八年级数学二次根式拓展提高之恒等变形(实数)拔高练习(含答案)
八年级初二数学提高题专题复习二次根式练习题含答案
一、选择题1.若5,a =17=b ,则0.85的值用a 、b 可以表示为 ( ) A .10a b+ B .10-b aC .10ab D .b a2.若01x <<,则221144x x x x ⎛⎫⎛⎫-+-+-= ⎪ ⎪⎝⎭⎝⎭( ). A .2xB .2x-C .2x -D .2x3.已知实数a 在数轴上的位置如图所示,则化简2||(-1)a a +的结果为( )A .1B .﹣1C .1﹣2aD .2a ﹣14.下列方程中,有实数根的方程是( ) A 240x += B 210x -= C 12x +=D 331x x --=.5.()()a x a a y a x a a y --=--a 、x 、y 是两两不同的实数,则22223x xy y x xy y +--+的值是( )A .3B .13C .2D .536.“分母有理化”是我们常用的一种化简的方法,如:33)(23)74323(23)(23)==+--+3535+-3535x =+-3535+>-,故0x >,由22(3535)35352(35)(35)2x =+-=-+-=,解得2x 35352+-=3263363332-++结果为( ) A .536+B .56+C .56D .536-7.下列计算正确的是( )A .235+=B .623÷=C .23(3)86--=-D .321-=8.下列计算正确的是( ) A .235+=B .236⋅=C .2434÷=D .()233-=-9.如果12与最简二次根式72a -是同类二次根式,那么a 的值是( ) A .﹣2 B .﹣1 C .1 D .2 10.下列二次根式中是最简二次根式的是( )A .6B .18C .27D .12二、填空题11.将2(3)(0)3a a a a-<-化简的结果是___________________.12.化简322+=___________.13.定义:对非负实数x “四舍五入”到个位的值记为()f x z , 即:当n 为非负整数时,如果1122n x n -<+≤,则()f x n =z .如:(0)(0.48)0f f ==z z ,(0.64)(1.49)1f f ==z z ,(4)(3.68)4f f ==z z ,试解决下列问题:①(3)f =z __________;②2(33)f +=z __________; ③222222(11)(22)(22)(33)(33)(44)f f f f f f ++++⋅++⋅++⋅+z z z z z z22(20172017)(20182018)f f +=+⋅+z z __________.14.已知x=3+1,y=3-1,则x 2+xy +y 2=_____. 15.实数a ,b 在数轴上的位置如图所示,则化简()22b a b +-﹣|a +b |的结果是_____.16.已知函数1x f x x,那么21f _____.17.把1m m-_____________. 18.若实数x ,y ,m 满足等式()23532322x y m x y m x y x y +--+-=+---m+4的算术平方根为________.19.若0xy >,则二次根式________. 20.n 为________.三、解答题21.阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式a =,)111=11互为有理化因式.(1)1的有理化因式是 ;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:3==,25384532++====-进行分母有理化. (3)利用所需知识判断:若a =,2b =a b,的关系是 . (4)直接写结果:)1=.【答案】(1)1;(2)7-;(3)互为相反数;(4)2019 【分析】(1)根据互为有理化因式的定义利用平方差公式即可得出; (2)原式分子分母同时乘以分母的有理化因式(2,化简即可; (3)将a=(4)化简第一个括号内的式子,里面的每一项进行分母有理化,然后利用平方差公式计算即可. 【详解】解:(1)∵()()1111=, ∴1的有理化因式是1;(22243743--==--(3)∵2a===,2b=-,∴a和b互为相反数;(4))1 ++⨯=)11⨯=)11=20201-=2019,故原式的值为2019.【点睛】本题考查了互为有理化因式的定义及分母有理化的方法,并考查了利用分母有理化进行计算及探究相关式子的规律,本题属于中档题.22.先化简再求值:4y x⎛-⎝,其中3x-=.【答案】(2x-【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x,y的值,继而将x、y的值代入计算可得答案.【详解】解:4y x⎛-⎝((=-(2x=-∵30x-∴3,4x y==当3,4x y==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.23.计算(11)1)⨯; (2)【答案】(12+;(2). 【解析】分析:先将二次根式化为最简,然后再进行二次根式的乘法运算.详解:(1)11+;=()31-2 ;(2)原式=(22⨯,==3⨯==点睛:此题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.24.计算:(1(2|a ﹣1|,其中1<a 【答案】(1)1;(2)1 【分析】(1)根据二次根式的乘法法则计算;(2)由二次根式的非负性,a 的取值范围进行化简. 【详解】解:(1-1=2-1=1(2)∵1<a ,a ﹣1=2﹣a +a ﹣1=1. 【点睛】本题考查二次根式的性质、二次根式的乘法法则,主要检验学生的计算能力.25.计算:(1;(2+2)2+2).【答案】(1-2)【分析】(1)直接化简二次根式进而合并得出答案; (2)直接利用乘法公式计算得出答案. 【详解】解:(1)原式=-(2)原式=3434++-=6+. 【点睛】本题考查了二次根式的运算,在进行二次根式运算时,可以运用乘法公式,运算率简化运算.26.计算(1(2)21)-【答案】(1)4;(2)3+ 【分析】(1)先把各根式化为最简二次根式,再去括号,合并同类项即可; (2)利用平方差公式和完全平方公式计算即可. 【详解】解:(1)解:原式=4=+4=-(2)解:原式()22161=---63=-+3=+【点睛】本题考查了二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.27.计算:(1 ;(2)))213【答案】(1)2)1-. 【分析】(1)根据二次根式的混合运算法则可以算得答案. (2)结合整式的乘法公式和二次根式的运算法则计算. 【详解】(1)原式==(2)原式=212---=1-. 【点睛】本题考查二次根式的运算,熟练掌握二次根式的意义、性质和运算法则是解题关键.28.02020((1)π-.【答案】 【分析】本题根据零次幂,最简二次根式,整数次幂的运算规则求解即可. 【详解】原式11=-= 【点睛】本题考查幂的运算与二次根式的综合,需牢记非零常数的零次幂为1,二次根式运算时需化为最简二次根式,其次注意计算仔细.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】化简即可. 【详解】10ab. 故选C . 【点睛】的形式. 2.D解析:D 【分析】根据二次根式的意义先化简各项,再进行分式的加减运算可得出解. 【详解】 解:∵0<x <1, ∴0<x <1<1x, ∴10x x +>,10x x-<.原式=11x x x x+-- =11x x x x ++- =2x . 故选D .点睛:本题考查了二次根式的性质和绝对值化简,也考查了分式的加减.3.A解析:A 【分析】先由点a 在数轴上的位置确定a 的取值范围及a-1的符号,再代入原式进行化简即可 【详解】由数轴可知0<a <1,所以,||1a a a =+-=1,选A . 【点睛】此题考查二次根式的性质与化简,实数与数轴,解题关键在于确定a 的大小4.C解析:C 【分析】k =的形式,再根据二次根式成立的条件逐个进行判断即可. 【详解】 解:A 、x 2+4=0,此时方程无解,故本选项错误;B10=,1-,∵算术平方根是非负数,∴此时方程无解,故本选项错误;C2 =,∴x+1=4,∴x=3,故本选项正确;D1 =,∴x-3≥0且3-x≥0,解得:x=3,代入得:0+0=1,此时不成立,故本选项错误;故选:C.【点睛】本题考查了二次根式的意义,能根据二次根式成立的条件进行判断是解此题的关键.5.B解析:B【分析】根据根号下的数要是非负数,得到a(x-a)≥0,a(y-a)≥0,x-a≥0,a-y≥0,推出a≥0,a≤0,得到a=0,代入即可求出y=-x,把y=-x代入原式即可求出答案.【详解】由于根号下的数要是非负数,∴a(x-a)≥0,a(y-a)≥0,x-a≥0,a-y≥0,a(x-a)≥0和x-a≥0可以得到a≥0,a(y-a)≥0和a-y≥0可以得到a≤0,所以a只能等于0,代入等式得,所以有x=-y,即:y=-x,由于x,y,a是两两不同的实数,∴x>0,y<0.将x=-y代入原式得:原式=()()()()2222313x x x xx x x x+---=--+-.故选B.【点睛】本题主要考查对二次根式的化简,算术平方根的非负性,分式的加减、乘除等知识点的理解和掌握,根据算术平方根的非负性求出a、x、y的值和代入求分式的值是解此题的关键.6.D解析:D【分析】进行化简,然后再进行合并即可.【详解】设x=<x<,∴0∴266x=-+,∴212236x=-⨯=,∴x=∵5=-,∴原式5=-5=-故选D.【点睛】本题考查了二次根式的混合运算,涉及了分母有理化等方法,弄清题意,理解和掌握题中介绍的方法是解题的关键.7.B解析:B【分析】根据二次根式加减运算和二次根式的性质逐项排除即可.【详解】与A选项错误;===B选项正确;=-=,所以C选项错误;321与D选项错误;故选答案为B.【点睛】本题考查了二次根式加减运算和二次根式的性质,掌握同类二次根式的定义和二次根式的性质是解答本题的关键.8.B解析:B【分析】由二次根式的乘法、除法,二次根式的性质,分别进行判断,即可得到答案.【详解】解:A A错误;B=,故B正确;C==C错误;=,故D错误;D3故选:B.【点睛】本题考查了二次根式的乘法、除法,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.9.D解析:D【分析】根据最简二次根式与同类二次根式的定义列方程组求解.【详解】由题意,得7-2a=3,解得a=2,故选D.【点睛】此题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.10.A解析:A【分析】根据最简二次根式的定义判断即可.【详解】A是最简二次公式,故本选项正确;BCD=故选A.【点睛】本题考查了最简二次根式,掌握最简二次根式的定义是解题的关键.二、填空题11..【分析】根据二次根式的性质化简即可.【详解】∵a<0.∴a-3<0,∴==.故答案为:.【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.解析:【分析】根据二次根式的性质化简即可.【详解】∵a<0.∴a-3<0,∴(a-=-=故答案为:【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.12.+1【分析】先将用完全平方式表示,再根据进行化简即可.【详解】因为,所以,故答案为:.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二+1【分析】先将3+,()()()00a aa aa a⎧>⎪===⎨⎪-<⎩进行化简即可.【详解】因为(2231211+=+=+=+,11===故答案为:1.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二次根式利用完全平方公式分解. 13.3【解析】1、;2、根据题意,先推导出等于什么,(1)∵,∴,(2)再比较与的大小关系,①当n=0时,;②当为正整数时,∵,∴,∴,综合(1)、(2)可得:,解析:320172018 【解析】1、(1.732)2z z f f ==;2、根据题意,先推导出f 等于什么,(1)∵2221142n n n n n ⎛⎫+<++=+ ⎪⎝⎭,12n <+, (2)12n -的大小关系,①当n=012n >-; ②当n 为正整数时,∵2212n n n ⎛⎫+-- ⎪⎝⎭1204n =->, ∴2212n n n ⎛⎫+>- ⎪⎝⎭,12n>-,综合(1)、(2)可得:1122n n-<+,∴f n=z,∴3f=z.3、∵f n=z,∴(2017zf+111112233420172018=++++⨯⨯-⨯111111112233420172018=-+-+-++-112018=-20172018=.故答案为(1)2;(2)3;(3)20172018.点睛:(1)解第②小题的关键是应用“完全平方公式”和“作差的方法”分别证明到当n为非负整数时,1122n n-<+,从而得到f n=z;(2)解题③的要点是:当n为正整数时,111(1)1n n n n=-++.14.10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2)2﹣(+1)(﹣1)= 12﹣2=10.故答案为10.解析:10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2﹣1)=12﹣2=10.故答案为10.15.3b【分析】先判断a,b的取值范围,并分别判断a-b,a+b的符号,再根据二次根式的性质和绝对值的性质化简,计算即可求解.【详解】解:由数轴可知:b>0,a﹣b<0,a+b<0,∴原式=|解析:3b【分析】先判断a,b的取值范围,并分别判断a-b,a+b的符号,再根据二次根式的性质和绝对值的性质化简,计算即可求解.【详解】解:由数轴可知:b>0,a﹣b<0,a+b<0,∴原式=|b|+|a﹣b|﹣|a+b|=b﹣(a﹣b)+(a+b)=b﹣a+b+a+b=3b,故答案为:3b【点睛】a=和绝对值的性质是解题的关键.16.【分析】根据题意可知,代入原函数即可解答.【详解】因为函数,所以当时,.【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键.解析:2+【分析】根据题意可知1x=,代入原函数即可解答.【详解】因为函数1xf xx,所以当1x=时,211()2221f x.【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键. 17.-【解析】【分析】根据二次根式的性质,可得答案【详解】由题意可得:,即∴故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定解析:【解析】【分析】根据二次根式的性质,可得答案【详解】由题意可得:1m,即0m∴11mm m mm mm故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定m的取值范围.18.3【解析】【分析】先根据二次根式有意义的条件得出x+y的值,再根据非负数的性质列出关于x,y ,m的方程组,求出m的值,进而可得出结论.【详解】依题意得:,解得:x=1,y=1,m=5,∴3解析:3【解析】【分析】先根据二次根式有意义的条件得出x+y的值,再根据非负数的性质列出关于x,y,m的方程组,求出m 的值,进而可得出结论.【详解】依题意得:35302302x y m x y m x y +--=⎧⎪+-=⎨⎪+=⎩,解得:x =1,y =1,m =5,∴==3.故答案为3.【点睛】 本题考查了二次根式有意义得条件及非负数的性质,熟知二次根式具有非负性是解答此题的关键.19.-【分析】首先判断出x ,y 的符号,再利用二次根式的性质化简求出答案.【详解】解:∵,且有意义,∴,∴.故答案为.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是 解析:【分析】首先判断出x ,y 的符号,再利用二次根式的性质化简求出答案.【详解】解:∵0xy >∴00x y <,<,∴x ==.故答案为.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.即(0)(0)a a a a a ≥⎧==⎨-<⎩=(a ≥0,b >0). 20.7【分析】把28分解因数,再根据二次根式的定义判断出n 的最小值即可.【详解】解:∵28=4×7,4是平方数,∴若是整数,则n的最小正整数值为7,故答案为7.【点睛】本题考查了二次根式解析:7【分析】把28分解因数,再根据二次根式的定义判断出n的最小值即可.【详解】解:∵28=4×7,4是平方数,n的最小正整数值为7,故答案为7.【点睛】本题考查了二次根式的定义,把28分解成平方数与另一个数相乘的形式是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
初中数学二次根式拓展提高综合题目含答案学习资料
初中数学二次根式拓展提高综合题
一、单选题(共8道,每道12分)
1.设a,b,c都是实数,且满足,则的值为()
A.-5
B.11
C.5
D.3
答案:A
试题难度:三颗星知识点:二次根式的双重非负性
2.若,则的值为()
A. B.
C. D.
答案:D
试题难度:三颗星知识点:二次根式的双重非负性
3.化简的值为()
A.1
B.2
C.3
D.4
答案:D
试题难度:三颗星知识点:二次根式的双重非负性
4.已知,化简:结果为()
A.a
B.b
C.2b-a
D.a-2b
答案:A
试题难度:三颗星知识点:二次根式的化简求值
5.在如图所示的数轴上,点B和点C关于点A对称,A、B两点对应的实数分别是和-1,则点
C所对应的实数是()
A. B.
C. D.
答案:C
试题难度:三颗星知识点:数轴表示无理数
6.比较大小:()
A.大于
B.小于
C.等于
D.无法判断
答案:B
试题难度:三颗星知识点:比较大小
7.化简的结果是()
