二次函数单元测试题含答案人教版.docx
九年级上册数学《二次函数》单元检测题(附答案)
![九年级上册数学《二次函数》单元检测题(附答案)](https://img.taocdn.com/s3/m/29e0cceeff00bed5b8f31d2a.png)
人教版数学九年级上学期《二次函数》单元测试[考试时间:90分钟分数:100分]一.选择题(每题3分,共30分)1.抛物线y=(x+1)2+(m2+1)(m为常数)的顶点在()A .第一象限B .第二象限C .第三象限D .第四象限2.关于二次函数y=2(x﹣2)2+5,下列说法错误的是()A .图象与y轴的交点坐标为(0,13)B .图象的对称轴在y轴的右侧C .当x>0时,y的值随x值的增大而增大D .当x=2时,函数有最小值为53.将抛物线y=2(x﹣3)2+2向左平移3个单位长度,再向下平移2个单位长度,得到抛物线的解析式是()A .y=2(x﹣6)2B .y=2(x﹣6)2+4C .y=2x2D .y=2x2+44.设函数y=A (x﹣h)2+k(A ,h,k是实数,A ≠0),当x=1时,y=1;当x=8时,y=8,()A .若h=4,则A <0B .若h=5,则A >0C .若h=6,则A <0D .若h=7,则A >05.已知抛物线y=A x2+B x+C (A <0)经过点(﹣1,0),且满足4A +2B +C >0,有下列结论:①A +B >0;②﹣A +B +C >0;③B 2﹣2A C >5A 2.其中,正确结论的个数是()A .0B .1C .2D .36.二次函数y=A x2+B x+C ,自变量x与函数y的对应值如表:x﹣3 ﹣2 ﹣1y﹣2 ﹣2 0下面四个说法正确的有()①抛物线的开口向上②当x>﹣3时,y随x的增大而增大③二次函数的最小值是﹣2 ④﹣4是方程A x2+B x+C =0的一个根.A .1个B .2个C .3个D .4个7.小明以二次函数y=2x2﹣4x+8的图象为灵感为“2017北京•房山国际葡萄酒大赛”设计了一款杯子,如图为杯子的设计稿,若A B =4,D E=3,则杯子的高C E为()A .14B .11C .6D .38.二次函数y=x2﹣2x﹣2与x轴的交点个数是()A .0个B .1个C .2个D .3个9.在同一平面直角坐标系中,函数y=A x2+B x(A ≠0)与y=B x+A (B ≠0)的图象可能是()A .B .C .D .10.对于二次函数y=A x2﹣(2A ﹣1)x+A ﹣1(A ≠0),有下列结论:①其图象与x轴一定相交;②若A <0,函数在x>1时,y随x的增大而减小;③无论A 取何值,抛物线的顶点始终在同一条直线上;④无论A 取何值,函数图象都经过同一个点.其中所有正确的结论是()A .①②③B .①③④C .①②④D .①②③④二.填空题(每题4分,共20分)11.抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴交点的个数是.12.抛物线y=x2+B x+C 经过点A (0,3),B (2,3),抛物线所对应的函数表达式为.13.已知非负实数x,y,z满足x+y+z=1,则t=2xy+yz+2zx的最大值为.14.如图是二次函数y=A x2+B x+C (A ≠0)的图象的一部分,对称轴为直线x=,抛物线与x轴的交点分别为A 、B ,则A 、B 两点间的距离是.15.如图,抛物线y=﹣(x+1)(x﹣9)与坐标轴交于A 、B 、C 三点,D 为顶点,连结AC ,B C .点P是该抛物线在第一象限内上的一点.过点P作y轴的平行线交B C 于点E,连结A P交B C 于点F,则的最大值为.三.解答题(每题10分,共50分)16.如图,抛物线y=A x2+B x+3与x轴交于A (﹣3,0),B (1,0)两点,与y轴交于点C .(1)求抛物线的解析式;(2)点P是抛物线上的动点,且满足S△PA O =2S△PC O,求出P点的坐标;(3)连接B C ,点E是x轴一动点,点F是抛物线上一动点,若以B 、C 、E、F为顶点的四边形是平行四边形时,请直接写出点F的坐标.17.某农场拟用总长为60m的建筑材料建三间矩形牛饲养室,饲养室的一面靠现有墙(墙长为40m),其中间用建筑材料做的墙隔开(如图).设三间饲养室平行于墙的一边合计用建筑材料xm,总占地面积为ym2.(1)求y关于x的函数解析式和自变量的取值范围;(2)当x为何值时,三间饲养室占地总面积最大?最大面积为多少?18.如图①,已知抛物线y=﹣x2+B x+C 与x轴交于点A 、B (3,0),与y轴交于点C (0,3),直线l经过B 、C 两点.抛物线的顶点为D .(1)求抛物线和直线l的解析式;(2)判断△B C D 的形状并说明理由.(3)如图②,若点E是线段B C 上方的抛物线上的一个动点,过E点作EF⊥x轴于点F,EF 交线段B C 于点G,当△EC G是直角三角形时,求点E的坐标.19.春节前夕,万果园超市从厂家购进某种礼盒,已知该礼盒每个成本价为32元.经市场调查发现,该礼盒每天的销售量y(个)与销售单价x(元)之间满足一次函数关系.当该款礼盒每个售价为50元时,每天可卖出200个;当该款礼盒每个售价为60元时,每天可卖出100个.(1)求y与x之间的函数解析式(不要求写出x的取值范围);(2)若该超市想达到每天不低于240个的销售量,则该礼盒每个售价定为多少元时,每天的销售利润最大,最大利润是多少元?20.如图,抛物线y=﹣x2+B x+C 与x轴交于点A ,B ,与y轴交于点C ,其中点B 的坐标为(3,0),点C 的坐标为(0,3),直线l经过B ,C 两点.(1)求抛物线的解析式;(2)过点C 作C D ∥x轴交抛物线于点D ,过线段C D 上方的抛物线上一动点E作EF ⊥C D 交线段B C 于点F,求四边形EC FD 的面积的最大值及此时点E的坐标;(3)点P是在直线l上方的抛物线上一动点,点M是坐标平面内一动点,是否存在动点P,M,使得以C ,B ,P,M为顶点的四边形是矩形?若存在,请直线写出点P的横坐标;若不存在,请说明理由.答案与解析一.选择题1. B .2. C .3. C .4. C .5. D .6. B .7. B .8. C .9. C .10. B .二.填空11. 2.12. y=x2﹣2x+3.13..14. 3.15..三.解答题16.解:(1)∵抛物线y=A x2+B x+3与x轴交于A (﹣3,0),B (1,0)两点, ∴解得:,∴抛物线的解析式为:y=﹣x2﹣2x+3;(2)∵抛物线y=﹣x2﹣2x+3与y轴交于点C ,∴点C (0,3)∴OA =OC =3,设点P(x,﹣x2﹣2x+3)∵S△PA O =2S△PC O,∴×3×|﹣x2﹣2x+3|=2××3×|x|,∴x=±或x=﹣2±,∴点P(,﹣2)或(﹣,2)或(﹣2+,﹣4+2)或(﹣2﹣,﹣4﹣2);(3)若B C 为边,且四边形B C FE是平行四边形,∴C F∥B E,∴点F与点C 纵坐标相等,∴3=﹣x2﹣2x+3,∴x1=﹣2,x2=0,∴点F(﹣2,3)若B C 为边,且四边形B C EF是平行四边形,∴B E与C F互相平分,∵B E中点纵坐标为0,且点C 纵坐标为3,∴点F的纵坐标为﹣3,∴﹣3=﹣x2﹣2x+3∴x=﹣1±,∴点F(﹣1+,﹣3)或(﹣1﹣,﹣3);若B C 为对角线,则四边形B EC F是平行四边形,∴B C 与EF互相平分,∵B C 中点纵坐标为,且点E的纵坐标为0,∴点F的纵坐标为3,∴点F(﹣2,3),综上所述,点F坐标(﹣2,3)或(﹣1+,﹣3)或(﹣1﹣,﹣3).17.解:(1)根据题意得,y=x•(60﹣x)=﹣x2+15x,自变量的取值范围为:0<x≤40;(2)∵y=﹣x2+15x=﹣(x﹣30)2+225,∴当x=30时,三间饲养室占地总面积最大,最大为225(m2).18.解:(1)∵抛物线y=﹣x2+B x+C 与x轴交于点A 、B (3,0),与y轴交于点C (0,3), ∴y=﹣x2+B x+3,将点B (3,0)代入y=﹣x2+B x+3,得0=﹣9+3B +3,∴B =2,∴抛物线的解析式为y=﹣x2+2x+3;∵直线l经过B (3,0),C (0,3),∴可设直线l的解析式为y=kx+3,将点B (3,0)代入,得0=3k+3,∴k=﹣1,∴直线l的解析式为y=﹣x+3;(2)△B C D 是直角三角形,理由如下:如图1,过点D 作D H ⊥y 轴于点H ,∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴顶点D (1,4),∵C (0,3),B (3,0),∴HD =HC =1,OC =OB =3,∴△D HC 和△OC B 是等腰直角三角形,∴∠HC D =∠OC B =45°,∴∠D C B =180°﹣∠HC D ﹣∠OC B =90°,∴△B C D 是直角三角形;(3)∵EF ⊥x 轴,∠OB C =45°,∴∠FGB =90°﹣∠OB C =45°,∴∠EGC =45°,∴若△EC G 是直角三角形,只可能存在∠C EG =90°或∠EC G =90°,①如图2﹣1,当∠C EG =90°时,∵EF ⊥x 轴,∴EF ∥y 轴,∴∠EC O =∠C OF =∠C EF =90°,∴四边形OFEC 为矩形,∴y E =y C =3,在y =﹣x 2+2x +3中,当y =3时,x 1=0,x 2=2,∴E (2,3);②如图2﹣2,当∠EC G =90°时,由(2)知,∠D C B =90°,∴此时点E 与点D 重合,∵D (1,4),∴E (1,4),综上所述,当△EC G 是直角三角形时,点E 的坐标为(2,3)或(1,4).19.解:(1)设y与x之间的函数解析式为y=kx+B ,由题意得,,解得:,∴y与x之间的函数解析式为y=﹣10x+700;(2)设每天的销售利润为W元,由如图得,W=(x﹣32)(﹣10x+700)=﹣10x2+1020x﹣22400=﹣10(x﹣51)2+3610, ∵﹣10x+700≥240,解得:x ≤46,∴32<x ≤46,∵A =﹣10<0,∴当x <51时,W 随x 的增大而增大,∴当x =46时,W 有最大值,最大利润是﹣10×(46﹣51)2+3610=3360,答:该礼盒每个售价定为46元时,每天的销售利润最大,最大利润是3360元.20.解:(1)将点B (3,0),点C (0,3)代入y =﹣x 2+B x +C 中, 则有, ∴, ∴y =﹣x 2+2x +3;(2)∵y =﹣x 2+2x +3,∴对称轴为x =1,∵C D ∥x 轴,∴D (2,3),∴C D =2,∵点B (3,0),点C (0,3),∴B C 的直线解析式为y =﹣x +3,设E (m ,﹣m 2+2m +3),∵EF ⊥C D 交线段B C 于点F ,∴F (m ,﹣m +3),∴S 四边形EC FD =S △C D E +S △C D F =×2×(﹣m 2+2m )+×2×m =﹣m 2+3m , 当m =时,四边形EC FD 的面积最大,最大值为;此时E (,);(3)设P (n ,﹣n 2+2n +3),①当C P ⊥PB 时,设B C 的中点为J (,),则有PJ = B C =,∴(n ﹣)2+(﹣n 2+2n +3﹣)2=()2,解得整理得到n(n﹣3)(n2﹣n﹣1)=0, ∴n=0或3或,∵P在第一象限,∴P点横坐标为;②当C P⊥C B 时,P(1,4).∴P点横坐标为1;综上所述:P点横坐标为或1.。
人教版(2024)数学九年级上册第二十二章 二次函数 单元测试(含答案)
![人教版(2024)数学九年级上册第二十二章 二次函数 单元测试(含答案)](https://img.taocdn.com/s3/m/db4c729e4128915f804d2b160b4e767f5acf8082.png)
第二十二章二次函数一、选择题1. 关于二次函数y=x2与y=−x2的图象,下列说法错误的是( )A.对称轴都是y轴B.顶点都是坐标原点C.与x轴都有且只有一个交点D.它们的开口方向相同2. 如图,关于抛物线y=(x−1)2−2,下列说法错误的是( )A.顶点坐标为(1,−2)B.对称轴是直线x=1C.开口方向向上D.当x>1时,y随x的增大而减小3. 将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A.y=3(x+2)2+3B.y=3(x−2)2+3C.y=3(x+2)2−3D.y=3(x−2)2−34. 如图是二次函数y=−x2+2x+4的图象,使y≤4成立的x的取值范围是( )A . 0≤x ≤2B . x ≤0C . x ≥2D . x ≤0 或 x ≥25. 一抛物线的形状、开口方向与 y =12x 2−2x +3 相同,顶点为 (−2,1),则此抛物线的解析式为 A . y =12(x−2)2+1 B . y =12(x +2)2−1 C . y =12(x +2)2+1D . y =12(x +2)2−16. 心理学家发现:学生对概念的接受能力 y 与提出概念的时间 x (min) 之间是二次函数关系,当提出概念 13 min 时,学生对概念的接受能力最大,为 59.9;当提出概念 30 min 时,学生对概念的接受能力就剩下 31,则 y 与 x 满足的二次函数表达式为 ( )A .y =−(x−13)2+59.9B .y =−0.1x 2+2.6x +31C .y =0.1x 2−2.6x +76.8D .y =−0.1x 2+2.6x +437. 已知点 (−1,y 1),(−312,y 2),(12,y 3) 在函数 y =3x 2+6x +12 的图象上,则 y 1,y 2,y 3 的大小关系为 ( ) A . y 1>y 2>y 3B . y 2>y 1>y 3C . y 2>y 3>y 1D . y 3>y 1>y 28. 在某建筑物上从 10 m 高的窗口 A 用水管向外喷水,喷出的水流呈抛物线状,如图所示,如果抛物线的最高点 M 离墙 1 m ,离地面403 m ,则水流落在点 B 与墙的距离 OB 是 ( )A . 2 mB . 3 mC . 4 mD . 5 m9. 二次函数 y =ax 2+bx +c (a ≠0) 的大致图象如图所示,顶点坐标为 (−2,−9a ),下列结论:① 4a +2b +c >0;② 5a−b +c =0;③若方程a(x+5)(x−1)=−1有两个根x1和x2,且x1<x2,则−5<x1<x2<1;④若方程∣ax2+bx+c∣=1有四个根,则这四个根的和为−4.其中正确的结论有( )A.1个B.2个C.3个D.4个二、填空题10. 如果y=(m2−1)x m2−m是二次函数,则m=.11. 若x=1是方程2ax2+bx=3的根,当x=2时,函数y=ax2+bx的函数值为.12. 若抛物线y=x2−2x+m(m为常数)与x轴没有公共点,则实数m的取值范围为.13. 如图,抛物线y=ax2+bx与直线y=mx+n相交于点A(−3,−6),点B(1,−2),则关于x的不等式ax2+bx<mx+n的解集为.14. 如图,二次函数y=ax2+bx+3的图象经过点A(−1,0),B(3,0),那么一元二次方程ax2+bx=0的根是.15. 已知抛物线:y=ax2+bx+c(a<0)经过A(2,4),B(−1,1)两点,顶点坐标为(ℎ,k),则下列正确结论的序号是.①b>1;②c>2;③ℎ>1;④k≤1.216. 物体自由下落的高度 ℎ(单位:m )与下落时间 t (单位:s )之间的关系是 ℎ=4.9t 2,有一个物体从 44.1m 高的建筑物上自由下落,到达地面需要s .17. 如图,在平面直角坐标系中,抛物线 y =13x 2 经过平移得到抛物线 y =13x 2−2x ,其对称轴与两段抛物线所围成的阴影部分的面积为.三、解答题18. 已知二次函数 y =a (x−1)2+4 的图象经过点 (−1,0).(1) 求这个二次函数的解析式;(2) 判断这个二次函数的开口方向,对称轴和顶点坐标.19. 已知二次函数 y =x 2+4x +3.(1) 用配方法将二次函数的表达式化为 y =a (x−ℎ)2+k 的形式;(2) 在平面直角坐标系 xOy 中,画出这个二次函数的图象;(3) 根据(2)中的图象,写出一条该二次函数的性质.20. 如图,在平面直角坐标系xOy中,抛物线顶点为C(1,2),且与直线y=x交于点B(32,32);点P为抛物线上O,B两点之间一个动点(不与O,B两点重合),过P作PQ∥y轴交线段OB于点Q.(1) 求抛物线的解析式;(2) 当PQ的长度为最大值时,求点Q的坐标;(3) 点M为抛物线上O,B两点之间一个动点(不与O,B两点重合),点N为线段OB上一个动点;当四边形PQNM为平行四边形,且PN⊥OB时,请直接写出Q点坐标.21. 在平面直角坐标系xOy中,抛物线y=ax2−4ax+3a−2(a≠0)与x轴交于A,B两点(点A在点B左侧).(1) 当抛物线过原点时,求实数a的值;(2) ①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a的代数式表示);(3) 当AB≤4时,求实数a的取值范围.22. 如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC.点A,B在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面距离为2米,OC=8米.(1) 请建立适当的直角坐标系,求抛物线的函数解析式;(2) 为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA,PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)(3) 为了施工方便,现需计算出点O,P之间的距离,那么两根支柱用料最省时点O,P之间的距离是多少?(请写出求解过程)23. 某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1) 求y与x之间的函数表达式.(2) 当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3) 若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?24. 如图所示抛物线y=ax2+bx+c过点A(−1,0),点C(0,3),且OB=OC.(1) 求抛物线的解析式及其对称轴.(2) 点D,E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长最小值.(3) 点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为3:5两部分,求点P的坐标.答案一、选择题1. D2. D3. A4. D5. C6. D7. C8. B9. B二、填空题10. 211. 612. m>113. x<−3或x>114. x1=−1,x2=315. ①②③16. 317. 9三、解答题18.(1) 把(−1,0)代入二次函数解析式得:4a+4=0,即a=−1,则函数解析式为y=−(x−1)2+4.(2) ∵a=−1<0,∴抛物线开口向下,顶点坐标为(1,4),对称轴为直线x=1.19.(1) y=x2+4x+3=x2+4x+22−22+3 =(x+2)2−1.(2) 略(3) 当x<−2时,y随x的增大而减小,当x>−2时,y随x的增大而增大.(答案不唯一)20.(1) ∵抛物线顶点为C(1,2),∴设抛物线的解析式为y=a(x−1)2+2(a≠0).∵点B(32,32)在抛物线上,∴32=a(32−1)2+2,∴a=−2,∴抛物线的解析式为y=−2(x−1)2+2,即y=−2x2+4x.(2) 设点P的坐标为(x,−2x2+4x)(0<x<32),则点Q的坐标为(x,x),∴PQ=−2x2+4x−x=−2x2+3x=−2(x−34)2+98,∵−2<0,∴当x=34时,PQ的长度取最大值,∴当PQ的长度为最大值时,点Q的坐标为(34,34).(3) (12,12)21.(1) ∵点O(0,0)在抛物线上,∴3a−2=0,a=23.(2) ①对称轴为直线x=2;②顶点的纵坐标为−a−2.(3) (i)当a>0时,依题意,{−a−2<0,3a−2≥0.解得a≥23.(ii)当a<0时,依题意,{−a−2>0,3a−2≤0,解得a<−2.综上,a<−2或a≥23.22.(1) 以点O为原点、射线OC为y轴的正半轴建立直角坐标系,设抛物线的函数解析式为y=ax2,由题意知点A的坐标为(4,8).∵点A在抛物线上,∴8=a×42,解得a=12,∴所求抛物线的函数解析式为:y=12x2.(2) 找法:延长AC,交建筑物造型所在抛物线于点D,则点A,D关于OC对称.连接BD交OC于点P,则点P即为所求.(3) 由题意知点B的横坐标为2,∵点B在抛物线上,∴点B的坐标为(2,2),又∵点A的坐标为(4,8),∴点D的坐标为(−4,8),设直线BD的函数解析式为y=kx+b,∴{2k+b=2,−4k+b=8,解得:k=−1,b=4.∴直线BD的函数解析式为y=−x+4,把x=0代入y=−x+4,得点P的坐标为(0,4),两根支柱用料最省时,点O,P之间的距离是4米.23.(1) y=300+30(60−x)=−30x+2100.(2) 设每星期的销售利润为W元,则W=(x−40)(−30x+2100)=−30(x−55)2+6750.所以当x=55时,W取最大值,为6750.所以每件售价定为55元时,每星期的销售利润最大,最大利润是6750元.(3) 由题意得(x−40)(−30x+2100)≥6480,解得52≤x≤58.当x=52时,销售量为300+30×8=540(件);当x=58时,销售量为300+30×2=360(件).所以若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.24.(1) ∵OB=OC,∴点B(3,0),则抛物线的表达式为:y=a(x+1)(x−3)=a(x2−2x−3)=ax2−2ax−3a,故−3a=3,解得a=−1,故抛物线的表达式为:y=−x2+2x+3 ⋯⋯①,对称轴为:直线x=1.(2) ACDE的周长=AC+DE+CD+AE,其中AC=10,DE=1是常数,故CD+AE最小时,周长最小,取点C关于函数对称点Cʹ(2,3),则CD=CʹD,取点Aʹ(−1,1),则AʹD=AE,故:CD+AE=AʹD+DCʹ,则当Aʹ,D,Cʹ三点共线时,CD+AE=AʹD+DCʹ最小,周长也最小,四边形ACDE的周长的最小值=AC+DE+CD+AE=10+1+AʹD+DCʹ=10+1+AʹCʹ=10+1+13.(3) 如图,设直线CP交x轴于点E,直线CP把四边形CBPA的面积分为3:5两部分,又∵S△PCB:S△PCA=12EB×(y C−y P):12AE×(y C−y P)=BE:AE,则BE:AE=3:5或5:3,则AE=52或32,即:点E的坐标为(32,0)或(12,0),将点E,C的坐标代入一次函数表达式:y=kx+3,解得:k=−6或−2,故直线CP的表达式为:y=−2x+3或y=−6x+3 ⋯⋯②,联立①②并解得:x=4或8(不合题意已舍去),故点P的坐标为(4,−5)或(8,−45).。
人教版九年级数学《二次函数》单元测试题(含答案)
![人教版九年级数学《二次函数》单元测试题(含答案)](https://img.taocdn.com/s3/m/40c1563d0740be1e650e9afa.png)
人教版九年级数学《二次函数》单元测试题一、选择题(每题3分,共18分):1.下列函数中,是二次函数的为( )A.1(3)2y x x =- B.2(2)(2)y x x x =+--C.34y x =D.3y x =2.抛物线23(2)5y x =-+的顶点坐标是( )A.(2,5)-B.(2,5)--C.(2,5)D.(2,5)-3.将抛物线223y x x =-+向左平移1个单位,再向下平移3个单位,则所得的抛物线的解析式为( )A.21y x =+B.21y x =-C.21y x =-+D.21y x =--4.若二次函数2y x mx =+图象的对称轴是直线3x =,则关于X 的方程27x mx +=的解是( )A.120,6x x ==B.121,7x x ==C.121,7x x ==-D.121,7x x =-=5.如图,二次函数 2(0)y ax bx c a =++>的图象与直线1y =的交点坐标为(1,1),(3,1)两点,则不等式21ax bx c ++>的解集为( )A.1x >B.13x <<C.1x <或x>3D.x>3 (第5题图)6已知.二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+的图象可能是下面四个图象中的( )A. B. C. D.二、填空题(每题3分,共18分):7.若抛物线2(2)y a x =-的开口向上,则a 的取值范围是 .8.将抛物线22y x =-的向上平移3个单位长度,所得到的抛物线解析式是 . 9.二次函数232y x x =-+的图象不经过第 象限.10.已知抛物线24y x x a =-+与坐标轴的有两个公共点,则a 的值是 . 11.已知二次函数23y ax bx =+-自变量X 的部分取值和对应的函数值如下表:则在实数范围内能使5y >成立的X 的取值范围是 .12.如图,在边长为6的正方形ABCD 中,点E 、F 、G 、H 分别从点A 、B 、C 、D 同时出发,均以1cm/s 的速度向点B 、C 、D 、A 匀速运动,当E 到达B 时,四个点同时停止运动,在运动过程中,当运动时间为 s 时,四边形EFGH 的面积最小. (第12题)三、解答题(每题10分,共60分):13. 已知抛物线 2y x bx c =++经过点(1,4)-和(-1,2),求这条抛物线的解析式.14.已知抛物线2(3)2y a x =-+经过点(1,-2)。
人教版九年级数学上册第22章《二次函数》单元测试题含答案
![人教版九年级数学上册第22章《二次函数》单元测试题含答案](https://img.taocdn.com/s3/m/5d6f96d2951ea76e58fafab069dc5022aaea4691.png)
