恒的瞬间性如速度问题。
图3
[模型演练]
如图4所示,电容器固定在一个绝缘座上,绝缘座放在光滑水平面上,平行板电容器板
间的距离为d ,右极板上有一小孔,通过孔有一左端固定在电容器左极板上的水平绝缘光滑细杆,电容器极板以及底座、绝缘杆总质量为M ,给电容器充电后,有一质量为m 的带正电小环恰套在杆上以某一初速度v 0对准小孔向左运动,并从小孔进入电容器,设带电环不影响电容器板间电场分布。带电环进入电容器后距左板的最小距离为0.5d ,试求:
图4
(1)带电环与左极板相距最近时的速度v ; (2)此过程中电容器移动的距离s 。 (3)此过程中能量如何变化?
答案:(1)带电环进入电容器后在电场力的作用下做初速度为v 0的匀减速直线运动,而电容器则在电场力的作用下做匀加速直线运动,当它们的速度相等时,带电环与电容器的左极板相距最近,由系统动量守恒定律可得: 动量观点:
m
M mv v v m M mv +=
+=0
0)(,
力与运动观点: 设电场力为F
m
M mv v v t M F
t m F v +===-
00, (2)能量观点(在第(1)问基础上): 对m :2
22
121)2(mv mv d s Eq -=+⋅- 对M :02
1
2-=
Mv Eqs 2
221)(212mv v M m d Eq
-+=- 所以2
d
m M m s ⋅+=
运动学观点: 对M :
s t v
=2
,对m :'20s t v v =+