A. B.
C. D.
答案:A
试题难度:三颗星知识点:完全平方式的应用
8.若,则代数式=()
A.2013
B.2012
C.-2013
D.-2012
答案:C
试题难度:三颗星知识点:完全平方公式的运用。
八年级初二数学提高题专题复习二次根式练习题及答案
一、选择题1.下列计算正确的是( ) A.235+= B .3223-= C .623÷=D .(4)(2)22-⨯-=2.下列各式计算正确的是( )A .6232126()b a b a b a---⋅=B .(3xy )2÷(xy )=3xyC .23a a a +=D .2x •3x 5=6x 63.设等式()()a x a a y a x a a y -+-=---在实数范围内成立,其中a 、x 、y 是两两不同的实数,则22223x xy y x xy y+--+的值是( ) A .3B .13C .2D .534.给出下列结论:①101+在3和4之间;②1x +中x 的取值范围是1x ≥-;③81的平方根是3;④31255--=-;⑤5158->.其中正确的个数为( ) A .1个 B .2个C .3个D .4个5.当4x =时,22232343124312x x x x x x -+--+++的值为( )A .1B .3C .2D .36.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )123256722310A .210B .41C .52D .517.将1、、、按图2所示的方式排列,若规定(m ,n )表示第m 排从左到右第n 个数,则(4,2)与(21,2)表示的两数的积是( )A .1B .2C .D .68.1x -x 的取值范围是( ) A .x ≥1B .x >1C .x ≤1D .x <19.2a a =-成立,那么a 的取值范围是( ) A .0a ≤B .0a ≥C .0a <D .0a >10.下列运算中正确的是( ) A .27?3767=B ()24423233333=== C 3313939===D 155315151==二、填空题11.当x 3x 2﹣4x +2017=________. 12.已知函数1x f x x,那么21f _____.13.14(1)(1)(2)(8)(9)x x x x x x +⋅⋅⋅=+++++的解是______.14.11122323-=11113-23438⎛⎫= ⎪⎝⎭11114-345415⎛⎫=⎪⎝⎭据上述各等式反映的规律,请写出第5个等式:___________________________. 15.3a ,小数部分是b 3a b -=______.16.2m 1-1343m --mn =________. 17.下列各式:2521+n ③24b0.1y 是最简二次根式的是:_____(填序号)18.4x -x 的取值范围是_____.19.28n n 为________. 20.12a 1-能合并成一项,则a =______.三、解答题21.2-+1 【分析】先根据二次根式的乘除法法则计算乘除法,同时分别化简各加数中的二次根式,最后计算加减法. 【详解】2-+=1)2(3+⨯=121. 【点睛】此题考查二次根式的混合运算,二次根式的化简,正确掌握二次根式的化简法则是解题的关键.22.先阅读材料,再回答问题:因为)111=1=;因为1=,所以=1== (1= ,= ; (2⋅⋅⋅+的值.【答案】(12)9 【分析】(1)仿照例子,由1+=的值;由1+=1的值;(2)根据(1)中的规律可将每个二次根式分母有理化,可转化为实数的加减法运算,再寻求规律可得答案. 【详解】解:(1)因为1-=;因为1=1(2⋅⋅⋅+1=+⋅⋅⋅1=1019=-=.【点睛】本题考查了分母有理化,分子分母都乘以分母这两个数的差进行分母有理化是解题关键.23.)÷)(a ≠b ).【答案】【解析】试题分析:先计算括号内的,然后把除法转化为乘法,约分即可得出结论.试题解析:解:原式=()()a b a b --+-222224.小明在解决问题:已知2a 2﹣8a+1的值,他是这样分析与解的: ∵=2∴a ﹣2=∴(a ﹣2)2=3,a 2﹣4a+4=3 ∴a 2﹣4a=﹣1∴2a 2﹣8a+1=2(a 2﹣4a )+1=2×(﹣1)+1=﹣1 请你根据小明的分析过程,解决如下问题:(1(2)若,求4a2﹣8a+1的值.【答案】(1)9;(2)5.【解析】试题分析:(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得1===.(2)先对a1,若就接着代入求解,计算量偏大.模仿小明做法,可先计算2(1)a-的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.解:(1)原式=1)+++⋯(2)∵1a===,解法一:∵22(1)11)2a-=-=,∴2212a a-+=,即221a a-=∴原式=24(2)14115a a-+=⨯+=解法二∴原式=24(211)1a a-+-+24(1)3a=--211)3=--4235=⨯-=点睛:(1得22=-=-a b,去掉根号,实现分母有理化.(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.25.先化简,再求值:(()69x x x x--+,其中1x=.【答案】化简得6x+6,代入得【分析】根据整式的运算公式进行化简即可求解.【详解】(()69x x x x +--+=22369x x x --++ =6x+6把1x =代入原式=61)【点睛】此题主要考查实数的运算,解题的关键熟知整式的运算法则.26.(1)计算)(2201113-⎛⎫--•- ⎪⎝⎭(2)已知,,a b c为实数且2c =2c ab-的值【答案】(1)13;(2)12-【分析】(1)利用完全平方公式、负整数指数幂、零指数幂分别计算再合并即可; (2)先依据二次根式有意义的条件,求得a 、b 、c 的值,然后再代入计算即可. 【详解】(1))(2201113-⎛⎫--•- ⎪⎝⎭31=+⨯=4+9 =13;(2)根据二次根式有意义的条件可得:∵()2303010a a b ⎧-≥⎪⎪-≥⎨⎪-+≥⎪⎩, ∴3a =,1b =-, ∴2c =∴(()2223112c ab -=-⨯-=-【点睛】本题主要考查了二次根式的混合运算,二次根式有意义的条件以及二次根式的化简求值,熟练掌握二次根式有意义的条件是解题的关键.27.计算:(1)()22131)()2---+(2【答案】(1)12;(2)【分析】(1)按照负整数指数幂、0指数幂、乘方的运算法则计算即可;(2)根据二次根式的加减乘除运算法则计算即可.【详解】(1)解:原式= 9-1+4=12(2)【点睛】本题考查负整数指数幂、0指数幂、乘方以及二次根式的运算法则,熟练掌握二次根式的化简是关键.28.计算下列各题:(1-.(2)2【答案】(1)2)2--【分析】(1)根据二次根式的运算顺序和运算法则计算即可;(2)利用平方差、完全平方公式进行计算.【详解】解:(1)原式==;=--+(2)原式22(5=---525=--2【点睛】本题考查二次根式的加减乘除混合运算,熟练掌握运算法则和乘法公式是关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据二次根式的运算法则逐项计算即可判断.【详解】解:AB 、C 2÷=,故错误;D ,故正确.故选D. 【点睛】本题考查了二次根式的四则运算.2.D解析:D 【分析】依据单项式乘以单项式、单项式除以单项式以及二次根式的加法法则对各项分别计算出结果,再进行判断即可得到结果. 【详解】A. 2321526()b a b a b a---⋅=,故选项A 错误;B. (3xy )2÷(xy )=9xy ,故选项B 错误;C 错误; D. 2x •3x 5=6x 6,正确. 故选:D . 【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.3.B解析:B 【分析】根据根号下的数要是非负数,得到a (x-a )≥0,a (y-a )≥0,x-a≥0,a-y≥0,推出a≥0,a≤0,得到a=0,代入即可求出y=-x ,把y=-x 代入原式即可求出答案. 【详解】由于根号下的数要是非负数,∴a (x-a )≥0,a (y-a )≥0,x-a≥0,a-y≥0, a (x-a )≥0和x-a≥0可以得到a≥0, a (y-a )≥0和a-y ≥0可以得到a≤0, 所以a 只能等于0,代入等式得,所以有x=-y , 即:y=-x ,由于x,y,a是两两不同的实数,∴x>0,y<0.将x=-y代入原式得:原式=()()()()2222313x x x xx x x x+---=--+-.故选B.【点睛】本题主要考查对二次根式的化简,算术平方根的非负性,分式的加减、乘除等知识点的理解和掌握,根据算术平方根的非负性求出a、x、y的值和代入求分式的值是解此题的关键.4.A解析:A【分析】答.【详解】解:①3104<<,415∴<<,故①错误;x的取值范围是1x≥-,故②正确;9=,9的平方根是3±,故③错误;④5=,故④错误;58=,(229<,58-<58<,故⑤错误;综上所述:正确的有②,共1个,故选:A.【点睛】本题考查了故算无理数的大小,解决本题的关键是掌握估算平方法比较无理数大小.5.A解析:A【分析】根据分式的运算法则以及二次根式的性质即可求出答案.【详解】解:原式2223232323x x x x112323x x将4x =代入得, 原式11423423221113133113133131131=.故选:A.【点睛】本题考查分式的运算以及二次根式的性质,解题的关键是熟练运用分式的运算法则以及观察出分母可以开根号,本题属于较难题型.6.B解析:B 【解析】【分析】由图形可知,第n (n =案.【详解】由图形可知,第n (n=∴第8=, 则第9行从左至右第5=,故选B .【点睛】本题主要考查数字的变化类,解题的关键是根据题意得出第n 行最后一个数为7.D【解析】(4,2)表示第4排从左向右第2个数是:,(21,2)表示第21排从左向右第2个数,可以看出奇数排最中间的一个数都是1, 第21排是奇数排,最中间的也就是这排的第1个数是1,那么第2个就是:, •=6,故选D8.A解析:A【分析】根据二次根式有意义的条件:被开方数x -1≥0,解不等式即可.【详解】解:根据题意,得x -1≥0,解得x ≥1.故选A .【点睛】本题考查的知识点为:二次根式的被开方数是非负数.9.A解析:A【分析】由根号可知等号左边的式子为正,所以右边的式子也为正,所以可得答案.【详解】得-a≥0,所以a≤0,所以答案选择A 项.【点睛】本题考查了求解数的取值范围,等号两边的值相等是解答本题的关键.10.B解析:B【分析】根据二次根式的乘除法则求出每个式子的值,再判断即可.【详解】解: A. 27?3767=⨯==42,故本选项不符合题意; 442323333===,故本选项,符合题意; 331939===3,故本选项不符合题意; D. 15531553=÷⨯=3,故本选项不符合题意;故选B .本题考查二次根式的性质和二次根式的乘除法则,能灵活运用二次根式的乘除法则进行计算是解题关键.二、填空题11.2016【解析】把所求的式子化成(x﹣2)2+2013然后代入式子计算,即可得到:x2﹣4x+2017=(x﹣2)2+2013 =()2+2013=3+2013=2016.故答案是:2016.解析:2016【解析】把所求的式子化成(x﹣2)2+2013然后代入式子计算,即可得到:x2﹣4x+2017=(x﹣2)2+2013 =2+2013=3+2013=2016.故答案是:2016.点睛:此题主要考查了配方法的应用,解题关键是把式子配成完全平方,然后整体代入即可求解,考查了学生对整体思想的认识和应用,学生对整体思想不熟时出错的主要原因. 12.【分析】根据题意可知,代入原函数即可解答.【详解】因为函数,所以当时,.【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键.解析:2+【分析】根据题意可知1x=,代入原函数即可解答.【详解】因为函数1xf xx,所以当1x=时,211()2221f x.【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键. 13.9【分析】设y=,由可将原方程进行化简,解化简后的方程即可求得答案.【详解】设y=,则原方程变形为,∴,即,∴4y+36-4y=y(y+9),即y2+9y-36=0,∴解析:9【解析】【分析】设()11111y y y y =-++可将原方程进行化简,解化简后的方程即可求得答案. 【详解】设则原方程变形为()()()()()1111112894y y y y y y ++=+++++, ∴1111111112894y y y y y y -+-++-=+++++, 即11194y y -=+, ∴4y+36-4y=y(y+9),即y 2+9y-36=0,∴y=-12或y=3, ∵, ∴,∴x=9,故答案为:9.【点睛】本题考查了解无理方程,解题的关键是利用换元法,还要注意()11111y y y y =-++的应用. 14.【解析】上述各式反映的规律是(n⩾1的整数),得到第5个等式为: (n⩾1的整数).故答案是: (n⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;=【解析】上述各式反映的规律是=n⩾1的整数),得到第5==n⩾1的整数).=n⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;第二步,找规律,分别比较等式中各部分与序号之间的关系,把其蕴含的规律用含序数的代数式表示出来;第三步,根据找出的规律得出第n个等式.15.【详解】若的整数部分为a,小数部分为b,∴a=1,b=,∴a-b==1.故答案为1.解析:【详解】a,小数部分为b,∴a=1,b1,∴-b1)=1.故答案为1.16.21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∵最简二次根式与是同类二次根式,∴,解得,,∴故答案为21.解析:21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∴1221343nm m-=⎧⎨-=-⎩,解得,73mn=⎧⎨=⎩,∴7321.mn=⨯=故答案为21.17.②③【分析】根据最简二次根式的被开方数不含分母;被开方数不含能开得尽方的因数或因式,可得答案.【详解】②③是最简二次根式,故答案为②③.【点睛】本题考查最简二次根式的定义,解析:②③【分析】根据最简二次根式的被开方数不含分母;被开方数不含能开得尽方的因数或因式,可得答案.【详解】③4是最简二次根式,故答案为②③.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.18.x>4【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.【点睛】本题主要考查的是二次根解析:x>4【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.【点睛】本题主要考查的是二次根式有意义的条件、分式有意义的条件,掌握二次根式的被开方数是非负数、分式分母不为0是解题的关键.19.7【分析】把28分解因数,再根据二次根式的定义判断出n的最小值即可.【详解】解:∵28=4×7,4是平方数,∴若是整数,则n的最小正整数值为7,故答案为7.【点睛】本题考查了二次根式解析:7【分析】把28分解因数,再根据二次根式的定义判断出n的最小值即可.【详解】解:∵28=4×7,4是平方数,n的最小正整数值为7,故答案为7.【点睛】本题考查了二次根式的定义,把28分解成平方数与另一个数相乘的形式是解题的关键.20.4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】解:=2,由最简二次根式与能合并成一项,得a-1=3.解解析:4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】能合并成一项,得a-1=3.解得a=4.故答案为:4.【点睛】本题考查同类二次根式和最简二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
二次根式-拔高训练题(含答案)
二次根式全章拔高训练题一、学科内综合题1.设a、b为实数,且满足a2+b2-6a-2b+10=0,的值.2.一个正方形的面积为48cm2,另一个正方形的面积为3cm2,•问第一个正方形的边长是第二个正方形边长的几倍?3.设等腰三角形的腰长为a,底边长为b,底边上的高为h.(1)如果,,求h;(2)如果b=2(+1),-1,求a.4.一架梯子AB长25米,如图斜靠在一面墙上,梯子底端B离墙7米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子底部在水平方向滑动了4米吗?为什么?B'A5.已知y =n 为自然数),问:是否存在自然数n ,使代数式19x 2+36xy+19y 2的值为1 998?若存在,求出n ;若不存在,请说明理由.二、学科间综合题6.如图,一艘轮船在40海里/时的速度由西向东航行,上午8时到达A 处,测得灯塔P 在北偏东60°方向上;10时到达B 处,测得灯塔P 在北偏东30°方向上;当轮船到达灯塔P 的正南时,轮船距灯塔P 多远?30︒60︒CPBA三、应用题:7.按要求解决下列问题: (1)化简下列各式:====________,… (2)通过观察,归纳写出能反映这个规律的一般结论,并证明.8.(1)设a 、b 、c 是△ABC 的三边的长,化简(a – b – c 2 ) + 错误!+ 错误!的结果是 .(2)计算2003+++= .()x y ,的个数是( )A 。
1B 。
2C .3D 。
4四、创新题9.计算:(a ++⨯+.五、中考题:10.已知+1,,则a 与b 的关系是( ) A .a=b B .ab=1 C .a=-b D .ab=-111有意义,则点P (a ,b )在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限12.若a ≤1 )A .(a -1.(1.(.(1B aC aD a ---13.)有这样一道题:-x 2(x>2)的值,其中x=1 005,某同学把“x=1 005”错抄成“x=1 050”,但他的计算结果是正确的,请回答这是怎么回事?试说明理由. 附加题 12000+++最接近的整数是多少?。
八年级数学《二次根式》提高练习题(含答案)
(一)判断题:(每小题 1 分,共 5 分) 1. ( 2) ab =-2 ab .…………………( )
2
2. 3 -2 的倒数是 3 +2. ( ) 3. ( x 1) = ( x 1) .…( )
2
2
4. ab 、
1 3
a 3b 、
2 a 是同类二次根式.…( ) x b
.
13.化简:(7-5 2 )2000·(-7-5 2 )2001=______________. 14.若 x 1 +
y 3 =0,则(x-1)2+(y+3)2=____________.
15.x,y 分别为 8- 11 的整数部分和小数部分,则 2xy-y2=____________. (三)选择题:(每小题 3 分,共 15 分) 16.已知 x 3 x =-x
2
1 x
1 2 ) 4 等于………………………( ) x
(A)
2 2 (B)- (C)-2x (D)2x x x
19. 化 简 ( )
a3 ( a< 0 ) 得 ……………………………………………………………… a
(A) a (B)- a (C)- a (D) a 20. 当 a< 0, b< 0 时 , - a+ 2 ab - b 可 变 形 为 ……………………………………… ( ) ( A) ( a b ) ( B) - ( a b ) ( C) ( a b ) ( D)
3 2
x 3 ,则………………( )
(A)x≤0 (B)x≤-3 (C)x≥-3 (D)-3≤x≤0 17.若 x<y<0,则 x 2 xy y +
2 2
x 2 2 xy y 2 =………………………( )
八年级初二数学二次根式知识点及练习题含答案
八年级初二数学二次根式知识点及练习题含答案一、选择题1.下列运算错误的是( ) A .1832= B .322366⨯=C .()2516+=D .()()72723+-=2.二次根式1x -中字母x 的取值可以是( ) A .2B .0C .12-D .-13.下列二次根式中,最简二次根式是( ) A . 1.5B .13C .10D .274.下列各式计算正确的是( ) A .1222= B .362÷=C .2(3)3=D .222()-=-5.下列计算正确的是( ) A .93=±B .8220-=C .532-=D .2(5)5-=-6.下列各式中,正确的是( ) A .32 >23 B .a 3 • a 2=a 6C .(b+2a) (2a -b) =b 2 -4a 2D .5m + 2m = 7m 27.关于代数式12a a ++,有以下几种说法, ①当3a =-时,则12a a ++的值为-4. ②若12a a ++值为2,则3a =. ③若2a >-,则12a a ++存在最小值且最小值为0. 在上述说法中正确的是( ) A .① B .①②C .①③D .①②③8.当119942x +=时,多项式()20193419971994x x --的值为( ).A .1B .1-C .20022D .20012-9.若a 、b 、c 为有理数,且等式成立,则2a +999b +1001c 的值是( )A .1999B .2000C .2001D .不能确定10.3 )A .18B .13C 24D 0.311.751m +m 的值为( ) A .7B .11C .2D .112.32的结果是( ) A .±3B .﹣3C .3D .9二、填空题13.定义:对非负实数x “四舍五入”到个位的值记为()f x z , 即:当n 为非负整数时,如果1122n x n -<+≤,则()f x n =z .如:(0)(0.48)0f f ==z z ,(0.64)(1.49)1f f ==z z ,(4)(3.68)4f f ==z z ,试解决下列问题:①(3)f =z __________;②2(33)f +=z __________; 222222(11)(22)(22)(33)(33)(44)f f f f f f ++⋅++⋅++⋅+z z z z z z22(20172017)(20182018)f f =+⋅+z z __________.14.若a 、b 、c 均为实数,且a 、b 、c 均不为043252a cb=___________ 15.x y 53xy 153,则x+y=_______. 16.已知实数m 、n 、p 满足等式33352m n m n m n p m n p -+--+----,则p =__________.17.已知1<x <2,171x x +=-11x x --_____.18.36,3,2315,,则第100个数是_______.19.如果332y x x --,那么y x =_______________________. 20.25523y x x =--,则2xy 的值为__________.三、解答题21.我国南宋时期有个著名的数学家秦九韶提出了一个利用三角形的三边求三角形的面积的公式,若三角形三边为a b c 、、,则此三角形的面积为:2222221122a b c S a b ⎛⎫+-=- ⎪⎝⎭同样古希腊有个几何学家海伦也提出了一个三角形面积公式:2()()()S p p a p b p c =---2a b cp ++=(1)在ABC 中,若4AB =,5BC =,6AC =,用其中一个公式求ABC 的面积. (2)请证明:12S S【答案】(1)4;(2) 证明见解析 【分析】(1)将4AB =,5BC =,6AC =代入1S = (2)对1S 和2S 分别平方,再进行整理化简得出2212S S =,即可得出12S S .