人教版九年级数学上册第22章《二次函数》单元测试题一、选择题:(每题3,共30分) 1.抛物线2(1)2y x =-+的顶点坐标是( ). A .(1,2)B .(1,-2)C .(-1, 2)D .(-1,-2)2. 把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线( ). A .()231y x =+- B .()233y x =++ C .()231y x =-- D .()233y x =-+3、抛物线y=(x+1)2+2的对称轴是( ) A .直线x=-1 B .直线x=1 C .直线y=-1 D .直线y=14、二次函数221y x x =-+与x 轴的交点个数是( )A .0B .1C .2D .35、若,,,,,123351A yB yC y 444⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为二次函数2y x 4x 5=+-的图象上的三点,则123y y y 、、的大小关系是( )A.123y y y <<B.213y y y <<C.312y y y <<D.132y y y <<6、在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2+c 的图象大致为( )OxyOxyOxyOxy(A)(B)(C)(D)7.〈常州〉二次函数y =ax 2+bx +c (a 、b 、c 为常数且a ≠0)中的x 与y 的部分对x -3 -2 -1 0 1 2 3 4 5 y 12 5 0 -3 -4 -3 0 5 12 (1)二次函数y =ax 2+bx +c 有最小值,最小值为-3;(2)当-12<x <2时,y <0;(3)二次函数y =ax 2+bx +c 的图象与x 轴有两个交点,且它们分别在y 轴两侧.则其中正确结论的个数是( )A.3B.2C.1D.08.〈南宁〉已知二次函数y =ax 2+bx +c (a ≠0)的图象如图3所示,下列说法错误的是( )A.图象关于直线x =1对称B.函数y =ax 2+bx +c (a ≠0)的最小值是-4C.-1和3是方程ax 2+bx +c =0(a ≠0)的两个根D.当x <1时,y 随x 的增大而增大9、二次函数与882+-=x kx y 的图像与x 轴有交点,则k 的取值范围是( ) A.2<kB.02≠<k k 且C.2≤kD.02≠≤k k 且10. 如图,菱形ABCD 中,AB =2,∠B =60°,M 为AB 的中点.动点P 在菱形的边上从点B 出发,沿B →C →D 的方向运动,到达点D 时停止.连接MP ,设点P 运动的路程为x ,MP 2 =y ,则表示y 与x 的函数关系的图象大致为( ).二、填空题:(每题3,共30分)11.已知函数()x x m y m 3112+-=+,当m = 时,它是二次函数.12、抛物线3842-+-=x x y 的开口方向向 ,对称轴是 ,最高点的坐标是 ,函数值得最大值是 。
人教新版九年级上册数学第22章 《二次函数》单元测试卷【含答案】
![人教新版九年级上册数学第22章 《二次函数》单元测试卷【含答案】](https://img.taocdn.com/s3/m/0a8a68b2dc88d0d233d4b14e852458fb770b38d6.png)
人教新版九年级上册数学第22章《二次函数》单元测试卷一.选择题1.下列函数中是二次函数的为()A.y=3x﹣1B.y=3x2﹣1C.y=(x+1)2﹣x2D.y=x3+2x﹣32.函数y=(m﹣n)x2+mx+n是二次函数的条件是()A.m、n是常数,且m≠0B.m、n是常数,且m≠nC.m、n是常数,且n≠0D.m、n可以为任何常数3.若函数y=a是二次函数且图象开口向上,则a=()A.﹣2B.4C.4或﹣2D.4或34.若y=2是二次函数,则m等于()A.﹣2B.2C.±2D.不能确定5.在同一坐标系中,作y=x2,y=﹣x2,y=x2的图象,它们的共同特点是()A.抛物线的开口方向向上B.都是关于x轴对称的抛物线,且y随x的增大而增大C.都是关于y轴对称的抛物线,且y随x的增大而减小D.都是关于y轴对称的抛物线,有公共的顶点6.已知二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A.a>b>c B.c>a>b C.c>b>a D.b>a>c7.关于二次函数y=﹣(x+1)2+2的图象,下列判断正确的是()A.图象开口向上B.图象的对称轴是直线x=1C.图象有最低点D.图象的顶点坐标为(﹣1,2)8.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+m,则m的值是()A.1或7B.﹣1或7C.1或﹣7D.﹣1或﹣79.在同一平面直角坐标系中,一次函数y=kx﹣2k和二次函数y=﹣kx2+2x﹣4(k是常数且k≠0)的图象可能是()A.B.C.D.10.二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()A.B.C.D.二.填空题11.若y=(2﹣m)是二次函数,且开口向上,则m的值为.12.如果函数是关于x的二次函数,那么k的值是.13.当m=时,函数y=(m﹣1)是关于x的二次函数.14.如果y=(m﹣2)是关于x的二次函数,则m=.15.抛物线y=ax2﹣3x+a2﹣1如图所示,则a=.16.如图所示,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(﹣1,0)和B(2,0),当y<0时,x的取值范围是.17.已知抛物线y=x2+4x+5的对称轴是直线x=.18.在正方形的网格中,抛物线y1=x2+bx+c与直线y2=kx+m的图象如图所示,请你观察图象并回答:当﹣1<x<2时,y1y2(填“>”或“<”或“=”号).19.如图是二次函数y=a(x+1)2+2图象的一部分,该图在y轴右侧与x轴交点的坐标是.20.抛物线y=(x﹣2)2+3的顶点坐标是.三.解答题21.画出函数y=x2﹣2x﹣8的图象.(1)先求顶点坐标:(,);(2)列表x……y……(3)画图.22.函数是关于x的二次函数,求m的值.23.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?24.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?25.已知是x的二次函数,求出它的解析式.26.已知二次函数y=ax2+bx+c.(1)当a=1,b=﹣2,c=1时,请在图上的直角坐标系中画出此时二次函数的图象;(2)用配方法求该二次函数的图象的顶点坐标.27.下图是数值转换机的示意图,小明按照其对应关系画出了y与x的函数图象.(1)分别写出当0≤x≤4与x>4时,y与x的函数关系式;(2)小明说:“所输出y的值为3时,输入x的值为0或5.”你认为他说的对吗?试结合图象说明.答案与试题解析一.选择题1.解:A、y=3x﹣1是一次函数,故A错误;B、y=3x2﹣1是二次函数,故B正确;C、y=(x+1)2﹣x2不含二次项,故C错误;D、y=x3+2x﹣3是三次函数,故D错误;故选:B.2.解:根据二次函数的定义可得:m﹣n≠0,即m≠n.故选:B.3.解:∵函数y=a是二次函数且图象开口向上,∴a2﹣2a﹣6=2,且a>0,解得a=4.故选:B.4.解:由y=2是二次函数,得m2﹣2=2,解得m=±2,故选:C.5.解:因为y=ax2形式的二次函数对称轴都是y轴,且顶点都在原点,所以它们的共同特点是:关于y轴对称的抛物线,有公共的顶点.故选:D.6.解:由函数图象已知a>0,c<0,∵﹣=﹣1,∴b=2a,∴b>a,∴b>a>c,故选:D.7.解:∵﹣1<0,∴函数的开口向下,图象有最高点,∵这个函数的顶点是(﹣1,2),∴对称轴是直线x=﹣1,故选:D.8.解:∵一条抛物线的函数表达式为y=﹣x2+4x+m,∴这条抛物线的顶点为(2,m+4),∴关于x轴对称的抛物线的顶点(2,﹣m﹣4),∵它们的顶点相距6个单位长度.∴|m+4﹣(﹣m﹣4)|=6,∴2m+8=±6,当2m+8=6时,m=﹣1,当2m+8=﹣6时,m=﹣7,∴m的值是﹣1或﹣7.故选:D.9.解:A、由一次函数图象可知,k>0,∴﹣k<0,∴二次函数的图象开口应该向下,故A 选项不合题意;B、由一次函数图象可知,k>0,∴﹣k<0,,∴二次函数的图象开口向下,且对称轴在x轴的正半轴,故B选项不合题意;C、由一次函数图象可知,k<0,∴﹣k>0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y =﹣4k>0,故C选项符合题意;D、由一次函数图象可知,k<0,∴﹣k>0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y =﹣4k>0,故D选项不合题意;故选:C.10.解:由一次函数y=ax+a可知,一次函数的图象与x轴交于点(﹣1,0),排除A、B;当a>0时,二次函数y=ax2开口向上,一次函数y=ax+a经过一、二、三象限,当a<0时,二次函数开口向下,一次函数经过二、三、四象限,排除C;故选:D.二.填空题11.解:根据题意得,m2﹣3=2,解得m=±,∵开口向上,∴2﹣m>0,解得m<2,∴m=﹣.故﹣.12.解:由题意得:k2﹣3k+2=2,解得k=0或k=3;又∵k﹣3≠0,∴k≠3.∴k的值是0时.故0.13.解:依题意可知m2+1=2得m=1或m=﹣1又因为m﹣1≠0∴m≠1∴当m=﹣1时,这个函数是二次函数.14.解:根据二次函数的定义:m2﹣m=2,m﹣2≠0,解得:m=﹣1,故﹣1.15.解:∵二次函数的图象过原点(0,0),代入抛物线解析式,得a2﹣1=0,解得a=1或a=﹣1,又∵抛物线的开口向下,故a<0,∴a=﹣1.16.解:观察图象可知,抛物线与x轴两交点为(﹣1,0),(2,0),y<0,图象在x轴的下方,所以答案是x<﹣1或x>2.17.解:由对称轴公式:对称轴是直线x=﹣=﹣=﹣2,故﹣2.18.解:根据图示知,①当x≤﹣1时,y2≤y1;②当﹣1<x<2时,y2<y1;③当x≥2时,y2≥y1;故<.19.解:由y=a(x+1)2+2可知对称轴x=﹣1,根据对称性,图象在对称轴左侧与x轴交点为(﹣3,0),所以该图在对称轴右侧与x轴交点的坐标是(1,0).20.解:y=(x﹣2)2+3是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(2,3).故(2,3)三.解答题21.解:(1)y=x2﹣2x﹣8=(x﹣1)2﹣9∴其顶点坐标为(1,﹣9)故1,﹣9(2)列表x…﹣2﹣101234…y…0﹣5﹣8﹣9﹣8﹣50…(3)画图:22.解:由题意可知解得:m=2.23.解:(1)依题意得∴∴m=0;(2)依题意得m2﹣m≠0,∴m≠0且m≠1.24.解:(1)根据一次函数的定义,得:m2﹣m=0解得m=0或m=1又∵m﹣1≠0即m≠1;∴当m=0时,这个函数是一次函数;(2)根据二次函数的定义,得:m2﹣m≠0解得m1≠0,m2≠1∴当m1≠0,m2≠1时,这个函数是二次函数.25.解:由二次函数的定义,可知m2+m≠0,即m≠0,m≠﹣1又因为m2﹣2m﹣1=2,m2﹣2m﹣3=0解得m=3或m=﹣1(不合题意,舍去)所以m=3故y=12x2+9.26.解:(1)当a=1,b=﹣2,c=1时,y=x2﹣2x+1=(x﹣1)2,∴该二次函数的顶点坐标为(1,0),对称轴为直线x=1,利用函数对称性列表如下:x…﹣10123…y…41014…在给定的坐标中描点,画出图象如下.(2)由y=ax2+bx+c是二次函数,知a≠0y=a(x2+x)+c=a[x2+x+()2]+c﹣a×()2=a(x+)2+∴该二次函数图象的顶点坐标为.27.解:(1)当0≤x≤4时,y=x+3;当x>4时,由图表可知y=(x﹣6)2+k,由函数图象可知,当x=4时,y=x+3=6,此时(4﹣6)2+k=6,解得k=2,所以,当x>4时,y=(x﹣6)2+2;(2)他说的错误.把y=3代入y=x+3中,得x+3=3,解得x=0,把y=3代入y=(x﹣6)2+2中,得(x﹣6)2+2=3,解得x=5或7,正确说法是:所输出y的值为3时,输入x的值为0或5或7.。
数学九年级上学期《二次函数》单元测试(带答案)
![数学九年级上学期《二次函数》单元测试(带答案)](https://img.taocdn.com/s3/m/9427efb369eae009591bec25.png)
A.(1, 0)B.(-1, 0)C.(2, 0)D.(-2, 0)
4.如图,已知二次函数 在坐标平面上的图象经过 、 两点.若 , ,则 的值可能为()
A. 1B. 3C. 5D. 7
5.已知二次函数 的图象过点 , , .若点 , , 也在二次函数 的图象上,则下列结论正确的是()
∴y=x2+x−2,
当y=0时,
x2+x−2=0,
解得x1=1,x2=−2.
故另一个交点坐标是(−2,0).
故答案选D.
[点睛]本题考查了抛物线与坐标轴的交点,解题的关键是熟练的掌握抛物线与坐标轴的交点的知识点.
4.如图,已知二次函数 在坐标平面上的图象经过 、 两点.若 , ,则 的值可能为()
A.1B.3C.5D.7
[答案]B
[解析]
[分析]
先由A(1,2),B(3,2),C(5,7),代入y=Ax2+Bx+C,得到二次函数得到二次函数的解析式,再比较y1、y2、y3的大小.
[详解]把A(1,2),B(3,2),C(5,7)代入y=Ax2+Bx+C得
,
解得 .
∴函数解析式为y= x2− x+ = (x−2)2+ .
人教版数学九年级上学期
《二次函数》单元测试
[考试时间:90分钟分数:120分]
一、选择题(共10小题,每小题3分,共30分)、
1.下列函数中,是二次函数的有()
① ② ③ ④
A.1个B.2个C.3个D.4个
2.已知二次函数 图象如图所示,给出以下结论:① ;② ;③ ;④ ,其中结论正确有()个.
人教版九年级数学上册《二次函数》单元测试(Word版有答案)
![人教版九年级数学上册《二次函数》单元测试(Word版有答案)](https://img.taocdn.com/s3/m/2b2d0fe184868762caaed5b8.png)
第 1 页 共 47 页人教版九年级数学上册《二次函数》单元测试(Word 版有答案)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分) 1.下列函数中,是二次函数的是( )A .y =-2x 27 B .y =1x 2 C .y =2x 2-(2x +1)(x -1) D .y =x 2-3x2.抛物线y =x 2+1的图像大致是( )A B C D 3.抛物线y =(x -1)2+2与y 轴的交点坐标为( )A .(0,1)B .(0,2)C .(1,2)D .(0,3) 4.下列二次函数中,图像以直线x =2为对称轴,且经过点(0,1)的是( )A .y =(x -2)2+1 B .y =(x +2)2+1 C .y =(x -2)2-3 D .y =(x +2)2-3 5.已知二次函数y =ax 2+bx +c 的x ,y 的部分对应值如下表:则该二次函数图像的对称轴为( )A .y 轴B .直线x =52C .直线x =2D .直线x =326.二次函数y =x 2-x -2的图像如图所示,则函数值y <0时,x 的取值范围是( )A .x <-1B .x >2C .-1<x <2D .x <-1或x >27.将抛物线y =x 2向右平移2个单位长度,再向上平移1个单位长度,所得抛物线相应的函数表达式是( )A .y =(x +2)2+1 B .y =(x -2)2+1 C .y =(x +2)2-1 D .y =(x -2)2-1 8.已知抛物线y =x 2-x -1与x 轴的一个交点为(m ,0),则代数式m 2-m +2 020的值为( )第 2 页 共 47 页A .2 018B .2 019C .2 020D .2 021 9.下列四个函数图像中,当x >0时,y 随x 的增大而增大的是( )A B C D10.已知函数y =x 2+bx +c 的图像经过点A(1,m),B(3,m).若点M(-2,y 1),N(-1,y 2),K(8,y 3)也在二次函数y =x 2+bx +c 的图像上,则下列结论正确的是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 2 11.某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y =-x 2+4x(单位:米)的一部分,则水喷出的最大高度是( )A .4米B .3米C .2米D .1米12.二次函数y =ax 2+bx +c(a ≠0)的图像如图所示,对称轴是直线x =1,则下列四个结论错误的是( )A .c >0B .2a +b =0C .b >0D .a -b +c >13.在学习“一次函数与二元一次方程”时,我们知道了两个一次函数图像的交点坐标与其相应的二元一次方程组的解之间的关系,请通过此经验推断:在同一平面直角坐标系中,函数y =5x 2-3x +4与y =4x 2-x +3的图像交点个数有( )A .0个B .1个C .2个D .无数个14.已知抛物线y =-x 2-2x +3与x 轴交于A ,B 两点,将这条抛物线的顶点记为C ,连接第 3 页 共 47 页AC ,BC ,则tan ∠CAB 的值为( )A. 12B.55C.255D .2 15.如图,在Rt △ABC 中,∠C =90°,AC =6 cm ,BC =2 cm ,点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动.若点P ,Q 均以1 cm/s 的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是( )A .20 cmB .18 cmC .25 cm D .3 2 cm16.在平面直角坐标系中,已知点A(2,4),B(2,-1),若抛物线y =2(x -3)2+k 与线段AB 有交点,且与y 轴相交于点C ,则下列四种说法,其中正确的是( )①当k =0时,抛物线y =2(x -3)2+k 与x 轴有唯一公共点; ②当x >4时,y 随x 的增大而增大; ③点C 的纵坐标的最大值为2;④抛物线与x 轴的两交点的距离的最大值为 6.A .①②③B .①②④C .①③④D .②③④ 二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分)17.已知抛物线y =x 2+x +p(p ≠0)与x 轴有且只有一个交点,则p = . 18.若抛物线y =ax 2+bx +c(a ≠0)经过(1,2)和(-1,-6)两点,则a +c = 19.如图,四边形OABC 是边长为1的正方形,OC 与x 轴正半轴的夹角为15°,点B 在抛物线y =ax 2(a <0)的图像上,则B 点的坐标为( ),a 的值为 .三、解答题(本大题有7个小题,共66分)20.(本小题满分8分)已知二次函数y =-(x -2)2+94.(1)写出这个函数的顶点坐标,与x 轴的交点坐标.第 4 页 共 47 页(2)在给定的坐标系中画出这个函数的图像.21.(本小题满分9分)已知:在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c 经过点A(3,0),B(2,-3),C(0,-3).(1)求抛物线的表达式.(2)设点D 是抛物线上一点,且点D 的横坐标为-2,求△AOD 的面积.22.(本小题满分9分)从地面竖直向上抛出一个小球,小球的高度h(米)与小球运动时间t(秒)之间的关系为h =18t -4t 2.(1)当t =2时,求小球距离地面的高度. (2)求出小球落地的时间.23.(本小题满分9分)在平面直角坐标系中,抛物线y =x 2-2x +c(c 为常数)的对称轴如图所示,且抛物线过点C(0,c).(1)当c =-3时,(x 1,y 1)在抛物线y =x 2-2x +c 上,求y 1的最小值.(2)若抛物线与x 轴有两个交点,自左向右分别为点A ,B ,且OA =12OB ,求抛物线的表达式.24.(本小题满分10分)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱.设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x之间的函数关系式和自变量x的取值范围.(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?25.(本小题满分10分)如图,已知抛物线y=-x2+3x+4与x轴交于点A,B,与y轴交于点C,P(m,n)为第一象限内抛物线上的一点,点D的坐标为(0,6).(1)OB=4,抛物线的顶点坐标为( ).(2)当n=4时,求点P关于直线BC的对称点P′的坐标.(3)是否存在直线PD,使直线PD所对应的一次函数随x的增大而增大,若存在,求出m的取值范围;若不存在,请说明理由.26.(本小题满分11分)某种植基地种植一种蔬菜,它的成本是每千克2元,售价是每千克3元,年销量为10(万千克).基地准备拿出一定的资金作绿色开发,若每年绿色开发投入的资金为x(万元),该种蔬菜的年销量将是原年销量的n倍,x与n的关系如下表:(1)猜想n与x之间的函数类型是函数,求出该函数的表达式并验证.(2)求年利润W1(万元)与绿色开发投入的资金x(万元)之间的函数关系式(注:年利润W1=销售总额-成本费-绿色开发投入的资金);当绿色开发投入的资金不低于3万元,又不超过5万元时,求此时年利润W1(万元)的最大值.第 5 页共47 页第 6 页 共 47 页(3)若提高种植人员的奖金,发现又增加一部分年销量,经调查发现:再次增加的年销量y(万千克)与每年提高种植人员的奖金z(万元)之间满足y =-z 2+4z ,若基地将投入5万元用于绿色开发和提高种植人员的奖金,应怎样分配这笔资金才能使总年利润达到17万元且绿色开发投入大于奖金投入?(2≈1.44) 答案一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分)二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分) 17.p =14.18.a +c =-2. 19.(2,-2),-3三、解答题(本大题有7个小题,共66分)20.解:(1)顶点坐标为(2,94),与x 轴的交点坐标为(12,0 ),(72,0 ).(2)图像如图所示. 21.解:(1)把点A(3,0),B(2,-3),C(0,-3)代入y =ax 2+bx +c ,得第 7 页 共 47 页⎩⎪⎨⎪⎧9a +3b +c =0,4a +2b +c =-3,c =-3,解得⎩⎪⎨⎪⎧a =1,b =-2,c =-3. ∴抛物线的表达式为y =x 2-2x -3.(2)把x =-2代入y =x 2-2x -3,得y =5.∴D(-2,5). ∵A(3,0),∴OA =3.∴S △AOD =12×3×5=152.22.解:(1)当t =2时,h =18×2-4×22=20. ∴当t =2时,小球距离地面的高度为20米.(2)令h =0,则18t -4t 2=0,解得t 1=0(不合题意,舍去),t 2=4.5. ∴小球落地的时间是4.5秒. 23.解:(1)当c =-3时,y =x 2-2x -3. ∵抛物线开口向上,有最小值.∴y 1的最小值为4ac -b 24a =4×1×(-3)-(-2)24=-4.(2)①当点A ,B 都在原点的右侧时,设A(m ,0), ∵OA =12OB ,∴B(2m ,0).∵二次函数y =x 2-2x +c 的对称轴为直线x =1,由二次函数的对称性,得1-m =2m -1.解得m =23.∴A(23,0).∵点A 在抛物线y =x 2-2x +c 上,∴0=49-43+c ,解得c =89.此时抛物线的表达式为y =x 2-2x +89.②当点A 在原点的左侧,点B 在原点的右侧时,设A(-n ,0),∵OA =12OB ,且点A ,B 在原点的两侧,∴B(2n ,0).由抛物线的对称性,得n +1=2n -1.解得n =2.∴A(-2,0). ∵点A 在抛物线上y =x 2-2x +c 上, ∴0=4+4+c ,解得c =-8.第 8 页 共 47 页此时抛物线的表达式为y =x 2-2x -8.综上,抛物线的表达式为y =x 2-2x +89或y =x 2-2x -8.24.解:(1)根据题意,得y =60+10x. 由36-x ≥24,得x ≤12. ∴1≤x ≤12,且x 为整数.(2)设所获利润为W ,则W =(36-x -24)(10x +60)=-10x 2+60x +720=-10(x -3)2+810.∴当x =3时,W 取最大值,最大值为810. 而36-3=33.答:超市定价每箱牛奶33元时,才能使每月销售牛奶的利润最大,最大利润是810元. 25.(1)OB =4,抛物线的顶点坐标为(32,254).解:(2)连接CP.当n =4时,-m 2+3m +4=4,解得m 1=3,m 2=0(舍去).∴P 点的坐标为(3,4). ∵OC =4,∴ CP ∥x 轴,CP =3.∵OB =OC =4,∴∠OCB =45°.∴∠BCP =45°. ∴点P ′在y 轴上.∴CP ′=CP =3.∴P ′(0,1). (3)存在.∵点D 的坐标为(0,6),当y =6时,-x 2+3x +4=6.解得x 1=1,x 2=2. ∵直线PD 所对应的一次函数随x 的增大而增大, ∴一次函数的图像一定经过第一、三象限.∴1<m <2.第 9 页 共 47 页26.(1)猜想n 与x 之间的函数类型是二次函数, 解:(1)设n 与x 的函数关系为n =ax 2+bx +c. 由题意,得⎩⎪⎨⎪⎧c =1,a +b +c =1.5,4a +2b +c =1.8, 解得⎩⎪⎨⎪⎧a =-0.1,b =0.6,c =1.∴n 与x 的函数表达式为n =-0.1x 2+0.6x +1.由表可知,当x =3时,代入表达式,得n =-0.1×9+0.6×3+1=1.9. ∴猜想正确.(2)由题意,得W 1=(3-2)×10n -x =-x 2+5x +10, 即W 1=-(x -52)2+654.∵由于投入的资金不低于3万元,又不超过5万元,所以3≤x ≤5,而a =-1<0,抛物线开口向下,且取值范围在顶点右侧,W 1随x 的增大而减小, ∴当x =3时,W 1最大为16万元.