第7章《平面向量》复习课
中职数学第七章平面向量章节复习课件
D. 63 65
(5)若|m|=4,|n|=6,m与n的夹角是135°,则m·n等于(C )
A.12
B.12 2
C.-12 2
D.-12
A.(7,1)
B.(-7,-1)
C.(-7,1)
D.(7,-1)
(3)已知a=(-1,3),b=(x,-1),且a∥b,则x等于( C )
A.3
B.-3
C. 1 3
D. 1 3
(4)若a=(3,4),b=(5,12),则a与b的夹角的余弦值为( A )
A. 63 65
B. 33 65
C. 33 65
(3a b)2 9a2 6a b b2 109 3a b 109
例3 平面向量a=(3,-4),b=(2,x),c=(2,y),已知a∥b,a⊥c, 求b,c及b与c的夹角.
答案: a=(3,-4),b=(2,x), a∥b 3 4
2x
c (2,y)a c y 3 2
课堂探究
1.探究问题 【探究】向量知识,向量观点在数学.物理等学科的很多分支有着广 泛的应用,应引起足够的重视. 思考一下,向量学习主要有哪些数学 思想? 答案:(1)数形结合的思想方法。由于向量本身具有代数形式和 几何形式双重身份,所以在向量知识的整个学习过程中,都体现 了数形结合的思想方法.(2)化归转化的思想方法。向量的夹角、 平行、垂直等关系的研究均可化归为对应向量或向量坐标的运算 问题;三角形形状的判定可化归为相应向量的数量积问题;向量 的数量积公式 a2 a 2 ,沟通了向量与实数间的转化关系;一些 实际问题也可以运用向量知识去解决.(3)分类讨论的思想方法。 如向量可分为共线向量与不共线向量;平行向量(共线向量)可 分为同向向量和反向向量;向量a在b方向上的投影随着它们之间 的夹角的不同,有正数、负数和零三种情形.
高一数学最新课件-平面向量单元复习(江苏省沭阳高级中学)[整理] 精品
回目录
本页结束
6、平移—典例分析-例13
知 识 回 忆
典 例11 例 分 例12 析 例13
例13 把y=2x 图象 c按a=(-1,2)平移 得c′则c′解析式___
点击出
xy′′==yx+-12现答∴案
x=x′+1 y=y′-2
y′-2=2x′+1 ∴y=2x+1+2
回目录
本页结束
知 识 回 忆
余弦定理
回目录
斜三角形的 解法及其应用
1. 向量的概念
知 识 回 忆
典 例 分 析
回目录
(1)向量
既有大小又有方向的量叫做向量
(2)平行向量(共线向量)
方向相同或相反的非零向量叫做平行向量,零 向量与任何向量平行.
(3)相等向量
长度相等且方向相同的向量叫做相等向量
(4)加法、减法
三角形法则(首尾相接),平行四边形法则(共起点)
3、平面向量的坐标运算—典例分析
知 识 回 忆
典 例 例5 分 析
例6
例5 |a|=10 b=(3,-4)且a∥b求a
解:设a =(x,y) 则 x2+y2=100 -4x点 现-击 答3y出 案=0 x=6 x=-6 y=-8 y=8 a=(6,-8)或(-6,8)
回目录
本页结束
3、平面向量的坐标运算—典例分析
4目.左录下方的6、“平点回移击目此录处”进是入指回到本知页识主回忆
7、正余弦定理
知识回忆
典例分析 典例分析 典例分析 典例分析 典例分析 典例分析 典例分析
知识结构 知识归纳 单元测试
学习目录
1、向量的概念
知识回忆 典例分析
人教版高中数学课件:高三数学第一轮复习的课件 平面向量坐标运算
k<
2 3
思考2:△ABC为钝角三角形,求k的范围?
k<
或
3 2 13
<k<
3 2
或
3
<k < 2
3 2
13
或k>
11 3
思考3:△ABC为锐角三角形,求k的范围?
让我们共同来提高! 问题2已知向量 u ( x , y ) 与 v ( y , 2 y x ) 的对应关系用 v f (u ) 表示. (1)设a (1,1), b (1, 0 ) ,求向量 f ( a )及 f (b ) 的坐标; (2)证明:对于任意向量 a , b 及常数m,n恒有: f ( m a n b ) mf ( a ) nf ( b ) 成立; (3)求使 f ( c ) ( p , q )(p,q为常数)的向量 c 的坐标. 解:⑴ 由题意,知:
五、作业布置:
苏大《自我测试》B册 P179 §32 作业部分及例题2
△ABC为钝角三角形,求k的范围?