【详解】解:(1)将4AB =,5BC =,6AC =代入1S =得:4S == (2)222222211[()]24a b a S c b +-=-=222222)1(22(4)a b c a b c ab ab +-+--+ =2222()2(21)4c a c a b b +⋅---⋅ =()(1()()16)c a b c a b a b c a b c +-++-++- 22()()()S p p a p b p c =---∵2a b cp ++=, ∴22()(2)(222)S a a b c a b c a b c a b cb c +++++++-+=-- =2222a b c b c a a c b a b c +++-+-+-⋅⋅⋅=1()()()()16a b c b c a a c b a b c +++-+-+- ∴2212S S =∵10S >,20S >, ∴12S S .【点睛】本题考查了二次根式的运算,解题的关键是理解题中给出的公式,灵活运用二次根式的运算性质进行运算.22.先阅读材料,再回答问题:因为)111=1=;因为1=,所以=1== (1= ,= ; (2⋅⋅⋅+的值.【答案】(12)9 【分析】(1)仿照例子,由1+=的值;由1+=1的值;(2)根据(1)中的规律可将每个二次根式分母有理化,可转化为实数的加减法运算,再寻求规律可得答案. 【详解】解:(1)因为1-=;因为1=1(2⋅⋅⋅+1=+⋅⋅⋅1=1019=-=.【点睛】本题考查了分母有理化,分子分母都乘以分母这两个数的差进行分母有理化是解题关键.23.小明在解决问题:已知2a 2﹣8a+1的值,他是这样分析与解的:∵=2∴a﹣2=∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1(2)若,求4a2﹣8a+1的值.【答案】(1)9;(2)5.【解析】试题分析:(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得1===.(2)先对a1,若就接着代入求解,计算量偏大.模仿小明做法,可先计算2(1)a-的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.解:(1)原式=1)+++⋯(2)∵1a===,解法一:∵22(1)11)2a-=-=,∴2212a a-+=,即221a a-=∴原式=24(2)14115a a-+=⨯+=解法二∴原式=24(211)1a a-+-+24(1)3a=--211)3=--4235=⨯-=点睛:(1得22=-=-a b,去掉根号,实现分母有理化.(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.24.【分析】先化为最简二次根式,再将被开方数相同的二次根式进行合并. 【详解】. 【点睛】本题考查了二次根式的加减运算,在进行此类运算时,先把二次根式化为最简二次根式的形式后再运算.25.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x - 【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案. 【详解】解:4y x ⎛- ⎝ ((=-(2x =-∵ 30x - ∴ 3,4x y == 当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.26.先观察下列等式,再回答下列问题:111111112=+-=+;111112216=+-=+1111133112=+-=+(1) (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数).【答案】(1)1120(2)()111n n ++(n 为正整数) 【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.试题解析:(1)=1+14−141+=1120,1120(2)1 n −1 n 1+=1+()1n n 1+ (n 为正整数).a =,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.27.计算:(1)-(2)【答案】(1)21 【分析】(1)先把二次根式化为最简二次根式,然后合并即可; (2)先利用二次根式的乘除法则运算,再合并即可. 【详解】解:(1)原式==(2)原式3+21==.【点睛】本题考查二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质.28.计算:(1 (2)()()2221-【答案】2)1443 【分析】(1)先化成最简二次根式,然后再进行加减运算即可; (2)套用平方差公式和完全平方式进行运算即可. 【详解】解:(1)原式=23223323,(2)原式(34)(12431)1124311443,故答案为:1443. 【点睛】本题考查二次根式的四则运算,熟练掌握二次根式的四则运算是解决本题的关键.29.计算:(1)()22131)()2---+(2【答案】(1)12;(2) 【分析】(1)按照负整数指数幂、0指数幂、乘方的运算法则计算即可; (2)根据二次根式的加减乘除运算法则计算即可. 【详解】(1)解:原式= 9-1+4=12(2) 【点睛】本题考查负整数指数幂、0指数幂、乘方以及二次根式的运算法则,熟练掌握二次根式的化简是关键.30.计算:(1)13⎛+-⨯ ⎝⎭(2))()2221+.【答案】(1)6-;(2)12-【分析】(1)原式化简后,利用二次根式乘法法则计算即可求出值; (2)原式利用平方差公式,以及完全平方公式计算即可求出值. 【详解】解:(1)原式=1(233⨯⨯-⨯=3-⨯=⨯⎭=6-;(2)原式=3﹣4+12﹣=12﹣. 【点睛】此题考查了二次根式的混合运算,以及平方差公式、完全平方公式,熟练掌握运算法则及公式是解本题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据二次根式的化简、乘法、完全平方公式、平方差公式逐项判断即可得. 【详解】A =,此项正确;B 、=C 、)21516=+=+D 、)22743=-=,此项正确;故选:C . 【点睛】本题考查了二次根式的化简与乘法运算,熟记运算法则是解题关键.2.A解析:A【分析】根据二次根式有意义,被开方数非负列出不等式,求解,再依此选择合适的选项.【详解】解:由题意得:x-1≥0解之:x≥1.1>.故选:A.【点睛】本题考查二次根式有意义的条件.理解二次根式有意义,被开方数非负是解题关键.3.C解析:C【分析】化简得到结果,即可做出判断.【详解】解:A2,不是最简二次根式;B,不是最简二次根式;C是最简二次根式;D故选:C.【点睛】本题考查最简二次根式,熟练掌握二次根式的化简公式是解题关键.4.C解析:C【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】2,故选项A错误;=B错误;C. 23=,故选项C正确;2=,故选项D 错误;故选C.【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.5.B解析:B【分析】直接利用二次根式的性质化简得出答案. 【详解】3=,故此选项错误;0=,正确;D. 5=,故此选项错误;故选:B【点睛】此题主要考查了二次根式的加减,正确掌握二次根式的性质是解题关键.6.A解析:A【分析】比较两个二次根式的大小可判别A ,根据同底数幂的乘法、平方差公式、合并同类项的运算法则分别计算可判断B 、C 、D 的正误.【详解】A 、=,=∵1812>,∴>,故该选项正确;B 、3a •25a a =,故该选项错误;C 、()()22224b a a b a b +-=-,故该选项错误; D 、527m m m +=,故该选项错误;故选:A .【点睛】本题考查了二次根式大小的比较,同底数幂的乘法、平方差公式、合并同类项的运算,熟练掌握相关运算法则是解题的关键.7.C解析:C【分析】①将3a =-代入12a a ++计算验证即可;②根据题意12a a ++=2,解得a 的值即可作出判断;③若a >-2,则a+2>0,则对12a a ++配方,利用偶次方的非负性可得答案. 【详解】解:①当3a =-时,1134232a a +=-+=-+-+. 故①正确; ②若12a a ++值为2, 则122a a +=+, ∴a 2+2a+1=2a+4,∴a 2=3,∴a =.故②错误;③若a >-2,则a+2>0, ∴12a a ++=1222a a ++-+=222+-=2≥0. ∴若a >-2,则12a a ++存在最小值且最小值为0. 故③正确.综上,正确的有①③.故选:C .【点睛】本题考查了分式的加减法、分式的值的计算及最值问题等知识点,熟练运用相关公式及运算法则是解题的关键.8.B解析:B【解析】【分析】由原式得()2211994x -=,得244+11994x x -=,原式变形后再将244+11994x x -=代和可得出答案.∵11994x +=, ()2211994x ∴-=,即24419930x x --=,()()32241997199444199344199311x x x x x x x ∴--=--+---=-.∴原式()201911=-=-.【点睛】本题难度较大,需要对要求的式子进行变形,学会转化. 9.B解析:B【解析】因=,所以a =0,b =1,c =1,即可得2a +999b +1001c =999+1001=2000,故选B. 点睛:本题考查了二次根式的性质与化简,将复合二次根式根据完全平方公式化简并比较系数是解题的关键.10.B解析:B【详解】A 18323不是同类二次根式,故此选项错误;B 13333C 24=63不是同类二次根式,故此选项错误;D 0.3310=30103不是同类二次根式,故此选项错误; 故选B . 11.C解析:C【分析】几个二次根式化为最简二次根式后,如果被开方数相同,则这几个二次根式即为同类二次根式.【详解】解7553=m=7时1822m +==,故A 错误;当m=11时11223m +==1m +B 错误;当m=1时12m +=故D 错误;当m=2时13m +=故C 正确; 故选择C.本题考查了同类二次根式的定义.12.C解析:C【分析】根据二次根式的性质即可求出答案.【详解】原式=3,故选C .【点睛】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.二、填空题13.3【解析】1、;2、根据题意,先推导出等于什么,(1)∵,∴,(2)再比较与的大小关系,①当n=0时,;②当为正整数时,∵,∴,∴,综合(1)、(2)可得:,解析:320172018【解析】1、(1.732)2z z f f ==;2、根据题意,先推导出f 等于什么,(1)∵2221142n n n n n ⎛⎫+<++=+ ⎪⎝⎭,12n <+, (2)12n -的大小关系,①当n=012n >-; ②当n 为正整数时,∵2212n n n ⎛⎫+-- ⎪⎝⎭1204n =->, ∴2212n n n ⎛⎫+>- ⎪⎝⎭,12n >-,综合(1)、(2)可得:1122n n -<+,∴f n =z ,∴3f =z .3、∵f n =z ,∴(2017z f +111112233420172018=++++⨯⨯-⨯ 111111112233420172018=-+-+-++- 112018=- 20172018=. 故答案为(1)2;(2)3;(3)20172018. 点睛:(1)解第②小题的关键是应用“完全平方公式”和“作差的方法”分别证明到当n 为非负整数时,1122n n -<+,从而得到f n =z ;(2)解题③的要点是:当n 为正整数时,111(1)1n n n n =-++. 14.【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0时,=;当b <0时,=.故答案为:.解析:220202a b b a b b 当时当时⎧>⎪⎪⎨⎪-<⎪⎩【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0= 当b <0=故答案为:220202a b b a b b ⎧>⎪⎪⎨⎪-<⎪⎩当时当时. 15.8+2【解析】根据配方法,由完全平方公式可知x+y==()2-2,然后把+=+,=-整体代入可得原式=(+)2-2(-)=5+3+2-2+2=8+2.故答案为:8+2.解析:【解析】根据配方法,由完全平方公式可知x+y=2222+=+-)2整体代入可得原式=2-2)故答案为:16.5【解析】试题解析:由题可知,∴,∴,∴,①②得,,解方程组得,∴.故答案为:5.解析:5【解析】试题解析:由题可知3030m n m n -+≥⎧⎨--≥⎩, ∴3m n +=,0=,∴35200m n p m n p +--=⎧⎨--=⎩①②, ①-②得2620m n +-=,31m n +=, 解方程组331m n m n +=⎧⎨+=⎩得41m n =⎧⎨=-⎩, ∴4(1)5p m n =-=--=.故答案为:5.17.-2【详解】∵x+=7,∴x-1+=6,∴(x-1)-2+=4,即 =4,又∵1<x <2,∴=-2,故答案为-2.【点睛】本题主要考查完全平方式的应用以及二次根式的运算,解题的关键是 解析:-2【详解】∵x+11x -=7,∴x-1+11x -=6,∴(x-1)-2+11x -=4,即2 =4, 又∵1<x <2,∴, 故答案为-2.【点睛】本题主要考查完全平方式的应用以及二次根式的运算,解题的关键是要根据所求的式子对已知的式子进行变形.18.【分析】原来的一列数即为,,,,,,于是可得第n个数是,进而可得答案.【详解】解:原来的一列数即为:,,,,,,∴第100个数是.故答案为:.【点睛】本题考查了数的规律探求,属于常考解析:【分析】,,于是可得第n进而可得答案.【详解】,∴第100 .故答案为:【点睛】本题考查了数的规律探求,属于常考题型,熟练掌握二次根式的性质、找到规律是解题的关键.19.【分析】根据二次根式的有意义的条件可求出x,进而可得y的值,然后把x、y的值代入所求式子计算即可.【详解】解:∵x-3≥0,3-x≥0,∴x=3,∴y=﹣2,∴.故答案为:.【点睛】解析:1 9【分析】根据二次根式的有意义的条件可求出x,进而可得y的值,然后把x、y的值代入所求式子计算即可.【详解】解:∵x-3≥0,3-x≥0,∴x=3,∴y=﹣2,∴2139y x -==. 故答案为:19. 【点睛】本题考查了二次根式有意义的条件和负整数指数幂的运算,属于常考题型,熟练掌握基本知识是解题的关键.20.【解析】试题分析:根据二次根式的意义和等式的特点,可知2x-5=0,解得x=,y=-3,代入可得=-2××3=-15.解析:15-【解析】试题分析:根据二次根式的意义和等式的特点,可知2x-5=0,解得x=52,y=-3,代入可得2xy =-2×52×3=-15. 三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
八年级初二数学 提高题专题复习二次根式练习题及答案
八年级初二数学 提高题专题复习二次根式练习题及答案一、选择题1.下列计算正确的是( )A =B .2=C .(26=D==2.下列计算正确的是( ) A .()222a b a b -=- B .()322x x 8x ÷=+C .1a a a a÷⋅= D 4=-3. )A B .C .D .4.a 的值可能是( ) A .2-B .2C .32D .85.下列运算正确的是( )A 2=B 5=-C 2=D 012=6.若01x <<=( ). A .2xB .2x-C .2x -D .2x7.已知x 1x 2,则x₁²+x₂²等于( ) A .8 B .9 C .10 D .11 8.下列式子中,属于最简二次根式的是( )A BCD9.已知44220,24,180x y x y >+=++=、.则xy=( )A .8B .9C .10D .1110.化简二次根式 )A B C D11.已知实数x ,y 满足(x y )=2008,则3x 2-2y 2+3x -3y -2007的值为( ) A .-2008B .2008C .-1D .112.下列运算正确的是( )A =B .(28-=C 12=D 1=二、填空题13.已知a ,b 是正整数,且满足是整数,则这样的有序数对(a ,b )共有____对.14.732x y -=-,则2x ﹣18y 2=_____.15.已知x =,a 是x 的整数部分,b 是x 的小数部分,则a-b=_______16.把_____________.17.若2x ﹣x 2﹣x=_____. 18.已知整数x ,y 满足y =,则y =__________.19.3y =,则2xy 的值为__________.20.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦—秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b cp ++=,那么三角形的面积S =ABC 中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若4a =,5b =,7c =,则ABC 面积是_______. 三、解答题21.阅读下面问题: 阅读理解:==1;==2==-.应用计算:(1(21(n 为正整数)的值.归纳拓展:(398++【答案】应用计算:(12 归纳拓展:(3)9. 【分析】由阅读部分分析发现式子的分子、分母都乘以分母的有理化因式,为此(1分母利用平方差公式计算即可,(2(3)根据分母的特点各项分子分母乘以各分母的有理化因式,分母用公式计算化去分母,分子合并同类项二次根式即可. 【详解】(1(2(3+98+,(+98+,++99-, =10-1, =9. 【点睛】本题考查二次根式化简求值问题,关键找到各分母的有理化因式,用平方差公式化去分母.22.计算:(1(2))((222+-+.【答案】(1) 【分析】(1)先化简二次根式,再合并同类二次根式即可; (2)根据平方差公式化简,再化简、合并同类二次根式即可. 【详解】(1==(2))((222+-+=2223--+ =5-4-3+2 =023.我国南宋时期有个著名的数学家秦九韶提出了一个利用三角形的三边求三角形的面积的公式,若三角形三边为a b c 、、,则此三角形的面积为:1S = 同样古希腊有个几何学家海伦也提出了一个三角形面积公式:2S =2a b cp ++=(1)在ABC 中,若4AB =,5BC =,6AC =,用其中一个公式求ABC 的面积.(2)请证明:12S S【答案】(12) 证明见解析 【分析】(1)将4AB =,5BC =,6AC =代入1S =(2)对1S 和2S 分别平方,再进行整理化简得出2212S S =,即可得出12S S .【详解】解:(1)将4AB =,5BC =,6AC =代入1S =得:4S == (2)222222211[()]24a b a S c b +-=-=222222)1(22(4)a b c a b c ab ab +-+--+ =2222()2(21)4c a c a b b +⋅---⋅ =()(1()()16)c a b c a b a b c a b c +-++-++- 22()()()S p p a p b p c =---∵2a b cp ++=, ∴22()(2)(222)S a a b c a b c a b c a b c b c +++++++-+=-- =2222a b c b c a a c b a b c +++-+-+-⋅⋅⋅ =1()()()()16a b c b c a a c b a b c +++-+-+- ∴2212S S =∵10S >,20S >, ∴12S S .【点睛】本题考查了二次根式的运算,解题的关键是理解题中给出的公式,灵活运用二次根式的运算性质进行运算.24.-10 【分析】先根据二次根式的性质和平方差公式化简,然后再进行计算即可 【详解】=(22⎡⎤--⎢⎥⎣⎦=()212--10+.10. 【点睛】本题主要考查了二次根式的性质、平方差公式,灵活运用二次根式的性质化简是解答本题的关键.25.【分析】先化为最简二次根式,再将被开方数相同的二次根式进行合并. 【详解】. 【点睛】本题考查了二次根式的加减运算,在进行此类运算时,先把二次根式化为最简二次根式的形式后再运算.26.先化简,再求值:a ,其中【答案】2a-1,【分析】先根据二次根式的性质进行化简,再代入求值即可. 【详解】解:1a =-∴原式=1a a --=21a -当1a =-∴原式=(211-=1-【点睛】此题主要考查化简求值,正确理解二次根式的性质是解题关键.27.观察下列一组等式,然后解答后面的问题1)1=,1=,1=,1=⋯⋯(1)观察以上规律,请写出第n 个等式: (n 为正整数). (2(3【答案】(1)1=;(2)9;(3【分析】(1)根据规律直接写出,(2)先找出规律,分母有理化,再化简计算.(3)先对两个式子变形,分子有理化,变为分子为1,再比大小. 【详解】解:(1)根据题意得:第n 个等式为1=;故答案为1=;(2)原式111019==-=;(3-==,<∴>.【点睛】本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式.28.计算下列各式:(1;(2【答案】(12 ;(2) 【分析】先根据二次根式的性质化简,再合并同类二次根式即可. 【详解】(1)原式2=-2=;(2)原式==.【点睛】本题考查了二次根式的加减,熟练掌握性质是解答本题的关键(0)(0)a aaa a≥⎧==⎨-<⎩,)0,0a b=≥≥=(a≥0,b>0).29.一样的式子,其实我====,1===;以上这种化简的步骤叫做分母有理化还可以用以下方法化简:221111===-=(12)化简:2n+++【答案】(1-2.【解析】试题分析:(12看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.试题解析:(1)=====(2)原式2n+++=12.考点:分母有理化.30.计算:(1(2|a ﹣1|,其中1<a 【答案】(1)1;(2)1 【分析】(1)根据二次根式的乘法法则计算;(2)由二次根式的非负性,a 的取值范围进行化简. 【详解】解:(1-1=2-1=1(2)∵1<a ,a ﹣1=2﹣a +a ﹣1=1. 【点睛】本题考查二次根式的性质、二次根式的乘法法则,主要检验学生的计算能力.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】5==,=,(24312=⨯=,选项D 正确.2.B解析:B 【分析】根据完全平方公式,整式的除法,分式的乘除法,二次根式的性质和化简运算法则逐一计算作出判断. 【详解】解: A .()222a b a 2ab b -=-+,选项错误; B .()3322x x 8x x 8x ÷=÷=,选项正确;C.111a a1a a a÷⋅=⋅=,选项错误;D44=-=,选项错误.故选:B.3.A解析:A【分析】先计算二次根式乘法,再合并同类二次根式即可.【详解】原式=故选:A.【点睛】本题考查二次根式的运算,熟练掌握运算法则是解题关键.4.B解析:B【分析】直接利用最简二次根式的定义分析得出答案.【详解】∴a≥0,且a故选项中-2,32,8都不合题意,∴a的值可能是2.故选:B.【点睛】此题主要考查了最简二次根式的定义,正确把握定义是解题关键.5.C解析:C【分析】由二次根式的性质,二次根式的混合运算,分别进行计算,即可得到答案.【详解】解:A A错误;B5=,故B错误;C2==,故C 正确;D01213=+=,故D 错误;故选:C .【点睛】本题考查了二次根式的性质,二次根式的混合运算,立方根,零指数幂,解题的关键是熟练掌握运算法则进行解题.6.D解析:D【分析】根据二次根式的意义先化简各项,再进行分式的加减运算可得出解.【详解】解:∵0<x <1,∴0<x <1<1x , ∴10x x +>,10x x-<. 原式=11x x x x +-- =11x x x x++- =2x .故选D .点睛:本题考查了二次根式的性质和绝对值化简,也考查了分式的加减.7.C解析:C【详解】12x x +==12321x x ==-=, 所以()2221212122x x x x x x +=+-=(22112210-⨯=-=,故选:C .