(3)设用于绿色开发的资金为a 万元,则用于提高奖金的资金为(5-a)万元, 将a 代入(2)中的W 1=-x 2+5x +10,故W 1=-a 2+5a +10.将(5-a)代入y =-z 2+4z ,故y =-(5-a)2+4(5-a)=-a 2+6a -5, 由于单位利润为1,所以由增加奖金而增加的利润是-a 2+6a -5.所以总年利润W ′1=(-a 2+5a +10)+(-a 2+6a -5)-(5-a)=-2a 2+12a , 因为要使总年利润达到17万,所以-2a 2+12a =17, 整理,得2a 2-12a +17=0,解得a =6+22≈3.7或a =6-22≈2.3,而绿色开发投入要大于奖金投入,所以a =3.7,5-a =1.3.所以用于绿色开发的资金为3.7万元,提高种植人员的奖金为1.3万元.第 10 页 共 47 页人教版九年级数学上册第22章《二次函数》单元综合过关试题(含答案)一.选择题1.抛物线y =﹣(x﹣)2﹣2的顶点坐标是( ) A .(,2)B .(﹣,2)C .(﹣,﹣2)D .(,﹣2)2.若二次函数y =ax 2+bx +c 的图象经过点(﹣1,0)和(3,0),则方程ax 2+bx +c =0的解为( ) A .x 1=﹣3,x 2=﹣1 B .x 1=1,x 2=3C .x 1=﹣1,x 2=3D .x 1=﹣3,x 2=13.对于抛物线y =3x 2﹣1,下列说法不正确的是( ) A .向上平移一个单位可得到抛物线y =3x 2B .当x =0时,函数有最小值﹣1C .当x <0时,y 随x 的增大而增大D .与抛物线y =﹣3x 2+1关于x 轴对称4.已知抛物线y =﹣x 2+ax +b 与x 轴两个交点间的距离为2,对称轴为直线x =1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( ) A .(﹣3,﹣6)B .(﹣3,﹣3)C .(﹣3,﹣1)D .(﹣3,0)5.若二次函数y =4mx 2﹣8x +m 的图象与x 轴有两个交点,满足条件的m 的值是( ) A .﹣2B .0C .1D .26.抛物线y =x 2+x +2的图象上有三个点(﹣3,a ),(﹣2,b ),(3,c ),则( ) A .a >b >cB .b >a >cC .c >a >bD .c >b >a7.一名跳水运动员从10米台上跳水,他跳下的高度h (单位:米)与所用的时间t (单位:秒)的关系是h =﹣5(t ﹣2)(t +1),这名运动员从起跳到入水所用的时间是( ) A .﹣5秒B .1秒C .﹣1秒D .2秒8.下列关于抛物线y =﹣4x 2﹣2x +1的描述不正确的是( )A.开口向下B.当x≤﹣时,y随x的增大而增大C.与y轴交点是(0,1)D.当x=﹣1时,y=09.二次函数y=ax2+bx+c(a≠0)的图象的对称轴是直线x=1,其图象的一部分如图所示.下列说法错误的是()A.abc<0 B.a﹣b+c<0C.3a+c<0 D.当﹣1<x<3时,y>010.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,则下列结论:①c=0;②2a﹣b=0;③当﹣2<x<0时,y<0;④a﹣b>0.其中正确结论的个数有()A.1个B.2个C.3个D.4个11.关于x的一元二次方程ax2+bx+=0有一个根是﹣1,若二次函数y=ax2+bx+的图象的顶点在第一象限,设t=2a+b,则t的取值范围是()A.<t<B.﹣1<t≤C.﹣≤t<D.﹣1<t<12.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给以下结论:①abc<0;②c+2a<0;第11 页共47 页③9a﹣3b+c=0;④a﹣b≥m(am+b)(m为实数);⑤4ac﹣b2<0.其中错误结论的个数有()A.1个B.2个C.3个D.4个二.填空题13.抛物线y=﹣2x2﹣4x+8的开口,对称轴,顶点坐标是.14.已知函数y=(m+3)x2+2x+1的图象与x轴只有一个公共点,则m的值为15.已知二次函数=2+2+2,当>2时,y随x的增大而增大,则实数m的取值范围是.16.已知直线y=2x﹣5与x轴和y轴分别交于点A和点B,抛物线y=﹣x2+bx+c的顶点M在线AB上,且抛物线与直线AB的另一个交点为N.(1)如图,当点M与点A重合时,则抛物线的解析式为;(2)当抛物线y=﹣x2+bx+c的顶点M在直线AB上平移时,若△OMN与△AOB相似,则点M的坐标为.第12 页共47 页三.解答题17.抛物线y=﹣x2+2mx+4﹣m2与x轴交于A,B两点,点A在点B的左侧.(1)若点B的坐标为(3,0).①求抛物线的对称轴;②当2≤x≤n时,函数值y的取值范围为﹣n﹣1≤y≤3,求n的值;(2)将抛物线在x轴上方的部分沿x轴翻折,得到新的函数图象,当﹣2≤x≤n时,此函数的值随x的增大而增大,直接写出n的取值范围.18.2019年在法国举办的女足世界杯,为人们奉献了一场足球盛宴.某商场销售一批足球文化衫,已知该文化衫的进价为每件40元,当售价为每件60元时,每个月可售出100第13 页共47 页件.根据市场行情,现决定涨价销售,调查表明,每件商品的售价每上涨1元,每个月会少售出2件,设每件商品的售价为x元,每个月的销量为y件.(1)求y与x之间的函数关系式;(2)当每件商品的售价定为多少元时,每个月的利润恰好为2250元;(3)当每件商品的售价定为多少元时,每个月获得利润最大?最大月利润为多少?19.如图,已知抛物线y=ax2+x+c(a≠0)与y轴交于A(0,4),与x轴交于B、C,点C坐标为(8,0),连接AB、AC.(1)求抛物线的解析式;(2)判断△ABC的形状,并说明理由.20.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,OB=2OC且OC=2.(1)求抛物线的解析式及点D的坐标;(2)点P为y轴右侧抛物线上一点,是否存在点P使S△ABP=S△ABC?若存在请求出点P坐标;若不存在,请说明理由.第14 页共47 页21.如图,已知抛物线y=a2+by+6(a≠0)与x轴交于点A(﹣3,0)和点B(1,0)与y轴交于点C.(1)填空;a=;b=;点C的坐标为(,);(2)点M为坐标平面内一点,若MA=MB=MC,求点M的坐标;(3)在抛物线上是否存在点E,使4tan∠ABE=11tan∠ACB?若存在,求出满足条件的所有点E的坐标;若不存在,请说明理由.第15 页共47 页22.已知函数y=(n为常数)(1)当n=5,①点P(4,b)在此函数图象上,求b的值;②求此函数的最大值.(2)已知线段AB的两个端点坐标分别为A(2,2)、B(4,2),当此函数的图象与线段AB只有一个交点时,直接写出n的取值范围.(3)当此函数图象上有4个点到x轴的距离等于4,求n的取值范围.23.6月19日是全国低碳日.低碳生活代表着更健康、更自然、更安全的生活.某低碳家居用品销售商在第一个月成批购进低碳厨房用品A的单价为20元,调查发现:低碳厨房用品A的预计销售单价是30元,则销售量是230件,而实际销售单价比预计销售单价每上涨1元,销售量就减少5件,每件低碳厨房用品A售价不能高于50元.(1)第一个月低碳厨房用品A的实际销售单价定为多少元时,它的销售利润恰好为3600元?(2)第二个月,销售商将继续购进350件低碳厨房用品A,销售单价比第一个月预计销售单价上涨了10%,进价比第一个月的进价上涨了0.2m%同时,销售商将另外购进m件低碳厨房用品B,且它的单价比第一个月购进低碳厨房用品A的进价低20%,销售单价为28元;低碳厨房用品B的数量不少于第二个月购进低碳厨房用品A的数量的2倍,且不超过800套.第二个月低碳厨房用品A、B的进货全部销售完后,销售商获得的总利润为Q,请问当m取何值时利润最大,并求出最大值.第16 页共47 页24.如图,抛物线y=x2+x﹣4与x轴交于A,B(A在B的左侧),与y轴交于点C,抛物线上的点E的横坐标为3,过点E作直线l1∥x轴.(1)点P为抛物线上的动点,且在直线AC的下方,点M,N分别为x轴,直线l1上的动点,且MN⊥x轴,当△APC面积最大时,求PM+MN+EN的最小值;(2)过(1)中的点P作PD⊥AC,垂足为F,且直线PD与y轴交于点D,把△DFC绕顶点F旋转45°,得到△D'FC',再把△D'FC'沿直线PD平移至△D″F′C″,在平面上是否存在点K,使得以O,C″,D″,K为顶点的四边形为菱形?若存在直接写出点K的坐标;若不存在,说明理由.第17 页共47 页第 18 页 共 47 页参考答案一.选择题1.解:因为y =﹣(x﹣)2﹣2是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(,﹣2).故选:D .2.解:∵二次函数y =ax 2+bx +c 的图象经过点(﹣1,0)和(3,0),∴方程ax 2+bx +c =0的解为x 1=﹣1,x 2=3.故选:C .3.解:A 、向上平移一个单位可得到抛物线y =3x 2,故本选项不符合题意. B 、由于a =3>0,该抛物线的开口方向向上,且顶点坐标是(0,﹣1),则当x =0时,函数有最小值﹣1,故本选项不符合题意.C 、由于对称轴是y 轴,抛物线的开口方向向上,则当x <0时,y 随x 的增大而减小,故本选项符合题意.D 、抛物线y =3x 2﹣1与抛物线y =﹣3x 2+1关于x 轴对称,故本选项不符合题意. 故选:C .4.解:已知抛物线y =﹣x 2+ax +b 与x 轴两个交点间的距离为2,对称轴为直线x =1, 则函数与x 轴两个交点坐标为:(3,0)、(﹣1,0),则函数的表达式为:y =﹣(x ﹣3)(x +1)=﹣(x ﹣1)2+4,此抛物线向左平移2个单位,再向下平移3个单位得到的新抛物线表达式为:y ′=﹣(x +1)2+1,当x =﹣3时,y =﹣3,故选:B .5.解:由题意得:m ≠0,且△=(﹣8)2﹣4×4m ×m >0,解得:﹣2<m <2,第 19 页 共 47 页故选:C .6.解:抛物线y =x 2+x +2的开口向上,对称轴为x =﹣=﹣, (﹣3,a ),(﹣2,b ),(3,c )三点到对称轴的距离分别为2.5,1.5,3.5, ∴c >a >b ,故选:C .7.解:设运动员起跳到入水所用的时间是ts ,根据题意可知:﹣5(t ﹣2)(t +1)=0,解得:t 1=﹣1(不合题意舍去),t 2=2,那么运动员起跳到入水所用的时间是2s .故选:D .8.解:﹣4<0,故抛物线开口向下,故A 不符合题意;函数对称轴为:x =﹣=﹣,函数对称轴左侧,y 随x 的增大而增大,故B 不符合题意;函数与y 轴的交点是(0,1),故C 不符合题意;当x =﹣1时,y =﹣4+2+1=﹣1,故D 符合题意;故选:D .9.解:A 、∵开口向下,∴a <0,∵对称轴在y 轴右侧,∴﹣>0, ∴b >0,∵抛物线与y 轴交于正半轴,∴c >0,∴abc <0,故不选项不符合题意;B 、∵对称轴为直线x =1,抛物线与x 轴的一个交点横坐标在2与3之间, ∴另一个交点的横坐标在0与﹣1之间;∴当x =﹣1时,y =a ﹣b +c <0,故不选项不符合题意;C、∵对称轴x=﹣=1,∴2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故不选项不符合题意;D、如图,当﹣1<x<3时,y不只是大于0.故本选项符合题意;故选:D.10.解:①∵抛物线经过原点,∴c=0,故正确;②∵抛物线的对称轴为x=﹣1,∴﹣=﹣1,∴b=2a,∴2a﹣b=0,故正确;③∵抛物线的对称轴为x=﹣1,与x轴交于(0,0),∴另一个交点为(﹣2,0),∴当﹣2<x<0时,y<0;故正确;④∵抛物线的开口向上,∴a>0,∵b=2a,∴a﹣b=a﹣2a=﹣a<0,故错误;故选:C.11.解:∵关于x的一元二次方程ax2+bx+=0有一个根是﹣1,∴二次函数y=ax2+bx+的图象过点(﹣1,0),∴a﹣b+=0,∴b=a+,t=2a+b,则a=,b=,第20 页共47 页∵二次函数y=ax2+bx+的图象的顶点在第一象限,∴﹣>0,﹣>0,将a=,b=代入上式得:>0,解得:﹣1<t<,﹣>0,解得:t或1<t<3,故:﹣1<t<,故选:D.12.解:①由抛物线可知:a>0,c<0,对称轴x=﹣<0,∴b>0,∴abc<0,故①正确;②由对称轴可知:﹣=﹣1,∴b=2a,∵x=1时,y=a+b+c=0,∴c+3a=0,∴c+2a=﹣3a+2a=﹣a<0,故②正确;③(1,0)关于x=﹣1的对称点为(﹣3,0),∴x=﹣3时,y=9a﹣3b+c=0,故③正确;④当x=﹣1时,y的最小值为a﹣b+c,∴x=m时,y=am2+bm+c,第21 页共47 页∴am2+bm+c≥a﹣b+c,即a﹣b≤m(am+b),故④错误;⑤抛物线与x轴有两个交点,∴△>0,即b2﹣4ac>0,∴4ac﹣b2<0,故⑤正确;故选:A.二.填空题(共4小题)13.解:∵抛物线y=﹣2x2﹣4x+8=﹣2(x+1)2+10,∴该抛物线的开口向下,对称轴是直线x=﹣1,顶点坐标是(﹣1,10),故答案为:向下,直线x=﹣1,(﹣1,10).14.解:∵函数y=(m+3)x2+2x+1的图象与x轴只有一个公共点,∴或(m+3)=0,解得,m=﹣1或m=﹣3,故答案为:m=﹣1或m=﹣3.15.解:二次函数=2+2+2的对称轴是直线y=﹣=﹣m,a=1>0,抛物线的图象开口向上,当x>﹣m时,y随x的增大而增大,第22 页共47 页∵当>2时,y随x的增大而增大,∴﹣m≤2,解得:m≥﹣2,故答案为:m≥﹣2.16.解:(1)直线y=2x﹣5与x轴和y轴分别交于点A和点B,则点A、B的坐标分别为:(,0)、(0,﹣5),设抛物线的顶点为:(m,2m﹣5),则抛物线的表达式为:y=﹣(x﹣m)2+2m﹣5,当点M与点A重合时,即m=,则抛物线的表达式为:y=﹣x2+5x﹣,故答案为:y=﹣x2+5x﹣;(2)设点M(m,2m﹣5),点N(x,y),将抛物线表达式与直线表达式联立并整理得:x2+(2﹣2m)x+m2+2m=0,则x+m=2m﹣2,则x=m﹣2,故点N(m﹣2,2m﹣9),则MN=2,则AB=,①当∠OMN=90°时,则直线OM表达式中的k值为﹣,即=﹣,解得:m=2,故点M、N的坐标分别为:(2,﹣1)、(0,﹣5),则OM=,ON=5,经验证:,满足△OMN与△AOB相似,故点M(2,﹣1);②当∠ONM=90°时,同理可得:点M(4,3);③当∠MON=90°时,第23 页共47 页过点M、N分别作y轴的垂线交于点G、H,∵∠GMO+∠GOM=90°,∠GOM+∠HON=90°,∴∠GMO=∠HON=α,则tan∠GMO=tan∠HON,即:,解得:m=3,故点M(3,1)(△OMN为等腰直角三角形,故舍去);综上,点M的坐标为:(2,﹣1)、(4,3),故答案为:(2,﹣1)、(4,3).三.解答题(共8小题)17.解:(1)①将B代入得,﹣9+6m+4﹣m2=0,m=1或5,∵对称轴x=m<3,∴m=1 即对称轴x=1②当2≤x≤n时,函数单调递减,所以当x=n时,y=﹣n2+2n+3=﹣n﹣1,∴n=1或4,∵n>2,∴n=4(2)∵抛物线y=﹣x2+2mx+4﹣m2与x轴交于A,B两点,∴令0═﹣x2+2mx+4﹣m2解得A(m﹣2,0),B(m+2,0)对称轴为:x=m∵抛物线在x轴上方的部分沿x轴翻折,∴此时函数的值随x的增大而增大的为:x<m﹣2和m<x<m+2,∴当x<m﹣2时,此时n≤m﹣2;当﹣m<x<m+2,n≤m+2,m>﹣2第24 页共47 页第 25 页 共 47 页解得n ≤0或n ≤﹣4∴n ≤0﹣4综上所述,n ≤﹣4.18.解:(1)由题意得,月销售量y =100﹣2(x ﹣60)=220﹣2x (60≤x ≤110,且x 为正整数)答:y 与x 之间的函数关系式为y =220﹣2x .(2)由题意得:(220﹣2x )(x ﹣40)=2250化简得:x 2﹣150x +5525=0解得x 1=65,x 2=85答:当每件商品的售价定为65元或85元时,每个月的利润恰好为2250元.(3)设每个月获得利润w 元,由(2)知w =(220﹣2x )(x ﹣40)=﹣2x 2+300x ﹣8800∴w =﹣2(x ﹣75)2+2450∴当x =75,即售价为75元时,月利润最大,且最大月利润为2450元.19.解(1)∵抛物线y =ax 2+x +c 与y 轴交于A (0,4)与x 轴交于B 、C ,点C 坐标为(8,0),∴,解得:,∴抛物线的解析式为y =﹣x 2+x +4;(2)△ABC 为直角三角形,理由如下:当y =0时,﹣x 2+x +4=0,解得:x 1=8,x 2=﹣2,∴点B 的坐标为(﹣2,0),由已知可得在Rt △ABO 中,AB 2=BO 2+AO 2=22+42=20,在Rt△ACO中,AC2=CO2+AO2=82+42=80,又∵BC=OB+OC=2+8=10,∴在△ABC中,AB2+AC2=20+80=102=BC2,∴△ABC是直角三角形.20.解:(1)∵OC=2,OB=2OC=4,∴B(4,0),C(0,2),根据题意得,解得,∴抛物线的解析式为y=﹣x2+x+2;∵y=﹣(x ﹣)2+,∴D点坐标为(,);(2)存在.当y=0时,﹣x2+x+2=0,解得x1=﹣1,x2=4,则A(﹣1,0),设P(x,﹣x2+x+2),∵S△ABP=S△ABC,∴•5•|﹣x2+x+2|=••5•2,解方程﹣x2+x+2=3得x1=1,x2=2,则P(1,3)或(2,3),解方程﹣x2+x+2=﹣3得x1=5,x2=﹣2(舍去),则P(5,﹣3),∴当P点坐标为(1,3)或(2,3)或(5,﹣3)时,点P使S△ABP=S△ABC.21.解:(1)将A,B的坐标代入函数解析式,得,解得:,抛物线y的函数表达式y=﹣2x2﹣4x+6,当x=0时,y=6,即C(0,6);第26 页共47 页故答案为:﹣2,﹣4,0,6;(2)由MA=MB=MC,得M点在AB的垂直平分线上,M在AC的垂直平分线上,设M(﹣1,x),MA=MC,得(﹣1+3)2+x2=(x﹣6)2+(﹣1﹣0)2,解得x =,∴若MA=MB=MC,点M的坐标为(﹣1,);(3)①如图1,过点A作DA⊥AC交y轴于点F,交CB的延长线于点D,∵∠ACO+∠CAO=90°,∠DAO+∠CAO=90°,∠ACO+∠AFO=90°,∴∠DAO=∠ACO,∠CAO=AFO∴△AOF∽△COA,∴,∴AO2=OC×OF∵OA=3,OC=6∴OF =,∴F(0,﹣,第27 页共47 页∵A(﹣6,0),∴直线AF的解析式为:y=﹣,∵B(1,0),(0,6),∴直线BC的解析式为:y=﹣6x+6∴,解得:,∴,∴,∴tan∠ACB=.∵4tan∠ABE=11tan∠ACB∴tan∠ABE=2过点A作AM⊥x轴,连接BM交抛物线于点E∵AB=4,tan∠ABE=2∴AM=8∴M(﹣3,8),∵B(1,0),(﹣3,8)∴直线BM的解析式为:y=﹣2x+2,联立BM与抛物线,得,解得x=﹣2或x=1(舍去)∴y=6∴E(﹣2,6),第28 页共47 页②当点E在x轴下方时,如图2,过点E作EG⊥AB,连接BE,设点E(m,﹣2m2﹣4m+6),∴tan∠ABE=,∴m=﹣4或m=1(舍去)可得E(﹣4,﹣10),综上所述:E点坐标为(﹣2,6),(﹣4,﹣10).22.解:(1)当n=5时,y=,①将P(4,b)代入y=﹣x2+x+,∴b =;②当x≥5时,当x=5时有最大值为5;当x<5时,当x=时有最大值为;∴函数的最大值为;(2)将点(4,2)代入y=﹣x2+nx+n中,∴n =,∴<n<4时,图象与线段AB只有一个交点;第29 页共47 页将点(2,2)代入y=﹣x2+nx+n中,∴n=2,将点(2,2)代入y=﹣x2+x+中,∴n =,∴2≤n<时图象与线段AB只有一个交点;综上所述:<n<4,2≤n<时,图象与线段AB只有一个交点;(3)n>0时,n>,函数图象如图实线所示.①如图1中,当点A的纵坐标为4时,则有﹣++=+=4时,解得n=4或n=﹣8(舍去),观察图象可知:n=4时,满足条件的点恰好有四个,分别是A,B,C,D.②如图2中,观察图象可知,当n≥8时,恰好有四个点满足条件,分别是图中A,B,C,D.第30 页共47 页n<0时,n<,函数图象如图中实线.③如图3中,当点A的纵坐标为4时,恰好有四个点满足条件,分别是图中A,B,C,D.则有:﹣++n=4时,解得n=﹣2﹣2或n=﹣2+2(舍弃)④如图4中,当n≤﹣8时,观察图象可知,恰好有四个点满足条件,分别是图中A,B,C,D.第31 页共47 页第 32 页 共 47 页综上所述,函数图象上有4个点到x 轴的距离等于4时,n ≤﹣8或n =﹣2﹣2或n=4或n ≥8.23.解:(1)设实际销售单价比预计销售单价上涨x 元, 根据题意得:(30+x ﹣20)(230﹣5x )=3600, 整理得:x 2﹣36x +260=0, 解得:x 1=10,x 2=26,∵每件低碳厨房用品A 售价不能高于50元, 26+30=56(元)>50元, ∴x 2=26,不合题意舍去, 10+30=40(元),∴第一个月低碳厨房用品A 的实际销售单价定为40元;答:第一个月低碳厨房用品A 的实际销售单价定为40元时,它的销售利润恰好为3600元;(2)根据题意得:Q =350[30(1+10%)﹣20(1+0.2m %)]+m [28﹣20(1﹣20%)]=4550﹣2m ,∵低碳厨房用品B 的数量不少于第二个月购进低碳厨房用品A 的数量的2倍,且不超过800套,第 33 页 共 47 页∴700≤m ≤800,当m =700时,Q 值最大,Q =4550﹣2×700=3150(元). 答:当m 取700时利润最大,最大值为3150元.24.解:(1)如图1,过点P 作PG ⊥x 轴于点G ,交AC 于点H ,在PG 上截取PP '=MN ,连接P 'N ,以NE 为斜边在直线NE 上方作等腰Rt △NEQ ,过点P '作P 'R ⊥EQ 于点R ∵x =0时,y=x 2+x ﹣4=﹣4 ∴C (0,﹣4)∵y =0时, x 2+x ﹣4=0 解得:x 1=﹣4,x 2=2 ∴A (﹣4,0),B (2,0) ∴直线AC 解析式为y =﹣x ﹣4 ∵抛物线上的点E 的横坐标为3 ∴y E=×32+3﹣4= ∴E (3,),直线l 1:y=∵点M 在x 轴上,点N 在直线l 1上,MN ⊥x 轴 ∴PP '=MN=设抛物线上的点P (t, t 2+t ﹣4)(﹣4<t <0) ∴H (t ,﹣t ﹣4)∴PH =﹣t ﹣4﹣(t 2+t ﹣4)=﹣t 2﹣2t∴S △APC =S △APH +S △CPH=PH •AG+PH •OG=PH •OA =2PH =﹣t 2﹣4t ∴当t =﹣=﹣2时,S △APC 最大∴y P=t 2+t ﹣4=2﹣2﹣4=﹣4,y P '=y P+∴P (﹣2,﹣4),P '(﹣2,﹣)∵PP'=MN,PP'∥MN∴四边形PMNP'是平行四边形∴PM=P'N∵等腰Rt△NEQ中,NE为斜边∴∠NEQ=∠ENQ=45°,NQ⊥EQ∴NQ=EN∴PM+MN+EN=P'N+PP'+NQ=+P'N+NQ∵当点P'、N、Q在同一直线上时,P'N+NQ=P'R最小∴PM+MN+EN=+P'R设直线EQ解析式为y=﹣x+a∴﹣3+a=解得:a=∴直线EQ:y=﹣x+设直线P'R解析式为y=x+b∴﹣2+b=﹣解得:b=∴直线P'R:y=x+∵解得:∴R(,4)∴P'R=∴PM+MN+EN最小值为(2)∵PD⊥AC,P(﹣2,﹣4),∴直线PD解析式为:y=x﹣2,∴D(0,﹣2),F(﹣1,﹣3),∴CD=2,DF=CF=,△CDF是等腰直角三角形,第34 页共47 页如图2,把△DFC绕顶点F逆时针旋转45°,得到△D'FC',∴C′(,﹣3),D′(﹣1,﹣3)把△D'FC'沿直线PD平移至△D″F′C″,连接D′D″,C′C″则直线C′C″解析式为y=x﹣2﹣,直线D′D″解析式为y=x+﹣2,显然OC″≥+1>2=C″D″∴以O,C″,D″,K为顶点的四边形为菱形,OC″不可能为边,只能以OD″、C″D″为邻边构成菱形∴OD″=C″D″=OK=2,∵OK∥C″D″,PD⊥C″D″∴OK⊥PD∴K1(,﹣),如图3,把△DFC绕顶点F顺时针旋转45°,得到△D'FC',∴C′(﹣1,﹣3﹣),D′(﹣1,﹣﹣3)把△D'FC'沿直线PD平移至△D″F′C″,连接D′D″,C′C″,显然,C″D″∥PD,OC″≥+1>C″D″,OD″≥+1>C″D″,∴以O,C″,D″,K为顶点的四边形为菱形,C″D″只能为对角线,∴K2(2+,﹣2﹣).综上所述,点K的坐标为:K1(,﹣),K2(2+,﹣2﹣).第35 页共47 页第36 页共47 页第 37 页 共 47 页人教新版九年级上学期第22章《二次函数》单元测试卷(含答案)(1)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列函数中,是反比例函数的是( )A .y =3x -1B .y =0.1xC .y =-13 D.yx =22.反比例函数y =22x的图像在( ) A .第一、二象限 B .第一、三象限 C .第二、三象限 D .第二、四象限 3.若点A(a ,b)在反比例函数y =2x 的图像上,则代数式ab -4的值为( )A .-2B .0C .2D .-6 4.下列函数中,y 随x 的增大而减小的函数是( )A .y =-1xB .y =1xC .y =-1x (x >0)D .y =1x(x <0)5.某学校要种植一块面积为100 m 2的长方形草坪,要求两边长均不小于5 m ,则草坪的一边长y(单位:m)随另一边长x(单位:m)的变化而变化的图像可能是( )6.如图,在平面直角坐标系中,点A 是双曲线y =1x (x >0)上的一个动点,过点A 作x 轴的垂线,交x 轴于点B ,点A运动过程中△AOB 的面积将会( )A .保持不变B .逐渐变小C .逐渐增大D .先增大后减小7.对于反比例函数y =k 2+1x,下列说法正确的是( )A .y 随x 的增大而减小B .图像是中心对称图形C .图像位于第二、四象限D .当x <0时,y 随x 的增大而增大 8.已知反比例函数y =-9x,当1<x <3时,y 的最大整数值是( )第 38 页 共 47 页A .-6B .-3C .-4D .-19.一次函数y =ax -a 与反比例函数y =ax (a ≠0)在同一平面直角坐标系中的图像可能是( )10.已知A(-1,y 1),B(2,y 2)两点在双曲线y =3+2mx上,且y 1>y 2,则m 的取值范围是( )A .m >0B .m <0C .m >-32D .m <-3211.一次函数y 1=ax +b 与反比例函数y 2=kx 的图像如图所示,当y 1<y 2时,x 的取值范围是( )A .x <2B .x >5C .2<x <5D .0<x <2或x >512.在平面直角坐标系中,直线y =x +b 与双曲线y =-1x 只有一个公共点,则b 的值是( )A .1B .±1C .±2D .213.如图,已知双曲线y =kx (x >0)经过矩形OABC 的边AB ,BC 的中点F ,E ,且四边形OEBF的面积为2,则k 的值为( )A .2B .4C .3D .114.反比例函数y =mx的图像如图所示,以下结论:①常数m <-1;②在每个象限内,y 随x 的增大而增大;③若点A(-1,h),B(2,k)在图像上,则h <k ;④若点P(x ,y)在图像上,则点P ′(-x ,-y)也在图像上.第 39 页 共 47 页其中正确结论的个数是( ) A .1 B .2 C .3 D .415.如图,在平面直角坐标系xOy 中,菱形AOBC 的一个顶点O 在坐标原点,一边OB 在x 轴的正半轴上,sin ∠AOB =45,反比例函数y =48x 在第一象限内的图像经过点A ,与BC 交于点F ,则△AOF 的面积等于( )A .30B .40C .60D .8016.定义新运算:a ⊕b =⎩⎪⎨⎪⎧a b (b >0),-ab (b <0).例如:4⊕5=45,4⊕(-5)=45,则函数y =2⊕x(x≠0)的图像大致是( )A B C D二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.如图,矩形ABCD 在第一象限,AB 在x 轴的正半轴上,AB =3,BC =1,直线y =12x -1经过点C 交x 轴于点E ,双曲线y =kx经过点D ,则k 的值为 .第 40 页 共 47 页18.如图,过点C(2,1)作AC ∥x 轴,BC ∥y 轴,点A ,B 都在直线y =-x +6上.若双曲线y =kx(x >0)与△ABC 总有公共点,则k 的取值范围是 .19.如图,在函数y =8x (x >0)的图像上有点P 1,P 2,P 3,…,P n ,P n +1,点P 1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P 1,P 2,P 3,…,P n ,P n +1分别作x 轴、y 轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S 1,S 2,S 3,…,S n ,则S 1= ,S n = (用含n 的代数式表示).三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)已知反比例函数的图像过点A(-2,2).(1)求函数的表达式;(2)y 随x 的增大而如何变化?(3)点B(-4,2),点C(3,-43)和点D(22,-2)哪些点在图像上?21.(本小题满分9分)已知反比例函数y =k -1x 的图像的两个分支分别位于第一、三象限.(1)求k 的取值范围;(2)若一次函数y =2x +k 的图像与该反比例函数的图像有一个交点的纵坐标是4,试确定一次函数与反比例函数的表达式,并求当x =-6时,反比例函数y 的值.。