AB AC
y C4 C2 B
<0且
AB 、 AC
不共线;
k<
2 3
即 2 3 k <0
或
BA BC
BC <0且 BA、 不共线. 即 1 ( 2 ) 3 ( k 3 )<0
又 mf ( a ) nf ( b ) m ( a 2 , 2 a 2 a 1 ) n ( b 2 , 2 b 2 b1 ),
( ma 2 nb 2 , 2 ma 2 2 nb 2 ma 1 nb 1 )
f ( m a n b ) mf ( a ) nf ( b ).
若u
( x , y ),
2012届高三数学复习课件(广东文)第7章第2节__平面向量的数量积
解析: 因为a b a c,所以 a b cos a c cos 1 (其中、 分别为a与b、a与c的夹角).因为 a 0, 所以 b cos c cos .因为cos 与cos 不一定相等, 所以 b 与 c 不一定相等,所以b与c也不一定相等. 所以 1 不正确.
2 若a b a c,则 a
b cos a c cos (a、b分别
为a与b、a与c的夹角).所以 a ( b cos c cos ) 0, 所以 a 0或 b cos c cos . 当b c时, cos 与 c cos 可能相等.所以 2 不正确. b
向量的平行与垂直
例3:如图,在矩形ABCD中, a AB, b AD, M 、N 分 别是AB、CD的中点,AB | 2,AD | 1. | | AN 1 求证: 与MC共线; AN 2 求证: BN;
3
1 3 3 3由 2 知k f t t t, 4 4 3 2 3 3 则k f t t t 1 t 1 . 4 4 4 令k <0,得 1<t<;令k >0,得t< 1或t>1. 1 故k f t 的单调递减区间是 1,1 ,单调递增区间 是(, 1)和(1, ).
解析:因为 a 6, 4,且a与b的夹角 为60, b 1 所以a a b cos 6 4 12, b 2 所以 a b a 2a b b 36 24 16 76,
2 2 2
a 3b a 2 6a b 9b 2 36 72 144 108,
又 PAPB 1 a 3 a (1 2a )(3 2a ) 5a 2 10a, 故由5a 2 10a 0,得0 a 2; 由PA和PB不共线,得 1 a (3 2a ) (1 2a ) 3 a , 解得a 1.即PA与PB的夹角为钝角的充要条件是 "0 a 1或1 a 2".
《平面向量复习小结》 课件
2
2
2
2
2
1 4 e1 e 2 4 e1 e2 cos 60 4 1 4 11 1 7 2
∴
a 7
同理可得
b 7
a b 2e1 e2 3e1 2e2 6e1 e1 e 2 2 e2
7 a b 1 2 cos 2 7 7 ab
则 a · b =x1x2+y1y2
五、向量垂直的判定
( 1 ) a b a b 0 向量表示 (2) a b x1 x2 y1 y2 0 坐标表示
六、向量平行的判定(共线向量的判定)
( 1 )a // b b a (a 0 ) 向量表示 (2) b // a x1 y2 x2 y1 0 ,其中 a (x1,y1), b (x2,y2)
3、数乘向量的运算律: a a ( ) a a a
(a b) a b
a 向量 b与非零向量 共线 实数 ,使得 b = a 。
4、共线向量基本定理
有且只有一个
5、平面向量基本定理
如果 e1 , e2 是同一个平面内的两个 不共线向量,那么对于 这一平面内的任一向量 a ,有且只有一对实数 1,2使 a 1 e1 2 e2
( b 2 a ) b ,则 a 与 b 的夹角是( ) (A) 30 (B) 60 (C) 120
(D) 150
2
分析:∵ ( a 2 b ) a 0 ,∴ a 2a b 即 a 2a b ① ∵ ( b 2 a ) b 0 ,∴ b 2a b 即 b 2a b ② ∴由①②可得 a b 2a b
平面向量复习课教案