【点睛】对于形如2212x x +的式子,改变其中两个字母的位置后,并不改变代数式的值,通常将具有这个特点的代数式称为轮换对称式,如1211+x x ,1221x x x x +,12x x -等,轮换对称式都可以用12x x +,12x x 来表示,所以求轮换对称式的值,一般是先将式子用12x x +,12x x 来表示,然后再整体代入计算.8.B解析:B【分析】根据最简二次根式的定义(①被开方数不含有能开得尽方的因式或因数,②被开方数不含有分母,满足以上两个条件的二次根式叫最简二次根式)逐个判断即可.【详解】解:A =2,不是最简二次根式,故本选项错误;BC =D =,不是最简二次根式,故本选项错误;故选:B .【点睛】本题考查了最简二次根式的定义的应用,能熟记最简二次根式的定义是解此题的关键,注意:最简二次根式满足以下两个条件:①被开方数不含有能开得尽方的因式或因数,②被开方数不含有分母.9.D解析:D【分析】利用完全平方公式、平方差公式化简第二个等式即可.【详解】44180+=配方得22222180⎡⎤+-+⋅=⎣⎦ 222180⎡⎤⎡⎤+=⎣⎦⎣⎦222()180x y +-=22162(2)180xy x xy y +-+=22122()180xy x y ++=将2224x y +=代入得:12224180xy +⨯=计算得:11xy =故选:D.【点睛】本题考查了完全平方公式、平方差公式的综合应用,熟记公式是解题关键,这两个公式是常考点,需重点掌握. 10.B解析:B【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可【详解】 2202a a aa a +-∴+<∴<-a a ∴==•=-故选B 【点睛】本题考查了二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.本题需要重点注意字母和式子的符号.11.D解析:D【解析】由(x y )=2008,可知将方程中的x,y 对换位置,关系式不变,那么说明x=y是方程的一个解由此可以解得,或者则3x 2-2y 2+3x -3y -2007=1,故选D.12.B解析:B【分析】根据二次根式的性质及运算法则依次计算各项后即可解答.【详解】选项AA 错误;选项B ,(2428-=⨯=,选项B 正确;选项C124==,选项C 错误; 选项D 1,选项D 错误.综上,符合题意的只有选项B .故选B .【点睛】本题考查了二次根式的性质及运算法则,熟练运用二次根式的性质及运算法则是解决问题的关键.二、填空题13.7【解析】解:∵=+,∴a、b的值为15,60,135,240,540.①当a=15,b=15时,即=4;②当a=60,b=60时,即=2;③当a=15,b=60时,即=3;④当a=60解析:7【解析】解:∵2,∴a、b的值为15,60,135,240,540.①当a=15,b=15时,即2=4;②当a=60,b=60时,即2=2;③当a=15,b=60时,即2=3;④当a=60,b=15时,即2=3;⑤当a=240,b=240时,即2=1;⑥当a=135,b=540时,即2=1;⑦当a=540,b=135时,即2=1;故答案为:(15,15)、(60、60)、(15,60)、(60,15)、(240,240)、(135,540)、(540,135).所有满足条件的有序数对(a,b)共有7对.故答案为:7.点睛:本题考查了二次根式的性质和化简,解决此题的关键是分类讨论思想,得出a、b可能的取值.14.【分析】直接利用二次根式的性质将已知化简,再将原式变形求出答案.解:∵一定有意义,∴x≥11,∴﹣|7﹣x|+=3y﹣2,﹣x+7+x﹣9=3y﹣2,整理得:=3y,∴x﹣解析:22【分析】直接利用二次根式的性质将已知化简,再将原式变形求出答案.【详解】一定有意义,∴x≥11,|7﹣x=3y﹣2,﹣x+7+x﹣9=3y﹣2,=3y,∴x﹣11=9y2,则2x﹣18y2=2x﹣2(x﹣11)=22.故答案为:22.【点睛】本题考查二次根式有意义的应用,以及二次根式的性质应用,属于提高题.15.【分析】先把x分母有理化求出x= ,求出a、b的值,再代入求出结果即可.【详解】∵∴∴∴【点睛】本题考查了分母有理化和估算无理数的大小的应用,解此题的关键是求a、b的值.解析:6【分析】先把x分母有理化求出2,求出a、b的值,再代入求出结果即可.2x === ∵23<<∴425<< ∴4,242a b ==-=∴42)6a b -=-=【点睛】本题考查了分母有理化和估算无理数的大小的应用,解此题的关键是求a 、b 的值.16.-【解析】【分析】根据二次根式的性质,可得答案【详解】由题意可得: ,即∴故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定解析:【解析】【分析】根据二次根式的性质,可得答案【详解】 由题意可得:10m ,即0m ∴11m m m mm m m故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定m 的取值范围.17.【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x﹣1= ,∴(2x﹣1)2=3∴4x2﹣4x+1=3∴4(x2﹣x)=2∴x2﹣x=故答案为【点解析:1 2【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x﹣,∴(2x﹣1)2=3∴4x2﹣4x+1=3∴4(x2﹣x)=2∴x2﹣x=12故答案为1 2【点睛】本题考查二次根式的运算,解题的关键是熟练运用完全平方公式,本题属于基础题型.18.2018【解析】试题解析:,令,,显然,∴,∴,∵与奇偶数相同,∴,∴,∴.故答案为:2018.解析:2018【解析】 试题解析:y ===令a =b = 显然0a b >≥,∴224036a b -=,∴()()4036a b a b +-=,∵()a b +与()-a b 奇偶数相同,∴20182a b a b +=⎧⎨-=⎩, ∴10101008a b =⎧⎨=⎩, ∴2018y a b =+=.故答案为:2018.19.【解析】试题分析:根据二次根式的意义和等式的特点,可知2x-5=0,解得x=,y=-3,代入可得=-2××3=-15. 解析:15-【解析】试题分析:根据二次根式的意义和等式的特点,可知2x-5=0,解得x=52,y=-3,代入可得2xy =-2×52×3=-15. 20.【分析】根据a ,b ,c 的值求得p =,然后将其代入三角形的面积S =求值即可.【详解】解:由a =4,b =5,c =7,得p ===8.所以三角形的面积S ===4.故答案为:4.【点睛】本题主解析:【分析】根据a ,b ,c 的值求得p =2a b c ++,然后将其代入三角形的面积S =【详解】解:由a =4,b =5,c =7,得p =2a b c ++=4572++=8.所以三角形的面积S .故答案为:.【点睛】本题主要考查了二次根式的应用和数学常识,解题的关键是读懂题意,利用材料中提供的公式解答,难度不大. 三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
八年级初二数学提高题专题复习二次根式练习题含答案
一、选择题1.下列各式中,运算正确的是( ) A2=-B4=C= D.2=2.下列计算正确的是( ) A3=±B2=C.2=D2=3.下列根式是最简二次根式的是( ) ABCD.4.下列运算正确的是 ( ) A.3= B=C.=D=5.若2019202120192020a =⨯-⨯,b =,c a ,b ,c 的大小关系是( ) A .a b c << B .a c b <<C .b a c <<D .b c a <<6.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )123A .BC .D7.2=) A .3B .4C .5D .68.给出下列化简①()2=2=2=12=,其中正确的是( ) A .①②③④B .①②③C .①②D .③④9.已知实数x 、y满足2y =,则yx 值是( )A .﹣2B .4C .﹣4D .无法确定10.下列根式中是最简二次根式的是( ) ABCD二、填空题11.若mm 3﹣m 2﹣2017m +2015=_____.12.已知a ,b 是正整数,且满足是整数,则这样的有序数对(a ,b )共有____对.13.实数a 、b 10-b 4-b-2=+,则22a b +的最大值为_________.14.3=,且01x <<=______.15.设12211112S =++,22211123S =++,32211134S =++,设...S =S=________________ (用含有n 的代数式表示,其中n 为正整数).16.10=,则222516x y +=______.17.若2x ﹣x 2﹣x=_____.18.化简二次根式_____.19.,则x+y=_______. 20.若实数a =,则代数式244a a -+的值为___. 三、解答题21.若x ,y 为实数,且y 12.求x y y x ++2-xy y x +-2的值.【分析】根据二次根式的性质,被开方数大于等于0可知:1﹣4x ≥0且4x ﹣1≥0,解得x =14,此时y =12.即可代入求解. 【详解】解:要使y 有意义,必须140410x x -≥⎧⎨-≤⎩,即1414x x ⎧≤⎪⎪⎨⎪≥⎪⎩∴ x =14.当x =14时,y =12. 又∵x y y x ++2-x yy x +-2=-| ∵x =14,y =12,∴ x y <y x.∴+当x =14,y =12时,原式=.【点睛】(a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.22.阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式a =,)111=11互为有理化因式.(1)1的有理化因式是 ;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:==25384532++====-进行分母有理化. (3)利用所需知识判断:若a =,2b =a b ,的关系是 .(4)直接写结果:)1=.【答案】(1)1;(2)7-;(3)互为相反数;(4)2019【分析】(1)根据互为有理化因式的定义利用平方差公式即可得出;(2)原式分子分母同时乘以分母的有理化因式(2,化简即可;(3)将a=(4)化简第一个括号内的式子,里面的每一项进行分母有理化,然后利用平方差公式计算即可.【详解】解:(1)∵()()1111=,∴1的有理化因式是1;(2227 -==-(3)∵2a===,2b=-,∴a和b互为相反数;(4))1 ++⨯=)11⨯=)11=20201-=2019,故原式的值为2019.【点睛】本题考查了互为有理化因式的定义及分母有理化的方法,并考查了利用分母有理化进行计算及探究相关式子的规律,本题属于中档题.23.计算(1)(4﹣3)+2(2)(3)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如表:请计算两组数据的方差.【答案】(1)6﹣3;(2)-6(3)甲的方差1.65;乙的方差0.76【解析】试题分析:(1)先去括号,再合并;(2)先进行二次根式的乘法运算,然后去绝对值合并;(3)先分别计算出甲乙的平均数,然后根据方差公式分别进行甲乙的方差.试题解析:(1)原式=4﹣3+2=6﹣3;(2)原式=﹣3﹣2+﹣3=-6;(3)甲的平均数=(0+1+0+2+2+0+3+1+2+4)=1.5,乙的平均数=(2+3+1+1+0+2+1+1+0+1)=1.2,甲的方差=×[3×(0﹣1.5)2+2×(1﹣1.5)2+3×(2﹣1.5)2+(3﹣1.5)2+(4﹣1.5)2]=1.65;乙的方差=×[2×(0﹣1.2)2+5×(1﹣1.2)2+2×(2﹣1.2)2+(3﹣1.2)2]=0.76.考点:二次根式的混合运算;方差.24.【分析】先化为最简二次根式,再将被开方数相同的二次根式进行合并.【详解】.【点睛】本题考查了二次根式的加减运算,在进行此类运算时,先把二次根式化为最简二次根式的形式后再运算.25.计算:(1)11(233÷【答案】(12+;(2)【分析】(1)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同;(2)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同. 【详解】解:)1131-=233÷3==【点睛】本题考查了二次根式的混合运算,二次根式的混合运算顺序与实数的混合运算顺序一样,先乘方,再乘除,最后加减,有括号时要先算括号里的或先去括号.26.计算(11)1)⨯; (2)【答案】(12+;(2). 【解析】分析:先将二次根式化为最简,然后再进行二次根式的乘法运算.详解:(1)11+;=()31-2 ;(2)原式=(2,==3⨯==点睛:此题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.27.一样的式子,其实我3====,1===;以上这种化简的步骤叫做分母有理化还可以用以下方法化简:221111===-=(12)化简:2n+++【答案】(1-2.【解析】试题分析:(12看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.试题解析:(1)=====(2)原式2n+++=.考点:分母有理化.28.计算:(1;(2+2)2+2).【答案】(1-2)【分析】(1)直接化简二次根式进而合并得出答案;(2)直接利用乘法公式计算得出答案.【详解】解:(1)原式=-++-=6+.(2)原式=3434【点睛】本题考查了二次根式的运算,在进行二次根式运算时,可以运用乘法公式,运算率简化运算.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】=(a≥0,b≥0),被开数相同的二次根式可以合并进行计算即可.【详解】=,故原题计算错误;A2B=,故原题计算正确;C=D、2不能合并,故原题计算错误;故选B.【点睛】此题主要考查了二次根式的混合运算,关键是掌握二次根式乘法、性质及加减法运算法则.2.D【分析】根据算术平方根、立方根、二次根式的乘法逐项判断即可得.【详解】A3=,此项错误;B2=-,此项错误;=≠C、27D2==,此项正确;故选:D.【点睛】本题考查了算术平方根、立方根、二次根式的乘法,熟练掌握算术平方根与立方根是解题关键.3.B解析:B【分析】可以根据最简二次根式的定义进行判断.【详解】A,原根式不是最简二次根式;BC=,原根式不是最简二次根式;==D、=4故选B.【点睛】本题考查最简二次根式的定义,熟练掌握最简二次根式的定义及二次根式的化简方法是解题关键.4.A解析:A【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】A、3=,故选项A正确;B B错误;C、18=,故选项C错误;D=D错误;【点睛】本题考查了二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.5.A解析:A【分析】利用平方差公式计算a,利用完全平方公式和二次根式的化简求出b,利用二次根式大小的比较办法,比较b、c得结论.【详解】解:a=2019×2021-2019×2020=(2020-1)(2020+1)-(2020-1)×2020=20202-1-20202+2020=2019;∵20222-4×2021=(2021+1)2-4×2021=20212+2×2021+1-4×2021=20212-2×2021+1=(2021-1)2=20202,∴b=2020;>∴c>b>a.故选:A.【点睛】本题考查了完全平方公式、平方差公式、二次根式的化简、二次根式大小的比较等知识点.变形2019×2021-2019×2020解决本题的关键.6.B解析:B【解析】【分析】由图形可知,第n(n =案.【详解】由图形可知,第n(n =∴第8=,则第9行从左至右第5=,故选B.【点睛】本题主要考查数字的变化类,解题的关键是根据题意得出第n行最后一个数为7.C解析:C【解析】=,22222x x=-=--+=251510,=.5故选C.8.C解析:C【分析】根据二次根式的性质逐一进行计算即可求出答案.【详解】①原式=2,故①正确;②原式=2,故②正确;③原式==④原式==,故④错误,故选C.【点睛】本题考查二次根式的性质和化简,熟练掌握二次根式的性质是解题的关键.9.C解析:C【分析】依据二次根式中的被开方数是非负数求得x的值,然后可得到y的值,最后代入计算即可.【详解】y=,∵实数x、y满足2∴x=2,y=﹣2,-⨯=-4.∴yx=22故选:C.【点睛】本题主要考查的是二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.10.B解析:B【分析】根据最简二次根式的条件:①根号下不含能开得尽方的因数或因式;②根号下不含分母,据此逐项判断即可.【详解】解:A 、被开方数含分母,故A 不符合题意;B 、被开方数不含分母;被开方数不含能开得尽方的因数或因式.,故B 符合题意;C 被开方数含能开得尽方的因数或因式,故C 不符合题意;D 、被开方数含能开得尽方的因数或因式,故D 不符合题意;故选:B .【点睛】本题考查了最简二次根式,解题的关键是掌握最简二次根式的两个条件.二、填空题11.4030【分析】利用平方差公式化简m ,整理要求的式子,将m 的值代入要求的式子计算即可.【详解】m== m==+1,∴m3-m2-2017m+2015=m2(m ﹣1)﹣2017m+2015解析:4030【分析】利用平方差公式化简m ,整理要求的式子,将m 的值代入要求的式子计算即可.【详解】mm ), ∴m 3-m 2-2017m +2015=m 2(m ﹣1)﹣2017m +2015= )22017)+2015=(2017+2015﹣2=4030.故答案为4030.【点睛】本题主要考查二次根式的化简以及二次根式的混合运算.12.7【解析】解:∵=+,∴a、b的值为15,60,135,240,540.①当a=15,b=15时,即=4;②当a=60,b=60时,即=2;③当a=15,b=60时,即=3;④当a=60解析:7【解析】解:∵2,∴a、b的值为15,60,135,240,540.①当a=15,b=15时,即2=4;②当a=60,b=60时,即2=2;③当a=15,b=60时,即2=3;④当a=60,b=15时,即2=3;⑤当a=240,b=240时,即2=1;⑥当a=135,b=540时,即2=1;⑦当a=540,b=135时,即2=1;故答案为:(15,15)、(60、60)、(15,60)、(60,15)、(240,240)、(135,540)、(540,135).所有满足条件的有序数对(a,b)共有7对.故答案为:7.点睛:本题考查了二次根式的性质和化简,解决此题的关键是分类讨论思想,得出a、b可能的取值.13.【分析】首先化简,可得|a-2|+|a-6|+|b+4|+|b-2|=10,然后根据|a-2|+|a-6|≥4,|b+4|+|b-2|≥6,判断出a,b的取值范围,即可求出的最大值.【详解】解析:【分析】10-b 4-b-2=+,可得|a-2|+|a-6|+|b+4|+|b-2|=10,然后根据|a-2|+|a-6|≥4,|b+4|+|b-2|≥6,判断出a ,b 的取值范围,即可求出22a b +的最大值.【详解】10-b 4-b-2=+,1042b b =-+--, ∴261042a a b b -+-=-+--, ∴264210a a b b -+-+++-=,∵264a a -+-≥,426b b ++-≥,∴ 264a a -+-=,42=6b b ++-,∴2≤a≤6,-4≤b≤2,∴22a b +的最大值为()226452+-=,故答案为52.【点睛】本题考查了二次根式的性质与化简,绝对值的意义,算术平方根的性质.解题的关键是要明确化简二次根式的步骤:①把被开方数分解因式;②利用算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2. 14..【分析】利用题目给的求出,再把它们相乘得到,再对原式进行变形凑出的形式进行计算.【详解】∵,∴,∴,∴,∵,∴,∴,∴原式.故答案是:.【点睛】本题考查二次根式的运.【分析】,再把它们相乘得到1xx-,再对原式进行变形凑出1xx-的形式进行计算.【详解】3=,∴221239xx=++==,∴17xx+=,∴212725xx=-+=-=,∵01x<<,=,∴1xx=-=-∴原式====..【点睛】本题考查二次根式的运算和乘法公式的应用,解题的关键是熟练运用乘法公式对式子进行巧妙运算.15.【分析】先根据题目中提供的三个式子,分别计算的值,用含n 的式子表示其规律,再计算S 的值即可.【详解】解:∵,∴;∵,∴;∵,∴;……∵,∴;∴.故答案为:【点睛】本题 解析:221n n n ++ 【分析】n 的式子表示其规律,再计算S 的值即可.【详解】 解:∵1221191=124S =++311122===+-; ∵222114912336S =++=7111116623===+=+-; ∵32211169134144S =++=1311111121234===+=+-; …… ∵()()()222222111111n n n S n n n n ++=++=++,()()2111111111n n n n n n n n ++===+=+-+++;∴...S =1111111112231n n =+-++-++-+…+ 111n n =+-+. 221n n n +=+ 故答案为:221n n n ++ 【点睛】本题为规律探究问题,难度较大,根据提供的式子发现规律,并表示规律是解题的关键,同时要注意对于式子()11111n n n n =-++的理解. 16.【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】移项得,两边平方得,整理得,两边平方得,所以,两边除以400得,1.故答案为1.【点睛】解析:【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】10=-两边平方得,()()22223=1003x y x y ++--+整理得,253x =- 两边平方得,22225150225256251509x x y x x -++=-+ 所以,221625400x y +=两边除以400得,22 2516x y+=1.故答案为1.【点睛】本题考查了非负数的性质,此类题目难点在于把两个算术平方根通过移项分到等式左右两边.17.【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x﹣1= ,∴(2x﹣1)2=3∴4x2﹣4x+1=3∴4(x2﹣x)=2∴x2﹣x=故答案为【点解析:1 2【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x﹣,∴(2x﹣1)2=3∴4x2﹣4x+1=3∴4(x2﹣x)=2∴x2﹣x=12故答案为1 2【点睛】本题考查二次根式的运算,解题的关键是熟练运用完全平方公式,本题属于基础题型.18.【解析】根据二次根式的性质,可知a≠0,-(a+1)≥0,因此可知a≤-1,因此可知a==.故答案为.解析:【解析】根据二次根式的性质,可知a≠0,-(a+1)≥0,因此可知a≤-1,因此可知=故答案为19.8+2【解析】根据配方法,由完全平方公式可知x+y==()2-2,然后把+=+,=-整体代入可得原式=(+)2-2(-)=5+3+2-2+2=8+2.故答案为:8+2.解析:【解析】根据配方法,由完全平方公式可知x+y=2222+=+-)2整体代入可得原式=2-2)故答案为:20.3【解析】∵ =,∴=(a-2)2==3,故答案为3.解析:3【解析】∵a =∴244a a -+=(a-2)2=()222+=3, 故答案为3.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
(完整版)二次根式专题练习(含答案)