人教版九年级数学上册《第二十二章二次函数》单元测试卷-附含答案
![人教版九年级数学上册《第二十二章二次函数》单元测试卷-附含答案](https://img.taocdn.com/s3/m/c8b50618ac02de80d4d8d15abe23482fb5da0219.png)
人教版九年级数学上册《第二十二章二次函数》单元测试卷-附含答案学校:___________班级:___________姓名:___________考号:___________一、单选题 1.若二次函数图象的顶点坐标为2,1,且过点()0,3,则该二次函数的解析式为( ) A .()21122x y --= B .()221y x =+- C .()221y x =-- D .()221y x =---2.平面直角坐标系中,抛物线y =12(x +2)(x ﹣5)经变换后得抛物线y =12(x +5)(x ﹣2),则这个变换可以是( )A .向左平移7个单位B .向右平移7个单位C .向左平移3个单位D .向右平移3个单位 3.已知二次函数()2213y x =--,则下列说法正确的是( ) A .y 有最小值0,有最大值-3 B .y 有最小值-3,无最大值 C .y 有最小值-1,有最大值-3 D .y 有最小值-3,有最大值0 4.二次函数()2y x k h =++的图象与x 轴的交点的横坐标分别为-1和3,则()22y x k h =+++的图象与x 轴的交点的横坐标分别为( )A .-3和1B .1和5C .-3和5D .3和5 5.若二次函数2y a x bx c =++的图象经过不同的六点()1,A n -、()5,1B n -和()6,1C n +、()14,D y 和()22,E y 、()32,F y 则1y 、2y 和3y 的大小关系是( ) A .123y y y <<B .132y y y <<C .213y y y <<D .321y y y << 6.已知二次函数()24119y x =--上的两点()()1122,,,P x y Q x y 满足123x x =+,则下列结论中正确的是( ) A .若112x <-,则121y y >>- B .若1112x -<<,则210y y >> C .若112x <-,则120y y >> D .若1112x -<<,则210y y >> 7.已知抛物线()2<0y ax bx c a =++的对称轴为=1x -,与x 轴的一个交点为()2,0.若关于x 的一元二次方程()20ax bx c p p ++=>有整数根,则P 的值有多少个?( )A .1B .2C .3D .48.如图,直线y=x 与抛物线y=x 2﹣x ﹣3交于A 、B 两点,点P 是抛物线上的一个动点,过点P 作直线PQ⊥x轴,交直线y=x 于点Q ,设点P 的横坐标为m ,则线段PQ 的长度随m 的增大而减小时m 的取值范围是( )﹣1或1<m <3 9.小明周末外出游玩时看到某公园有一圆形喷水池,如图1,简单测量得到如下数据:圆形喷水池直径为20m ,水池中心O 处立着一个圆柱形实心石柱OM ,在圆形喷水池的四周安装了一圈喷头,喷射出的水柱呈拋物线型,水柱在距水池中心4m 处到达最大高度为6m ,从各方向喷出的水柱在石柱顶部的中心点M 处101110.如图,在ABC 中90,3cm,6cm B AB BC ∠=︒==,动点P 从点A 开始沿AB 向点B 以1cm/s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2cm /s 的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则PBQ 的面积S 随出发时间t 的函数图象大致是( )A .B . C. D .二、填空题11.抛物线22(1)3y x =---与y 轴交点的纵坐标为12.已知实数x 、y 满足x 2﹣2x +4y =5,则x +2y 的最大值为 .13.今年三月份王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝等进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,当销售单价是 元时,王大伯获得利润最大.14.已知抛物线224y mx mx c =-+ 与x 轴交于点()1,0A -、()2,0B x 两点,则B 点的横坐标2x = .15.已知抛物线的函数关系式:()22212y x a x a a =+-+-(其中x 是自变量).(1)若点()1,3P 在此抛物线上,则a 的值为 .(2)设此抛物线与x 轴交于点()1,0A x 和()2,0B x ,若122x x <<,且抛物线的顶点在直线34x =的右侧,则a 的取值范围为 .16.设二次函数2y ax bx c =++(,a b c ,是常数,0a ≠),如表列出了x ,y 的部分对应值. x … 5- 3- 1 2 3 …y … 2.79- m 2.79- 0n … 则不等式20ax bx c ++<的解集是 .17.二次函数2y ax bx c =++的部分图象如图所示,对称轴为1x =,图象过点A ,且930a b c ++=,以下结论:⊥420a b c -+<;⊥关于x 的不等式220ax ax c -+->的解集为:13x -<<;⊥3c a >-;⊥()21(1)0m a m b -+-≥(m 为任意实数);⊥若点()1,B m y ,()22,C m y -在此函数图象上,则12y y =.其中错误的结论是 .三、解答题设该超市在第x 天销售这种商品获得的利润为y 元.(1)求y 关于x 的函数关系式;(2)在这30天中,该超市销售这种商品第几天的利润最大?最大利润是多少?21.如图所示,二次函数2y ax bx c =++的图象经过()1,0-、()3,0和()03-,三点.(1)求二次函数的解析式;(2)方程2++=有两个实数根,m的取值范围为__________.ax bx c m(3)不等式23++>-的解集为__________;ax bx c x22.一次足球训练中,小明从球门正前方12m的A处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为8m时,球达到最高点,此时球离地面4m.已知球门高OB为2.58m,现以O为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素);(2)对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O正上方2.56m处?参考答案:1.C2.C3.B4.A5.D6.B。
九年级数学上册《第二十二章 二次函数》单元测试题含答案(人教版)
![九年级数学上册《第二十二章 二次函数》单元测试题含答案(人教版)](https://img.taocdn.com/s3/m/42a9033817fc700abb68a98271fe910ef12dae9f.png)
九年级数学上册《第二十二章 二次函数》单元测试题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列函数中,是二次函数的是( )A .y =−8xB .y =8xC .y =8x 2D .y =8x −4 2.二次函数y=x 2的图象经过的象限是( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限3.若抛物线y =ax 2经过点P(−√7,4),则该抛物线一定还经过点( )A .(4,−√7)B .(√7,4)C .(−4,√7)D .(−√7,−4)4.已知二次函数表达式为y =−(x +2)2−1,则下列结论中正确的是( )A .对称轴为直线x =2B .最大值是-1C .顶点坐标为(2,−1)D .图象开口向上5.二次函数y =x 2+bx+3满足当x <﹣2时,y 随x 的增大而减小,当x >﹣2时,y 随x 的增大而增大,则x =1时,y 的值等于( )A .﹣8B .0C .3D .86.点A(−2,y 1),B(4,y 2),C(6,y 3)均在二次函数y =x 2−2x −3的图象上,则y 1,y 2,y 3的大小关系是( )A .y 3>y 2>y 1B .y 1=y 2>y 3C .y >1y 2>y 3D .y >3y 1=y 2 7.二次函数y =ax 2−bx −5与x 轴交于(1,0)、(-3,0),则关于x 的方程ax 2−bx =5的解为( )A .1,3B .1,-5C .-1,3D .1,-38.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示,则下列描述正确的是( )A.小球抛出3秒后,速度越来越快B.小球在空中经过的路程是40mC.小球抛出3秒时速度达到最大D.小球的高度h= 30m时,t=1.5s二、填空题9.若二次函数y=ax2的图象开口向上,则a的取值范围是.10.已知抛物线y=−x2+4x+m,若顶点在x轴上,则m=.11.当−2≤x≤1时,二次函数y=(x+m)2+m2+1有最大值4,则实数m的值为.12.二次函数y=−x2+bx+c的部分图像如图所示,由图像可知,方程−x2+bx+c=0的解为.13.某商场经营一种文具,进价为20元/件,当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.那么该文具定价为元时每天的最大销售利润最大.三、解答题14.如图,若二次函数y=x2−x−2的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于C点.(1)求A、B两点的坐标:(2)若P(m,−2)为二次函数y=x2−x−2图象上一点,求m的值.15.有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为6m,桥洞的跨度为12m,如图建立直角坐标系.(1)求这条抛物线的函数表达式.(2)求离对称轴2m处,桥洞离水面的高是多少m?16.如图,抛物线y1=ax2−2x+c与x轴交于A(−1,0)和B(3,0)两点.(1)求此抛物线的解析式;(2)过点A的直线y2=mx+n与抛物线在第一象限交于点D,若点D的纵坐标为5,请直接写出当y2<y1时,x的取值范围是.17.新华书店销售一个系列的儿童书刊,每套进价100元,销售定价为140元,一天可以销售20套.为了扩大销售,增加盈利,减少库存,书店决定采取降价措施.若一套书每降价1元,平均每天可多售出2套.设每套书降价x元时,书店一天可获利润y元.(1)求出y与x的函数关系式;(2)若要书店每天盈利1200元,则每套书销售定价应为多少元?(3)当每套书销售定价为多少元时,书店一天可获得最大利润?这个最大利润为多少元?18.如图,抛物线y=−x2+bx+c与x轴交于A、B两点,与y轴交于C点,点A的坐标为(3,0),点C的坐标为(0,3).(1)求b与c的值;(2)求函数的最大值;时,利用函数图象写出m的取值范围.(3)M(m,n)是抛物线上的任意一点,当n≥7419.如图,抛物线y=x2+bx+c与x轴交于A(−1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的解析式及顶点坐标;(2)若点E是抛物线的对称轴与直线BC的交点,点F是抛物线的顶点,求EF的长;(3)抛物线上是否存在点P使得S△PAB=6?如果存在,请求出点P的坐标;若不存在,请说明理由.参考答案1.C2.A3.B4.B5.D6.D7.D8.A9.a >010.-411.1−√22或−12+√5212.x 1=5 x 2=−113.3514.(1)解:当y=0时,即x 2−x −2=0解得:x 1=-1,x 2=2∴A 点坐标和B 点坐标为 A(−1,0),B(2,0) ;(2)解:把x=m,y=-2代入 y =x 2−x −2 即m 2−m −2=-2,解得:m 1=0,m 2=1.15.(1)解:由题意可得,抛物线顶点坐标为(6,6)设抛物线解析式为y =a(x −6)2+6∵抛物线过点(0,0)∴0=a(0−6)2+6解得a =−16∴这条抛物线所对应的函数表达式为y =−16(x −6)2+6=−16x 2+2x(2)解:由题意可知该抛物线的对称轴为x =6,则对称轴右边2m 处为x =8 将x =8代入y =−16x 2+2x可得y =−16×82+2×8,解得y =163答:离对称轴2m 处,桥洞离水面的高是163m .16.(1)解:把A(−1,0)和B(3,0)代入y 1=ax 2−2x +c得{a +2+c =09a −6+c =0∴{a =1c =−3∴y 1=x 2−2x −3;(2)x >4或x <-117.(1)解:由题意可知:y =(140−x −100)(20+2x)=−2x 2+60x +800∴y 与x 的函数关系式为y =−2x 2+60x +800.(2)解:令−2x 2+60x +800=1200解得x 1=10∴140−x 1=130答:要书店每天盈利1200元,每套书销售定价应定为130元或120元.(3)解:y =−2x 2+60x +800=−2(x −15)2+1250∵−2<0∴当x =15时,y 有最大值1250,此时140−x =140−15=125答:当每套书销售定价为125元时,书店每天可获最大利润。
人教版九年级数学上册第22章《二次函数》单元检测题(含答案)
![人教版九年级数学上册第22章《二次函数》单元检测题(含答案)](https://img.taocdn.com/s3/m/a7577c5da9956bec0975f46527d3240c8447a19f.png)
人教版九年级数学上册第22章《二次函数》单元检测题(含答案)一.选择题(共10小题,满分30分,每小题3分)1.二次函数y=x2﹣2x+3的一次项系数是()A.1B.2C.﹣2D.32.抛物线y=﹣(x﹣1)2+3的顶点坐标是()A.(﹣1,3)B.(1,3)C.(﹣1,﹣3)D.(1,﹣3)3.抛物线y=x2+x+c与x轴只有一个公共点,则c的值为()A.B.C.﹣4D.44.下列对二次函数y=﹣(x+1)2﹣3的图象描述不正确的是()A.开口向下B.顶点坐标为(﹣1,﹣3)C.与y轴相交于点(0,﹣3)D.当x>−1时,函数值y随x的增大而减小5.抛物线y=2x2﹣4x+c经过三点(﹣3,y1),(﹣1,y2),(2,y3),则y1,y2,y3的大小关系是()A.y2>y3>y1B.y1>y2>y3C.y2>y1>y3D.y1>y3>y2 6.函数y=ax+1与y=ax2+ax+1(a≠0)的图象可能是()A.B.C.D.7.若将双曲线y=向下平移3个单位后,交抛物线y=x2于点P(a,b),则a的取值范围是()A.0<a<B.<a<1C.1<a<2D.2<a<38.小明在期末体育测试中掷出的实心球的运动路线呈抛物线形.若实心球运动的抛物线的解析式为,其中y是实心球飞行的高度,x是实心球飞行的水平距离.已知该同学出手点A的坐标为,则实心球飞行的水平距离OB的长度为()A.7m B.7.5m C.8m D.8.5m9.在平面直角坐标系中,O为坐标原点,二次函数y=x2+bx+c的图象与x轴只有一个交点,且经过点A(2﹣m,c),B(m+2,c),则△AOB的面积为()A.8B.12C.16D.410.已知经过点(﹣1,0)的二次函数y=ax2+bx+c的图象如图所示,有以下结论:①abc>0;②a﹣b+c<0;③4a+2b+c>0;④2a=b;⑤3a+c<0.其中正确结论的个数是()A.1个B.2个C.3个D.4个二.填空题(共8小题,满分32分,每小题4分)11.函数y=x2m﹣1+x﹣3是二次函数,则m=.12.已知抛物线的解析式为y=﹣3(x﹣2)2+1,则抛物线的对称轴是直线.13.在函数y=(x﹣1)2+1中,当x>1时,y随x的增大而.(填“增大”或“减小”)14.将抛物线y=x2+x﹣1向左平移2个单位,再向上平移3个单位,则此时抛物线的解析式是.15.抛物线y=x2+bx+c的图象上有两点A(1,m),B(5,m),则b的值为.16.已知二次函数y=ax2+bx+c,自变量x与函数y的部分对应值如下表:x…123456…y…0﹣3﹣4﹣305…则当x=0时,y的值为.17.如图,抛物线y=ax2+c与直线y=mx+n交于两点A(﹣2,p),B(5,q),则不等式ax2+mx+c≤n的解集是.18.若二次函数y=x2﹣2x﹣3的图象上有且只有三个点到x轴的距离等于m,则m的值为.三.解答题(共7小题,满分58分)19.(6分)已知y与x2成正比例,并且x=1时y=2.(1)求y与x之间的函数关系式.(2)当x=﹣1时y的值.20.(6分)已知抛物线L:y=(m﹣2)x2+x﹣2m(m是常数且m≠2).(1)若抛物线L有最高点,求m的取值范围;(2)若抛物线L与抛物线y=x2的形状相同、开口方向相反,求m的值.21.(8分)已知抛物线y=ax2﹣4ax+3(a≠0)的图象经过点A(﹣2,0),过点A作直线l 交抛物线于点B(4,m).(1)求抛物线的函数表达式和顶点坐标.(2)将抛物线向下平移n(n>0)个单位,使顶点落在直线l上,求m,n的值.22.(8分)已知二次函数y=x2+2x﹣3.(1)用配方法把这个二次函数化成y=a(x﹣h)2+k的形式;(2)在所给的平面直角坐标系中,画出这个二次函数的图象;(3)当﹣4≤x≤0时,结合图象直接写出y的取值范围.23.(8分)如图,学校要用一段长为32米的篱笆围成一个一边靠墙的矩形花圃,墙长为14米.(1)若矩形ABCD的面积为96平方米,求矩形的边AB的长.(2)要想使花圃的面积最大,AB边的长应为多少米?最大面积为多少平方米?24.(10分)已知关于x的二次函数y=x2﹣2ax+a2+2a.(1)当a=1时,求已知二次函数对应的抛物线的顶点和对称轴;(2)当a=2时,直线y=2x与该抛物线相交,求抛物线在这条直线上所截线段的长度;(3)若抛物线y=x2﹣2ax+a2+2a与直线x=4交于点A,求点A到x轴的最小值.25.(12分)如图,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0)、B(3,0)两点,直线l 与抛物线交于A、C两点,其中点C的横坐标是2.(1)求抛物线的函数表达式;(2)在抛物线的对称轴上找一点P,使得△PBC的周长最小,并求出点P的坐标;(3)在平面直角坐标系中,是否存在一点E,使得以E、A、B、C为顶点的四边形是平行四边形?若存在,求出点E的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:二次函数y=x2﹣2x+3的一次项系数是﹣2,故选:C.2.【解答】解:∵y=﹣(x﹣1)2+3,∴抛物线顶点坐标为(1,3),故选:B.3.【解答】解:∵抛物线y=x2+x+c与x轴只有一个公共点,∴方程x2+x+c=0有两个相等的实数根,∴Δ=b2﹣4ac=12﹣4×1•c=0,∴c=.故选:B.4.【解答】解:A、∵a=﹣1<0,∴抛物线的开口向下,正确,不合题意;B、抛物线的顶点坐标是(﹣1,﹣3),故本小题正确,不合题意;C、令x=0,则y=﹣1﹣3=﹣4,所以抛物线与y轴的交点坐标是(0,﹣4),故不正确,符合题意;D、抛物线的开口向下,对称轴为直线x=﹣1,∴当x>−1时,函数值y随x的增大而减小,故本小题正确,不合题意;故选:C.5.【解答】解:∵y=2x2﹣4x+c,∴抛物线开口向上,对称轴为直线x=﹣=2,∴x≤2时,y随x增大而减小,∴y1>y2>y3.故选:B.6.【解答】解:由函数y=ax+1与抛物线y=ax2+ax+1可知两函数图象交y轴上同一点(0,1),抛物线的对称轴为直线x=﹣=﹣,在y轴的左侧,A、抛物线的对称轴在y轴的右侧,故选项不合题意;B、抛物线的对称轴在y轴的右侧,故选项不合题意;C、由一次函数的图象可知a>0,由二次函数的图象知道a>0,且交于y轴上同一点,故选项符合题意;D、由一次函数的图象可知a>0,由二次函数的图象知道a<0,故选项不合题意;故选:C.7.【解答】解:双曲线y=向下平移3个单位后的函数为y′=﹣3,∵y′=﹣3交抛物线y=x2于点P(a,b),∴﹣3=a2,整理得,a3+3a﹣2=0,令y=a3+3a﹣2,且y随a的增大而增大.当a=0时,y=﹣2<0,当a=时,y=+﹣2=﹣<0,当a=1时,y=1+3﹣2=2>0,∴若a3+3a﹣2=0,则a的取值范围为:<a<1.故选:B.8.【解答】解:把A代入得:=﹣×9+k,∴k=,∴y=﹣(x﹣3)2+,令y=0得﹣(x﹣3)2+=0,解得x=﹣2(舍去)或x=8,∴实心球飞行的水平距离OB的长度为8m,故选:C.9.【解答】解:∵二次函数y=x2+bx+c的图象经过点A(2﹣m,c),B(m+2,c),∴对称轴为直线x==2,∴﹣=2,∴b=﹣4,∵点A或点B在y轴上,∴AB=4,∵二次函数y=x2+bx+c的图象与x轴只有一个交点,∴b2﹣4c=0,即16﹣4c=0,∴c=4,∴△AOB的面积为:=8.故选:A.10.【解答】解:由图可知,抛物线对称轴是直线x=1,∴﹣=1,即b=﹣2a,∵抛物线开口向下,∴a<0,b=﹣2a>0,∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,故①错误;由图可得,抛物线上的点(﹣1,a﹣b+c)在x轴下方,∴a﹣b+c<0,故②正确;∵抛物线对称轴是直线x=1,∴x=0和x=2时,函数值相等,而x=0时c>0,∴4a+2b+c>0,故③正确;∵b=﹣2a,∴④错误;∵a﹣b+c<0,b=﹣2a,∴a﹣(﹣2a)+c<0,即3a+c<0,故⑤正确;∴正确的有②③⑤,共3个,故选:C.二.填空题(共8小题,满分32分,每小题4分)11.【解答】解:∵函数y=x2m﹣1+x﹣3是关于x的二次函数,∴2m﹣1=2,∴m=.故答案为:.12.【解答】解:∵y=﹣3(x﹣2)2+1,∴抛物线对称轴为直线x=2.故答案为:x=2.13.【解答】解:∵函数y=(x﹣1)2+1,∴a=1>0,抛物线开口向上,对称轴为直线x=1,∴当x>1时,y随x的增大而增大.故答案为:增大.14.【解答】解:∵y=x2+x﹣1=(x+)2﹣,∴将抛物线y=x2+x﹣1向左平移2个单位,再向上平移3个单位,则此时抛物线的解析式是y=(x++2)2﹣+3,即y=x2+5x+8,故答案为:y=x2+5x+8.15.【解答】解:∵抛物线经过A(1,m),B(5,m),∴抛物线对称轴为直线x=3,∴﹣=3,解得b=﹣6,故答案为:﹣6.16.【解答】解:依据表格可知抛物线的对称轴为x=3,∴当x=0时与x=6时函数值相同,∴当x=0时,y=5.故答案为:5.17.【解答】解:∵抛物线y=ax2+c与直线y=mx+n交于A(﹣2,p),B(5,q)两点,∴﹣2m+n=p,5m+n=q,∴抛物线y=ax2+c与直线y=﹣mx+n交于P(2,p),Q(﹣5,q)两点,观察函数图象可知:当﹣5≤x≤2时,直线y=﹣mx+n在抛物线y=ax2+c的上方,∴不等式ax2+mx+c≤n的解集是﹣5≤x≤2.