平面向量复习课教案第一章:向量的概念与运算1.1 向量的定义与表示介绍向量的概念,解释向量的定义展示向量的表示方法,包括箭头表示和坐标表示强调向量的方向和模长的意义1.2 向量的运算复习向量的加法、减法和数乘运算解释向量加法和减法的几何意义探讨数乘向量的性质和运算规则第二章:向量的数量积2.1 数量积的定义与性质引入数量积的概念,解释数量积的定义展示数量积的计算公式和性质强调数量积的交换律、分配律和消去律2.2 数量积的应用探讨数量积在向量投影中的应用解释夹角和向量垂直的概念展示数量积在向量长度和方向判断中的应用第三章:向量的坐标运算3.1 坐标系的建立介绍坐标系的定义和建立方法解释直角坐标系和笛卡尔坐标系的区别和联系强调坐标系中点的表示方法3.2 向量的坐标运算复习向量在坐标系中的表示方法介绍向量的坐标运算规则,包括加法、减法和数乘强调坐标运算与几何意义的联系第四章:向量的线性相关与基底4.1 向量的线性相关性引入线性相关的概念,解释线性相关的定义探讨线性相关性的性质和判定方法强调线性相关性与向量组的关系4.2 向量的基底介绍基底的概念,解释基底的定义和作用探讨基底的选择方法和基底的性质强调基底与向量表示和线性相关的联系第五章:向量的线性空间5.1 线性空间的概念引入线性空间的概念,解释线性空间的定义探讨线性空间的性质和运算规则强调线性空间与向量组的关系5.2 向量组的线性表示介绍线性表示的概念,解释线性表示的定义探讨线性表示的方法和性质强调线性表示与基底和线性空间的关系第六章:向量的叉积与外积6.1 叉积的定义与性质引入叉积的概念,解释叉积的定义和几何意义展示叉积的计算公式和性质强调叉积的交换律、分配律和消去律6.2 叉积的应用探讨叉积在面积计算和力矩中的应用解释向量垂直和向量积的关系展示叉积在几何图形判断中的应用第七章:向量场的概念与运算7.1 向量场的定义与表示介绍向量场的概念,解释向量场的定义和表示方法展示向量场的图形表示和箭头表示强调向量场的物理意义和应用领域7.2 向量场的运算复习向量场的加法和乘法运算解释向量场的叠加原理和运算规则强调向量场的运算与物理意义的联系第八章:向量函数的概念与性质8.1 向量函数的定义与表示引入向量函数的概念,解释向量函数的定义和表示方法展示向量函数的图像和性质强调向量函数的应用领域和数学意义8.2 向量函数的性质与应用探讨向量函数的连续性、可导性和可微性解释向量函数在物理和工程中的应用展示向量函数的图像和性质第九章:向量微积分的基本定理9.1 向量微积分的定义与性质介绍向量微积分的基本概念,解释向量微积分的定义和性质展示向量微积分的运算规则和公式强调向量微积分在物理和工程中的应用9.2 向量微积分的基本定理复习格林定理、高斯定理和斯托克斯定理解释向量微积分基本定理的意义和应用强调向量微积分基本定理在几何和物理中的重要性第十章:向量的进一步应用10.1 向量在几何中的应用探讨向量在几何图形判断和证明中的应用解释向量积和向量场的几何意义展示向量在几何问题解决中的应用10.2 向量在物理中的应用解释向量在物理学中的重要性,包括力学和电磁学探讨向量在力学中速度、加速度和力矩的应用展示向量在电磁学中电场和磁场的应用10.3 向量在工程中的应用介绍向量在工程领域中的应用,如土木工程和航空工程解释向量在结构分析和流体动力学中的应用展示向量在工程问题解决中的作用重点和难点解析1. 向量的概念与表示:向量的定义和表示方法是理解向量运算和应用的基础。
平面向量复习课习题
3.两个向量数量积的重要性质:
①a2=|a|2即|a|= a2 (求线段的长度); uuur uuur
②求向量的夹角:已知两个非零向量a与b,作 OA a,OB b,
则∠AOB=θ(0°≤θ≤180°)叫做向量a与b的夹角,
cosθ=cos<a,b>= a b
x1x2 y1 y2
uuur uuur r
uur uuur uuur r
C.PB PC 0 D.PA PB PC 0
uuur uuur uuur uur B 【解析】 Q BC BP BP BA,
uuur uuur uuur uuur PC AP, PC AP 0.
uuur uur r 即PC PA 0,故选B.
重要考点回顾
一、向量的概念
1.向量:既有大小又有方向的量,向量不能比较大小,但向量的
模可以比较大小.
r
r
2.零向量:长度为0的向量,记为 0 ,其方向是任意的, 0 与任意向
量平行.
3.单位向量:模为1个单位长度的向量.
4.平行向量(共线向量):方向相同或相反的非零向量.
5.相等向量:长度相等且方向相同的向量.
8.若向量a、b满足|a|=1,|b|=2,且a与b的夹角为 ,则|a+b|=
.
3
7 【解析】 因为 | a b |2 (a b)2 | a |2 | b |2 2a b
1 4 21 2 cos 7,故 | a b | 7.