初二数学专题练习《二次根式》一.选择题1.式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≤1 C.x>1 D.x≥12.若1<x<2,则的值为()A.2x﹣4 B.﹣2 C.4﹣2x D.2 3.下列计算正确的是()A.=2B.= C.=x D.=x 4.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b5.化简+﹣的结果为()A.0 B.2 C.﹣2D.26.已知x<1,则化简的结果是()A.x﹣1 B.x+1 C.﹣x﹣1 D.1﹣x7.下列式子运算正确的是()A.B.C. D.8.若,则x3﹣3x2+3x的值等于()A.B.C.D.二.填空题9.要使代数式有意义,则x的取值范围是.10.在数轴上表示实数a的点如图所示,化简+|a﹣2|的结果为.11.计算:= .12.化简:= .13.计算:(+)= .14.观察下列等式:第1个等式:a1==﹣1,第2个等式:a2==﹣,第3个等式:a3==2﹣,第4个等式:a4==﹣2,按上述规律,回答以下问题:(1)请写出第n个等式:a n= ;(2)a1+a2+a3+…+a n= .15.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= .16.已知:a<0,化简= .17.设,,,…,.设,则S= (用含n的代数式表示,其中n为正整数).三.解答题18.计算或化简:﹣(3+);19.计算:(3﹣)(3+)+(2﹣)20.先化简,再求值:,其中x=﹣3﹣(π﹣3)0.21.计算:(+)×.22.计算:×(﹣)+|﹣2|+()﹣3.23.计算:(+1)(﹣1)+﹣()0.24.如图,实数a、b在数轴上的位置,化简:.25.阅读材料,解答下列问题.例:当a>0时,如a=6则|a|=|6|=6,故此时a的绝对值是它本身;当a=0时,|a|=0,故此时a的绝对值是零;当a<0时,如a=﹣6则|a|=|﹣6|=﹣(﹣6),故此时a的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即,这种分析方法渗透了数学的分类讨论思想.问:(1)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况;(2)猜想与|a|的大小关系.26.已知:a=,b=.求代数式的值.27.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得= ;参照(四)式得= .(3)化简:+++…+.28.化简求值:,其中.参考答案与解析一.选择题1.(2016•贵港)式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≤1 C.x>1 D.x≥1【分析】被开方数是非负数,且分母不为零,由此得到:x﹣1>0,据此求得x的取值范围.【解答】解:依题意得:x﹣1>0,解得x>1.故选:C.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.注意:本题中的分母不能等于零.2.(2016•呼伦贝尔)若1<x<2,则的值为()A.2x﹣4 B.﹣2 C.4﹣2x D.2【分析】已知1<x<2,可判断x﹣3<0,x﹣1>0,根据绝对值,二次根式的性质解答.【解答】解:∵1<x<2,∴x﹣3<0,x﹣1>0,原式=|x﹣3|+=|x﹣3|+|x﹣1|=3﹣x+x﹣1=2.故选D.【点评】解答此题,要弄清以下问题:1、定义:一般地,形如(a≥0)的代数式叫做二次根式.当a>0时,表示a的算术平方根;当a=0时,=0;当a小于0时,非二次根式(若根号下为负数,则无实数根).2、性质:=|a|.3.(2016•南充)下列计算正确的是()A.=2B.= C.=x D.=x【分析】直接利用二次根式的性质分别化简求出答案.【解答】解:A、=2,正确;B、=,故此选项错误;C、=﹣x,故此选项错误;D、=|x|,故此选项错误;故选:A.【点评】此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.4.(2016•潍坊)实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣bD.b【分析】直接利用数轴上a,b的位置,进而得出a<0,a﹣b<0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:如图所示:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.【点评】此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.5.(2016•营口)化简+﹣的结果为()A.0 B.2 C.﹣2D.2【分析】根据根式的开方,可化简二次根式,根据二次根式的加减,可得答案.【解答】解:+﹣=3+﹣2=2,故选:D.【点评】本题考查了二次根式的加减,先化简,再加减运算.6.已知x<1,则化简的结果是()A.x﹣1 B.x+1 C.﹣x﹣1 D.1﹣x【分析】先进行因式分解,x2﹣2x+1=(x﹣1)2,再根据二次根式的性质来解题即可.【解答】解:==|x﹣1|∵x<1,∴原式=﹣(x﹣1)=1﹣x,故选D.【点评】根据完全平方公式、绝对值的运算解答此题.7.下列式子运算正确的是()A.B.C. D.【分析】根据二次根式的性质化简二次根式:=|a|;根据二次根式分母有理化的方法“同乘分母的有理化因式”,进行分母有理化;二次根式的加减实质是合并同类二次根式.【解答】解:A、和不是同类二次根式,不能计算,故A错误;B、=2,故B错误;C、=,故C错误;D、=2﹣+2+=4,故D正确.故选:D.【点评】此题考查了根据二次根式的性质进行化简以及二次根式的加减乘除运算,能够熟练进行二次根式的分母有理化.8.若,则x3﹣3x2+3x的值等于()A.B.C.D.【分析】把x的值代入所求代数式求值即可.也可以由已知得(x﹣1)2=3,即x2﹣2x﹣2=0,则x3﹣3x2+3x=x(x2﹣2x﹣2)﹣(x2﹣2x﹣2)+3x﹣2=3x﹣2,代值即可.【解答】解:∵x3﹣3x2+3x=x(x2﹣3x+3),∴当时,原式=()[﹣3()+3]=3+1.故选C.【点评】代数式的三次方不好求,就先提取公因式,把它变成二次方后再代入化简合并求值.二.填空题9.(2016•贺州)要使代数式有意义,则x的取值范围是x≥﹣1且x≠0 .【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于0,列不等式组求解.【解答】解:根据题意,得,解得x≥﹣1且x≠0.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.本题应注意在求得取值范围后,应排除不在取值范围内的值.10.(2016•乐山)在数轴上表示实数a的点如图所示,化简+|a﹣2|的结果为 3 .【分析】直接利用二次根式的性质以及绝对值的性质分别化简求出答案.【解答】解:由数轴可得:a﹣5<0,a﹣2>0,则+|a﹣2|=5﹣a+a﹣2=3.故答案为:3.【点评】此题主要考查了二次根式的性质以及绝对值的性质,正确掌握掌握相关性质是解题关键.11.(2016•聊城)计算:= 12 .【分析】直接利用二次根式乘除运算法则化简求出答案.【解答】解:=3×÷=3=12.故答案为:12.【点评】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.12.(2016•威海)化简:= .【分析】先将二次根式化为最简,然后合并同类二次根式即可.【解答】解:原式=3﹣2=.故答案为:.【点评】此题考查了二次根式的加减运算,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并.13.(2016•潍坊)计算:(+)= 12 .【分析】先把化简,再本括号内合并,然后进行二次根式的乘法运算.【解答】解:原式=•(+3)=×4=12.故答案为12.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14.(2016•黄石)观察下列等式:第1个等式:a1==﹣1,第2个等式:a2==﹣,第3个等式:a3==2﹣,第4个等式:a4==﹣2,按上述规律,回答以下问题:(1)请写出第n个等式:a n= =﹣;;(2)a1+a2+a3+…+a n= ﹣1 .【分析】(1)根据题意可知,a1==﹣1,a2==﹣,a3==2﹣,a4==﹣2,…由此得出第n个等式:a n==﹣;(2)将每一个等式化简即可求得答案.【解答】解:(1)∵第1个等式:a1==﹣1,第2个等式:a2==﹣,第3个等式:a3==2﹣,第4个等式:a4==﹣2,∴第n个等式:a n==﹣;(2)a1+a2+a3+…+a n=(﹣1)+(﹣)+(2﹣)+(﹣2)+…+(﹣)=﹣1.故答案为=﹣;﹣1.【点评】此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案.15.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= 2.5 .【分析】只需首先对估算出大小,从而求出其整数部分a,其小数部分用﹣a表示.再分别代入amn+bn2=1进行计算.【解答】解:因为2<<3,所以2<5﹣<3,故m=2,n=5﹣﹣2=3﹣.把m=2,n=3﹣代入amn+bn2=1得,2(3﹣)a+(3﹣)2b=1化简得(6a+16b)﹣(2a+6b)=1,等式两边相对照,因为结果不含,所以6a+16b=1且2a+6b=0,解得a=1.5,b=﹣0.5.所以2a+b=3﹣0.5=2.5.故答案为:2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.16.已知:a<0,化简= ﹣2 .【分析】根据二次根式的性质化简.【解答】解:∵原式=﹣=﹣又∵二次根式内的数为非负数∴a﹣=0∴a=1或﹣1∵a<0∴a=﹣1∴原式=0﹣2=﹣2.【点评】解决本题的关键是根据二次根式内的数为非负数得到a的值.17.设,,,…,.设,则S= (用含n的代数式表示,其中n为正整数).【分析】由S n=1++===,求,得出一般规律.【解答】解:∵S n=1++===,∴==1+=1+﹣,∴S=1+1﹣+1+﹣+…+1+﹣=n+1﹣==.故答案为:.【点评】本题考查了二次根式的化简求值.关键是由S n变形,得出一般规律,寻找抵消规律.三.解答题(共11小题)18.(2016•泰州)计算或化简:﹣(3+);【分析】先化成最简二次根式,再去括号、合并同类二次根式即可;【解答】解:(1)﹣(3+)=﹣(+)=﹣﹣=﹣;【点评】本题考查了二次根式的加减法以及分式的混合运算,正确化简是解题的关键.19.(2016•盐城)计算:(3﹣)(3+)+(2﹣)【分析】利用平方差公式和二次根式的乘法法则运算.【解答】解:原式=9﹣7+2﹣2=2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.(2016•锦州)先化简,再求值:,其中x=﹣3﹣(π﹣3)0.【分析】先根据分式混合运算的法则把原式进行化简,再把化简后x的值代入进行计算即可.【解答】解:,=÷,=×,=.x=﹣3﹣(π﹣3)0,=×4﹣﹣1,=2﹣﹣1,=﹣1.把x=﹣1代入得到:==.即=.【点评】本题考查的是分式的化简求值,在解答此类题目时要注意通分及约分的灵活应用.21.计算:(+)×.【分析】首先应用乘法分配律,可得(+)×=×+×;然后根据二次根式的混合运算顺序,先计算乘法,再计算加法,求出算式(+)×的值是多少即可.【解答】解:(+)×=×+×=1+9=10【点评】此题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”.22.计算:×(﹣)+|﹣2|+()﹣3.【分析】根据二次根式的乘法法则和负整数整数幂的意义得到原式=﹣+2+8,然后化简后合并即可.【解答】解:原式=﹣+2+8=﹣3+2+8=8﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了负整数整数幂、23.计算:(+1)(﹣1)+﹣()0.【分析】先根据平方差公式和零指数幂的意义得到原式=3﹣1+2﹣1,然后进行加减运算.【解答】解:原式=3﹣1+2﹣1=1+2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.24.如图,实数a、b在数轴上的位置,化简:.【分析】本题综合性较强,不仅要结合图形,还需要熟悉算术平方根的定义.【解答】解:由数轴知,a<0,且b>0,∴a﹣b<0,∴,=|a|﹣|b|﹣[﹣(a﹣b)],=(﹣a)﹣b+a﹣b,=﹣2b.【点评】本小题主要考查利用数轴表示实数取值范围、二次根式的化简、代数式的恒等变形等基础知识,考查基本的代数运算能力.观察数轴确定a、b及a﹣b的符号是解答本题的关键,本题巧用数轴给出了每个数的符号,渗透了数形结合的思想,这也是中考时常考的知识点.本题考查算术平方根的化简,应先确定a、b及a﹣b的符号,再分别化简,最后计算.25.阅读材料,解答下列问题.例:当a>0时,如a=6则|a|=|6|=6,故此时a的绝对值是它本身;当a=0时,|a|=0,故此时a的绝对值是零;当a<0时,如a=﹣6则|a|=|﹣6|=﹣(﹣6),故此时a的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即,这种分析方法渗透了数学的分类讨论思想.问:(1)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况;(2)猜想与|a|的大小关系.【分析】应用二次根式的化简,首先应注意被开方数的范围,再进行化简.【解答】解:(1)由题意可得=;(2)由(1)可得:=|a|.【点评】本题主要考查二次根式的化简方法与运用:①当a>0时,=a;②当a<0时,=﹣a;③当a=0时,=0.26.已知:a=,b=.求代数式的值.【分析】先求得a+b=10,ab=1,再把求值的式子化为a与b的和与积的形式,将整体代入求值即可.【解答】解:由已知,得a+b=10,ab=1,∴===.【点评】本题关键是先求出a+b、ab的值,再将被开方数变形,整体代值.27.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得= ;参照(四)式得= .(3)化简:+++…+.【分析】(1)中,通过观察,发现:分母有理化的两种方法:1、同乘分母的有理化因式;2、因式分解达到约分的目的;(2)中,注意找规律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出现抵消的情况.【解答】解:(1)=,=;(2)原式=+…+=++…+=.【点评】学会分母有理化的两种方法.28.化简求值:,其中.【分析】由a=2+,b=2﹣,得到a+b=4,ab=1,且a>0,b>0,再把代数式利用因式分解的方法得到原式=+,约分后得+,接着分母有理化和通分得到原式=,然后根据整体思想进行计算.【解答】解:∵a=2+>0,b=2﹣>0,∴a+b=4,ab=1,∴原式=+=+=+=,当a+b=4,ab=1,原式=×=4.【点评】本题考查了二次根式的化简求值:先把各二次根式化为最简二次根式,再合并同类二次根式,然后把字母的值代入(或整体代入)进行计算.。
八年级数学二次根式提高题
八年级数学二次根式提高题(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--二次根式提高测试题一、选择题 1有意义的x 的取值范围是( ) 2.一个自然数的算术平方根为()0a a >,则与这个自然数相邻的两个自然数的算术平方根为( )(A )1,1a a -+(B C D )221,1a a -+3.若0x <x 等于( )(A )0 (B )2x - (C )2x (D )0或2x4.若0,0a b <> )(A )-(B )-(C )(D )a 5m=,则21y y +的结果为( )(A )22m + (B )22m - (C 2 (D 26.已知,a b b a =-,则a 与b 的大小关系是( ) (A )a b < (B )a b > (C )a b ≥ (D )a b ≤ 7.已知下列命题:2= 36π-=;③()()()22333a a a +-=+-; a b =+.其中正确的有( )(A )0个 (B )1个 (C )2个 (D )3个8.若m 的值为( )(A )203(B )5126(C )138(D )1589.当12a ≤21a -等于( ) (A )2 (B )24a - (C )a (D )0102得( )(A )2 (B )44x -+ (C )2- (D )44x -12.当_____x有意义.13与a _____a b +=.14.若x y ____x =,_____y =.16.若11x -<<1_____x +=.17.若0xy ≠-_____.18.若01x <<_____.三、解答题(1⎛ ⎝; (23a20.已知())200620072222a =+-24a a +的值 .21.已知y x ,是实数,且329922+--+-=x x x y ,求y x 65+的值.22.若42--y x 与()212+-y x 互为相反数,求代数式32341y y x x ++的值.1.下列式子中一定是二次根式的是(2.在根式①22b a + ②5x ③xy x -2④ abc 27中,最简二次根式是( )A .①②B .③④C .①③D .①④3.如果)6(6-=-•x x x x ,那么( )A .x ≥0 B .x ≥6 C .0≤x ≤6 D .x 为一切实数4.使代数式43--x x 有意义的x 的取值范围是( ) A 、3x > ;B 、3x ≥ ;C 、 4x> ;D 、3x ≥且4x ≠;5.下列各式中,与2-3相乘后,积为有理数的是( ) (A)2+3 (B)2-3 (C)-2+3 (D)3 6.已知,071=++-b a 则=+b a ( )7.下列计算或化简正确的是( )A .235a a a +=B .C 93=±D .8.如果12-=aa ,那么一定是 ( ) A .负数 B .正数 C .正数或零D .负数或零9. 若12x <<224421x x x x -+++ ) A. 21x - B. 21x -+ C. 3 D. -310. 3的整数部分为x ,小数部分为y 3x y -的值是( ) A. 333311.估计219+的值是在( ) A .5和6之间 B .6和7之间 C .7和8之间 D .8和9之间12. 已知21+=m ,21-=n ,则代数式mn n m 322-+的值为( ) B.±3 D. 513. 二次根式31-x 有意义的条件是 1420n n 的最小值为__________15.计算21)(22)=________16. 当15x ≤<()215_____________x x --=17. 若1a b -+24a b ++互为相反数,则()2005_____________a b -=。
完整版八年级数学二次根式提高题常考题与培优题含解析
二次根式提高题与常考题型压轴题(含解析)一.选择题〔共13小题〕1.二次根式中x的取值范围是〔〕A.x>3 B.x≤3且x≠0C.x≤3D.x<3且x≠02.计算:﹣,正确的选项是〔〕A.4 B.C.2 D.3.如图,在长方形 ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,那么图中空白局部的面积为〔〕cm2.A.16﹣8 B.﹣12+8 C.8﹣4 D.4﹣24.假设1<x<2,那么的值为〔〕A.2x﹣4 B.﹣2C.4﹣2x D.25.以下计算正确的选项是〔〕A.=2 B.= C.=x D.=x6.以下各式变形中,正确的选项是〔〕A.x2?x3=x6B.= |x|C.〔x2﹣〕÷x=x﹣1D.x2﹣x+1=〔x﹣〕2+7.以下二次根式中,与是同类二次根式的是〔〕A.B.C.D.8.化简+﹣的结果为〔〕A.0B.2C.﹣2D.29.,ab>0,化简二次根式a的正确结果是〔〕A.B.C.﹣D.﹣.10.a的小数局部,b的小数局部.的〔〕A.+ 1 B.+1 C.1D.++111.把中根号外面的因式移到根号内的果是〔〕A.B.C.D.12.如果=2a 1,那么〔〕A.a B.a≤C.a D.a≥13.:a=,b=,a与b的关系是〔〕A.ab=1B.a+b=0 C.a b=0D.a2=b2二.填空〔共17小〕14.如果代数式有意,那么x的取范.15.在数上表示数 a的点如所示,化+|a 2|的果.16.算:=.17.察以下等式:第1个等式:a1=,=1第2个等式:a2=,=第3个等式:a3=2,=第4个等式:a4=,=2按上述律,答复以下:〔1〕写出第n个等式:a n=;2〕a1+a2+a3+⋯+a n=.18.算2的果是.19.算〔+〕〔〕的果等于..20.化简:〔0<a<1〕=.21.如果最简二次根式与可以合并,那么使有意义的x的取值范围是.22.a,b是正整数,且满足是整数,那么这样的有序数对〔a,b〕共有对.23.对正实数a,b作定义a*b=﹣a,假设2*x=6,那么x=..x+y=,x﹣y=4﹣y4=.24,那么x 25.=﹣〔x,y为有理数〕,那么x﹣y=.26.是正整数,那么实数n的最大值为.27.三角形的三边长分别为3、m、5,化简﹣=.28.假设实数m满足=m+1,且0<m<,那么m的值为.29.计算以下各式的值:;;;.观察所得结果,总结存在的规律,应用得到的规律可得=.30.观察以下各式:=11+3×1+1,=22+3×2+1,=32+3×3+1,猜测:=.三.解答题〔共10小题〕31.计算〔1〕﹣4+÷〔2〕〔1﹣〕〔1+〕+〔1+〕2.32.假设1<a<2,求+的值.33.x,y都是有理数,并且满足,求的值.34.先化简,再求值:,其中x=﹣3﹣〔π﹣3〕0..35.〔1〕|2021﹣x|+=x,求x﹣20212的值;〔2〕a>0,b>0且〔+〕=3〔+5〕.求的值.36.观察以下各式及其验证过程:〔1〕按照上述两个等式及其验证过程的根本思路,猜测的变形结果并进行验证;2〕针对上述各式反响的规律,写出用n〔n为任意自然数,且n≥2〕表示的等式,并说明它成立.37.先化简,再求值:〔+〕÷,其中a=+1.38.求不等式组的整数解.39.阅读与计算:请阅读以下材料,并完成相应的任务.古希腊的几何学家海伦在他的?度量?一书中给出了利用三角形的三边求三角形面积的“海伦公式〞:如果一个三角形的三边长分别为a、b、c,设p=,那么三角形的面积S=.我国南宋著名的数学家秦九韶,曾提出利用三角形的三边求面积的“秦九韶公式〞〔三斜求积术〕:如果一个三角形的三边长分别为a、b、c,那么三角形的面积S=.〔1〕假设一个三角形的三边长分别是5,6,7,那么这个三角形的面积等于.〔2〕假设一个三角形的三边长分别是,求这个三角形的面积..40.:y=++,求﹣的值..二次根式提高题与常考题型压轴题(含解析)参考答案与试题解析一.选择题〔共13小题〕1.〔2021春?启东市月考〕二次根式中x的取值范围是〔〕A.x>3B.x≤3且x≠0C.x≤3D.x<3且x≠0【分析】根据二次根式有意义的条件和分式有意义的条件得出3﹣x≥0且x≠0,求出即可.【解答】解:要使有意义,必须3﹣x≥0且x≠0,解得:x≤3且x≠0,应选B.【点评】此题考查了二次根式有意义的条件和分式有意义的条件等知识点,能根据题意得出3﹣x≥0且x≠0是解此题的关键.2.〔2021春?萧山区校级月考〕计算:﹣,正确的选项是〔〕A.4B.C.2D.【分析】直接化简二次根式进而合并求出答案.【解答】解:﹣=2﹣=.应选:D.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.3.〔2021春?嵊州市月考〕如图,在长方形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,那么图中空白局部的面积为〔〕cm2.A.16﹣8B.﹣12+8C.8﹣4D.4﹣2.【分析】根据正方形的面积求出两个正方形的边长,从而求出AB、BC,再根据空白局部的面积等于长方形的面积减去两个正方形的面积列式计算即可得解.