故答案为﹣5≤x≤2.18.【解答】解:∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线开口向上,抛物线对称轴为直线x=1,顶点为(1,﹣4),∴顶点到x轴的距离为4,∵函数图象有三个点到x轴的距离为m,∴m=4,故答案为:4.三.解答题(共7小题,满分58分)19.【解答】解:(1)∵y与x2成正比例,∴设y=kx2(k≠0),∵当x=1时,y=2,∴2=k•12,解得,k=2,∴y与x之间的函数关系式为y=2x2.(2)∵函数关系式为y=2x2,∴当x=﹣1时,y=2×1=2.20.【解答】解:(1)∵抛物线L有最高点,∴m﹣2<0,∴m<2;(2)∵抛物线L与抛物线y=x2的性状相同,开口方向相反,∴m﹣2=﹣1,∴m=1.21.【解答】解:(1)将A(﹣2,0)代入y=ax2﹣4ax+3得:0=4a+8a+3,解得,∴抛物线为,∵y=﹣x2+x+3=﹣(x﹣2)2+4,∴顶点坐标为(2,4);(2)把B(4,m)代入得,m=﹣4+4+3=3,将A(﹣2,0),B(4,3)代入y=kx+b得,解得,∴直线AB的解析式为,∵顶点的横坐标为2,把x=2代入得:y=2,∴n=4﹣2=2.22.【解答】解:(1)y=x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣4,即y=(x+1)2﹣4;(2)∵y=(x+1)2﹣4,∴顶点坐标为(﹣1,﹣4),当y=0时,x2+2x﹣3=0,解得:x1=1,x2=﹣3,∴抛物线与x轴的交点坐标为(﹣3,0),(1,0),当x=0时,y=﹣3,∴抛物线与y轴的交点坐标为(0,﹣3),二次函数的图象如图所示:(3)观察图象得,当x=﹣1时,y取最小值﹣4,当x=﹣4时,y取最大值,代入函数得,y=(﹣4)2+2×(﹣4)﹣3=16﹣8﹣3=5.∴当﹣4≤x≤0时,﹣4≤y≤5.23.【解答】解:(1)设AB为x米,则BC=(36﹣2x)米,由题意得:x(32﹣2x)=96,解得:x1=4,x2=12,∵墙长为14米,32米的篱笆,∴32﹣2x≤14,2x<32,∴9≤x<16,∴x=12,∴AB=12,答:矩形的边AB的长为12米;(2)设AB为x米,矩形的面积为y平方米,则BC=(32﹣2x)米,∴y=x(32﹣2x)=﹣2x2+32x=﹣2(x﹣8)2+128,∵9≤x<16,且﹣2<0,故抛物线开口向下,∴当x=9时,y有最大值是126,答:AB边的长应为9米时,有最大面积,且最大面积为126平方米.24.【解答】解:(1)∵a=1,∴y=x2﹣2ax+a2+2a=x2﹣2x+3=(x﹣1)2+2,∴抛物线顶点坐标为(1,2),对称轴为直线x=1.(2)把a=2代入y=x2﹣2ax+a2+2a得y=x2﹣4x+8,令x2﹣4x+8=2x,解得x1=2,x2=4,把x=2代入y=2x得y=4,把x=4代入y=2x得y=8,∴直线与抛物线交点坐标为(2,4),(4,8),∴线段长度为=2.(3)把x=4代入y=x2﹣2ax+a2+2a得y=16﹣8a+a2+2a=(a﹣3)2+7,∴点A纵坐标为(a﹣3)2+7,∵(a﹣3)2+7≥7,∴点A到x轴最小距离为7.25.【解答】解:(1)∵抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0)、B(3,0)两点,解得:,∴抛物线的函数表达式为y=x2﹣2x﹣3;(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴为x=1,∵A、B关于直线x=1对称,所以AC与对称轴的交点为点P,此时C△PBC=PB+PC+BC=AC+BC,此时△BPC的周长最短,∵点C的横坐标是2,y C=22﹣2×2﹣3=﹣3,∴C(2,﹣3),设直线AC的解析式为y=mx+n(m≠0),∴,解得:,∴直线AC的解析式为y=﹣x﹣1,当x=1时,y=﹣1﹣1=﹣2,∴P(1,﹣2);(3)存在一点E,使得以E、A、B、C为顶点的四边形是平行四边形.∵A(﹣1,0),B(3,0),C(2,﹣3),设E(x,y),①当AB为对角线时,则,解得:,∴E(0,3);②当AC为对角线时,解得:,∴E(﹣2,﹣3);③当BC为对角线时,则,解得:,∴E(6,﹣3).综上所述,E点坐标为(0,3)或(﹣2,﹣3)或(6,﹣3)。
九年级数学上册《第二十二章 二次函数》单元测试卷附答案(人教版)
![九年级数学上册《第二十二章 二次函数》单元测试卷附答案(人教版)](https://img.taocdn.com/s3/m/80c5c966302b3169a45177232f60ddccda38e61c.png)
九年级数学上册《第二十二章二次函数》单元测试卷附答案(人教版)一、单选题1.下列各式中表示二次函数的是()+1B.y=2−x2A.y=x2+1x−x2D.y=(x−1)2−x2C.y=1x22.将抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线是()A.y=5(x+2)2+3B.y=5(x+2)2−3C.y=5(x−2)2+3D.y=5(x−2)2−33.抛物线y=x2−2x−3与x轴的两个交点间的距离是()A.-1 B.-2 C.2 D.44.已知(2,5)、 (4,5)是抛物线y=ax2+bx+c上的两点,则这个抛物线的对称轴方程是()B.x=2 C.x=4 D.x=3A.x=−ab5.不论m取何实数,抛物线y=2(x+m)2+m的顶点一定在下列哪个函数图象上()A.y=2x2B.y=-x C.y=-2x D.y=x6.已知函数y=1x2-x-12,当函数y随x的增大而减小时,x的取值范围是()2A.x<1 B.x>1 C.x>-4 D.-4<x<67.下表中列出的是一个二次函数的自变量x与函数y的几组对应值:x …−20 1 3 …y … 6 −4−6−4…下列选项中,正确的是()A.这个函数的开口向下B.这个函数的图象与x轴无交点C.当x>2时,y的值随x的增大而减小D.这个函数的最小值小于68.二次函数y=ax2+bx+c的图象如图所示,则下列判断中错误的是 ( )A.图象的对称轴是直线x=1B.当x>1时,y随x的增大而减小C.一元二次方程ax2+bx+c=0的两个根是-1,3D.当-1<x<3时,y<09.一个球从地面竖直向上弹起时的速度为10米/秒,经过t(秒)时球距离地面的高度h(米)适用公式h=10t-5t2,那么球弹起后又回到地面所花的时间t(秒)是()A.5 B.10 C.1 D.210.如图,是一个横断面为抛物线形状的拱桥,当水面宽4m时,拱顶(拱桥洞的最高点)离水面2m,当水面上升1m时,水面的宽为()A.2 m B.2m C. m D.3m二、填空题11.不论m取任何实数,抛物线y=x2+2mx+m2+m−1的顶点都在一条直线上,则这条直线的解析式是.12.若二次函数y=2x2﹣5的图象上有两个点A(2,a)、B(3,b),则a b(填“<”或“=”或“>”).13.抛物线y=x2−6x+c与x轴只有一个交点,则c=.14.已知抛物线y=a(x﹣h)2+k与x轴交于(﹣2,0)、(4,0),则关于x的一元二次方程:a(x ﹣h+3)2+k=0的解为.15.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为元.三、解答题16.已知二次函数的图象经过(-6,0),(2,0),(0,-6)三点.(1)求这个二次函数的表达式;(2)求这个二次函数的顶点坐标.17.在平面直角坐标系xOy中,抛物线y=ax2−4ax+1 .(1)若抛物线过点A(−1,6),求二次函数的表达式;(2)指出(1)中x为何值时y随x的增大而减小;(3)若直线y=m与(1)中抛物线有两个公共点,求m的取值范围.18.如图,抛物线y=a x2 +c与直线y=3相交于点A,B,与y相交于点C(0,-1),其中点A的横坐标为-4.(1)计算a,c的值;(2)求出抛物线y=ax 2 +c与x轴的交点坐标;19.如图一,抛物线y=ax2+bx+c过A(−1,0)B(3.0),C(0,√3)三点(1)求该抛物线的解析式;(2)P(x1,y1),Q(4,y2)两点均在该抛物线上,若y1≤y2,求P点横坐标x1的取值范围;(3)如图二,过点C作x轴的平行线交抛物线于点E,该抛物线的对称轴与x轴交于点D,连结CD,CB,点F为线段CB的中点,点M,N分别为直线CD和CE上的动点,求ΔFMN周长的最小值.20.某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:销售单价x(元/千克)55 60 65 70销售量y(千克)70 60 50 40(1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?21.如图,抛物线y=ax2+bx+c(a≠0)与直线y=x+1相交于A(−1,0),B(4,m)两点,且抛物线经过点C(5,0)(1)求抛物线的解析式;(2)点P是抛物线上的一个动点(不与点A.点B重合),过点P作直线PD⊥x轴于点D,交直线AB 于点E.当PE=2ED时,求P点坐标;(3)点P是直线上方的抛物线上的一个动点,求ΔABP的面积最大时的P点坐标.参考答案1.B2.B3.D4.D5.B6.A7.D8.D9.D10.A11.y=−x−112.<13.914.x1=−515.2516.(1)解:设抛物线y=ax2+bx+c把(-6,0),(2,0),(0,-6)三点代入解析式,得{36a+6b+c=0 4a+2b+c=0c=−6解得∴抛物线的解析式为:y=12x2+2x−6(2)解:y=12x2+2x−6=12(x+2)2−8∴抛物线的顶点坐标为:(-2,-8).17.(1)解:把点A(-1,6),代入y=ax2−4ax+1得:6=a×(−1)2−4a×(−1)+1解得a=1∴二次函数的表达式y=x2−4x+1(2)解:二次函数y=x2−4x+1对称轴x=2∵a=1>0∴二次函数在对称轴左边y随x的增大而减小∴当x≤2是y随x的增大而减小;(3)解:∵直线y=m与y=x2−4x+1有两个公共点∴一元二次方程m=x2−4x+1有两不等根即一元二次方程x2−4x+1−m=0有两不等根∴Δ>0∴42−4×1×(1−m)>0解得m>−318.(1)解:设y=a x2 -1把(-4,3)代入得:3=a(-4) 2 -1∴a= 14∴y= 14x 2 -1∴a= 14,c=-1(2)解:y= 14x 2 -1=0∴x=±2∴(-2,0),(2,0)19.(1)解:∵抛物线y=ax2+bx+c过A(−1,0)B(3,0) C(0,√3)三点∴{a−b+c=09a+3b+c=0c=√3解得:a=−√33,b=2√33,c=√3;∴抛物线的解析式为:y=−√33x2+2√33x+√3(2)解:抛物线的对称轴为x=1,抛物线上与Q(4,y2)相对称的点Q′(−2,y2) P(x1,y1)在该抛物线上y1≤y2,根据抛物线的增减性得:∴x1≤−2或x1≥4答:P点横坐标x1的取值范围:x1≤−2或x1≥4.(3)解:∵C(0,√3),B(3,0)∴OC=√3,OB=3∵F是BC的中点∴F(32,√3 2)当点 F 关于直线 CE 的对称点为 F ′ ,关于直线 CD 的对称点为 F ′′ ,直线 F ′F ′′ 与 CE 、 CD 交点为 M,N ,此时 ΔFMN 的周长最小,周长为 F ′F ′′ 的长,由对称可得到: F ′(32,3√32) , F ′′(0,0) 即点 O F ′F ′′=F ′O =(32)(3√32)=3即: ΔFMN 的周长最小值为320.(1)解:设y 与x 之间的函数表达式为 y =kx +b ( k ≠0 ),将表中数据(55,70)、(60,60)代入得:{55k +b =7060k +b =60解得: {k =−2b =180∴y 与x 之间的函数表达式为 y =−2x +180 ;(2)解:由题意得: (x −50)(−2x +180)=600整理得 :x 2−140x +4800=0解得 x 1=60,x 2=80答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克;(3)解:设当天的销售利润为w 元,则:w =(x −50)(−2x +180)=−2(x ﹣70)2+800∵﹣2<0∴当 x =70 时w 最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.21.(1)解:∵点B (4,m )在直线y =x +1上∴m =4+1=5∴B (4,5)把A 、B 、C 三点坐标代入抛物线解析式可得{a −b +c =016a +4b +c =025a +5b +c =0解得{a =−1b =4c =5∴抛物线解析式为y =−x 2+4x +5;(2)解:设P (x ,−x 2+4x +5),则E (x ,x +1),D (x ,0)则PE =|−x 2+4x +5−(x +1)|=|−x 2+3x +4|,DE =|x +1|∵PE =2ED∴|−x 2+3x +4|=2|x +1|当−x 2+3x +4=2(x +1)时,解得x =−1或x =2,但当x =−1时,P 与A 重合不合题意,舍去 ∴P (2,9);当−x 2+3x +4=−2(x +1)时,解得x =−1或x =6,但当x =−1时,P 与A 重合不合题意,舍去 ∴P (6,−7);综上可知P 点坐标为(2,9)或(6,−7);(3)解:∵点P 是直线上方的抛物线上的一个动点设(x ,−x 2+4x +5),则E (x ,x +1),D (x ,0)则PE =−x 2+4x +5−(x +1)=−x 2+3x +4∴ΔABP = S ΔAEP + S ΔEBP = 12×PE ×(x B −x A ) = 12×(−x 2+3x +4)×5= −52(x −32)2+1258 ∴当x= 32 , ΔABP 的面积最大把x= 32 代入y =−x 2+4x +5,解得y= 354故P ( 32 , 354 ).。
《二次函数》单元测试卷 (含答案)
![《二次函数》单元测试卷 (含答案)](https://img.taocdn.com/s3/m/e0337c825ebfc77da26925c52cc58bd630869372.png)
《二次函数》单元测试卷 (含答案)考生姓名:______________ 考号:______________时间限制:90分钟一、选择题(每小题2分,共30分)(每小题2分,共30分)1. 下列函数中,是二次函数的是()A. y = x + 2B. y = 2x^2 + 3x + 1C. y = 1/xD. y = √x2. 设二次函数 f(x) = 2x^2 + 5x - 3,那么它的判别式为()A. -13B. 17C. 29D. -393. 若二次函数的图象与x轴有两个交点,则该二次函数的判别式必须为()A. 大于0B. 等于0C. 小于0D. 无法确定4. 已知二次函数 f(x) = 3x^2 + 4x + 2,那么它的对称轴为()A. x = -2/3B. x = -4/3C. x = 4/3D. x = 2/35. 设函数 f(x) = ax^2 + bx + c,若a > 0,则函数图象开口向()A. 上B. 下C. 左D. 右...二、填空题(每小题3分,共30分)(每小题3分,共30分)1. 设二次函数 f(x) = 2x^2 - 5x + 3,那么它的顶点坐标为()答案:(5/4, 37/8)2. 若二次函数 y = ax^2 + bx + c 的顶点坐标为 (2, -3),则 a + b+ c 的值为()答案:-53. 设二次函数 f(x) = -x^2 + 4x + 5,那么它的对称轴的方程为()答案:x = 24. 若二次函数的图象与y轴相交于点 (0, 6),则该二次函数必定为()答案:f(x) = 2x^2 + 35. 设二次函数 f(x) = ax^2 + bx + c,若a > 0,则函数的值域为()答案:( -∞, f(c) ]...三、解答题(共40分)(共40分)1. 解方程 3x^2 - 2x - 1 = 0解答:首先,我们可以求出这个二次方程的判别式:Δ = b^2 - 4ac = (-2)^2 - 4*3*(-1) = 4 + 12 = 16因为判别式大于0,所以方程有两个不相等的实根。
二次函数单元测试题 含答案人教版
![二次函数单元测试题 含答案人教版](https://img.taocdn.com/s3/m/0ac4fd4a49d7c1c708a1284ac850ad02de80079d.png)
人教版 二次函数 单元测试题一、选择题(每题3分,共24分).1.下列函数中,y 一定是x 的二次函数的是 ( ) A .211y x x =-+ B .2(3)1y m x x =-+- C .22y x π=D .2y ax bx c =++2.抛物线的解析式为()21433y x =--,则它的顶点坐标是 ( ) A .()4,3-B .()4,3--C .()4,3D .()4,3-3.关于抛物线()221y x =-+,下列说法正确的是 ( ) A .开口向下; B .对称轴为直线2y =;C .有最大值1;D .当2x >时,y 随x 的增大而增大;4.将抛物线2y x 向上平移1个单位长度,再向右平移4个单位长度,所得到的抛物线为 ( ) A .()241y x =-+B .()214y x =++C .()241y x =+-D .()214y x =--5.已知P (2m +,221m +)是平面直角坐标系的点,则点P 的纵坐标随横坐标变化的函数解析式是 ( ) A .221y x =+B .()2221y x =-+ C .221y x =-D .22y x x =+6.二次函数2y ax bx =+与一次函数y ax b =+的图像在同一直角坐标系中图像可能是 ( )A .B .C .D .7.若二次函数22y ax =+的图象经过P (1,3),Q (m ,n )两点,则代数式22A .1B .2C .3D .48.已知如图,在正方形ABCD 中,点A 、C 的坐标分别是(﹣1,5)(2,0),点D 在抛物线213y x kx =+的图像上,则k 的值是( )A .23B .13C .73D .43二、填空题(每题3分,共24分).9.若某二次函数图象的形状和开口方向与抛物线23y x =相同,且顶点坐标为(0,2)-,则它的表达式为_______.10.抛物线()2234y x =---的对称轴是_______.11.如果二次函数()2224y a x x a =+++-的图像经过原点,那么=a ______.12.若二次函数221y kx x =--的图像与x 轴有两个不同的交点,则k 的取值范围是_______.13.已知抛物线212y x bx c =++的图象的对称轴为直线4x =,若点()11y ,,点()23y ,在抛物线上,则1y _____2y .(填“>”“<”或“=”)14.足球被从地面上踢起,它距地面的高度h (m )可用公式h =-4.9t 2+19.6t 来表示,其中t (s )表示足球被踢出后经过的时间,则球在______s 后落地.15.如图,抛物线2y ax c =+与直线y mx n =+交于()()2,,4,A p B q -两点,则不16.如图,抛物线2y -x +x 6=+交x 轴于A 、B 两点(A 在B 的左侧),交y 轴于点C ,点D 是线段AC 的中点,点P 是线段AB 上一个动点,APD △沿DP 折叠得A PD '△,则线段AB '的最小值是______.三、解答题(每题8分,共72分).17.如图,已知二次函数2y x bx c =++的图象经过点A (-1,0),B (1,-2),与x 轴的另一个交点为C .(1)求该图象的解析式; (2)求AC 长.18.已知二次函数y=ax2+bx+3的图象经过点(-3,0)、(2,-5).(1)求此二次函数的解析式;(2)请你判断点P(-2,4)是否在这个二次函数的图像上?19.抛物线2(1)=-+-+与y轴交于点(0,3).y x m x m(1)求m的值及抛物线与x轴的交点坐标;(2)x取什么值时,抛物线在x轴下方?(3)x取什么值时,y的值随着x的增大而增大?20.某商店购进一批单价为20元的日用商品,如果以单价30元销售,那么一个月内可以售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.售价为多少元时,才能在一个月内获得最大利润?21.园林部门计划在某公园建一个长方形苗圃ABCD.苗圃的一面靠墙(墙最大可用长度为14米).另三边用木栏围成,中间也用垂直于墙的木栏隔开,分成两个区域,并在如图所示的两处各留2米宽的门(门不用木栏),建成后所用木栏总长32米,设苗圃ABCD的一边CD长为x米.(1)BC长为________米(包含门宽,用含x的代数式表示);(2)若苗圃ABCD的面积为296m,求x的值;(3)当x为何值时,苗圃ABCD的面积最大,最大面积为多少?22.某校九年级进行集体跳绳比赛.如图所示,跳绳时,绳甩到最高处时的形状可看作是某抛物线的一部分,记作G ,绳子两端的距离AB 约为8米,两名甩绳同学拿绳的手到地面的距离AC 和BD 基本保持1米,当绳甩过最低点时刚好擦过地面,且与抛物线G 关于直线AB 对称.(1)求抛物线G 的解析式并写出自变量的取值范围;(2)如果身高为1.5米的小华站在C ,D 之间,且距点C 的水平距离为m 米,绳子甩过最高处时超过她的头顶,直接写出m 的取值范围.23.如图,在ABC ∆中,90B =,6cm AB =,8cm BC =,动点P 从点A 开始沿边AB 向点B 以1cm/s 的速度移动,动点Q 从点B 开始沿边BC 向点C 以2cm /s 的速度移动.点P ,Q 分别从A ,B 两点同时出发,各自到达终点后才停止运动.(1)求PBQ ∆的面积S 与时间t 的函数关系式;(2)求当t 为何值时,PQ =.24.抛物线2y x bx c =-++交x 轴于点()3,0A ,交y 轴于点()0,3B .(1)求抛物线的解析式;(2)如图,点P 是线段AB 上方抛物线上一动点,当PAB 的面积最大值时,求出此时P 点的坐标;25.如图,二次函数2y ax bx c =++的图象与x 轴交于A ,B 两点与y 轴交于点C ,作CE y ⊥轴交函数图象上于点E ,已知1OB =,2OC CE ==,直线是抛物线的对称轴,D 是抛物线的顶点.(1)求二次函数的解析式;(2)连接AD ,线段OC 上的点N 关于直线l 的对称点N '恰好在线段AD 上,求点N 的坐标;(3)探究:抛物线的对称轴上是否存在点T ,使得线段TB 绕点T 逆时针旋转90︒后,点B 的对应点B '恰好也落在此抛物线上?若存在,求出点T 的坐标;若不存在,请说明理由.参考答案:1.解:A .函数211y x x =-+分母中含有未知数,不是二次函数,故本选项不符合题意;B .当3m =时,函数()231y m x x =-+-不是二次函数,故本选项不符合题意;C .函数22y x π=是二次函数,故本选项符合题意;D .当0a =时,函数2y ax bx c =++不是二次函数,故本选项不符合题意. 故选C .2.解:∵抛物线的解析式为()21433y x =--,∴它的顶点坐标是()4,3-, 故选:D 3.解:()221y x =-+,10a =>,∴开口向上,故A 选项不正确; 对称轴为直线2x =,故B 选项不正确;顶点坐标为()2,1,开口向上,则有最小值1,当2x >时,y 随x 的增大而增大,故C 选项错误,D 选项正确; 故选:D4.解:依题意可知,原抛物线顶点坐标为()0,0,平移后抛物线顶点坐标为()4,1, 又因为平移不改变二次项系数,所以所得抛物线解析式为:()241y x =-+. 故选:A .5.解:∵P (2m +,221m +)是平面直角坐标系中的点,∴2x m =+,221y m =+, ∴2m x =-, ∴()2221y x =-+则点P 的纵坐标随横坐标变化的函数解析式是()2221y x =-+, 故选:B .6.解:∵二次函数2y ax bx =+, ∴0c∴二次函数图像过原点, ∴A 选项不符合题意;B :假设二次函数的图像正确,由二次函数图像开口方向向上,可知0a >; 又∵在同一坐标系中由一次函数y ax b =+的图像,y 随x 的增大而减小,可知0a <; 故B 选项不符合题意; ∵2ax bx ax b +=+, ∴11x =,2bx a=-,∴交点坐标为:(1,)a b +,(,0)b a-, ∴其中一个交点坐标位于x 轴上,故C 选项,函数图像一个交点坐标位于x 轴上,而且抛物线过原点,符合题意; 故D 选项,函数图像交点不在x 轴上,不符合题意; 故答案为C .7.解:∵二次函数22y ax =+的图象经过P (1,3),∴32a =+, ∴a =1,∴二次函数的解析式为22y x =+,∵二次函数22y ax =+的图象经过Q (m ,n ), ∴22n m =+即22m n =-, ∴22449n m n --+24(2)49n n n =---+2817n n =-+2(4)1n =-+,∵2(4)0n -≥,∴22449n m n --+的最小值为1,故选:A . 8.作DM ⊥x 轴于M ,AN ⊥DM 于N ,∵四边形ABCD 是正方形, ∴∠ADC =90°,AD =DC ,∴∠ADN +∠CDM =90°=∠CDM +∠DCM , ∴∠ADN =∠DCM , ∵∠AND =∠DMC =90°, ∴△ADN ≌△DCM (AAS ), ∴AN =DM ,DN =CM , 设D (a ,b ),∵点A 、C 的坐标分别是(﹣1,5)(2,0),∴251a b a b -=-⎧⎨+=⎩,解得34a b =⎧⎨=⎩,∴D (3,4),∵D 在抛物线213y x kx =+的图像上,∴2133⨯+3k =4, ∴k =13,故选:B .9.图象顶点坐标为()0,2-, 可以设函数解析式为22y ax =-,又∵二次函数图象的形状和开口方向与抛物线23y x =相同,∴3a =,∴这个函数解析式为:232y x =-, 故答案为:232y x =-.10.解:∵抛物线解析式为()2234y x =---, ∴抛物线对称轴为直线3x =, 故答案为:直线3x =. 11.