3
9.已知|a|=3,|b|=2.若a·b=-3,则a与b夹角的大小为
19.设向量a=(1,cosθ)与b=(-1,2cosθ)垂直,则cos2θ等于 ( )
7.2 数乘向量课件-2023届广东省高职高考数学第一轮复习第七章平面向量
不一定是直解) 【解】 因为 3xa+(10-y)b=(4y-7)a+2xb
所以(3x,10-y)=(4y-7,2x),联立方程组31x0=-4yy=-27x,解得yx==43. 故 x=3,y=4.
二、填 空 题
9.向量 a∥b 且|a|=3|b|,则向量 a、b 的关系式是__a_=__3_b_或__a_=__-__3_b___. 【解析】 由两向量平行知 a=3b 或 a=-3b.
10.若向量 a=e1+e2,b=e1-e2,则 2a+3b=__5_e_1_-__e_2 __. 【解析】 2a+3b=2(e1+e2)+3(e1-e2)=5e1-e2.
11.在四边形 ABCD 中,A→D=12B→C,则四边形 ABCD 是___梯___形. 【解析】 由A→D=12B→C得A→D∥B→C,A→D=12B→C.
12.如果 a=-2b(b≠0),则 a 与 b 的位置关系是_平__行__且__反__向___. 【解析】 由向量平行的概念可知 a 与 b 平行,又 λ=-2<0,∴a 与 b 反向.
6.(1)(-2)×12 a=__-__a__;(2)2(a+b)-3(a-b)=__-__a_+__5_b__. 【解析】 (1)(-2)×12a=(-2)×12a=(-1)a=-a;
(2)2(a+b)-3(a-b)=2a+2b-(3a-3b)=2a+2b-3a+3b=-a+5b.
一、选 择 题
5.已知向量 e1、e2 不共线,实数 x、y 满足(3x-4y)e1+(2x-3y)e2=6e1
+3e2,则 x-y=( A )
四川省中等职业学校对口升学考试-数学-第七章《平面向量》总复习-课件
例1 给出下列四个命题:
(1)零向量没有方向;(2)单位向量的模一定相等;
(3)若a∥b,b∥c,则a∥c;(4)若a=b,则a∥b.
注意:
其中真命题的个数是( ).
A.1
B.2
C.3
D.4
【解析】零向量模长为0,方向不确定,所以(1)为假命题;单位向量的模都等于1,
所以(2)为真命题;对于(3),只要b=0,就不一定能得到a∥c,所以(3)为假命题
与b的和向量,如图7-2(b)所示.
2.向量的减法
三角形法则:已知向量a、b,在平面内任取一点O,作OA=a,OB=b,则BA=OA-OB=a-b,如图7-2(c)所示
图7-2
一Байду номын сангаас
知识清单
3.数乘运算
实数λ与向量a的积是一个向量,记作λa.λa与a的模、方向的关系规定如下:
(1)|λa|=|λ||a|.
2.两个向量垂直
如果两个向量a与b的夹角是90°,我们就说a与b垂直,记作a⊥b.
3.两个向量的内积(数量积)的定义
向量a与b的模与它们的夹角的余弦之积称为a 与b 的内积(数量积),记作a·b,即
a·b=|a||b|cos<a,b>.
说明:零向量与任意向量的内积为0.
一
知识清单
4.向量内积的性质
填空题,4分
选择题,4分
选择题,4分
本章内容在历年真题中多以选择题和解答题形式出现,其分值比例约占15%,难度不大.涉及的
命题趋势
知识点有:平面向量的线性运算,平面向量基本定理及向量的坐标运算,向量的数量积运算.有
时也会与三角函数、平面几何、解析几何进行交汇命题
一
向量复习课
解:1) ka b k1,2 3,2 k 3,2k 2
a 3b 1,233,2 10,4
当ka b a 3b 0时 这两个向量垂直
由k 310 2k 2 4 0 解得k=19
2) 当ka b与a 3b平行时,存在唯一实数, 使ka b a 3b
两个向量的数量积是否 为零,是判断相应的两条 直线是否垂直的重要方 法之一.
【典型例题分析】
例1. 已知a (1, 2), b (3, 2),当k为何值时,
(1) ka b a 3b ?