【解答】解:∵两张正方形纸片的面积分别为16cm2和12cm2,∴它们的边长分别为=4cm,=2 cm,AB=4cm,BC=〔2+4〕cm,∴空白局部的面积=〔2+4〕×4﹣12﹣16,=8 +16﹣12﹣16,=〔﹣12+8〕cm2.应选B.【点评】此题考查了二次根式的应用,算术平方根的定义,解题的关键在于根据正方形的面积求出两个正方形的边长.4.〔2021?呼伦贝尔〕假设1<x<2,那么的值为〔〕A.2x﹣4 B.﹣2C.4﹣2x D.2【分析】1<x<2,可判断x﹣3<0,x﹣1>0,根据绝对值,二次根式的性质解答.【解答】解:∵1<x<2,x﹣3<0,x﹣1>0,原式=|x﹣3|+=|x﹣3|+|x﹣1|=3﹣x+x﹣1=2.应选D.【点评】解答此题,要弄清以下问题:1、定义:一般地,形如〔a≥0〕的代数式叫做二次根式.当a>0时,表示a的算术平方根;当a=0时,=0;当a小于0时,非二次根式〔假设根号下为负数,那么无实数根〕.2、性质:=|a|..5.〔2021?南充〕以下计算正确的选项是〔〕A.=2B.=C.=x D.=x【分析】直接利用二次根式的性质分别化简求出答案.【解答】解:A、=2,正确;B、=,故此选项错误;C、=﹣x,故此选项错误;D、=|x|,故此选项错误;应选:A.【点评】此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.6.〔2021?杭州〕以下各式变形中,正确的选项是〔〕A.x2?x3=x6B.=|x|C.〔x2﹣〕÷x=x﹣1D.x2﹣x+1=〔x﹣〕2+【分析】直接利用二次根式的性质以及同底数幂的乘法运算法那么和分式的混合运算法那么分别化简求出答案.【解答】解:A、x2?x3=x5,故此选项错误;B、=|x|,正确;C、〔x2﹣〕÷x=x﹣,故此选项错误;D、x2﹣x+1=〔x﹣〕2+,故此选项错误;应选:B.【点评】此题主要考查了二次根式的性质以及同底数幂的乘法运算和分式的混合运算等知识,正确掌握相关运算法那么是解题关键.7.〔2021?巴中〕以下二次根式中,与是同类二次根式的是〔〕A.B.C.D..【分析】直接利用同类二次根式的定义分别化简二次根式求出答案.【解答】解:A、=3,与不是同类二次根式,故此选项错误;B、=,与,是同类二次根式,故此选项正确;C、=2,与不是同类二次根式,故此选项错误;D、==,与不是同类二次根式,故此选项错误;应选:B.【点评】此题主要考查了同类二次根式,正确化简二次根式是解题关键.8.〔2021?营口〕化简+﹣的结果为〔〕A.0B.2C.﹣2D.2【分析】根据根式的开方,可化简二次根式,根据二次根式的加减,可得答案.【解答】解:+﹣=3 +﹣2=2,应选:D.【点评】此题考查了二次根式的加减,先化简,再加减运算.9.〔2021?安徽校级自主招生〕,ab>0,化简二次根式 a的正确结果是〔〕A.B.C.﹣D.﹣【分析】直接利用二次根式的性质进而化简得出答案.【解答】解:∵ab>0,∴a=a×=﹣.应选:D.【点评】此题主要考查了二次根式的性质与化简,正确应用二次根式的性质是解题关键.10.〔2021?邯郸校级自主招生〕设a为﹣的小数局部,b为.﹣的小数局部.那么﹣的值为〔〕A. +﹣1B.﹣+1 C.﹣﹣1D.++1【分析】首先分别化简所给的两个二次根式,分别求出a、b对应的小数局部,然后代、化简、运算、求值,即可解决问题.【解答】解:∵﹣=﹣==,∴a的小数局部=﹣1;∵﹣==,∴b的小数局部=﹣2,∴﹣====.应选B.【点评】该题主要考查了二次根式的化简与求值问题;解题的关键是灵活运用二次根式的运算法那么来分析、判断、解答.11.〔2021?柘城县校级一模〕把中根号外面的因式移到根号内的结果是〔〕A.B.C.D.【分析】先根据被开方数大于等于0判断出a是负数,然后平方后移到根号内约.分即可得解.【解答】解:根据被开方数非负数得,﹣>0,解得a<0,﹣a==.应选A.【点评】此题考查了二次根式的性质与化简,先根据被开方数大于等于0求出a的取值范围是解题的关键,也是此题最容易出错的地方.12.〔2021?杨浦区三模〕如果=2a﹣1,那么〔〕A.a B.a≤C.a D.a≥【分析】由二次根式的化简公式得到1﹣2a为非正数,即可求出a的范围.【解答】解:∵=|1﹣2a|=2a﹣1,1﹣2a≤0,解得:a≥.应选D【点评】此题考查了二次根式的性质与化简,熟练掌握二次根式的化简公式是解此题的关键.13.〔2021?临朐县一模〕:a=,b=,那么a与b的关系是〔〕A.ab=1B.a+b=0C.a﹣b=0D.a2=b2【分析】先分母有理化求出a、b,再分别代入求出ab、a+b、a﹣b、a2、b2,求出每个式子的值,即可得出选项.【解答】解:a===2+,b===2﹣,A、ab=〔2+〕×〔2﹣〕=4﹣3=1,故本选项正确;B、a+b=〔2+〕+〔2﹣〕=4,故本选项错误;.C、a﹣b=〔2+〕﹣〔2﹣〕=2,故本选项错误;D、∵a2=〔2+〕2=4+4+3=7+4,b2=〔2﹣〕2=4﹣4+3=7﹣4,a2≠b2,故本选项错误;应选A.【点评】此题考查了分母有理化的应用,能求出每个式子的值是解此题的关键.二.填空题〔共17小题〕14.〔2021?静安区一模〕如果代数式有意义,那么x的取值范围为x>﹣.【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,x+2>0,解得,x>﹣2,故答案为:x>﹣2.【点评】此题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.15.〔2021?乐山〕在数轴上表示实数a的点如下图,化简+|a﹣2|的结果为3.【分析】直接利用二次根式的性质以及绝对值的性质分别化简求出答案.【解答】解:由数轴可得:a﹣5<0,a﹣2>0,那么+|a﹣2|=5﹣a+a﹣2=3.故答案为:3.【点评】此题主要考查了二次根式的性质以及绝对值的性质,正确掌握掌握相关性质是解题关键..16.〔2021?聊城〕算:=12.【分析】直接利用二次根式乘除运算法化求出答案.【解答】解:=3×÷=3=12.故答案:12.【点】此主要考了二次根式的乘除运算,正确化二次根式是解关.17.〔2021?黄石〕察以下等式:第1个等式:a1==1,第2个等式:a2==,第3个等式:a3=2,=第4个等式:a4=,=2按上述律,答复以下:〔1〕写出第n个等式:a n==;;〔2〕a123⋯n1.+a+a++a=【分析】〔1〕根据意可知,a1==,2=,3=2 1a=a=,a4==,⋯由此得出第n个等式:n=;2a=〔2〕将每一个等式化即可求得答案.【解答】解:〔1〕∵第1个等式:a1=,=1第2个等式:a2=,=第3个等式:a3=2,=第4个等式:a4=,=2 .∴第n个等式:a n==;2〕a1+a2+a3+⋯+a n=〔1〕+〔〕+〔2〕+〔2〕+⋯+〔〕1.故答案=;1.【点】此考数字的化律以及分母有理化,要求学生首先分析意,找到律,并行推得出答案.18.〔2021?哈〕算2的果是2.【分析】先将各个二次根式化成最二次根式,再把同二次根式行合并求解即可.【解答】解:原式=2×33= 2,故答案:2.【点】本考了二次根式的加减法,解答本的关在于掌握二次根式的化与同二次根式合并.19.〔2021?天津〕算〔+〕〔〕的果等于2.【分析】先套用平方差公式,再根据二次根式的性算可得.【解答】解:原式=〔〕2〔〕2=53=2,故答案:2.【点】本考了二次根式的混合运算的用,熟掌握平方差公式与二次根式的性是关..20.〔2021?博野县校级自主招生〕化简:〔0<a<1〕=﹣a.【分析】结合二次根式的性质进行化简求解即可.【解答】解:==|a﹣|.0<a<1,∴a2﹣1<0,∴a﹣=<0,∴原式=|a﹣|=﹣〔a﹣〕=﹣a.故答案为:﹣a.【点评】此题考查了二次根式的性质与化简,解答此题的关键在于熟练掌握二次根式的性质及二次根式的化简.21.〔2021?绵阳校级自主招生〕如果最简二次根式与可以合并,那么使有意义的x的取值范围是x≤10.【分析】根据二次根式可合并,可得同类二次根式,根据同类二次根式,可得a 的值,根据被开方数是非负数,可得答案.【解答】解:由最简二次根式与可以合并,得3a﹣8=17﹣2a.解得a=5.由有意义,得20﹣2x≥0,解得x≤10,故答案为:x≤10.【点评】此题考查了同类二次根式,利用同类二次根式得出关于a的方程是解题关键..22.〔2021?温州校级自主招生〕a,b是正整数,且满足是整数,那么这样的有序数对〔a,b〕共有7对.【分析】A,B只能是15n2,然后分别讨论及的取值,最终可确定有序数对的个数.【解答】解:15只能约分成3,5那么A,B只能是15n2先考虑A这边:①,那么B可以这边可以是1或者,此时有:〔15,60〕,〔15,15〕,〔60,15〕,②,只能B这边也是,此时有:〔60,60〕,③,那么B这边也只能是,∴2×〔+〕=1,此时有:〔240,240〕④的话,那么B这边只能是,那么2〔+〕=1,此时有:〔135,540〕,〔540,135〕.综上可得共有7对.故答案为:7.【点评】此题考查二次根式的化简求值,难度较大,关键是根据题意分别讨论及的取值.23.〔2021?福州自主招生〕对正实数a,b作定义a*b=﹣a,假设2*x=6,那么x=.【分析】根据定义把2*x=6化为普通方程,求解即可.【解答】解:.∵a*b=﹣a,∴2*x=﹣2,∴方程2*x=6可化为﹣2=6,解得x=32,故答案为:32【点评】此题主要考查二次根式的化简,利用新定义把方程化为普通方程是解题的关键.24.〔2021?黄冈校级自主招生〕x+y=,x﹣y=,那么x4﹣y4=.【分析】把所给式子两边平方再相加可先求得x2+y2,再求得x2﹣y2,可求得答案.【解答】解:∵x+y=,x﹣y=,∴〔x+y〕22+2xy+y2〔〕2+,〔﹣〕22﹣2xy+y2=x==x y=x=〔〕2=﹣,∴x2+y2=,又x2﹣y2=〔x+y〕〔x﹣y〕=〔〕〔〕==1,∴x4﹣y4〔2+y2〕〔x2﹣y2〕=,=x故答案为:.【点评】此题主要考查二次根式的化简,利用乘法公式分别求得x2+y2和x2﹣y2的值是解题的关键.25.〔2021?黄冈校级自主招生〕=﹣〔x,y为有理数〕,那么x﹣y=1.【分析】把条件两边平方,整理可得到x+y﹣2,结合x、y均为有理数,可求得x、y的值,可求得答案.【解答】解:.∵=,∴〔〕2=〔〕2,即23= x+ y 2,∴x+y 2=2= +2,∵x,y有理数,x+y=+,xy=×,由条件可知x>y,x=,y=,xy=1,故答案:1.【点】本主要考二次根式的化,由条件求得x、y的是解的关.26.〔2021春?固始期末〕是正整数,数n的最大 11.【分析】根据二次根式的意可知12n≥0,解得n≤12,且12n开方后是正整数,符合条件的12n的有1、4、9⋯,其中1最小,此n的最大.【解答】解:由意可知12n是一个完全平方数,且不0,最小1,所以n的最大121=11.【点】主要考了二次根式有意的条件,二次根式的被开方数是非数.27.〔2021?山西模〕三角形的三分3、m、5,化=2m 10.【分析】先利用三角形的三关系求出m的取范,再化求解即可.【解答】解:∵三角形的三分3、m、5,2<m<8,∴=m 2〔8 m〕=2m 10.故答案:2m 10.【点】本主要考了二次根式的性与化及三角形三关系,解的关是熟三角形的三关系..28.〔2021?武侯区模拟〕假设实数m满足=m+1,且0<m<,那么m的值为.【分析】直接利用二次根式的性质化简进而得出关于m的等式即可得出答案.【解答】解:∵=m+1,且0<m<,2﹣m=m+1,解得:m=.故答案为:.【点评】此题主要考查了二次根式的性质与化简,正确开平方是解题关键.29.〔2021?龙岩模拟〕计算以下各式的值:;;;.观察所得结果,总结存在的规律,应用得到的规律可得=102021.【分析】直接利用数据计算得出结果的变化规律进而得出答案.【解答】解:=10;=100=102;=1000=103;=10000=104,可得=102021.故答案为:102021.【点评】此题主要考查了二次根式的性质与化简,正确得出结果变化规律是解题关键.30.〔2021?丹东模拟〕观察以下各式:=11+3×1+1,=22+3×2+1,=32+3×3+1,猜测:=20212+3×2021+1..【分析】根据题意得出数字变换规律进而得出答案.【解答】解:由题意可得:=20212+3×2021+1.故答案为:20212+3×2021+1.【点评】此题主要考查了二次根式的化简,正确得出数字变化规律是解题关键.三.解答题〔共10小题〕31.〔2021春?临沭县校级月考〕计算〔1〕﹣4+÷〔2〕〔1﹣〕〔1+〕+〔1+〕2.【分析】〔1〕先进行二次根式的除法运算,然后化简后合并即可;2〕利用完全平方公式和平方差公式计算.【解答】解:〔1〕原式=3﹣2+=3 ﹣2+2=3;〔2〕原式=1﹣5+1+2+5=2+2.【点评】此题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.32.〔2021春?沂源县校级月考〕假设1<a<2,求+的值.【分析】根据a的范围即可确定a﹣2和a﹣1的符号,然后根据算术平根的意义进行化简求值.【解答】解:∵1<a<2,a﹣2<0,a﹣1>0.那么原式=+.+=﹣1+1=0.【点评】此题考查了二次根式的化简求值,正确理解算术平方根的意义,理解=|a|是关键.33.〔2021春?启东市月考〕x,y都是有理数,并且满足,求的值.【分析】观察式子,需求出x,y的值,因此,将等式变形:,x,y都是有理数,可得,求解并使原式有意义即可.【解答】解:∵,∴.x,y都是有理数,∴x2+2y﹣17与y+4也是有理数,∴解得∵有意义的条件是x≥y,∴取x=5,y=﹣4,∴.【点评】此类问题求解,或是转换式子,求出各个未知数的值,然后代入求解.或是将所求式子转化为值的式子,然后整体代入求解.34.〔2021?锦州〕先化简,再求值:,其中x=﹣3﹣〔π﹣3〕0.【分析】先根据分式混合运算的法那么把原式进行化简,再把化简后x的值代入进.行计算即可.【解答】解:,=÷,=×,=.x=﹣3﹣〔π﹣3〕0,×4﹣﹣1,=2 ﹣﹣1,﹣1.把x=﹣1代入得到:==.即=.【点评】此题考查的是分式的化简求值,在解答此类题目时要注意通分及约分的灵活应用.35.〔2021?湖北校级自主招生〕〔1〕|2021﹣x|+=x,求x﹣20212的值;〔2〕a>0,b>0且〔+〕=3〔+5〕.求的值.【分析】〔1〕由二次根式有意义的条件可知x≥2021,然后化简得=2021,由算术平方根的定义可知:x﹣2021=20212,最后结合平方差公式可求得答案.〔2〕根据单项式乘多项式的法那么把〔+〕=3〔+5〕进行整理,得出a﹣2﹣15b=0,再进行因式分解得出〔﹣5〕〔+3〕=0,然后∴根据a>0,b>0,得出﹣5=0,求出a=25b,最后代入要求的式子约分即可得出答案.【解答】解:〔1〕∵x﹣2021≥0,x≥2021.x﹣2021+=x..∴=2021.x﹣2021=20212.x=20212+2021.x﹣20212=20212﹣20212+2021=﹣〔2021+2021〕+2021=﹣2021.〔2〕∵〔+〕=3〔+5〕,∴a+=3+15b,a﹣2﹣15b=0,∴〔﹣5〕〔+3〕=0,a>0,b>0,∴﹣5=0,∴a=25b,∴原式===2.【点评】此题主要考查的是二次根式的混合运算,用到的知识点是二次根式有意义的条件、绝对值的化简、算术平方根的性质、平方差公式的应用,第〔1〕题求得x﹣2021=20212,第〔2〕求出a=25b是解题的关键.36.〔2021?山西模拟〕观察以下各式及其验证过程:〔1〕按照上述两个等式及其验证过程的根本思路,猜测的变形结果并进行验证;.2〕针对上述各式反响的规律,写出用n〔n为任意自然数,且n≥2〕表示的等式,并说明它成立.【分析】根据观察,可得规律,根据规律,可得答案.【解答】解:〔1〕5=验证:5====;〔2〕n=,证明:n====.【点评】此题考查了二次根式的性质与化简,运用n=的规律是解题关键.37.〔2021?仙游县校级模拟〕先化简,再求值:〔+〕÷,其中a=+1.【分析】利用通分、平方差公式等将原式化简为,代入a的值即可得出结论.【解答】解:原式=〔+〕÷,=?,=?,.当a= +1时,原式==.【点评】此题考查了分式的化简求值,解题的关键是将原式化简成.此题属于根底题,难度不大,解决该题型题目时,先将原代数式进行化简,再代入数据求值是关键..38.〔2021?高邮市一模〕求不等式组的整数解.【分析】首先解不等式组,注意系数化“1时〞,这两个不等式的系数为负数,不等号的方向要改变.还要注意题目的要求,按要求解题.【解答】解:整理不等式组,得∴∴∴;∴不等式组的整数解为﹣2,﹣1,0.【点评】此题考查了一元一次不等式组的解法.要注意系数化“1时〞,系数是正还是负,正不等号的方向不变,负不等号的方向改变.还要注意审题,根据题意解题.39.〔2021?太原一模〕阅读与计算:请阅读以下材料,并完成相应的任务.古希腊的几何学家海伦在他的?度量?一书中给出了利用三角形的三边求三角形面积的“海伦公式〞:如果一个三角形的三边长分别为a、b、c,设p=,那么三角形的面积S=.我国南宋著名的数学家秦九韶,曾提出利用三角形的三边求面积的“秦九韶公式〞〔三斜求积术〕:如果一个三角形的三边长分别为a、b、c,那么三角形的面积S=.〔1〕假设一个三角形的三边长分别是5,6,7,那么这个三角形的面积等于6.〔2〕假设一个三角形的三边长分别是,求这个三角形的面积..【分析】〔1〕把a、b、c的长代入求出S2,再开方计算即可得解;〔2〕把a、b、c的长代入求出S2,再开方计算即可得解.【解答】解:〔1〕p===9,S===6.答:这个三角形的面积等于6.2〕S====.答:这个三角形的面积是.故答案为:6.【点评】此题考查了二次根式的应用,难点在于对各项整理利用算术平方根的定义计算.40.〔2021春?饶平县期末〕:y=++,求﹣的值.【分析】首先根据二次根式中的被开方数必须是非负数,求出x的值是多少,进而求出y的值是多少;然后把求出的x、y的值代入化简后的算式即可.【解答】解:∵+有意义,.∴,解得x=8,∴y=++=++=0+0+=∴﹣=﹣=﹣=﹣﹣=【点评】此题主要考查了二次根式有意义的条件,要熟练掌握,解答此题的关键是要明确:二次根式中的被开方数必须是非负数,否那么二次根式无意义.单纯的课本内容,并不能满足学生的需要,通过补充,到达内容的完善教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。
八年级初二数学提高题专题复习二次根式练习题附解析
一、选择题1.下列式子为最简二次根式的是( ) A .22a b +B .2aC .12aD .122.下列运算正确的是( ) A .732-= B .()255-=-C .1232÷=D .03812+=3.下列计算结果正确的是( ) A .2+5=7 B .3223-= C .2510⨯=D .25105= 4.下列计算正确的是( ) A .93=±B .8220-=C .532-=D .2(5)5-=-5.若ab <0,则代数式可化简为( ) A .aB .aC .﹣aD .﹣a6.已知2225152x x ---=,则222515x x -+-的值为( ) A .3B .4C .5D .6 7.实数a ,b 在数轴上的位置如图所示,则化简﹣+b 的结果是( )A .1B .b+1C .2aD .1﹣2a 8.751m +m 的值为( ) A .7B .11C .2D .19.下列运算一定正确的是( ) A 2a a =B ab a b =C .222()a b a b ⋅=⋅D ()0n mnaa m=≥ 10.已知,5x y +=-,3xy =则y x x y x y的结果是( ) A .3B .3-C .32D .32-二、填空题11.已知412x =-()21142221x x x x -⎛⎫+⋅= ⎪-+-⎝⎭_________12.若0a >,把4ab-化成最简二次根式为________. 13.已知()2117932x x x y ---+-=-,则2x ﹣18y 2=_____.14.实数a 、b 满足22a -4a 436-12a a 10-b 4-b-2+++=+,则22a b +的最大值为_________.15.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用“”表示算数平方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为: 22164?a x a x +=则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.16.把1m m-_____________. 17.下面是一个按某种规律排列的数阵:11第行325 62第行722310 11 233第行 13 1541732 19254第行根据数阵排列的规律,第 5 行从左向右数第 3 个数是 ,第 n (n 3≥ 且 n 是整数)行从左向右数第 n 2- 个数是 (用含 n 的代数式表示). 18.计算:652015·652016=________. 19.观察分析下列数据:0,36,-3,231532的规律得到第10个数据应是__________. 20.4x -x 的取值范围是_____三、解答题21.计算:(1(041--;(2⎛- ⎝【答案】(1;(2)【解析】试题分析:根据二次根式的性质及分母有理化,化简二次根式,然后合并同类二次根式即可解答.试题解析:(1(041--(2⎛- ⎝-0-=22.-10 【分析】先根据二次根式的性质和平方差公式化简,然后再进行计算即可 【详解】=(22⎡⎤--⎢⎥⎣⎦=()212--10+.10. 【点睛】本题主要考查了二次根式的性质、平方差公式,灵活运用二次根式的性质化简是解答本题的关键.23.计算:(1)+(2(33+-【答案】(1)2) -10 【分析】(1)原式二次根式的乘除法法则进行计算即可得到答案;(1)原式第一项运用二次根式的性质进行化简,第二项运用平方差公式进行化简即可. 【详解】解:(1)+===(2(33+-=5+9-24=14-24 =-10. 【点睛】此题主要考查了二次根式的化简,熟练掌握二次根式的性质是解答此题的关键.24.先化简,再求值:(()69x x x x --+,其中1x =.【答案】化简得6x+6,代入得 【分析】根据整式的运算公式进行化简即可求解. 【详解】(()69x x x x +--+=22369x x x --++ =6x+6把1x =代入原式=61)【点睛】此题主要考查实数的运算,解题的关键熟知整式的运算法则.25.计算(1(2)(()21-【答案】(1);(2)24+ 【分析】(1)先将各二次根式化为最简二次根式,再进行合并即可得到答案;(2)原式运用平方差公式和完全平方公式把括号展开后,再合并同类二次根式即可得到答案. 【详解】解:(1=2+=(2-+=2(2)(()21-=22(181)---=452181--+=24+. 【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则和运算顺序是解答此题的关键.26.计算:(1 (2)()()2221-【答案】2)1443 【分析】(1)先化成最简二次根式,然后再进行加减运算即可; (2)套用平方差公式和完全平方式进行运算即可. 【详解】解:(1)原式=23223323,(2)原式(34)(12431)1124311443,故答案为:1443.【点睛】本题考查二次根式的四则运算,熟练掌握二次根式的四则运算是解决本题的关键.27.已知长方形的长a =b =. (1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.【答案】(1)2)长方形的周长大. 【解析】试题分析:(1)代入周长计算公式解决问题;(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可. 试题解析:(1)()11222223a b ⎛+=⨯=⨯⨯⨯=⨯= ⎝∴长方形的周长为 .(2)114.23=⨯⨯=正方形的面积也为4. 2.= 周长为:428.⨯=8.>∴长方形的周长大于正方形的周长.28.化简求值:212(1)211x x x x -÷-+++,其中1x =.【解析】分析:先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可. 