解:∵二次函数()2224y a x x a =+++-的图像经过原点,∴22040a a +≠⎧⎨-=⎩, ∴2a =, 故答案为:2.12.解:∵221y kx x =--的图像与x 轴有两个不同的交点, ∴240b ac ∆=->, ∴2(2)4(1)0k --⨯->, ∴1k >-,故答案为:1k >-.13.解:抛物线212y x bx c =++的图象的对称轴为直线4x =,∴当4x <时,y 随x 的增大而减小, ∵134<<, ∴12y y >. 故答案为:>. 14.解:令0h =,则24.919.60t t -+=,解得10t =,24t =,∴足球被踢出4s 落地,故答案为:4.15.解:∵抛物线与直线交于 A (−2,p ) ,B (4,q ),抛物线开口向上,∴ −2<x <4时,ax 2+c <mx +n ,∴ ax 2−mx +c <n 的解集为 −2<x <4.故答案为:−2<x <4.16.解:令0y =,则260x x =-++=,解得12x =-,23x =,20A ∴-(,),30B (,),2OA ∴=,3OB =,令0x =,则6y =,60C ∴(,),6OC ∴=,AC ∴= D 为AC 中点,DA DC ∴==A PD '∆由APD △沿DP 折叠所得,DA DA ∴=',A '∴在以D 为圆心,DA 为半径的圆弧上运动,∴当D ,A ',B 在同一直线上时,BA '最小,过点D 作DE AB ⊥,垂足为E ,1AE OE ∴==,3DE =,4BE ∴=,5BD ∴==,又DA DA '=='5BA ∴=故答案为:517.解:(1)把点()()1,0,1,2A B --代入2y x bx c =++中,得10,12b c b c -+=⎧⎨++=-⎩解之得1,2b c =-⎧⎨=-⎩∴二次函数的解析式为:2 2.y x x =--(2)对于二次函数22,y x x =-- 令0,y =得220,x x --=121,2,x x ∴=-=()()1,0,2,0,A C ∴-1,2,OA OC ∴==12 3.AC OA OC ∴=+=+=18.解:(1)把(-3,0)、(2,-5)代入函数解析式得,93304235a b a b -+=⎧⎨++=-⎩,解得,12a b =-⎧⎨=-⎩, 抛物线解析式为223y x x =--+,(2)把P (-2,4)代入函数解析式,左边=4,右边=2(2)2(2)33---⨯-+=, 左边≠右边,点P 不在该二次函数上.19.解:(1)将点(0,3)代入2(1)y x m x m =-+-+得:3m =则二次函数的解析式为223y x x =-++令0y =得:2230x x -++=解得121,3x x =-=则抛物线与x 轴的交点坐标为(1,0)-,(3,0);(2)二次函数223y x x =-++的开口向下结合(1)可得:当1x <-或3x >时,抛物线在x 轴下方;(3)二次函数223y x x =-++的顶点式为2(1)4y x =--+二次函数的增减性为:当1x ≤时,y 随x 的增大而增大;当1x >时,y 随x 的增大而减小则当1x ≤时,y 的值随着x 的增大而增大.20.解:设销售单价为x 元,销售利润为y 元,依题意得,单件利润为(20)x -元,月销量为[]40020(30)x --件,月销售利润[](20)40020(30)y x x =---,整理得220140020000y x x =-+-,配方得220(35)4500y x =--+,所以35x =时,y 取得最大值4500.故售价为35元时,才能在一个月内获得最大利润,最大利润为4500元.21.解:(1)∵木栏总长32米,两处各留2米宽的门,设苗圃ABCD 的一边CD 长为x 米,BC 的长为32-3x +4=(36-3x )米,故答案为:(36-3x );(2)根据题意得,()36396x x ⋅-=,解得,x =4或x =8,∵当x =4时,36-3x =24>14,∴x =4舍去,∴x 的值为8;(3)设苗圃ABCD 的面积为w ,()()236336108w x x x =⋅-=--+, ∵4<36-3x ≤14, ∴223233x ≤<, ∵-3<0,图象开口向下, ∴当223x =时,w 取得最大值,w 最大为3083; 答:当x 为223米时,苗圃ABCD 的最大面积为3083平方米. 22.(1)解:建立如图所示平面直角坐标系.由题意得∶()()4,0,4,0A B -,顶点()0,1E .可设抛物线G 的解析式为21y ax =+,∵()4,0A -在抛物线G 上, 解得116a =-. ∴21116y x =-+,自变量的取值范围为44x -≤≤; (2)解:当 1.510.5y =-=时,2106.151x -=+, 解得x =±∴m 的取值范围是44m -<+23.解:(1)由题意得,AP t =,2BQ t =,则6BP AB AP t =-=-, ∴()21126622S BQ BP t t t t =⨯=⨯⨯-=-+, ∵2BQ t =,8cm BC =,AP t =,6cm AB =,∴028t ≤<,06t ≤<,∴04t ≤<,∴()2604S t t t =-+≤<,(2)∵6BP AB AP t =-=-,2BQ t =,∴222PQ BP BQ =+,∴(()()22262t t =-+, 解得:1222,5t t ==.24.(1)解:将A 、B 两点的坐标分别代入解析式得: 9303b c c -++=⎧⎨=⎩ 解得:23b c =⎧⎨=⎩∴抛物线的解析式为:223y x x =-++(2)过点P 作x 轴的垂线交直线AB 于点H , 设直线AB 的解析式为:y mx n +=,根据()3,0A ,()0,3B 的坐标代入,解得:13m n =-⎧⎨=⎩, 即直线AB 的解析式为:3y x+-=,设点P 的横坐标为a ,则点P 的坐标为()2,+2+3a a a -,点H 的坐标为()3,a a+-,点P 、H 都在第一象限,∴()2233PH a a a =-++--+=23a a -+,∴PAB PAH PBH S S S =+=12PH OA =21(3)32a a -+⨯=23327()228a +--,∵302-<,03x <<,32a ∴=时,PAB S 有最大值为278, 此时,点P 的坐标为315,24⎛⎫ ⎪⎝⎭. 25.解:(1)∵1,2OB OC CE ===, ∴(1,0),(0,2)B C ,∵CE y ⊥轴,∴(2,2)E ,抛物线的对称轴为直线=1x -, ∴(3,0)A -,设抛物线的解析式为31y a x x =+-()(), 把(0,2)C 代入得3(1)2a ⋅⋅-=,解得23a =-, ∴抛物线的解析式为2(3)(1)3y x x =-+-, 即224233y x x =--+;(2)∵2224282(1)3333y x x x =--+=-++, ∴8(1,)3D -,设直线AD 的解析式为y kx b =+, 把8(1,),(3,0)3D A --代入得8330k b k b ⎧-+=⎪⎨⎪-+=⎩,解得434k b ⎧=⎪⎨⎪=⎩, ∴直线AD 的解析式为443y x =+; 设(0,)N t ,∵点N 关于直线=1x -的对称点为N ', ∴(2,)N t '-,把(2,)N t '-代入443y x =+得44(2)433t =⨯-+=, ∴N 点坐标为4(0,)3;(3)存在.直线=1x -交x 轴于M ,作BN ⊥直线=1x -于N ,如图,设(1,)T m -,∵线段TB 绕点T 逆时针旋转90︒后,点B 的对应点B '恰好也落在此抛物线上, ∴90,BTB TB TB ''∠=︒=,∵90,90B TN BTM BTM MBT '∠+∠=︒∠+∠=︒, ∴MBT B TN '∠=∠,在BTM △和TB N '∆中,BMT TNB MBT B TN BT TB ∠=∠⎧⎪∠=∠'='⎨'⎪⎩, ∴BTM TB N '∆∆≌,∴,2B N MT m TN BM '====,∴B '点的坐标为(1,2)m m -++,把(1,2)m B m -++'代入224233y x x =--+得224(1)(1)2233m m m ----+=+,解得1212,2m m =-=, ∴点T 的坐标为(1,2)--或1(1,)2-.。
(word完整版)人教版九年级二次函数练习题(含答案),推荐文档
![(word完整版)人教版九年级二次函数练习题(含答案),推荐文档](https://img.taocdn.com/s3/m/d16dcffe7375a417876f8f2b.png)
本大题共 4 小题,每小yo xyo x人教版九年级数学二次函数单元试卷时间 90 分钟满分:100 分一、选择题(本大题共 10 小题,每小题3分,共 30 分)1.下列函数不属于二次函数的是()A.y=(x-1)(x+2)1B.y= (x+1)22C. y=1-3 x2D. y=2(x+3)2-2x22.函数 y=-x2-4x+3 图象顶点坐标是()A.(2,-1)B.(-2,1)C.(-2,-1)D.(2, 1)3.抛物线y =1 (x + 2)2 + 1 的顶点坐标是()2A.(2,1)B.(-2,1)C.(2,-1)D.(-2,-1)4. y=(x-1)2+2 的对称轴是直线()A.x=-1 B.x=1 C.y=-1 D.y=1)5.已知二次函数y =mx 2 +x +m(m - 2) 的图象经过原点,则m 的值为(A.0 或2 2B. 0 C. 2 D.无法确定6.二次函数y=x 的图象向右平移3 个单位,得到新的图象的函数表达式是()A. y=x2+3B. y=x2-3C. y=(x+3)2D. y=(x-3)27.函数y=2x2-3x+4 经过的象限是()A.一、二、三象限B.一、二象限C.三、四象限D.一、二、四象限8.下列说法错误的是()A.二次函数 y=3x2中,当x>0 时,y 随x 的增大而增大B.二次函数 y=-6x2中,当x=0 时,y 有最大值 0C.a 越大图象开口越小,a 越小图象开口越大D.不论 a 是正数还是负数,抛物线 y=ax2(a≠0)的顶点一定是坐标原点19.如图,小芳在某次投篮中,球的运动路线是抛物线y=-5x2+3.5 的一部分,若命中篮圈中心,则他与篮底的距离l 是()A.3.5m B.4m C.4.5m D.4.6m10.二次函数y=ax2+bx+c 的图象如图所示,下列结论错误的是()A.a>0.B.b>0.C.c<0.D.abc>0.y(第 9 题) 3.05mx(第 10 题)二、填空题( 2.5 Ol 题3分,共 12 分)11.一个正方形的面积为 16cm2,当把边长增加 x cm 时,正方形面积为 y cm2,则 y 关于x的函数为 。
人教版数学九年级上册:第二十二章 《二次函数》单元测试卷(附参考答案)
![人教版数学九年级上册:第二十二章 《二次函数》单元测试卷(附参考答案)](https://img.taocdn.com/s3/m/ab6c470c7f1922791788e848.png)
为(
)
A.y=x2+4x-3
B.y=-x2+4x-3
C.y=-x2-4x-3
D.y=-x2+4x+3
7.二次函数 y=ax2+bx-1(a≠0)的图象经过点(1,1),则代数式 1-a-b 的值为(
)
A.-3
B.-1
C.2
D.5
8.二次函数 y=ax2+bx+c 的图象如图所示,则一次函数 y=bx+a 的图象不经过(
①求每天 B 种“火龙果”的销售利润 y(元)与销售单价 x(元)之间的函数关系? ②求销售单价为多少元时,B 种“火龙果”每天的销售利润最大,最大利润是多少?
七、(本大题 12 分) 25.如图,一次函数 y1=kx+b 与二次函数 y2=ax2 的图象交于 A、B 两点.
(1)利用图中条件,求两个函数的解析式; (2)根据图象写出使 y1>y2 的 x 的取值范围.
)
7 A.-4 C.2 或- 3
B. 3或- 3 7
D.2 或- 3或-4
二、填空题(每小题 3 分,共 30 分)
11.若抛物线 y=(k-7)x2-5 的开口向下,则 k 的取值范围是
.
12.二次函数 y=-2(x-1)2+3 的图象的顶点坐标是
.
13.在平面直角坐标系中,抛物线 y=x2-1 与 y 轴的交点坐标是
解得 x=-1± 7. ∴符合题意的 P 点坐标为(-1+ 7,3),(-1- 7,3). 当 P 点纵坐标为-3 时,-3=x2+2x-3, 解得 x=0 或-2. ∴符合题意的 P 点坐标为(0,-3),(-2,-3).
6/7
综上所述,符合题意的 P 点坐标为(-1+ 7,3),(-1- 7,3),(0,-3),(-2, -3).
人教版九年级数学第22章《二次函数》单元测试题(含答案)
![人教版九年级数学第22章《二次函数》单元测试题(含答案)](https://img.taocdn.com/s3/m/378e50a7ad02de80d5d840be.png)
人教版九年级数学第22章《二次函数》单元复习题(含答案)一、单选题1.已知二次函数()21y x h =--+(h 为常数),当自变量x 的值满足25x ≤≤时,与其对应的函数值y 的最大值为-3,则h 的值为( ) A .3或4B .0或4C .0或7D .7或32.已知2=3y x 的图象是抛物线,若将抛物线分别向上、向右平移2个单位,那么平移后抛物线的解析式是( ) A .23(2)2y x =-+ B .23(2)2y x =+- C .23(2)2y x =--D .23(2)2y x =++3.设正ABC 的边长为1,t 为任意的实数,则AB t AC +的最小值为( )A .12B C .12-D . 4.某公司销售一种藜麦,成本价为30元/千克,若以35元/千克的价格销售,每天可售出450千克.当售价每涨0.5元/千克时,日销售量就会减少15千克.设当日销售单价为x (元/千克)(30x ≥,且x 是按0.5的倍数上涨),当日销售量为y (千克).有下列说法: ①当36x =时,420y =②y 与x 之间的函数关系式为301500y x =-+③若使日销售利润为2880元,且销售量较大,则日销售单价应定为42元/千克 ④若使日销售利润最大,销售价格应定为40元/千克 其中正确的是( ) A .①②B .①②④C .①②③D .②④5.已知二次函数y =x 2+bx +c 的最小值是﹣6,它的图象经过点(4,c ),则c 的值是( ) A .﹣4B .﹣2C .2D .66.已知抛物线23y ax bx =++在坐标系中的位置如图所示,它与x ,y 轴的交点分别为A ,B ,P 是其对称轴1x =上的动点,根据图中提供的信息,以下结论中不正确的是( )A .20a b +=B .302a >>-C .PAB △周长的最小值是532+D .3x =是230ax bx ++=的一个根7.如图,在ABC 中,AC BC =,90ACB ∠=︒,2AB =.动点P 沿AB 从点A 向点B 移动(点P 不与点A ,点B 重合),过点P 作AB 的垂线,交折线A C B --于点Q .记AP x =,APQ 的面积为y ,则y 关于x 的函数图象大致是( )A .B .C .D .8.如图,抛物线243y x x =-+与x 轴交于A ,B 两点,将抛物线向上平移m 个单位长度后,点A ,B 在新抛物线上的对应点分别为点C ,D ,若图中阴影部分的面积为8,则平移后新抛物线的解析式为( )A .243y x x =-+B .245y x x =-+C .247y x x =-+D .2411y x x =-+9.如图是抛物线形拱桥,当拱顶离水面2m 时,水面宽4m ,若水面下降2.5m ,那么水面宽度为( )m .A .3B .6C .8D .910.如图,在平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (﹣1,0),顶点坐标为(1,m ),与y 轴的交点在(0,﹣4),(0,﹣3)之间(包含端点),下列结论:①abc >0;②4ac -b 2>0;③a 1139b ++c <0;④1≤a 43≤;⑤关于x 的方程ax 2+bx +c +2﹣m=0没有实数根.其中正确的结论有( )A .1个B .2个C .3个D .4个二、填空题 11.将二次函数2yx 的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数2y x b =+的图象有公共点,则实数b 的取值范围是_____________.12.如图,P 是抛物线y =x 2﹣2x ﹣3在第四象限的一点,过点P 分别向x 轴和y 轴作垂线,垂足分别为A 、B ,则四边形OAPB 周长的最大值为______.13.若点M (-1,y 1),N (1,y 2 ),P (72,y 3)都在抛物线y =-mx 2+4mx+m 2+1(m >0)上,则y 1、y 2、y 3大小关系为______________(用“<”连接).14.如图,一段抛物线:()()303y x x x =--≤≤,记为1C ,它与x 轴交于点O ,1A ;将1C 绕点1A 旋转180°得2C ,交x 轴于点2A ;将2C 绕点2A 旋转180°得3C ,交x 轴于点3A ; ……如此进行下去,直至得13C . 若()1,P m 在1C 上,则m =______.若()37,P n 在第13段抛物线13C 上,则n =______.15.二次函数22y x x m =++图像上的最低点的横坐标为_________________.16.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A 、B ,顶点为C ,对称轴为直线x =1,给出下列结论:①abc <0;②若点C 的坐标为(1,4),则△ABC 的面积可以等于4;③M (x 1,y 1),N (x 2,y 2)是抛物线上两点(x 1<x 2),若x 1+x 2>2,则y 1<y 2;④若抛物线经过点(3,﹣1),则方程ax 2+bx +c +1=0的两根为﹣1,3,其中正确结论的序号为_____.17.如果将抛物线y =x 2向右平移2个单位,向上平移3个单位长度,那么所得新的抛物线的表达式是_____.18.如图是抛物线y 1=ax 2+bx +c (a ≠0)图象的一部分,抛物线的顶点坐标是A (1,3),与x 轴的一个交点B (4,0),直线y 2=mx +n (m ≠0)与抛物线交于A ,B 两点,下列结论:①2a +b =0;②m +n =3;③抛物线与x 轴的另一个交点是(﹣1,0);④方程ax 2+bx +c =3有两个相等的实数根;⑤当1≤x ≤4时,有y 2<y 1,其中正确的是_____19.如图,单孔拱桥的形状近似抛物线形,建立如图所示的平面直角坐标系,在正常水位时,水面宽度OA 为12m ,拱桥的最高点B 到水面OA 的距离为6m .则抛物线的解析式为________.20.已知抛物线22y x x c =-+与直线y m =相交于,A B 两点,若点A 的横坐标1A x =-,则点B 的横坐标B x 的值为_______.三、解答题21.已知二次函数22y x x c =++.(1)当3c =-时,求出该二次函数的图象与x 轴的交点坐标;(2)若21x -<<时,该二次函数的图象与x 轴有且只有一个交点,求c 的取值范围.22.如图,在平面直角坐标系中,点F 的坐标是(4,2),点P 为一个动点,过点P 作x 轴的垂线PH ,垂足为H ,点P 在运动过程中始终满足PF PH =.设平面直角坐标系内点M 、N的坐标分别为1(x ,1)y 、2(x ,2)y ,则2222121()()MN x x y y =-+-,(1)若点P 运动到点(0,5)C 时,求CF 的值;(2)设动点P 的坐标为(,)x y ,求y 关于x 的函数表达式; (3)填写下表,并在给定坐标系中画出该函数的图象.x⋯ 0 2 4 6 8 ⋯ y⋯________________________⋯23.对某条路线的长度进行n 次测量,得到n 个结果12,,,n x x x .如果用x 作为这条路线长度的近似值,当x 取什么值时,()()()22212n x x x x x x -+-++-最小?x 所取的这个值是哪个常用的统计量?24.创建文明城市,让老百姓住得更舒心,某社区决定把一块长50m ,宽30m 的矩形空地建成居民健身广场,设计方案如图,阴影部分为四个全等的矩形绿化区,剩余区域为活动区,且四周的出口宽度相同(其宽度不小于14m ),设绿化区较长边为x m ,活动区的面积为y m 2.(1)请用含x 的代数式表示矩形绿化区另一边长,并求出y 与x 的函数关系式(不要求写出自变量x 的取值范围);(2)预计活动区造价为50元/m 2,绿化区造价为40元/m 2,若社区的此项建造投资费用不得超过72000元,求绿化区较长边x 的取值范围.25.如图,抛物线2y x bx c =++与x 轴交于()1,0,A B -两点,与y 轴交于点(0,3)C -.()1求抛物线的函数解析式;()2抛物线的对称轴与x 轴交于点M .点D 与点C 关于点M 对称,试问在该抛物线上是否存在点P .使ABP △与全ABD △全等﹖若存在,请求出所有满足条件的P 点的坐标;若不存在,请说明理由.参考答案1.C 【详解】 解:∵10-<,则当x <h 时,y 随x 的增大而增大,当x >h 时,y 随x 的增大而减小, ∴①若h <2≤x ≤5,x =2时,y 取得最大值-3, 可得:2(2)13h --+=-, 解得:h =0或4(舍);②若2≤x ≤5<h ,当x =5时,y 取得最大值-3, 可得:2(5)13h --+=-, 解得:h =7或3(舍);③当2≤h ≤5时,最大值为1,不符合题意, 综上,h 的值为7或0, 2.A 【详解】解:2=3y x 向上、向右平移2个单位,那么平移后抛物线的解析式是23(2)2y x =-+, 3.B 【详解】解:∵正△ABC 的边长为1,t 为任意的实数, ∴22222AB t AC AB t AB AC t AC +=+⋅+ =1+t 2+2t ×1×1×cos 60°=t 2+t +1,当t =−12时,t 2+t +1取到最小值34,∴AB t AC +的最小值为4.B 【详解】当36x =时,450152420y =-⨯=,故①正确;由题意得:()45035152301500y x x =--⨯⨯=-+,故②正确; 日销售利润为()()()3030150030w y x x x =-=-+-, 由题意得:()()301500302880x x -+-=,整理得:28015960x x -+=, 解得:142x =,238x =,∵销售单价为38元/千克时的销售量比销售单价为42元/千克时大, ∴42x =不合题意,即若使日销售利润为2880元,且销售量较大,则日销售单价应定为38元/千克,故③错误; 由上问可知:()()()3030150030w y x x x =-=-+-,即()()222302400450003080150030403000w x x x x x =-+-=--+=--+,∵300-<,∴当40x =时,=3000w 最大值,即若使日销售利润最大,销售价格应定为40元/千克,故④正确; 故正确的是①②④; 5.B 【详解】解:∵二次函数y =x 2+bx +c 的图象经过点(4,c ), ∴c =16+4b +c , ∴b =-4.∴224(2)4y x x c x c -+=--+=, ∵最小值是﹣6 ∴-4+c =-6 ∴c =-2 6.C 【详解】解:A 、根据图象知,对称轴是直线x =-2ba=1,则b =-2a ,即2a +b =0,故A 正确; B 、根据图象知,点A 的坐标为(-1,0),对称轴是x =1,则根据抛物线关于对称轴对称的性质知,抛物线与x 轴的另一个交点的坐标是(3,0), ∴x =3时,y =9a +3b +3=0, ∴9a -6a +3=0, ∴3a +3=0,∵抛物线开口向下,则a <0,∴0>a >-32,故B 正确;C 、点A 关于x =1对称的点是A ´(3,0),即抛物线与x 轴的另一个交点,连接BA ´与直线x =1的交点即为点P , 则△PAB 的周长的最小值是(BA ´+AB )的长度, ∵A (-1,0),B (0,3),A ´(3,0), ∴AB =10,BA ´=32,即△PAB 周长的最小值为10+32,故C 错误;D 、根据图象知,点A 的坐标为(-1,0),对称轴是x =1,则根据抛物线关于对称轴对称的性质知,抛物线与x 轴的另一个交点的坐标为(3,0),所以3x =是230ax bx ++=的一个根,故D 正确. 7.B 【详解】解:取AB 的中点D ,连接CD ,当P 在AD 之间运动时,AC =BC ,则∠A =45°, ∴AP =QP =x , ∴y =12PQ ·AP =12x 2是开口向上的抛物线,排除A ,C ,选项,当P 在DB 间运动时,此时,AP =x ,BP =PQ =2-x ,∴y =()211222x x x x -=-+ 是开口向下的抛物线,∴综上:B 选项符合,8.C【详解】解:当0y =时,有2430x x -+=,解得:11x =,23x =,∴2AB =.∵8S AC AB =⋅=阴影,∴4AC =,∴平移后新抛物线的解析式为2243447y x x x x =-++=-+.9.B【详解】解:建立平面直角坐标系,设横轴x 通过AB ,纵轴y 通过AB 中点O 且通过C 点,则通过画图可得知O 为原点,抛物线以y 轴为对称轴,且经过A ,B 两点,OA 和OB 可求出为AB 的一半2米,抛物线顶点C 坐标为(0,2),设顶点式y =ax 2+2,把A 点坐标(﹣2,0)代入得a =﹣0.5,∴抛物线解析式为y =﹣0.5x 2+2,当水面下降2.5米,通过抛物线在图上的观察可转化为:当y =﹣2.5时,对应的抛物线上两点之间的距离,也就是直线y =﹣2.5与抛物线相交的两点之间的距离,可以通过把y =﹣2.5代入抛物线解析式得出:﹣2.5=﹣0.5x 2+2,解得:x =±3,∴水面宽度为3﹣(﹣3)=6(m ).10.C【详解】解:①∵抛物线y =ax 2+bx +c (a ≠0)的图象开口向上,∴a >0∵抛物线y =ax 2+bx +c (a ≠0)的对称轴在y 轴的右侧, ∴b x 02a=-> ∴0b <又∵抛物线y =ax 2+bx +c (a ≠0)的图象交y 轴的负半轴,∴0c <∴0abc >,故①正确,符合题意;②∵抛物线y =ax 2+bx +c (a ≠0)的图象与x 轴有两个交点,∴240b ac ->,即240ac b -<,故②错误,不符合题意;③∵抛物线的顶点坐标为(1,m ),与x 轴的一个交点为A (-1,0)∴对称轴为x =1∴抛物线与x 轴的另一个交点为(3,0)∴当x =3时,y =930a b c ++=,∴a 1139b ++c =0,故③错误,不符合题意; ④当x =-1时,y =a -b +c =0,则c =-a +b ,由-4≤c ≤-3,得-4≤-a +b ≤-3,图象的对称轴为x =1,故b =-2a ,得-4≤-3a ≤-3,故1≤a ≤43正确,符合题意; ⑤y =ax 2+bx +c 的顶点为(1,m ),即当x =1时y 有最小值m .