不存在
(2) ka b 与 a 3b垂直 ? k=19
(3) ka b 与 a 3b共线?共线时它们是
解: (a+3b)·(7a-5b)=0
(a-4b)·(7a-2b)=0 a2=b2 2a·b=b2 ∴cos=
ab
1
|a||b| 2
7a+16a·b-15b=0 7a2-30a·b+8b2=0
=60。
【典型例题分析】
例1. 已知 A(1, 2), B(2, 3), C(-2, 5) 求证: ABC是直角三角形
① a b ab 0
② 设a x1, y1,b x2, y2 ,则 a b x1x2 y1y2 0
例一、判断下列各题是否正确:
二、基础训练题
1.有四个式子: 10 a 0, 20 a 0, 3a b a c b c,
4a b a b ,其中正确的个数为: D
若a与b共线,则k的值为 1
④
若 a 1, b
2,且 a b a,则a与b的夹角是
4
四 归纳总结
1)向量是一个融大小和方向于一体的量,可用有向线段形象 的表示出来,向量不同于数量,但向量与数量有很多联系, 我们要分清它们的导同。 2)转化是一种重要的思维模式,也是解决数学问题的一种 重要的策略和方法。向量兼有数和形两方面的特征,因此 它是数形结合的桥梁之一,也是实现数形转化的一个重要 工具。 3)利用向量的共线定理,能方便的证明几何问题中三点共 线和两直线平行问题。(我们下节课将继续讨论这个问题)
平面向量复习讲义
平面向量复习讲义一. 向量有关概念:1. 向量的概念:既有大小又有方向的量,注意向量和数量的区别。
向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。
2. 零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的;uuu3. 单位向量:长度为一个单位长度的向量叫做单位向量(与AB共线的单位向量是uuu.ABL);|AB|4. 相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5. 平行向量(也叫共线向量):方向相同或相反的非零向量a、b叫做平行向量,记作:a // b,规定零向量和任何向量平行。
提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0);6. 相反向量:长度相等方向相反的向量叫做相反向量。
a的相反向量是一a。
女口下列命题:(1)若a b,则a b。
(2)两个向量相等的充要条件是它们的起点相同,终点相同。
(3)若AB DC,则ABCD是平行四边形。
(4)若ABCD是平行四边形,uiin LLir r r r r r r r r r r r r则AB DC。
(5)若a b, b c,则 a c。
(6)若a//b,b//c,则a//c。
其中正确的是____________(答:(4)(5))二. 向量的表示方法:1 .几何表示法:用带箭头的有向线段表示,如AB,注意起点在前,终点在后;2 .符号表示法:用一个小写的英文字母来表示,如a,b,c等;3.坐标表示法:在平面内建立直角坐标系,以与x轴、y轴方向相同的两个单位向量i,——r r r tj为基底,则平面内的任一向量a可表示为a xi y j x,y,称x, y为向量a的坐标,a = x, y叫做向量a的坐标表示。
如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。
推荐-高三数学一轮复习课件5.1 平面向量的概念与线性运算
5.1 平面向量的概念与线性运算
考情概览
-3-
考纲要求
1.了解向量的实际背景. 2.理解平面向量的概念和两个向量相 等的含义. 3.理解向量的几何表示. 4.掌握向量加法、减法的运算,并理解 其几何意义. 5.掌握向量数乘的运算,并理解其几何 意义,以及两个向量共线的含义. 6.了解向量的线性运算性质及其几何 意义.
反之,若四边形 ABCD 为平行四边形,则������B ∥ ������������且|������B|=|������������|,
因此,������B = ������������. ③不正确.相等向量的起点和终点可以都不同. ④不正确.当 a∥b 且方向相反时,即使|a|=|b|,也不能得到 a=b. 综上所述,真命题的序号是②.
所以������������
=
1 2
(������������
+
������B).
知识梳理
-11-
知识梳 理
双击自 测
12345
5.设在四边形 ABCD 中,有12 ������������ = ������������,且|������������|=|������������|,则这个四边 形是 等腰梯形 .
3a=c,2b=d,e=t(a+b),是否存在实数t使C,D,E三点在一条直线上?若
存在,求出实数t的值;若不存在,请说明理由.
解:由题设知,������������=d-c=2b-3a,������������=e-c=(t-3)a+tb,C,D,E 三点在一
条直线上的充要条件是存在实数 k,使得������������=k������������,即
(× )
人教高中数学必修二A版《平面向量的应用》平面向量及其应用教学说课复习课件(平面几何中的向量方法)
必修第二册·人教数学A版
返回导航 上页 下页
探究二 平面向量在几何求值中的应用
[例 2] (1)已知边长为 2 的正六边形 ABCDEF,连接 BE,CE,
点 G 是线段 BE 上靠近 B 的四等分点,连接 GF,则G→F·C→E( )
课件
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
的合力的大小为( )
课件
课件
课件
课件
A.5 课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
手 抄 报 : 课 件/shouchaobao/ 课 件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
N
B.5 2 N
C.5 3 N
D.5 6 N
解析:两个力的合力的大小为|F1+F2|= F21+F22+2F1·F2=5 6(N). 答案:D
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
手 抄 报 : 课 件/shouchaobao/ 课 件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
①选取基底;②用基底表示相关向量;③利用向量的线性运算或数量积找相应关系;
④把几何问题向量化.