详解:原式2112,2111x x x x x x -+⎛⎫=÷- ⎪++++⎝⎭2112,211x x x x x -+-=÷+++ ()211,11x x x x -+=⋅-+ 1.1x =+当1x =时,11x ==+ 点睛:考查分式的混合运算,掌握运算顺序是解题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察. 【详解】AB |a |,可以化简,故不是最简二次根式;C =D 2=,可以化简,故不是最简二次根式; 故选:A . 【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.C解析:C 【分析】由二次根式的性质,二次根式的混合运算,分别进行计算,即可得到答案. 【详解】解:A A 错误;B 5=,故B 错误;C 2==,故C 正确;D 01213=+=,故D 错误; 故选:C .【点睛】本题考查了二次根式的性质,二次根式的混合运算,立方根,零指数幂,解题的关键是熟练掌握运算法则进行解题.3.C解析:C【分析】根据二次根式的加法、减法、乘法、分母有理化逐一进行计算判断即可.【详解】A.2与5不能合并,故A选项错误;B.32222-=,故B选项错误;C.2510⨯=,正确;D.225105555⨯==⨯,故D选项错误,故选C.【点睛】本题考查了二次根式的运算,分母有理化,熟练掌握各运算法则是解题的关键.4.B解析:B【分析】直接利用二次根式的性质化简得出答案.【详解】A. 93=,故此选项错误;B. 8220-=,正确;C. 53-,无法计算,故此选项错误;D. 2(5)5-=,故此选项错误;故选:B【点睛】此题主要考查了二次根式的加减,正确掌握二次根式的性质是解题关键.5.C解析:C【解析】【分析】二次根式有意义,就隐含条件b<0,由ab<0,先判断出a、b的符号,再进行化简即可.【详解】解:若ab<0,且代数式有意义;故由b>0,a<0;则代数式故选:C . 【点睛】本题主要考查二次根式的化简方法与运用:当a >0时,,当a <0时,,当a=0时,.6.C解析:C 【解析】∵2225152x x ---=,2222222222(2515)(2515)(25)(15)251510x x x x x x x x ----+-=---=--+=,∴2225155x x -+-=. 故选C.7.A解析:A 【解析】﹣+b=111a a b b a a b b ---+=-+-+= ,故选A.8.C解析:C 【分析】几个二次根式化为最简二次根式后,如果被开方数相同,则这几个二次根式即为同类二次根式. 【详解】解7553=m=7时1822m +==,故A 错误;当m=11时11223m +==1m +B 错误;当m=1时12m +=故D 错误;当m=2时13m +=故C 正确;故选择C. 【点睛】本题考查了同类二次根式的定义.9.C解析:C 【分析】直接利用二次根式的性质与化简以及积的乘方运算法则分别计算即可得出答案. 【详解】A 2a |a |,故此选项错误;B.,则a,b均为非负数,故此选项错误;C.a2•b2=(a•b)2,正确;D m n a(a≥0),故此选项错误.故选C.【点睛】本题主要考查了二次根式的性质与化简以及积的乘方运算,正确掌握相关运算法则是解题的关键.10.B解析:B【分析】由x+y=-5,xy=3可得到x<0,y<0,再利用二次根式的性质化简得到原式==-,然后把xy=3代入计算即可.【详解】∵x+y=−5,xy=3,∴x<0,y<0,∴原式===-(x<0,y<0),当xy=3时,原式=-故选B.【点睛】此题考查二次根式的化简求值,解题关键在于先化简.二、填空题11.【分析】利用完全平方公式化简,得到;化简分式,最后将代入化简后的分式,计算即可.【详解】将代入得:故答案为:【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在解析:1-利用完全平方公式化简x =1x =;化简分式,最后将1x =代入化简后的分式,计算即可.【详解】1x =====()211422(2)(2)2221(2)(2)2(1)x x x x x x x x x x x -++-+-⎛⎫+⋅= ⎪-+--+-⎝⎭ 1x x =-将1x =1=-故答案为:1-【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在于化简x =熟练掌握相关知识点是解题关键. 12.【分析】先判断b 的符号,再根据二次根式的性质进行化简即可.【详解】解:∵∴∴所以答案是:【点睛】本题考查了二次根式的性质.解析: 【分析】先判断b 的符号,再根据二次根式的性质进行化简即可. 【详解】 解:∵40,0a a b-≥> ∴0b <2a b b b b=--所以答案是:=.a13.【分析】直接利用二次根式的性质将已知化简,再将原式变形求出答案.【详解】解:∵一定有意义,∴x≥11,∴﹣|7﹣x|+=3y﹣2,﹣x+7+x﹣9=3y﹣2,整理得:=3y,∴x﹣解析:22【分析】直接利用二次根式的性质将已知化简,再将原式变形求出答案.【详解】一定有意义,∴x≥11,|7﹣x=3y﹣2,﹣x+7+x﹣9=3y﹣2,=3y,∴x﹣11=9y2,则2x﹣18y2=2x﹣2(x﹣11)=22.故答案为:22.【点睛】本题考查二次根式有意义的应用,以及二次根式的性质应用,属于提高题.14.【分析】首先化简,可得|a-2|+|a-6|+|b+4|+|b-2|=10,然后根据|a-2|+|a-6|≥4,|b+4|+|b-2|≥6,判断出a,b的取值范围,即可求出的最大值.【详解】解析:【分析】10-b4-b-2=+,可得|a-2|+|a-6|+|b+4|+|b-2|=10,然后根据|a-2|+|a-6|≥4,|b+4|+|b-2|≥6,判断出a,b的取值范围,即可求出22+的最大值.a b【详解】=+,10-b4-b-21042b b =-+--, ∴261042a a b b -+-=-+--, ∴264210a a b b -+-+++-=,∵264a a -+-≥,426b b ++-≥,∴ 264a a -+-=,42=6b b ++-,∴2≤a≤6,-4≤b≤2,∴22a b +的最大值为()226452+-=,故答案为52.【点睛】本题考查了二次根式的性质与化简,绝对值的意义,算术平方根的性质.解题的关键是要明确化简二次根式的步骤:①把被开方数分解因式;②利用算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2. 15.a+3【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2所示题目(字母代表正数)翻【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2∵a >0+3.a =a+3. 【点睛】本题考查阅读理解的能力,正确理解题意是关键. 16.-【解析】【分析】根据二次根式的性质,可得答案【详解】由题意可得:,即∴故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定解析:【解析】【分析】根据二次根式的性质,可得答案【详解】由题意可得:1m,即0m∴11mm m mm mm故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定m的取值范围.17.;.【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表格中的数据可得,第5行从左向右数第3=∵第(n-1,∴第n (n ≥3且n 是整数)行从左向右数第n-2个数是..【点睛】本题是对数字变化规律的考查,观察出被开方数是连续自然数并且每一行的最后一个数的被开方数是所在的行数乘比行数大1的数是解题的关键.18.【解析】原式=.故答案为.【解析】原式=20152015=19.6【分析】通过观察可知,根号外的符号以及根号下的被开方数依次是:,,…,可以得到第13个的答案.【详解】解:由题意知道:题目中的数据可以整理为:,,…,∴第13个答案为:.故答案为6.解析:6【分析】 通过观察可知,根号外的符号以及根号下的被开方数依次是:11(1)30,21(1)31,31(1)32…1(1)3(1)n n ,可以得到第13个的答案.【详解】 解:由题意知道:题目中的数据可以整理为:11(1)30,21(1)31,31(1)32…1(1)3(1)n n ,∴第13个答案为:131(1)3(131)6.故答案为6.【点睛】此题主要考查了二次根式的运算以及学生的分析、总结、归纳的能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.20.x≥4【解析】试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为x≥4.点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然解析:x≥4【解析】试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为x≥4.点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然后列不等式求解即可,是一个中考常考的简单题.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
初二二次根式所有知识点总结和常考题提高难题压轴题练习含答案解析)
初二二次根式所有知识点总结和常考题知识点:1、二次根式: 形如)0(≥a a 的式子。
①二次根式必须满足:含有二次根号“”;被开方数a 必须是非负数。
②非负性2、最简二次根式:满足:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式的二次根式。
3、化最简二次根式的方法和步骤:(1)如果被开方数含分母,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
(2)如果被开方数含能开得尽方的因数或因式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。
3、二次根式有关公式(1))0()(2≥=a a a (2)a a =2(3)乘法公式)0,0(≥≥∙=b a b a ab(4)除法公式)0,0( b a ba b a ≥= 4、二次根式的加减法则:先将二次根式化为最简二次根式,再将被开方数相同的二次根式进行合并。
5、二次根式混合运算顺序:先乘方,再乘除,最后加减,有括号的先算括号里的。
常考题:一.选择题(共14小题)1.下列二次根式中属于最简二次根式的是( ) A .B .C .D .2.式子有意义的x 的取值范围是( )A .x ≥﹣且x ≠1B .x ≠1C .D .3.下列计算错误的是( )A .B .C .D .4.估计的运算结果应在( )A .6到7之间B .7到8之间C .8到9之间D .9到10之间5.如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥6.若=(x+y)2,则x﹣y的值为()A.﹣1 B.1 C.2 D.37.是整数,则正整数n的最小值是()A.4 B.5 C.6 D.78.化简的结果是()A.B.C.D.9.k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n10.实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定11.把根号外的因式移入根号内得()A.B.C.D.12.已知是正整数,则实数n的最大值为()A.12 B.11 C.8 D.313.若式子有意义,则点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限14.已知m=1+,n=1﹣,则代数式的值为()A.9 B.±3 C.3 D.5二.填空题(共13小题)15.实数a在数轴上的位置如图所示,则|a﹣1|+= .16.计算:的结果是.17.化简:(﹣)﹣﹣|﹣3|= .18.如果最简二次根式与是同类二次根式,则a= .19.定义运算“@”的运算法则为:x@y=,则(2@6)@8= .20.化简×﹣4××(1﹣)0的结果是.21.计算:﹣﹣= .22.三角形的三边长分别为,,,则这个三角形的周长为cm.23.如果最简二次根式与能合并,那么a= .24.如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是.(结果保留根号)25.实数p在数轴上的位置如图所示,化简= .26.计算:= .27.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= .三.解答题(共13小题)28.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得= ;参照(四)式得= .(3)化简:+++…+.29.计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.30.先化简,再求值:,其中.31.先化简,再求值:,其中x=1+,y=1﹣.32.先化简,再求值:,其中.33.已知a=,求的值.34.对于题目“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答:+=+=+﹣a=﹣a=;乙的解答:+=+=+a﹣=a=.请你判断谁的答案是错误的,为什么?35.一个三角形的三边长分别为、、(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.36.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.37.已知:,,求代数式x2﹣xy+y2值.38.计算或化简:(1);(2)(a>0,b>0).39.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m,=,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.40.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若a+4=,且a、m、n均为正整数,求a的值?初二二次根式所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共14小题)1.(2005•岳阳)下列二次根式中属于最简二次根式的是()A.B.C. D.【分析】B、D选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.【解答】解:因为:B、=4;C、=;D、=2;所以这三项都不是最简二次根式.故选A.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.2.(2013•娄底)式子有意义的x的取值范围是()A.x≥﹣且x≠1 B.x≠1 C.D.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得,2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1.故选A.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.(2007•荆州)下列计算错误的是()A.B.C.D.【分析】根据二次根式的运算法则分别计算,再作判断.【解答】解:A、==7,正确;B、==2,正确;C、+=3+5=8,正确;D、,故错误.故选D.【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.4.(2008•芜湖)估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间【分析】先进行二次根式的运算,然后再进行估算.【解答】解:∵=4+,而4<<5,∴原式运算的结果在8到9之间;故选C.【点评】本题考查了无理数的近似值问题,现实生活中经常需要估算,“夹逼法”是估算的一般方法,也是常用方法.5.(2011•烟台)如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥【分析】由已知得1﹣2a≥0,从而得出a的取值范围即可.【解答】解:∵,∴1﹣2a≥0,解得a≤.故选:B.【点评】本题考查了二次根式的化简与求值,是基础知识要熟练掌握.6.(2009•荆门)若=(x+y)2,则x﹣y的值为()A.﹣1 B.1 C.2 D.3【分析】先根据二次根式的性质,被开方数大于或等于0,可求出x、y的值,再代入代数式即可.【解答】解:∵=(x+y)2有意义,∴x﹣1≥0且1﹣x≥0,∴x=1,y=﹣1,∴x﹣y=1﹣(﹣1)=2.故选:C.【点评】本题主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.7.(2012秋•麻城市校级期末)是整数,则正整数n的最小值是()A.4 B.5 C.6 D.7【分析】本题可将24拆成4×6,先把化简为2,所以只要乘以6得出62即可得出整数,由此可得出n的值.【解答】解:∵==2,∴当n=6时,=6,∴原式=2=12,∴n的最小值为6.故选:C.【点评】本题考查的是二次根式的性质.本题还可将选项代入根式中看是否能开得尽方,若能则为答案.8.(2013•佛山)化简的结果是()A.B.C.D.【分析】分子、分母同时乘以(+1)即可.【解答】解:原式===2+.故选:D.【点评】本题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.9.(2013•台湾)k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n【分析】根据二次根式的化简公式得到k,m及n的值,即可作出判断.【解答】解:=3,=15,=6,可得:k=3,m=2,n=5,则m<k<n.故选:D【点评】此题考查了二次根式的性质与化简,熟练掌握二次根式的化简公式是解本题的关键.10.(2011•菏泽)实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定【分析】先从实数a在数轴上的位置,得出a的取值范围,然后求出(a﹣4)和(a﹣11)的取值范围,再开方化简.【解答】解:从实数a在数轴上的位置可得,5<a<10,所以a﹣4>0,a﹣11<0,则,=a﹣4+11﹣a,=7.故选A.【点评】本题主要考查了二次根式的化简,正确理解二次根式的算术平方根等概念.11.(2013秋•五莲县期末)把根号外的因式移入根号内得()A.B.C.D.【分析】根据二次根式的性质及二次根式成立的条件解答.【解答】解:∵成立,∴﹣>0,即m<0,原式=﹣=﹣.故选:D.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.二次根式成立的条件:被开方数大于等于0,含分母的分母不为0.12.(2009•绵阳)已知是正整数,则实数n的最大值为()A.12 B.11 C.8 D.3【分析】如果实数n取最大值,那么12﹣n有最小值;又知是正整数,而最小的正整数是1,则等于1,从而得出结果.【解答】解:当等于最小的正整数1时,n取最大值,则n=11.故选B.【点评】此题的关键是分析当等于最小的正整数1时,n取最大值.13.(2005•辽宁)若式子有意义,则点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据二次根式的被开方数为非负数和分母不为0,对a、b的取值范围进行判断.【解答】解:要使这个式子有意义,必须有﹣a≥0,ab>0,∴a<0,b<0,∴点(a,b)在第三象限.故选C.【点评】本题考查二次根式有意义的条件,以及各象限内点的坐标的符号.14.(2013•上城区一模)已知m=1+,n=1﹣,则代数式的值为()A.9 B.±3 C.3 D.5【分析】原式变形为,由已知易得m+n=2,mn=(1+)(1﹣)=﹣1,然后整体代入计算即可.【解答】解:m+n=2,mn=(1+)(1﹣)=﹣1,原式====3.故选:C.【点评】本题考查了二次根式的化简求值:先把被开方数变形,用两个数的和与积表示,然后利用整体代入的思想代入计算.二.填空题(共13小题)15.(2004•山西)实数a在数轴上的位置如图所示,则|a﹣1|+= 1 .【分析】根据数轴上表示的两个数,右边的数总比左边的大,分别得出a﹣1与0,a﹣2与0的关系,然后根据绝对值的意义和二次根式的意义化简.【解答】解:根据数轴上显示的数据可知:1<a<2,∴a﹣1>0,a﹣2<0,∴|a﹣1|+=a﹣1+2﹣a=1.故答案为:1.【点评】本题主要考查了数轴,绝对值的意义和根据二次根式的意义化简.二次根式的化简规律总结:当a≥0时,=a;当a≤0时,=﹣a.16.(2013•南京)计算:的结果是.【分析】先进行二次根式的化简,然后合并同类二次根式即可.【解答】解:原式=﹣=.故答案为:.【点评】本题考查了二次根式的加减运算,属于基础题,关键是掌握二次根式的化简及同类二次根式的合并.17.(2013•泰安)化简:(﹣)﹣﹣|﹣3|= ﹣6 .【分析】根据二次根式的乘法运算法则以及绝对值的性质和二次根式的化简分别化简整理得出即可.【解答】解:(﹣)﹣﹣|﹣3|=﹣3﹣2﹣(3﹣),=﹣6.故答案为:﹣6.【点评】此题主要考查了二次根式的化简与混合运算,正确化简二次根式是解题关键.18.(2006•广安)如果最简二次根式与是同类二次根式,则a= 5 .【分析】根据最简二次根式和同类二次根式的定义,列方程求解.【解答】解:∵最简二次根式与是同类二次根式,∴3a﹣8=17﹣2a,解得:a=5.【点评】此题主要考查最简二次根式和同类二次根式的定义.19.(2007•芜湖)定义运算“@”的运算法则为:x@y=,则(2@6)@8= 6 .【分析】认真观察新运算法则的特点,找出其中的规律,再计算.【解答】解:∵x@y=,∴(2@6)@8=@8=4@8==6,故答案为:6.【点评】解答此类题目的关键是认真观察新运算法则的特点,找出其中的规律,再计算.20.(2014•荆州)化简×﹣4××(1﹣)0的结果是.【分析】先把各二次根式化为最简二次根式,再根据二次根式的乘法法则和零指数幂的意义计算得到原式=2﹣,然后合并即可.【解答】解:原式=2×﹣4××1=2﹣=.故答案为:.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.21.(2014•广元)计算:﹣﹣= ﹣2 .【分析】分别进行分母有理化、二次根式的化简,然后合并求解.【解答】解:==﹣2.故答案为:﹣2.【点评】本题考查了二次根式的加减法,本题涉及了分母有理化、二次根式的化简等运算,属于基础题.22.(2013•宜城市模拟)三角形的三边长分别为,,,则这个三角形的周长为5cm.【分析】三角形的三边长的和为三角形的周长,所以这个三角形的周长为++,化简合并同类二次根式.【解答】解:这个三角形的周长为++=2+2+3=5+2(cm).故答案为:5+2(cm).【点评】本题考查了运用二次根式的加减解决实际问题.23.(2012秋•浏阳市校级期中)如果最简二次根式与能合并,那么a= 1 .【分析】根据两最简二次根式能合并,得到被开方数相同,然后列一元一次方程求解即可.【解答】解:根据题意得,1+a=4a﹣2,移项合并,得3a=3,系数化为1,得a=1.故答案为:1.【点评】本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键.24.(2006•宿迁)如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是2﹣2 .(结果保留根号)【分析】根据题意可知,两相邻正方形的边长分别是和,由图知,矩形的长和宽分别为+、,所以矩形的面积是为(+)•=2+6,即可求得矩形内阴影部分的面积.【解答】解:矩形内阴影部分的面积是(+)•﹣2﹣6=2+6﹣2﹣6=2﹣2.