而y =m -2和y =ax 2+bx +c 无交点,即方程ax 2+bx +c =m -2无解,∴关于x 的方程ax 2+bx +c +2-m =0没有实数根,故⑤正确,符合题意.11.8b ≥-【详解】解:由题意得:平移后得到的二次函数的解析式为:y =(x -3)2-1,则()2312y x y x b ⎧--⎪⎨+⎪⎩==, ∴(x -3)2-1=2x +b ,整理得,x 2-8x +8-b =0,∴△=(-8)2-4×1×(8-b )≥0,解得,b ≥-8,12.212. 【详解】解:∵y =x 2﹣2x ﹣3,∴当y =0时,x 2﹣2x ﹣3=0即(x +1)(x -3)=0,解得 x =-1或x =3故设P (x ,y ),设P (x ,x 2﹣2x-3)(0<x <3),∵过点P 分别向x 轴和y 轴作垂线,垂足分别为A 、B ,∴四边形OAPB 为矩形,∴四边形OAPB 周长C =2PA +2OA=﹣2(x 2﹣2x ﹣3)+2x=﹣2x 2+6x +6=﹣2(x 2﹣3x )+6,=﹣2232()x -+212. ∴当x =32时,四边形OAPB 周长有最大值,最大值为212. 故答案为:212. 13.y 1<y 3<y 2【详解】解:∵y =-mx 2+4mx+m 2+1(m >0)∴-m<0,∴该函数图像开口方向向下,对称轴为x=()422m m =-- ∵|-1-2|=3,|1-2|=1,|72-2|=32, ∴3>32>1 ∴y 1<y 3<y 2.故答案为y 1<y 3<y 2.14.2 2【详解】解:∵点P (1,m )在C 1上,∴m =﹣1×(1﹣3)=2,令y =0,则﹣x (x ﹣3)=0,解得x 1=0,x 2=3,∴A 1(3,0),由图可知,抛物线C 13在x 轴上方,相当于抛物线C 1向右平移6×6=36个单位得到,∴抛物线C 13的解析式为y =﹣(x ﹣36)(x ﹣36﹣3)=﹣(x ﹣36)(x ﹣39),∵P (37,m )在第13段抛物线C 13上,∴m =﹣(37﹣36)(37﹣39)=2.故答案为:2,2.15.1-【详解】解:二次函数22y x x m =++可化为()211y x m =++-,因为二次项系数为1,大于零,所以函数图像开口向上,所以最低点为顶点,横坐标为1-,故答案为1-.16.①④【详解】解:①抛物线的对称轴在y 轴右侧,则ab <0,而c >0,故abc <0,故①正确; ②△ABC 的面积=12AB •y C =12⨯AB ×4=4,解得:AB =2,∵函数的对称轴为直线x =1,∴点A (0,0),点B (2,0),即c =0与图象不符,故②错误;③函数的对称轴为x =1,若x 1+x 2>2,则12(x 1+x 2)>1,则点N 离函数对称轴远,故y 1>y 2,故③错误;④抛物线经过点(3,﹣1),则y ′=ax 2+bx +c +1过点(3,0),根据函数的对称轴该抛物线也过点(﹣1,0),故方程ax 2+bx +c +1=0的两根为﹣1,3,故④正确;故答案为:①④.17.247y x x =-+.【详解】解:抛物线的平移变换规律为“上加下减,左加右减”,将抛物线2y x 向右平移2个单位,再向上平移3个单位, 得到222(2)344347y x x x x x =-+=-++=-+,故答案为:247y x x =-+.18.①②④【详解】解:由抛物线对称轴为直线x=-2b a=1,从而b=-2a ,则2a+b=0故①正确; 直线y 2=mx+n 过点A ,把A(1,3)代入得m+n=3,故②正确;由抛物线对称性,与x 轴的一个交点B(4,0),则另一个交点坐标为(-2,0),故③错误; 方程ax 2+bx+c=3从函数角度可以看做是y=ax 2+bx+c 与直线y=3求交点,从图象可以知道,抛物线顶点为(1,3),则抛物线与直线有且只有一个交点故方程ax 2+bx+c=3有两个相等的实数根,因而④正确;由图象可知,当1≤x≤4时,有y 2≤y 1 故当x=1或4时y 2=y 1 故⑤错误.故答案为:①②④.19.21(6)66y x =--+ 【详解】根据题意可知:顶点B 的坐标为(6,6),∴设抛物线解析式为y=a (x-6)2+6,将点O (0,0)代入,36a+6=0,解得a=16-, ∴抛物线的解析式为21(6)66y x =--+, 故答案为:21(6)66y x =--+. 20.3【详解】解:把x A =-1代入y=x 2-2x+c 得,y=1+2+c=3+c ,∴A (-1,3+c ),∵抛物线y=x 2-2x+c 与直线y=m 相交于A ,B 两点,∴B 的纵坐标为3+c ,把y=3+c 代入y=x 2-2x+c 得,3+c=x 2-2x+c ,解得x=-1或x=3,∴点B 的横坐标x B 的值为3,故答案为3.21.(1)(3,0)-,(1,0);(2)c 的值为1c =或30c -<【详解】解:(1)由题意,得223y x x =+-,当0y =时,2230x x +-=.解得13x =-,21x =.∴该二次函数的图象与x 轴的交点坐标为(3,0)-,(1,0).(2)抛物线22y x x c =++的对称轴为1x =-.若抛物线与x 轴只有一个交点,则交点为(1,0)-.有012c =-+,解得1c =;若抛物线与x 轴有两个交点,当2x =-,0y ≤时,440c -+≤,解得0c ≤;当1x =,0y >时,120c ++>,解得3c >-;综上所述,c 的值为1c =或30c -<.22.(1)CF=5;(2)21254y x x =-+;(3)5,2,1,2,5;画图见解析. 【详解】解:(1)当P 运动点(0,5)C 时,CF=CO=5或由222(52)4CF =-+得,22(52)45CF =-+= (2)由题意:222(4)(2)y x y =-+-整理得,21254y x x =-+ ∴函数解析式为21254y x x =-+ (3)当0x =时,5y =;当2x =时,2y =;当4x =时,1y =; 当6x =时,2y =;当8x =时,5y =,故表中填的数为5,2,1,2,5.函数图象如下图所示:23.x 所取的值为统计中的平均数.【详解】令y =(x -x 1)2+(x -x 2)2+…+(x -x n )2,则y =nx 2-2(x 1+x 2+x 3+…+x n )x +(21x +22x +…+2n x ), ∵n >0,∴y 有最小值,此时x =1222()n x x x n =12n x x x n ,∴当x 取x 1,x 2,x 3,…,x n 的平均数时,(x -x 1)2+(x -x 2)2+…+(x -x n )2有最小值.即:x 所取的值为统计中的平均数.24.(1)y =﹣4x 2+40x +1500;(2)绿化区较长边x 的取值范围为15≤x ≤18. 【详解】(1)根据题意得:绿化区的另一边长为[30﹣(50﹣2x )]÷2=x ﹣10,∴y =50×30﹣4x (x ﹣10)=﹣4x 2+40x +1500;(2)设投资费用为w 元,由题意得,w =50(﹣4x 2+40x +1500)+40×4x (x ﹣10)=﹣40x 2+400x +75000=﹣40(x ﹣5)2+76000,当w =72000时,解得x 1=﹣5(舍去),x 2=15,∵a =﹣40<0,∴当x ≥15时,w ≤72000,又∵4个出口宽度相同,其宽度不小于14m ,∴x ≤18,∴15≤x ≤18.答:绿化区较长边x 的取值范围为15≤x ≤18.25.(1)223y x x =--;(2)存在,点P 的坐标为(0,3)-或(2,3)- 【详解】解:(1)将点C 坐标代入函数解析式得3c =-,将点A 的坐标代入23y x bx =+-,得20(1)3b =--- ,解得:2b =-, 故抛物线的解析式为223y x x =--;(2)∵点D 与点(0,3)C -关于点()1,0M 对称,∴()2,3D ,则在x 轴上方的P 不存在,点P 只可能在x 轴的下方,如图,当点P 在对称轴右侧时,要使ABP 与ABD △全等则点P 于点D 关于x 轴的对称点, 即点,(2,3)P -当点2x = 时,222233y =-⨯-=- , ∴点(2,3)P -在抛物线上,当点P 在对称轴左侧时,点()'C P 也满足'ABP 与ABD △全等, 即点'(0,3)P -,综上所述,点P 的坐标为(0,3)-或(2,3)-.。
人教版九年级数学上册 二次函数单元练习(Word版 含答案)
![人教版九年级数学上册 二次函数单元练习(Word版 含答案)](https://img.taocdn.com/s3/m/b799cd3202d276a201292e58.png)
人教版九年级数学上册二次函数单元练习(Word版含答案)一、初三数学二次函数易错题压轴题(难)1.如图1,抛物线y=mx2﹣3mx+n(m≠0)与x轴交于点C(﹣1,0)与y轴交于点B (0,3),在线段OA上有一动点E(不与O、A重合),过点E作x轴的垂线交直线AB 于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)分别求出抛物线和直线AB的函数表达式;(2)设△PMN的面积为S1,△AEN的面积为S2,当1236 25SS=时,求点P的坐标;(3)如图2,在(2)的条件下,将线段OE绕点O逆时针旋转的到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E'A+23E'B的最小值.【答案】(1)抛物线y=﹣34x2+94x+3,直线AB解析式为y=﹣34x+3;(2)P(2,3 2);(3410【解析】【分析】(1)由题意令y=0,求出抛物线与x轴交点,列出方程即可求出a,根据待定系数法可以确定直线AB解析式;(2)根据题意由△PNM∽△ANE,推出65PNAN=,以此列出方程求解即可解决问题;(3)根据题意在y轴上取一点M使得OM′=43,构造相似三角形,可以证明AM′就是E′A+23E′B的最小值.【详解】解:(1)∵抛物线y=mx2﹣3mx+n(m≠0)与x轴交于点C(﹣1,0)与y轴交于点B (0,3),则有330 nm m n⎧⎨⎩++==,解得433mn⎧⎪⎨⎪-⎩==,∴抛物线239344y x x=-++,令y=0,得到239344x x-++=0,解得:x=4或﹣1,∴A(4,0),B(0,3),设直线AB解析式为y=kx+b,则340bk b+⎧⎨⎩==,解得334kb⎧-⎪⎨⎪⎩==,∴直线AB解析式为y=34-x+3.(2)如图1中,设P(m,239344m m-++),则E(m,0),∵PM⊥AB,PE⊥OA,∴∠PMN=∠AEN,∵∠PNM=∠ANE,∴△PNM∽△ANE,∵△PMN的面积为S1,△AEN的面积为S2,123625SS=,∴65PNAN=,∵NE∥OB,∴AN AEAB OA=,∴AN=54545454(4﹣m),∵抛物线解析式为y =239344x x -++, ∴PN =239344m m -++﹣(34-m+3)=34-m 2+3m , ∴2336455(4)4m m m -+=-, 解得m =2或4(舍弃),∴m =2,∴P (2,32). (3)如图2中,在y 轴上 取一点M′使得OM′=43,连接AM′,在AM′上取一点E′使得OE′=OE .∵OE′=2,OM′•OB =43×3=4, ∴OE′2=OM′•OB ,∴OE OB OM OE '='', ∵∠BOE′=∠M′OE′,∴△M′OE′∽△E′OB ,∴M E OE BE OB '''='=23, ∴M′E′=23BE′, ∴AE′+23BE′=AE′+E′M′=AM′,此时AE′+23BE′最小(两点间线段最短,A 、M′、E′共线时), 最小值=AM′2244()3+410. 【点睛】本题属于二次函数综合题,考查相似三角形的判定和性质、待定系数法、最小值问题等知识,解题的关键是构造相似三角形,找到线段AM ′就是AE′+23BE′的最小值,属于中考压轴题.2.在平面直角坐标系中,抛物线22(0)y ax bx a =++≠经过点(2,4)A --和点(2,0)C ,与y 轴交于点D ,与x 轴的另一交点为点B .(1)求抛物线的解析式;(2)如图1,连接BD ,在抛物线上是否存在点P ,使得2PBC BDO ∠=∠?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)如图2,连接AC ,交y 轴于点E ,点M 是线段AD 上的动点(不与点A ,点D 重合),将CME △沿ME 所在直线翻折,得到FME ,当FME 与AME △重叠部分的面积是AMC 面积的14时,请直接写出线段AM 的长. 【答案】(1)22y x x =-++;(2)存在,(23,209)或(103,529-);(3)105或2 【解析】【分析】(1)根据点A 和点C 的坐标,利用待定系数法求解;(2)在x 轴正半轴上取点E ,使OB=OE ,过点E 作EF ⊥BD ,垂足为F ,构造出∠PBC=∠BDE ,分点P 在第三象限时,点P 在x 轴上方时,点P 在第四象限时,共三种情况分别求解;(3)设EF 与AD 交于点N ,分点F 在直线AC 上方和点F 在直线AC 下方时两种情况,利用题中所给面积关系和中线的性质可得MN=AN ,FN=NE ,从而证明四边形FMEA 为平行四边形,继而求解.【详解】解:(1)∵抛物线22(0)y ax bx a =++≠经过点A (-2,-4)和点C (2,0),则44220422a b a b -=-+⎧⎨=++⎩,解得:11a b =-⎧⎨=⎩, ∴抛物线的解析式为22y x x =-++;(2)存在,理由是:在x 轴正半轴上取点E ,使OB=OE ,过点E 作EF ⊥BD ,垂足为F ,在22y x x =-++中,令y=0,解得:x=2或-1,∴点B 坐标为(-1,0),∴点E 坐标为(1,0),可知:点B 和点E 关于y 轴对称,∴∠BDO=∠EDO ,即∠BDE=2∠BDO ,∵D (0,2),∴=,在△BDE 中,有12×BE ×OD=12×BD ×EF ,即2×EF ,解得:,∴,∴tan ∠BDE=EF DF =43, 若∠PBC=2∠BDO ,则∠PBC=∠BDE ,∵BE=2,则BD 2+DE 2>BE 2,∴∠BDE 为锐角,当点P 在第三象限时,∠PBC 为钝角,不符合;当点P 在x 轴上方时,∵∠PBC=∠BDE ,设点P 坐标为(c ,22c c -++),过点P 作x 轴的垂线,垂足为G ,则BG=c+1,PG=22c c -++,∴tan ∠PBC=PG BG =221c c c -+++=43,解得:c=23, ∴22c c -++=209, ∴点P 的坐标为(23,209);当点P 在第四象限时,同理可得:PG=22c c --,BG=c+1,tan ∠PBC=PG BG =221c c c --+=43, 解得:c=103, ∴22c c -++=529-, ∴点P 的坐标为(103,529-), 综上:点P 的坐标为(23,209)或(103,529-);(3)设EF 与AD 交于点N ,∵A (-2,-4),D (0,2),设直线AD 表达式为y=mx+n ,则422m n n -=-+⎧⎨=⎩,解得:32m n =⎧⎨=⎩, ∴直线AD 表达式为y=3x+2,设点M 的坐标为(s ,3s+2),∵A (-2,-4),C (2,0),设直线AC 表达式为y=m 1x+n 1,则11114202m n m n -=-+⎧⎨=+⎩,解得:1112m n =⎧⎨=-⎩, ∴直线AC 表达式为y=x-2,令x=0,则y=-2,∴点E 坐标为(0,-2),可得:点E 是线段AC 中点,∴△AME 和△CME 的面积相等,由于折叠,∴△CME ≌△FME ,即S △CME =S △FME ,由题意可得:当点F 在直线AC 上方时,∴S △MNE =14S △AMC =12S △AME =12S △FME , 即S △MNE = S △ANE = S △MNF ,∴MN=AN ,FN=NE ,∴四边形FMEA 为平行四边形, ∴CM=FM=AE=12AC=12∵M (s ,3s+2),=解得:s=45-或0(舍), ∴M (45-,25-), ∴5,当点F 在直线AC 下方时,如图, 同理可得:四边形AFEM 为平行四边形,∴AM=EF ,由于折叠可得:CE=EF ,∴AM=EF=CE=22,综上:AM 的长度为105或22 【点睛】 本题是二次函数综合题,涉及到待定系数法,二次函数的图像和性质,折叠问题,平行四边形的判定和性质,中线的性质,题目的综合性很强.难度很大,对学生的解题能力要求较高.3.如图,抛物线2y ax 2x c =++经过,,A B C 三点,已知()()1,0,0,3.A C -()1求此抛物线的关系式;()2设点P 是线段BC 上方的抛物线上一动点,过点P 作y 轴的平行线,交线段BC 于点,D 当BCP 的面积最大时,求点D 的坐标;()3点M 是抛物线上的一动点,当()2中BCP 的面积最大时,请直接写出使45PDM ∠=︒的点M 的坐标 【答案】(1)2y x 2x 3=-++;(2)点33,22D ⎛⎫⎪⎝⎭;(3)点M 的坐标为()0,3或113113,22⎛⎫++ ⎪ ⎪⎝⎭【解析】【分析】(1)由2y ax 2x c =++经过点()(),1,00,3A C -,利用待定系数法即可求得此抛物线的解析式.(2)首先设点()2,23,P t t t -++令2230x x -++=,求得()3,0B ,然后设直线BC 的关系式为y kx b =+,由待定系数法求得BC 的解析式为3y x =-+,可得()()22,3,2333D t t PD t t t t t -+=-++--+=-+,BCP 的面积为()21333,22S PD t t =⨯=-+利用二次函数的性质即可求解; (3)根据PD y 轴,45PDM ∠=︒,分别设DM y x b =+,DM y x b =-+,根据点33D(22,)坐标即可求出b ,再与抛物线联系即可得出点M 的坐标. 【详解】()1将()(),1,00,3A C -分别代入22,y ax x c =++可解得1,3,a c =-=即抛物线的关系式为2y x 2x 3=-++.()2设点()2,23,P t t t -++令2230,x x -++=解得121,3,x x =-=则点()3,0B .设直线BC 的关系式为(y kx b k =+为常数且0k ≠),将点,B C 的坐标代入,可求得直线BC 的关系式为3y x =-+.∴点()()22,3,2333D t t PD t t t t t -+=-++--+=-+设BCP 的面积为,S 则()21333,22S PD t t =⨯=-+ ∴当32t =时,S 有最大值,此时点33,22D ⎛⎫ ⎪⎝⎭. ()3∵PD y 轴,45PDM ∠=︒第一种情况:令DM y x b =+,33D(22,)解得:b=0∴223y x y x x =⎧⎨=-++⎩解得:113x 2=∴11M 22+(, 第二种情况:令DM y x b =-+,33D(22,)解得:b=3 ∴2323y x y x x =-+⎧⎨=-++⎩解得:x=0或x=3(舍去)∴M 03(,)满足条件的点M 的坐标为()0,3或⎝⎭【点睛】此题主要考查待定系数法求函数解析式和二次函数的性质,熟练掌握二次函数的性质是解题关键.4.已知二次函数y =ax 2+bx +c (a ≠0).(1)若b =1,a =﹣12c ,求证:二次函数的图象与x 轴一定有两个不同的交点;(2)若a <0,c =0,且对于任意的实数x ,都有y ≤1,求4a +b 2的取值范围;(3)若函数图象上两点(0,y 1)和(1,y 2)满足y 1•y 2>0,且2a +3b +6c =0,试确定二次函数图象对称轴与x 轴交点横坐标的取值范围.【答案】(1)见解析;(2)240a b +≤ ;(3)12323b a <-< 【解析】【分析】(1)根据已知条件计算一元二次方程的判别式即可证得结论;(2)根据已知条件求得抛物线的顶点纵坐标,再整理即可;(3)将(0,y 1)和(1,y 2)分别代入函数解析式,由y 1•y 2>0,及2a +3b +6c =0,得不等式组,变形即可得出答案.【详解】解:(1)证明:∵y =ax 2+bx+c (a≠0),∴令y =0得:ax 2+bx+c =0∵b =1,a =﹣12c , ∴△=b 2﹣4ac =1﹣4(﹣12c )c =1+2c 2, ∵2c 2≥0,∴1+2c 2>0,即△>0,∴二次函数的图象与x 轴一定有两个不同的交点;(2)∵a <0,c =0,∴抛物线的解析式为y =ax 2+bx ,其图象开口向下,又∵对于任意的实数x ,都有y≤1,∴顶点纵坐标214b a-≤, ∴﹣b 2≥4a ,∴4a+b 2≤0;(3)由2a+3b+6c =0,可得6c =﹣(2a+3b ),∵函数图象上两点(0,y 1)和(1,y 2)满足y 1•y 2>0,∴c (a+b+c )>0,∴6c (6a+6b+6c )>0,∴将6c =﹣(2a+3b )代入上式得,﹣(2a+3b )(4a+3b )>0,∴(2a+3b )(4a+3b )<0,∵a≠0,则9a 2>0,∴两边同除以9a 2得,24()()033b b a a ++<,∴2343baba⎧+<⎪⎪⎨⎪+>⎪⎩或2343baba⎧+>⎪⎪⎨⎪+<⎪⎩,∴4233ba-<<-,∴二次函数图象对称轴与x轴交点横坐标的取值范围是:12323ba<-<.【点睛】本题考查了抛物线与x轴的交点、抛物线与一元二次方程的关系及抛物线与不等式的关系等知识点,熟练掌握二次函数的性质是解题的关键.5.如图,抛物线2(0)y ax bx c a=++≠与坐标轴的交点为()30A-,,()10B,,()0,3C-,抛物线的顶点为D.(1)求抛物线的解析式.(2)若E为第二象限内一点,且四边形ACBE为平行四边形,求直线CE的解析式.(3)P为抛物线上一动点,当PAB∆的面积是ABD∆的面积的3倍时,求点P的坐标.【答案】(1)223y x x=+-;(2)33y x=--;(3)点P的坐标为()5,12-或()3,12.【解析】【分析】(1)本题考查二次函数解析式的求法,可利用待定系数法,将点带入求解;(2)本题考查二次函数平行四边形存在性问题,可根据题干信息结合平行四边形性质确定动点位置,进一步利用待定系数法求解一次函数解析式;(3)本题考查二次函数与三角形面积问题,可先根据题干面积关系假设动点坐标,继而带入二次函数,列方程求解.【详解】(1)∵抛物线2y ax bx c=++与坐标轴的交点为()30A-,,()10B,,()0,3C-,∴9303a b ca b cc-+=⎧⎪++=⎨⎪=-⎩,解得123abc=⎧⎪=⎨⎪=-⎩∴抛物线的解析式为223y x x =+-.(2)如图,过点E 作EH x ⊥轴于点H ,则由平行四边形的对称性可知1AH OB ==,3EH OC ==.∵3OA =,∴2OH =,∴点E 的坐标为()2,3-.∵点C 的坐标为()0,3-,∴设直线CE 的解析式为()30y kx k =-<将点()2,3E -代入,得233k --=,解得3k =-,∴直线CE 的解析式为33y x =--.(3)∵2223(1)4y x x x =+-=+-,∴抛物线的顶点为()1,4D --.∵PAB ∆的面积是ABD ∆的面积的3倍,∴设点P 为(),12t .将点(),12P t 代入抛物线的解析式223y x x =+-中, 得22312t t +-=,解得3t =或5t =-,故点P 的坐标为()5,12-或()3,12.【点睛】本题考查二次函数与几何的综合,利用待定系数法求解解析式时还可以假设交点式,几何图形存在性问题求解往往需要利用其性质,假设动点坐标,列方程求解.6.如图,抛物线2y x bx c =-++的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点.点A 坐标的为3,0,点C 的坐标为()0,3.(Ⅰ)求抛物线的解析式;(Ⅱ)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作i 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作//PQ AB 交抛物线于点Q ,过点Q 作QN x ⊥轴于点N .若点P 在点Q 左边,当矩形PMNQ 的周长最大时,求AEM △的面积;(Ⅲ)在(Ⅱ)的条件下,当矩形PMNQ 的周长最大时,连接DQ ,过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若=22FG DQ ,求点F 的坐标.【答案】(Ⅰ)223y x x =--+;(Ⅱ)12;(Ⅲ)()4,5F --或()1,0 【解析】【分析】(Ⅰ)将点A ,点C 坐标代入解析式可求解;(Ⅱ)设M (x ,0),P (x ,-x 2-2x+3),利用对称性可求点Q (-2-x ,-x 2-2x+3),可求MP=-x 2-2x+3,PQ=-2-x-x=-2-2x ,则可用x 表示矩形PMNQ 的周长,由二次函数的性质可求当矩形PMNQ 的周长最大时,点P 的坐标,即可求点E ,点M 的坐标,由三角形面积公式可求解;(Ⅲ)先求出点D 坐标,即可求DQ=2,可得FG=4,设F (m ,-m 2-2m+3),则G (m ,m+3),用含有m 的式子表示FG 的长度即可求解.