(2)向量的坐标运算法的四个步骤:
基底表示,利用向量的运算法则、运算律或性质计算.
②坐标法:建立平面直角坐标系,实现向量的坐标化,将几何问题中的长度、垂直、
平行、夹角等问题转化为代数运算.
平面向量的概念 课件-高中数学人教A版(2019)必修第二册
(3)不正确.依据规定:与任意向量平行.
(4)不正确.因为向量与向量若有一个是零向量,则其方向不定.
(5)正确.向量完全由它的模和方向确定,与起点无关.
练习
变1.下列说法正确的是( ).
A.若与平行,与平行,则与一定平行
B.一定在同一直线上
C.若|| < ||,则 <
解:(1)如图所示,作出 , , : 解:(2)由题意知//, = ,
所以四边形是平行四边形.
所以 = = 400,所以|| =
400.
Байду номын сангаас
练习
变3.在四边形中, = ,且|| = ||,则这个四边形是( ).
A.正方形
B.矩形
C.等腰梯形
D.菱形
答案:D.
解:由 = 可知//,且|| = ||,
所以四边形为平行四边形.
练习
方法技巧:
平面向量在实际生活中的应用
生活中很多问题可以归结为向量的问题,如力、速度、位移等,因此运用
向量的知识进行解答可使问题简化,易于求解,解答时,一般先把实际问题用
有向线段表示向量,使向量有了直观形象.
向量的大小称为向量的长度(或模),记作||.长度为0的向量叫做零向量,
记作.长度等于1个单位长度的向量,叫做单位向量.
(向量的字母表示)向量也可以用字母, , , …表示.
印刷用黑体,书写用.
Ԧ
新知探索
1.向量的定义及表示
(1)定义:既有大小又有方向的量叫做向量.
头的线段来表示向量,线段按一定比例(标度)画出,它的长短表示向量的大小,
箭头的指向表示向量的方向.
新知探索
通常在线段的两个端点中,规定一个顺序,假设为起点,为终点,我们就
高中数学平面向量教案(精选6篇)
高中数学平面向量教案(精选6篇)为大家收集的高中数学平面向量教案,欢迎阅读,希望大家能够喜欢。
高中数学平面向量教案精选篇1教学目标1、了解基底的含义,理解并掌握平面向量基本定理。
会用基底表示平面内任一向量。
2、掌握向量夹角的定义以及两向量垂直的定义。
学情分析前几节课已经学习了向量的基本概念和基本运算,如共线向量、向量的加法、减法和数乘运算及向量共线的充要条件等;另外学生对向量的物理背景有了初步的了解。
如:力的合成与分解、位移、速度的合成与分解等,都为学习这节课作了充分准备重点难点重点:对平面向量基本定理的探究难点:对平面向量基本定理的理解及其应用教学过程4.1第一学时教学活动活动1【导入】情景设置火箭在升空的某一时刻,速度可以分解成竖直向上和水平向前的两个分速度v=vx+vy=6i+4j。
活动2【活动】探究已知平面中两个不共线向量e1,e2,c是平面内任意向量,求向量c=___e1+___e2(课堂上准备好几张带格子的纸张,上面有三个向量,e1,e2,c)做法:作OA=e1,OB=e2,OC=c,过点C作平行于OB的直线,交直线OA于M;过点C作平行于OA的直线,交OB于N,则有且只有一对实数l1,l2,使得OM=l1e1,ON=l2e2。
因为OC=OM+ON,所以c=6 e1+6e2。
向量c=__6__e1+___6__e2活动3【练习】动手做一做请同学们自己作出一向量a,并把向量a表示成:a=31;31;31;31;____e1+_____(做完后,思考一下,这样的一组实数是否是唯一的呢?)(是唯一的)由刚才的几个实例,可以得出结论:如果给定向量e1,e2,平面内的任一向量a,都可以表示成a=入1e1+入2e2。
活动4【活动】思考问题2:如果e1,e2是平面内任意两向量,那么平面内的任一向量a还可以表示成a=入1e1+入2e2的形式吗?生:不行,e1,e2必须是平面内两不共线向量活动5【讲授】平面向量基本定理平面向量基本定理:如果e1,e2是平面内两个不共线的向量,那么对于这一平面内的任一向量a,有且只有一对实数l1,l2,使a=l1e1+l2e2。
中职教育数学《平面向量-复习课》练习题
第七章平面向量(知识点)1.向量的概念(1)定义:既有大小又有方向的量。
(2)向量的表示:书写时一定要加箭头!另起点为A,终点为B的向量表示为AB。
(3)向量的模(长度):||||aAB或(4)零向量:长度为0,方向任意。
单位向量:长度为1的向量。
相等向量:大小相等,方向相同的两个向量。
反(负)向量:大小相等,方向相反的两个向量。
2.向量的运算(1)图形法则三角形法则平形四边形法则(2)计算法则加法:ACBCAB=+减法:CBACAB=-(指向被减)(3)运算律:加法交换律、结合律注:乘法(内积)不具有结合律3.数乘向量:aλ(1)模:||||aλ(2)方向:λ为正与a相同;λ为负与a相反。
4.AB的坐标:终点B的坐标减去起点A的坐标。
),(ABAByyxxAB--=5.向量共线(平行):存在唯一实数λ,使得baλ=。
(可证平行、三点共线问题等)6.注意ABC∆中,重心(三条中线交点)、外心(外接圆圆心:三边垂直平分线交点)、内心(内切圆圆心:三角平分线交点)、垂心(三高线的交点)7.向量的内积(数量积)(1)向量之间的夹角:图像上起点在同一位置;范围],0[π。
夹角必须共起点(2)内积公式:><=⋅bababa,cos||||8.向量内积的性质:(1)||||,cosbababa⋅>=<(夹角公式)(2)a⊥b0=⋅⇔ba(3)aaaaaa⋅==⋅||||2或(长度公式)9.向量的直角坐标运算:(1)),(ABAByyxxAB--=(2)设),(),,(2211yxbyxa==,则),(2121yyxxba±±=±),(11yxaλλλ=2121yyxxba+=⋅11.中点坐标公式:若A11(,)x y,B22(,)x y,点M(x,y)是线段AB的中点,则1212,22x x y yx y++==12.向量平行、垂直的充要条件:设),(),,(2211yxbyxa==,则a∥b2121yyxx=⇔(相对应坐标比值相等)a⊥b⇔=⋅⇔0ba02121=+yyxx(两个向量垂直则它们的内积为0)10.长度公式(1)向量长度公式:设),(yxa=,则22||yxa+=(2)两点间距离公式:设点),(),,(2211yxByxA,则212212)()(||yyxxAB-+-=第七章:平面向量(练习)一、选择题:1、平面向量定义的要素是()A 大小和起点B 方向和起点C 大小和方向D 大小、方向和起点2、BCACAB--等于()A 2BCB 2CBC 0D 03、设点A(a1,a2)及点B(b1,b2),则AB的坐标是()A (2211,baba--) B (2121,bbaa--)C (2211,abab--) D (1212,bbaa--)4、两个向量夹角的范围是()A、(0°,90°)B、[0°,90°]C、(0°,180°)D、[0°,180°]5、已知向量(1,2)a=-,向量(2,3)b=-,则32a b-等于( )A.(-1,-12)B.(3,-5)C.(7,-12)D.(7,0)6、21(2a +6b )-3b 等于( ) A 、a -2b B 、a -b C 、a D 、b7、若b a •=-4,|a |=2,|b |=22,则<b a ,>是( ) AB 90C 180 D2708、已知(3,2),(,4)m n x ==,m n ∥,则x = ( ) A.6 B.-6 C.83- D.839、下列各对向量中互相垂直的是( )A )5,3(),2,4(-==b aB )3,4(),4,3(=-=b aC )5,2(),2,5(--==b aD )2,3(),3,2(-=-=b a 二、填空题:1、BC CD AB ++=______________.2、向量b a ,的坐标分别为(2,-1),(-1,3),则b a +的坐标_______,2b a 3+的坐标为__________.3、已知A (-3,6),B (3,-6),则AB =__________,|BA |=____________.4、=⋅-=--=b a b a 则)5,6(),3,2( 。
“生”动的课堂才是高效的课堂--“平面向量的几何意义及应用”复习课简录及思考
上课开始 ,教师 在黑 板上画了一个箭头 ,问 :“ 这是什么? ” 学生说 :这是箭 头.“ 的 ,这是箭头 ,它也可 以表示 向量 ,你 是 能说说 这个 向量 的方 向 、大小 吗? ”教师边说边 在黑板上 板书 :
向量 . ,
I l:
sn A 曰P i
.