【详解】 解:(Ⅰ)依题意()()2330{3b c c --+⨯-+== 解得2{3b c =-= 所以223y x x =--+(Ⅱ)2223(1)4y x x x抛物线的对称轴是直线1x =-(,0)M x ,()2,23P x x x --+,其中31x -<<-∵P 、Q 关于直线1x =-对称设Q 的横坐标为a则()11a x --=--∴2a x =--∴()22,23Q x x x ----+∴223MP x x =--+,222PQ x x x =---=--∴周长()222222232822(2)10d x x x x x x =----+=--+=-++当2x =-时,d 取最大值,此时,(2,0)M -∴2(3)1AM =---=设直线AC 的解析式为y kx b =+则303k b b -+=⎧⎨=⎩,解得13k b =⎧⎨=⎩∴设直线AC 的解析式为3y x将2x =-代入3y x ,得1y = ∴(2,1)E -,∴1EM = ∴11111222AEM S AM ME ∆=⋅=⨯⨯= (Ⅲ)由(Ⅱ)知,当矩形PMNQ 的周长最大时,2x =-此时点()0,3Q ,与点C 重合,∴3OQ =∵2223(1)4y x x x∴()1,4D -过D 作DK y ⊥轴于K ,则1DK =,4OK =∴431OK OK OQ =-=-=∴DKQ 是等腰直角三角形,DQ =∴4FG ==设()2,23F m m m --+,则(,3)G m m + ()223233FG m m m m m =+---+=+∴234m m +=,解得14m =-,21m =当4m =-时,2235m m --+=-当1m =时,2230m m --+=.∴()4,5F --或()1,0【点睛】本题是二次函数综合题,考查了二次函数的性质,矩形的性质,等腰直角三角形的性质等,利用参数表示线段的长度是本题的关键.7.定义:函数l 与l '的图象关于y 轴对称,点(),0P t 是x 轴上一点,将函数l '的图象位于直线x t =左侧的部分,以x 轴为对称轴翻折,得到新的函数w 的图象,我们称函数w 是函数l 的对称折函数,函数w 的图象记作1F ,函数l 的图象位于直线x t =上以及右侧的部分记作2F ,图象1F 和2F 合起来记作图象F .例如:如图,函数l 的解析式为1y x =+,当1t =时,它的对称折函数w 的解析式为()11y x x =-<.(1)函数l 的解析式为21y x =-,当2t =-时,它的对称折函数w 的解析式为_______; (2)函数l 的解析式为1²12y x x =--,当42x -≤≤且0t =时,求图象F 上点的纵坐标的最大值和最小值;(3)函数l 的解析式为()2230y ax ax a a =--≠.若1a =,直线1y t =-与图象F 有两个公共点,求t 的取值范围.【答案】(1)()212y x x =+<-;(2)F 的解析式为2211(0)211(0)2y x x x y x x x ⎧=--≥⎪⎪⎨⎪=--+<⎪⎩;图象F 上的点的纵坐标的最大值为32y =,最小值为3y =-;(3)当3t =-,312t <≤,352t +<<时,直线1y t =-与图象F 有两个公共点. 【解析】【分析】(1)根据对折函数的定义直接写出函数解析式即可;(2)先根据题意确定F 的解析式,然后根据二次函数的性质确定函数的最大值和最小值即可;(3)先求出当a=1时图像F 的解析式,然后分14t -=-、点(),1t t -落在223()y x x x t =--≥上和点(),1t t -落在()223y x x x t =--+<上三种情况解答,最后根据图像即可解答.【详解】解:(1)()212y x x =+<-(2)F 的解析式为2211(0)211(0)2y x x x y x x x ⎧=--≥⎪⎪⎨⎪=--+<⎪⎩当4x =-时,3y =-,当1x =-时,32y =, 当1x =时,32y =-,当2x =时,1y =, ∴图象F 上的点的纵坐标的最大值为32y =,最小值为3y =-. (3)当1a =时,图象F 的解析式为2223()23()y x x x t y x x x t ⎧=--≥⎨=--+<⎩∴该函数的最大值和最小值分别为4和-4;a :当14t -=-时,3t =-,∴当3t =-时直线1y t =-与图象F 有两个公共点;b :当点(),1t t -落在223()y x x x t =--≥上时,2123t t t -=--,解得132t -=,232t = c :当点(),1t t -落在()223y x x x t =--+<上时,2123t t t -=--+,解得34t =-(舍),41t =14t -=,∴55t =∴当312t <≤或352t <<时,直线1y t =-与图象F 有两个公共点;综上所述:当3t =-,31712t -<≤,31752t +<<时,直线1y t =-与图象F 有两个公共点.【点睛】 本题属于二次函数综合题,考查了“称折函数”的定义、二次函数的性质、解二元一次方程等知识,弄清题意、灵活运用所学知识是解答本题的关键.8.如图①抛物线y =ax 2+bx +4(a ≠0)与x 轴,y 轴分别交于点A (﹣1,0),B (4,0),点C 三点.(1)试求抛物线的解析式;(2)点D (3,m )在第一象限的抛物线上,连接BC ,BD .试问,在对称轴左侧的抛物线上是否存在一点P ,满足∠PBC =∠DBC ?如果存在,请求出点P 点的坐标;如果不存在,请说明理由;(3)点N 在抛物线的对称轴上,点M 在抛物线上,当以M 、N 、B 、C 为顶点的四边形是平行四边形时,请直接写出点M 的坐标.【答案】(1)y =﹣x 2+3x +4;(2)存在.P (﹣34,1916).(3)1539(,)24M -- 21139(,)24M - 3521(,)24M 【解析】【分析】(1)将A,B,C 三点代入y =ax 2+bx+4求出a,b,c 值,即可确定表达式;(2)在y 轴上取点G ,使CG =CD =3,构建△DCB ≌△GCB ,求直线BG 的解析式,再求直线BG 与抛物线交点坐标即为P 点,(3)根据平行四边形的对边平行且相等,利用平移的性质列出方程求解,分情况讨论.【详解】解:如图:(1)∵抛物线y =ax 2+bx+4(a≠0)与x 轴,y 轴分别交于点A (﹣1,0),B (4,0),点C 三点.∴4016440a ba b-+=⎧⎨++=⎩解得13ab=-⎧⎨=⎩∴抛物线的解析式为y=﹣x2+3x+4.(2)存在.理由如下:y=﹣x2+3x+4=﹣(x﹣32)2+254.∵点D(3,m)在第一象限的抛物线上,∴m=4,∴D(3,4),∵C(0,4)∵OC=OB,∴∠OBC=∠OCB=45°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=45°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=3,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为y BP=kx+b(k≠0),把G(0,1),B(4,0)代入,得k=﹣14,b=1,∴BP解析式为y BP=﹣14x+1.y BP=﹣14x+1,y=﹣x2+3x+4当y=y BP时,﹣14x+1=﹣x2+3x+4,解得x1=﹣34,x2=4(舍去),∴y=1916,∴P(﹣34,1916).(3)1539 (,)24M--21139 (,) 24M-3521 (,) 24M理由如下,如图B(4,0),C(0,4) ,抛物线对称轴为直线32x=,设N(32,n),M(m, ﹣m2+3m+4)第一种情况:当MN与BC为对边关系时,MN∥BC,MN=BC,∴4-32=0-m,∴m=52-∴﹣m2+3m+4=39 4 -,∴1539 (,)24M--;或∴0-32=4-m,∴m=11 2∴﹣m2+3m+4=39 4 -,∴21139 (,) 24M-;第二种情况:当MN与BC为对角线关系,MN与BC交点为K,则K(2,2),∴322 2m∴m=5 2∴﹣m2+3m+4=21 4∴3521 (,) 24M综上所述,当以M、N、B、C为顶点的四边形是平行四边形时,点M的坐标为1539 (,)24M--21139 (,) 24M-3521 (,) 24M.【点睛】本题考查二次函数与图形的综合应用,涉及待定系数法,函数图象交点坐标问题,平行四边形的性质,方程思想及分类讨论思想是解答此题的关键.9.如图1所示,抛物线223y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点C ,已知C 点坐标为(0,4),抛物线的顶点的横坐标为72,点P 是第四象限内抛物线上的动点,四边形OPAQ 是平行四边形,设点P 的横坐标为m . (1)求抛物线的解析式;(2)求使△APC 的面积为整数的P 点的个数;(3)当点P 在抛物线上运动时,四边形OPAQ 可能是正方形吗?若可能,请求出点P 的坐标,若不可能,请说明理由;(4)在点Q 随点P 运动的过程中,当点Q 恰好落在直线AC 上时,则称点Q 为“和谐点”,如图(2)所示,请直接写出当Q 为“和谐点”的横坐标的值.【答案】(1)2214433y x x =-+;(2)9个 ;(3)33,22或44,;(4)33【解析】【分析】(1)抛物线与y轴交于点C,顶点的横坐标为7 2,则472223cb,即可求解;(2)APC∆的面积PHA PHCS S S ,即可求解;(3)当四边形OPAQ 是正方形时,点P 只能在x 轴的下方,此时OAP为等腰直角三角形,设点(,)P x y,则0x y+=,即可求解;(4)求出直线AP的表达式为:2(1)(6)3y m x,则直线OQ的表达式为:2(1)3y m x②,联立①②求出Q的坐标,又四边形OPAQ是平行四边形,则AO的中点即为PQ的中点,即可求解.【详解】解:(1)抛物线与y轴交于点C,顶点的横坐标为72,则472223cb,解得1434bc,故抛物线的抛物线为:2214433y x x=-+;(2)对于2214433y x x=-+,令0y=,则1x=或6,故点B、A的坐标分别为(1,0)、(6,0);如图,过点P作//PH y轴交AC于点H,设直线AC的表达式为:y kx b=+由点A(6,0)、C(0,4)的坐标得460bk b,解得423bk,∴直线AC的表达式为:243y x=-+①,设点2214(,4)33P x x x,则点2(,4)3H x x,APC∆的面积221122146(44)212(16)22333PHAPHCS SSPH OA x x x x x,当1x =时,10S =,当6x =时,0S =, 故使APC ∆的面积为整数的P 点的个数为9个;(3)当四边形OPAQ 是正方形时,点P 只能在x 轴的下方, 此时OAP 为等腰直角三角形,设点(,)P x y ,则0x y +=, 即2214433yx x x ,解得:32x =或4, 故点P 的坐标为3(2,3)2或(4,4)-; (4)设点2214(,4)33P m m m ,为点(6,0)A ,设直线AP 的表达式为:y kx t =+,由点A ,P 的坐标可得260214433kt kmt m m ,解之得:2(1)326(1)3km tm∴直线AP 的表达式为:2(1)(6)3ym x , //AP OQ ,则AP 和OQ 表达式中的k 值相同,故直线OQ 的表达式为:2(1)3ym x ②, 联立①②得:2(1)3243ym x yx ,解得:446mm y x ,则点6(Q m ,44)m, 四边形OPAQ 是平行四边形,则AO 的中点即为PQ 的中点, 如图2,作QC x ⊥轴于点C ,PD x ⊥轴于点D ,∴OC AD =, 则有,66mm,解得:33m,经检验,33m 是原分式方程得跟,则633m,故Q 的横坐标的值为33±. 【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、平行四边形正方形的性质、面积的计算等,能熟练应用相关性质是解题的关键.10.如图,已知抛物线2y x bx c =-++与x 轴交于A ,B 两点,过点A 的直线l 与抛物线交于点C ,其中点A 的坐标是()1,0,点C 的坐标是()2,3-,抛物线的顶点为点D .(1)求抛物线和直线AC 的解析式.(2)若点P 是抛物线上位于直线AC 上方的一个动点,求APC ∆的面积的最大值及此时点P 的坐标.(3)若抛物线的对称轴与直线AC 相交于点E ,点M 为直线AC 上的任意一点,过点M 作//MN DE 交抛物线于点N ,以D ,E ,M ,N 为顶点的四边形能否为平行四边形?若能,求出点M 的坐标;若不能,请说明理由.【答案】(1)y=-x 2-2x+3,y=-x+1;(2)最大值为278,此时点P(12-,154);(3)能,(0,1),(1172-+,3172)或(1172--,3172) 【解析】 【分析】(1)直接利用待定系数法进行求解,即可得到答案;(2)设点P(m ,-m 2-2m+3),则Q(m ,-m+1),求出PQ 的长度,结合三角形的面积公式和二次函数的性质,即可得到答案;(3)根据题意,设点M(t ,-t+1),则点N(t ,-t 2-2t+3),可分为两种情况进行分析:①当点M 在线段AC 上时,点N 在点M 上方;②当点M 在线段AC (或CA )延长线上时,点N 在点M 下方;分别求出点M 的坐标即可. 【详解】解:(1)∵抛物线y=-x 2+bx+c 过点A(1,0),C(-2,3), ∴10423b c b c -++=⎧⎨--+=⎩,,解得:23b c =-⎧⎨=⎩,.∴抛物线的解析式为y=-x 2-2x+3. 设直线AC 的解析式为y=kx+n . 将点A ,C 坐标代入,得023k n k n +=⎧⎨-+=⎩,,解得11k n =-⎧⎨=⎩,.∴直线AC 的解析式为y=-x+1. (2)过点P 作PQ ∥y 轴交AC 于点Q . 设点P(m ,-m 2-2m+3),则Q(m ,-m+1). ∴PQ=(-m 2-2m+3)-(-m+1)=-m 2-m+2. ∴S △APC =S △PCQ +S △APQ =12PQ·(x A -x C )=12(-m 2-m+2)×3=23127()228m -++.∴当m=12-时,S △APC 最大,最大值为278,此时点P(12-,154).(3)能.∵y=-x 2-2x+3,点D 为顶点, ∴点D(-1,4),令x=-1时,y=-(-1)+1=2, ∴点E(-1,2). ∵MN ∥DE ,∴当MN=DE=2时,以D ,E ,M ,N 为顶点的四边形是平行四边形. ∵点M 在直线AC 上,点N 在抛物线上, ∴设点M(t ,-t+1),则点N(t ,-t 2-2t+3). ①当点M 在线段AC 上时,点N 在点M 上方,则 MN=(-t 2-2t+3)-(-t+1)=-t 2-t+2. ∴-t 2-t+2=2,解得:t=0或t=-1(舍去). ∴此时点M 的坐标为(0,1).②当点M 在线段AC (或CA )延长线上时,点N 在点M 下方,则 MN=(-t+1)-(-t 2-2t+3)=t 2+t-2. ∴t 2+t-2=2, 解得:t=12-+或t=12-. ∴此时点M的坐标为(12-+,32-)或(12-,32+).综上所述,满足条件的点M 的坐标为:(0,1),(12-+,32-)或【点睛】本题考查了待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC 的函数关系式;(2)利用三角形的面积公式和二次函数的性质解题;(3)利用二次函数图象的对称性结合两点之间线段最短找出点M 的位置.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 I 卷(选择题)1 .二次函数y ax2bx c 的图象如图所示,则下列关系式中错误的是( ) 。
A, a 0B, c 0 C ,2a b 0D, a b c02 .二次函数y23 图象的顶点坐标是(x 1)A .13,B .13,C .1,3D .1, 33.抛物线 y3( x5) 2 2 的顶点坐标为()A .( 5 ,2 )B .(- 5 , 2 )C.( 5 ,- 2) D .(- 5 ,- 2 )4.抛物线 y=ax 2+bx+c(a≠ 0) 的对称轴是直线x=2 ,且经过点 p(3 ?0). 则 a+b+c 的值为()A 、 1B 、 2C 、– 1D 、 05.将抛物线y=x 2向左平移两个单位,再向上平移一个单位,可得到抛物线()A .y=(x - 2) 2 +1B.y=(x - 2) 2- 1C.y=(x+2)2 +1 D .y=(x+2) 2- 16.已知 (1, y1 ) ,(2, y2 ) ,(4, y3)是抛物线y x 2 4 x上的点,则()A .y2y3y1 B .y1y2y3 C .y2y1y3 D .y3y1y27.二次函数 y=ax 2 +bx+c的图象如图所示,则下列结论:① a<0②b<0③c>0④ 4a+2b+c=0,⑤ b+2a=0⑥ b24ac0 其中正确的个数是()A 、1 个B 、 2 个C 、 3 个D 、 4 个8.二次函数 y x22x 3 的图象如图所示.当y<0时,自变量 x 的取值范围是(A .- 1 <x< 3B .x<- 1C .x> 3D .x<- 1 或x> 39 .抛物线y x 22x2平移得到,则下列平移过程正3 可以由抛物线y确的是 ()A. 先向左平移 2个单位 ,再向上平移 3个单位B. 先向左平移2个单位 ,再向下平移 3个单位C. 先向右平移2个单位 ,再向下平移 3个单位D. 先向右平移 2个单位 , 再向上平移 3个单位10 .二次函数yax2bx c的图象如图3所示,则下列结论正确的是A. a 0, b0, c0, b24ac 0B.a0, b0, c0, b24ac0C.a0,b0, c0, b24ac 0D.a0,b0, c0, b24ac011 .二次函数y= ax2 + bx + c 的图象如图所示,下列结论错误的是()(A)ab < 0(B)ac < 0(C)当 x <2 时,函数值随 x 增大而增大;当 x >2 时,函数值随 x 增大而减小(D) 二次函数y=ax2 + bx + c 的图象与x 轴交点的横坐标就是方程ax2 + bx + c= 0 的根12 .抛物线y x2bx c的部分图象如上图所示,若 y0 ,则 x 的取值范围是 ()A .4 x 1B . 3 x 1C .x 4 或 x 1 D.x 3 或 x 113 .如图 ,二次函数 y=ax 2 +bx+c ( a≠ 0 )的图象经过点 (-1,2),与 y 轴交于点( 0 ,2 ),且与 x 轴交点的横坐标分别为x1、 x 2,其中 -2< x 1 <-1, 0< x 2 <1 ,下列结论:① 4a-2b+c<0 ,② 2a-b 0 ,③ a<-1 ,④ b 2 +8a<4ac,其中正确的有() .y。
3 。
2 。
1。
。
。
。
。
。
。
。
。
-4 -3-2 -1o 1 2 3 4 x-1。
-2 。
-3。
-4。
-5A. ①②④B. ①③④14 .二次函数 y=x2+bx+c,C. ①②③若 b+c=0,D. ②③④则它的图象一定过点()A.(-1,-1)B.(1,-1)C.(-1,1)D.(1,1)15 .汽车匀加速行驶路程为s v 0 t1 at2 ,匀减速行驶路程为2sv 0t1 at2 ,2其中v 0 、 a 为常数 . 一汽车经过启动、匀加速行驶、匀速行驶、匀减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间 t 的函数,其图象可能是()A B CD16 .函数 y3(x1) 2 2 ,当 x ,函数 y 随 x 的增大而减小 .17 .已知二次函数 yax 2bx c ( a, b, c 均 常数,且 a0 ),若 x 与 y 的部分 如下表所示, 方程ax 2 bx c 0 的根.18 .已知二次函数y ax 2 bx c 的 象如 所示,y111 Ox有 以 下: ① a b c 0 4a 2b c 0 ; ⑤ c a 1______________________; ② a b c 1 ;③ abc 0 ; ④其 中 所 有 正 确的 序 号 是19 .抛物 的 点是C(2 ,3 ),它与 x 交于 A 、B 两点,它 的横坐 是方程 x 2 - 4x+3=0 的两个根,AB=, S △ ABC =。
20 .已知 =次函数 y =ax 2 +bx+c 的 象如 . 下列 5 个代数式: ac ,a+b+c ,4a - 2b+c ,2a+b , 2a -b 中,其 大于0 的个数个21 .平移抛物y x 2 2x 8 ,使它 原点, 写出平移后抛物 的一个解析式 _______222 .已知函数 y ax2ax 3 a像上点( 2 ,n )与( 3 ,m ),n▼ m. (填“ >,< ,或无法确定” )23 .小 同学想用“描点法”画二次函数 y ax 2 bxc(a自 量 x 的 5个 ,分 算出 的y ,如下表:x ⋯ 210 1 y⋯112 -12由于粗心,小 算 了其中的一个 y, 你指出 个算 的0) 的 象,取2 ⋯ 5 ⋯y 所 的x=24 .函数y2x2 3 的图象上有两点A(1, m) , B(2, n) ,则 m n (填“<”或“ =”或“ > ”) .25 .炮弹从炮口射出后 ,飞行的高度 h ( m )与飞行的时间 t( s)之间的函数关系是h=v0tsin α—5t2, 其中 v0 是炮弹发射的初速度 , α是炮弹的发射角 , 当1v0=300 (m s) , sin α=2时,炮弹飞行的最大高度是___________。
26.如图( 5 ),A 、B 、C 根据图中给出的三点的位置是二次函数y=ax2 +bx +c( a ≠0 )的图像上三点 , ,可得 a_______0 , c________0, ⊿ ________0.27 .抛物线 y= 2x 2- bx + 3 的对称轴是直线x= 1 ,则 b 的值为 _____28 .老师给出一个函数,甲, 乙 ,丙 , 丁四位同学各指出这个函数的一个性质:甲 : 函数的图像不经过第三象限。
乙:函数的图像经过第一象限。
丙:当 x< 2 时, y 随 x 的增大而减小。
丁:当x< 2 时, y > 0,已知这四位同学叙述都正确,请构造出满足上述所有性质的一个函数___________________ 。
29 .廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y 1 x210 ,为保护廊桥的安全,40在该抛物线上距水面 AB 高为8米的点、处要安装两盏警示灯,则这两盏灯的水平距离 EF 是(精确到 1米)yE FA O B30 .已知二次函数y232x 1x,当 x= _________时,函数达到最小值评卷人得分三、计算题(题型注释)设函数 y= kx 2+ (2k + 1)x + 1(k 为实数 ).31 .写出其中的两个特殊函数,使它们的图象不全是抛物线,并在同一直角坐标系中用描点法画出这两个特殊函数的图象32 .根据所画图象,猜想出:对任意实数k ,函数的图象都具有的特征,并给予证明33 .对任意负实数k ,当 x<m 时, y 随着 x 的增大而增大,试求出m 的一个值评卷人得分四、解答题(题型注释)34 .如图,顶点为 P( 4 ,- 4 )的二次函数图象经过原点( 0 ,0 ),点 A 在该图象上, OA 交其对称轴 l 于点 M ,点 M 、N 关于点 P 对称,连接 AN 、ON .y lO xMAPN(1 )求该二次函数的关系式;(2 )若点 A 的坐标是( 6 ,- 3 ),求△ ANO的面积;(3 )当点 A 在对称轴 l 右侧的二次函数图象上运动时,请解答下面问题:①证明:∠ ANM=∠ ONM;②△ ANO 能否为直角三角形?如果能,请求出所有符合条件的点 A 的坐标;如果不能,请说明理由.如图,二次函数y = - x2 + bx + c 与x轴交于点B和点A(-1,0),与y轴交于点 C,与一次函数y = x + a 交于点A和点D。
yC DA OB x35.求出 a、b、c 的值;36.若直线 AD 上方的抛物线存在点 E ,可使得△ EAD 面积最大,求点 E 的坐标;37 .点 F 为线段 AD 上的一个动点,点 F 到( 2 )中的点 E 的距离与到 y 轴的距离之和记为 d ,求 d 的最小值及此时点 F 的坐标。
评卷人得分五、判断题(题型注释)参考答案1 . C【解析】∵图象开口向上,∴ a >0;∵抛物线与y轴的交点为负,∴c< 0; ∵抛物线的对称轴在 y 轴的左边,∴b0 ∵ a >0,∴b>0∴2 a + b>0;当x=-1时,y< 0,即a -b+c 2a< 0. 故选 C.2 . B【解析】试题分析:根据解析式,顶点的横坐标为 1 ,纵坐标为 3 ,即坐标为(1,3 )考点:二次函数的顶点坐标点评:二次函数的顶点式为y ( x a)2h,顶点坐标即为( a,h )3. A【解析】因为 y=3 (x-5 )2 +2 是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为( 5 ,2 ).故选 A4 . D【解析】因为对称轴是x=2 ,所以b4a ,又因为经过点p(3 ?0) ,所以2, b2a9a 3b c 0, 把b4a 代入得 c3a ,所以a+b+c= a 4a 3a 0,故选 D 5. C【解析】原抛物线的顶点为( 0 ,0 ),向左平移两个单位,再向上平移一个单位,那么新抛物线的顶点为( -2 , 1);可设新抛物线的解析式为 y= (x-h )2 +k ,代入得: y= ( x+2 )2 +1 ,故选 C .6. D【解析】分析:此题可以把图象上三点的横坐标代入求得纵坐标y 值,再比较大小.解答:解:由于三点( 1 , y1),( 2 , y2),( 4 , y 3)是抛物线 y=x 2 -4x上的点,,则 y1 =1-4=-3 ; y 2 =4-8=-4 ;y 3 =16-16=0∴ y 3>y1> y2.故选 D .7 . D【解析】试题分析:根据图像,抛物线开口向下说明 a < 0 ,①正确其与 y 轴交于正半轴,由于抛物线与y 轴交点为( 0 , c)所以 c> 0 ,③正确b1又∵对称轴 x2a∴ b>0 ,②错误当 x=2 时 y=4a+2b+c结合分析可知,x=2 在图像和x 轴右交点的左侧结合图像看到此时图像在x 轴上方即y > 0∴4a+2b+c >0 ,所以④错误因为 x b1,得到 b 2a 2a也就是 2a b0 ,故⑤正确根据图像可知,抛物线与x 轴有两个交点,所以b24ac0 ,⑥正确综上,有 4 个正确的,所以选D考点:二次函数的图像与系数点评:难度中等,关键在于分析二次函数的图像、系数之间的关系。