sn 6 i 0。
得简单. ”
解法 1 :由 l 一府 i≥ £
另一学生接上: l I “ 的几何意义就是向量 在向量 上
i 一 l 恒成立 ( 如图2 )可知
线段 Q B的 长度是 点 Q与直 线 A B 上 所 有点 的连线 中最 短 ,也 就 是
7 \
0
图2
1 .放下师道 尊严 ,营造民主氛 围,鼓励 “ 生”动
一
般教学 中重视来 自于教师方 面的 、 自上 而下的影响 ,轻
视来 自学生个人方 面的 、 自下 而上的力量和作 用 ,把学生变 成 “ 接受者 ” ,把教育变成 “ 知道 ” .马老师整堂课态度 亲和 ,面带 微笑 ,语言亲切 ,拉近 了师生 间的距离 ,学 生用他们积极 的思
AB为弦 ,所对 圆周角为 6 。 0 的圆弧上 ,故…… 这么多双眼睛在看 ,我们也许会重蹈 2 0 年考生 的覆辙 ,反思 08
” “ 一段 圆弧还是 两段 圆弧 ? 是 ”教 师边 问边用几何 画板图示 别人的失败 ,会使 自己变得更聪明 ,你 能简化计算吗? 2 分钟后 ,学生还是没有头绪 ,计算难在何处 ? “ ”教师试 图 解法 2 .
的投 影 的 绝对 值 . ”
Q
学生讨论得出解法 2 l l 。 ( , )= :I =l ×l l 。
上 …・ 府 ・ 求得 = . 4
7.4 向量的内积课件-2023届广东省高职高考数学第一轮复习第七章平面向量
_-__1_0__3__.
【解析】
A→B·B→C=|A→B|·|B→C|cos∠150°=5×4×-
23=-10
3.
三、解 答 题
14.判断下列各组向量是否互相垂直. (1)a=(3,8),b=(-2,5); (2)a=(-1,4),b=(12,3). 【解析】 (1)因为 a·b=a1b1+a2b2=3×(-2)+8×5=34,所以 a 与 b 不垂直; (2)因为 a·b=a1b1+a2b2=(-1)×12+4×3=0,所以 a⊥b.
则 a·b=( B )
A.1
B. 3
C.2
1 D.2
【解析】 a·b=|a|·|b|·cos 30°=4sin 15°·2cos 15°·cos 30°=4sin
30°· 23= 3,故选 B.
3.已知向量|a|=1,|b|=2,且〈a,b〉=23π,则|a-b|=( D )
A.3
B. 3
C. 6
a1b1+a2b2=0,即 3×(3-k)+4×6=0,解得 k=11,故选 D.
6.已知 a=(3,2),b=(2,1),则(2a-b)·a=( C )
A.12
B.16
C.18
D.20
【解析】 a=(3,2),b=(2,1),∴(2a-b)=(4,3),(2a-b)·a=a1b1
+a2b2=3×4+2×3=18.,故选 C.
D.10
【解析】 a·b=|a|·|b|·cos〈a·b〉=5×6×cos60°=3,b=(2,-3),若 a·b=2,则 x=( D )
A.-5
B.-2
C.2
D.7
【分析】 已知向量的坐标求向量的内积,用 a·b=a1b1+a2b2.
高三理科数学一轮复习 专题 平面向量课件
向量数量积满足分配律,即 $(overset{longrightarrow}{a} + overset{longrightarrow}{c}) cdot overset{longrightarrow}{b} = overset{longrightarrow}{a} cdot overset{longrightarrow}{b} + overset{longrightarrow}{c} cdot overset{longrightarrow}{b}$。
理解混合积的几何意义
详细描述
混合积的几何意义是表示三个向量的体积。 具体来说,当三个向量表示一个平行六面体 的三条边时,混合积的大小就等于这个平行 六面体的体积。
当两向量同向时,投影长度等于向量 $overset{longrightarrow}{a}$的模;当两向量反向时,投 影长度等于负的向量$overset{longrightarrow}{a}$的模; 当两向量垂直时,投影长度为0。
向量数量积的运算律
向量数量积满足交换律,即 $overset{longrightarrow}{a} cdot overset{longrightarrow}{b} = overset{longrightarrow}{b} cdot overset{longrightarrow}{a}$。
向量的模
总结词
向量的模是表示向量大小的数值,记作|a|。
详细描述
向量的模是表示向量大小的数值,记作|a|。向量的模的计算公式为$sqrt{x^2 + y^2}$,其中$x$和$y$分别是向量在x轴和y轴上的分量。
向量的加法
总结词
向量的加法是通过向量起点对齐、同向相加、反向取反的方 式进行。