【点评】本题要运用数形结合的思想,注意观察各图形间的联系,是解决问题的关键.25.(2003•河南)实数p在数轴上的位置如图所示,化简=1 .【分析】根据数轴确定p的取值范围,再利用二次根式的性质化简.【解答】解:由数轴可得,1<p<2,∴p﹣1>0,p﹣2<0,∴=p﹣1+2﹣p=1.【点评】此题从数轴读取p的取值范围是关键.26.(2009•泸州)计算:= 2 .【分析】运用二次根式的性质:=|a|,由于2>,故=2﹣.【解答】解:原式=2﹣+=2.【点评】合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.27.(2011•凉山州)已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= 2.5 .【分析】只需首先对估算出大小,从而求出其整数部分a,其小数部分用﹣a表示.再分别代入amn+bn2=1进行计算.【解答】解:因为2<<3,所以2<5﹣<3,故m=2,n=5﹣﹣2=3﹣.把m=2,n=3﹣代入amn+bn2=1得,2(3﹣)a+(3﹣)2b=1化简得(6a+16b)﹣(2a+6b)=1,等式两边相对照,因为结果不含,所以6a+16b=1且2a+6b=0,解得a=1.5,b=﹣0.5.所以2a+b=3﹣0.5=2.5.故答案为:2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.三.解答题(共13小题)28.(2009•邵阳)阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得= ;参照(四)式得= .(3)化简:+++…+.【分析】(1)中,通过观察,发现:分母有理化的两种方法:1、同乘分母的有理化因式;2、因式分解达到约分的目的;(2)中,注意找规律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出现抵消的情况.【解答】解:(1)=,=;(2)原式=+…+=++…+=.【点评】学会分母有理化的两种方法.29.(2014•张家界)计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.【分析】根据零指数幂、负整数指数幂和平方差公式得到原式=5﹣1﹣9+﹣1﹣1+2,然后合并即可.【解答】解:原式=5﹣1﹣9+﹣1﹣1+2=﹣7+3.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂.30.(2009•广州)先化简,再求值:,其中.【分析】本题的关键是对整式化简,然后把给定的值代入求值.【解答】解:原式=a2﹣3﹣a2+6a=6a﹣3,当a=时,原式=6+3﹣3=6.【点评】本题主要考查整式的运算、平方差公式等基本知识,考查基本的代数计算能力.注意先化简,再代入求值.31.(2005•沈阳)先化简,再求值:,其中x=1+,y=1﹣.【分析】这是个分式除法与减法混合运算题,运算顺序是先做括号内的减法,此时要注意把各分母先因式分解,确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.【解答】解:原式===;当x=1+,y=1﹣时,原式=.【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.32.(2010•莱芜)先化简,再求值:,其中.【分析】这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式去括号,把除法转换为乘法化简,然后再代入求值.本题注意x﹣2看作一个整体.【解答】解:原式====﹣(x+4),当时,原式===.【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.33.(2008•余姚市校级自主招生)已知a=,求的值.【分析】先化简,再代入求值即可.【解答】解:∵a=,∴a=2﹣<1,∴原式=﹣=a﹣1﹣=a﹣1+=2﹣﹣1+2+=4﹣1=3.【点评】本题考查了二次根式的化简与求值,将二次根式的化简是解此题的关键.34.(2002•辽宁)对于题目“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答:+=+=+﹣a=﹣a=;乙的解答:+=+=+a﹣=a=.请你判断谁的答案是错误的,为什么?【分析】因为a=时,a﹣=﹣5=﹣4<0,所以≠a﹣,故错误的是乙.【解答】解:甲的解答:a=时,﹣a=5﹣=4>0,所以=﹣a,正确;乙的解答:因为a=时,a﹣=﹣5=﹣4<0,所以≠a﹣,错误;因此,我们可以判断乙的解答是错误的.【点评】应熟练掌握二次根式的性质:=﹣a(a≤0).35.(2011•上城区二模)一个三角形的三边长分别为、、(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.【分析】把三角形的三边长相加,即为三角形的周长.再运用运用二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:(1)周长=++==,(2)当x=20时,周长=,(或当x=时,周长=等)【点评】对于第(2)答案不唯一,但要注意必须符合题意.36.(2005•台州)我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.【分析】(1)代入计算即可;(2)需要在括号内都乘以4,括号外再乘,保持等式不变,构成完全平方公式,再进行计算.【解答】解:(1)s=,=;p=(5+7+8)=10,又s=;(2)=(﹣)=,=(c+a﹣b)(c﹣a+b)(a+b+c)(a+b﹣c),=(2p﹣2a)(2p﹣2b)•2p•(2p﹣2c),=p(p﹣a)(p﹣b)(p﹣c),∴=.(说明:若在整个推导过程中,始终带根号运算当然也正确)【点评】考查了三角形面积的海伦公式的用法,也培养了学生的推理和计算能力.37.(2009秋•金口河区期末)已知:,,求代数式x2﹣xy+y2值.【分析】观察,显然,要求的代数式可以变成x,y的差与积的形式,从而简便计算.【解答】解:∵,,∴xy=×2=,x﹣y=∴原式=(x﹣y)2+xy=5+=.【点评】此类题注意变成字母的和、差或积的形式,然后整体代值计算.38.(2010秋•灌云县校级期末)计算或化简:(1);(2)(a>0,b>0).【分析】(1)先化简,再运用分配律计算;(2)先化简,再根据乘除法的法则计算.【解答】解:(1)原式==6﹣12﹣6=6﹣18;(2)原式=﹣×=﹣3a2b2×=﹣a2b.【点评】熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.39.(2013秋•故城县期末)先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m,=,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【解答】解:根据,可得m=13,n=42,∵6+7=13,6×7=42,∴==.【点评】解题关键是把根号内的式子整理为完全平方的形式.40.(2013•黔西南州)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= m2+3n2,b= 2mn ;(2)利用所探索的结论,找一组正整数a、b、m、n填空: 4 + 2 =( 1+ 1 )2;(3)若a+4=,且a、m、n均为正整数,求a的值?【分析】(1)根据完全平方公式运算法则,即可得出a、b的表达式;(2)首先确定好m、n的正整数值,然后根据(1)的结论即可求出a、b的值;(3)根据题意,4=2mn,首先确定m、n的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a的值.【解答】解:(1)∵a+b=,∴a+b=m2+3n2+2mn,∴a=m2+3n2,b=2mn.故答案为:m2+3n2,2mn.(2)设m=1,n=1,∴a=m2+3n2=4,b=2mn=2.故答案为4、2、1、1.(3)由题意,得:a=m2+3n2,b=2mn∵4=2mn,且m、n为正整数,∴m=2,n=1或者m=1,n=2,∴a=22+3×12=7,或a=12+3×22=13.【点评】本题主要考查二次根式的混合运算,完全平方公式,解题的关键在于熟练运算完全平方公式和二次根式的运算法则.。
人教版八年级数学下册《二次根式》小结与复习提升卷含答案
八年级数学下册《二次根式》小结与复习提升卷含答案1. 对于任意两个和为正数的实数a 、b ,定义◎运算如下:a ◎b b a b a +-=,例如: 3◎111313=+-=.那么8◎12= . 2.观察下列各式:312311=+;413412=+;514513=+…… (1)请你猜想:_____614=+,______715=+; (2)计算(写出推导过程):15113+(3)写你将猜想到的规律用含有自然数n (n ≥1)的代数式表达出来 .3. 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如221223)(+=+,善于思考的小明进行了以下探索: 设()222n m b a +=+ (其中a,b,m,n 均为整数),则有mn b n m a mn n m b a 2,2,22222222=+=∴++=+这样小明就找到了一种把类似2b a +的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a,b,m,n 均为正整数时,若2)3(3n m b a +=+,用含m,n 的式子分别表示a,b 为a= ,b=(2)利用所探索的结论,用完全平方式表示出=+347(3)请化简:36-12.4.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如1323235+,,一样的式子,其实我们还可以将其进一步化简:335333535=⨯⨯= (一) 36333232=⨯⨯=(二) ()()()()()1-31-31-321-3131-3213222==+⨯=+ (三)以上这种化简的步骤叫做分母有理化.132+还可以用以下方法化简:()()()1-3131-313131-3131-313222=++=+=+=+(四) (1)请用不同的方法化简352+. (2)参照(三)式得352+= ; ‚ 参照(四)式得352+= . (3)化简:12121 (571351)131-+++++++++n n .参考答案 1. 552-2.(1)615614=+,716715=+ (2)151141514151961511513151132===+⨯=+ (3)()21121++=++n n n n3.解:(1)mn b n m a mn n m n m 2,3,323)3(22222=+=∴++=+(2)232)(+(3)∵23-336-12)(= ∴3-33-336-122==)(4.解:(1)()()()()()()353535235353-5235222-=--=-+=+, ()()()()3-5353-535353-535222=++=+=+;(2)()()()()()()5-7575-73-5353-51-3131-3+++++=原式()()121212121212...--+-++--+++n n n n n n =21212...25-723-521-3--+++++n n =2112-+n .。
二次根式提高练习题(含答案)
一.计算题:1. (235+-)(235--);2. 1145--7114--732+;3.(a2mn-mab mn +mn nm )÷a 2b2mn ;4.(a +ba ab b +-)÷(b ab a ++aab b--ab b a +)(a ≠b ).二.求值:1.已知x =2323-+,y =2323+-,求32234232y x y x y x xyx ++-的值.2.当x =1-2时,求2222ax x a x x+-++222222ax x x a x x +-+-+221ax +的值.三.解答题:1.计算(25+1)(211++321++431++…+100991+).2.若x ,y 为实数,且y =x 41-+14-x +21.求xy y x ++2-xyy x +-2的值. 计算题: 1、【提示】将35-看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(35-)2-2)2(=5-215+3-2=6-215.2、【提示】先分别分母有理化,再合并同类二次根式.【解】原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1.3、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a2mn-m ab mn+mnnm)·221b a nm=21bnm m n ⋅-mab 1nmmn ⋅+22b ma n nmn m ⋅ =21b-ab 1+221b a =2221b a ab a +-.4、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.【解】原式=ba ab b ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=ba ba ++÷))((2222b a b a ab b a b ab b ab a a -++----=ba b a ++·)())((b a ab b a b a ab +-+-=-b a +.【点评】本题如果先分母有理化,那么计算较烦琐. 求值: 1.、【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值.【解】∵ x =2323-+=2)23(+=5+26,y =2323+-=2)23(-=5-26.∴ x +y =10,x -y =46,xy =52-(26)2=1.32234232y x y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy y x +-=10164⨯=652. 【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷. 2、【提示】注意:x 2+a 2=222)(a x +,∴ x 2+a 2-x 22ax +=22ax +(22ax +-x ),x 2-x22ax +=-x (22a x +-x ).【解】原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+- =)()(22222222222222x a x a x x x a x x a x a x x x -++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++ =x 1.当x =1-2时,原式=211-=-1-2.【点评】本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)11(2222ax x a x +--+-)11(22x x a x --++221a x +=x1.解答题: 1、【提示】先将每个部分分母有理化后,再计算.【解】原式=(25+1)(1212--+2323--+3434--+…+9910099100--)=(25+1)[(12-)+(23-)+(34-)+…+(99100-)]=(25+1)(1100-)=9(25+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法.2、【提示】要使y 有意义,必须满足什么条件?].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗?].2141[⎪⎪⎩⎪⎪⎨⎧==y x【解】要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴ x =41.当x =41时,y =21. 又∵xyy x ++2-xyy x +-2=2)(x y y x+-2)(xy y x - =|xy y x+|-|x yyx -|∵ x =41,y =21,∴ yx <xy .∴ 原式=xy y x +-yx xy +=2yx 当x =41,y =21时,原式=22141=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.。
八年级数学二次根式拓展提高之恒等变形(实数)拔高练习
八年级数学二次根式拓展提高之恒等变形(实数)拔高练习试卷简介:全卷共三个大题,第一题是填空(7道,每道5分);第二题是计算(3道,每道5分);第三题是解答(4道,每道10分),总分值120分,测试时刻30分钟。
本套试卷有必然的难度系数,包括了根式的意义及其与绝对值、完全平方式的综合运用,同窗们能够在做题进程中回忆讲义,加深对根式的明白得。
学习建议:本讲内容是在讲义基础上的拔高训练,深切地剖析了根式,需要同窗们加倍深切地明白得根式的意义,也要熟悉其与绝对值、完全平方式的综合运用。
尽管题目有些难度,但万变不离其宗,大伙儿能够在做这部份题的时候多回忆讲义,真正做到明白得最大体的知识点。
一、填空题(共7道,每道5分)1.化简:=______.成心义,那么a-b=______.,假设axy-3x=y,那么a=______.,那么3x+4y=______.5.假设x<0,那么=______,=______.6.设m>n>0,m²+n²=4mn,那么的值等于___.,那么x2+4x-5=______;若,那么x2+2x-1=______.二、计算题(共3道,每道5分)1.已知b<0<a,化简:|a-b|2.化简:3.当1<x<4时,化简:三、解答题(共7道,每道10分)化简的结果为2x-3,求x的取值范围.2.已知|a|=5,且ab>0,求a+b的值.3.已知a2+12ab+9b2的算术平方根.,求的值.5.一个数的平方根是a2+b2和4a-6b+13,求那个数.6.设a是一个无理数,且a、b知足ab+a-b=1,求b.7.数轴上,表示一、的对应点别离为A、B,点B关于点A的对称点为点C,求点C所表示的数.八年级数学秋季拔高班东区总校:郑州市文化路与黄河路交叉口中孚大厦7楼B室:西区总校:郑州市陇海路与桐柏路交叉口凯旋门大厦B座405室:。
二次根式拓展提高之恒等变形(实数)拔高练习( 八年级课堂实录第三讲)(含答案)
二次根式拓展提高之恒等变形(实数)拔高练习
一、单选题(共5道,每道20分)
1.数轴上,表示1,的对应点分别为A、B,点B关于点A的对称点为点C,那么点C所表示的数为()
A.
B.
C.
D.
答案:A
解题思路:如下图,因为点B关于点A的对称点为点C,所以AB=AC,即OB-OA=OA+OC,,,又点C在原点的左侧,所以点C所表示的数为。
易错点:先大致画出点C的位置,然后根据对称的性质来判断,要特别注意正负问题。
试题难度:三颗星知识点:实数
2.若m为正实数,且,则()
A.
B.
C.
D.
答案:A
解题思路:
∴m²-=(m-)(m+)=3
易错点:不能熟练进行完全平方差公式与完全平方和公式之间的转化。
试题难度:三颗星知识点:完全平方公式
3.已知,则=()
A.-1
B.1
C.-2
D.2
答案:B
解题思路:因为,同时,因此只有,即,代入,则。
易错点:只有非负数才有平方根。
试题难度:三颗星知识点:二次根式
4.,则=()
A.
B.3
C.
D.2
答案:C
解题思路:两个非负数的和为0,这两个数都为0,则,解得,因
此。
易错点:找不到解题的关键:两个非负数的和为0,这两个数都为0。
试题难度:三颗星知识点:算术平方根
5.下列等式不一定成立的是()
A.
B.
C.
D.
答案:B
解题思路:一个数先平方后开方等于这个数的绝对值。
易错点:不能掌握平方根与立方根的定义
试题难度:二颗星知识点:立方根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学二次根式拓展提高之恒等变形(实数)
拔高练习
试卷简介:全卷共三个大题,第一题是填空(7道,每道5分);第二题是计算(3道,每道5分);第三题是解答(4道,每道10分),满分120分,测试时间30分钟。
本套试卷有一定的难度系数,包含了根式的意义及其与绝对值、完全平方式的综合运用,同学们可以在做题过程中回顾课本,加深对根式的理解。
学习建议:本讲内容是在课本基础上的拔高训练,深入地剖析了根式,需要同学们更加深入地理解根式的意义,也要熟悉其与绝对值、完全平方式的综合运用。
虽然题目有些难度,但万变不离其宗,大家可以在做这部分题的时候多回顾课本,真正做到理解最基本的知识点。
一、填空题(共7道,每道5分)
1.化简:=______.
答案:6
解题思路:被开方数必须大于等于零,∴,即.
又,∴a-1=0 ∴a=1 代入所求式子,答案为6.
易错点:忽略了被开方数是大于等于零这一隐含条件
试题难度:三颗星知识点:二次根式有意义的条件
2.若有意义,则a-b=______.
答案:0
解题思路:若使有意义,需满足2ab-b-a2-b2≥0,即-(a-b)2≥0
∴(a-b)2≤0 又(a-b)2≥0 ∴(a-b)2=0 ∴a-b=0
易错点:没有掌握被开方数必须大于等于零这一条件
试题难度:二颗星知识点:二次根式有意义的条件
3.已知,若axy-3x=y,则a=______.
答案:
解题思路:算术平方根和完全平方式都是大于等于零的,而二者之和等于零,所以二者分别
等于零,故可得出x=,y=3.然后代入axy-3x=y,可得a=.
易错点:求不出x、y的值
试题难度:三颗星知识点:二次根式有意义的条件
4.若,则3x+4y=______.
答案:-7
解题思路:若使式子式子有意义,须满足,可得x=-2,y=∴3x+4y=-7. 易错点:求不出x、y的值
试题难度:三颗星知识点:分式有意义的条件
5.若x<0,则=______,=______.
答案:-x;x
解题思路:一个数先平方再开方,等于它的绝对值;一个数先立方再开立方,等于它本身. 易错点:一个数先平方再开平方等于它的绝对值,而非它本身.
试题难度:二颗星知识点:二次根式的性质与化简
6.设m>n>0,m²+n²=4mn,则的值等于___.
答案:
解题思路:将m²+n²=4mn左边同时加减2mn,即可求得m+n、m-n的值,然后代入求解. 易错点:没有看出所求式子和已知式子的联系;符号正负判断错误.
试题难度:四颗星知识点:二次根式的混合运算
7.若,则x2+4x-5=______;
若,则x2+2x-1=______.
答案:2001;2010
解题思路:先将所求式子变形为完全平方式的形式,然后代入求解.
易错点:直接代入导致计算错误
试题难度:三颗星知识点:二次根式的混合运算
二、计算题(共3道,每道5分)
1.已知b<0<a,化简:|a-b|
答案:-b
解题思路:一个数先平方再开方等于它的绝对值;正数的绝对值等于它本身,负数的绝对值等于它的相反数.
易错点:一个数先平方再开方等于它的绝对值,而非它本身.
试题难度:三颗星知识点:绝对值
2.化简:
答案:2
解题思路:一个数先平方再开方等于它的绝对值;一个数先开方再平方等于它本身.
易错点:混淆了先平方再开方和先开方再平方的结果.
试题难度:三颗星知识点:二次根式的性质与化简
3.当1<x<4时,化简:
答案:3
解题思路:观察得知,被开方数是完全平方式,利用一个数先平方再开方等于它的绝对值进行解题.
易错点:一个数先平方再开方等于它的绝对值,而非它本身.
试题难度:三颗星知识点:二次根式的性质与化简
三、解答题(共7道,每道10分)
1.如果式子化简的结果为2x-3,求x的取值范围.
答案:=|x-1|+|x-2|=2x-3,∴x-1≥0且x-2≥0. 解得x≥2
解题思路:由x的系数判断绝对值符号内数的正负
易错点:由化简结果不知道怎么判断x的范围
试题难度:四颗星知识点:绝对值
2.已知|a|=5,且ab>0,求a+b的值.
答案:∵,∴|b|=3 ∴b=±3 而|a|=5 ∴a=±5 又ab>0,∴ab同号,即当a=5时,b=3;当a=-5时,b=-3 ∴答案为8或-8
解题思路:两数想乘,同号得正、异号得负
易错点:漏掉了a、b同时为负的情况
试题难度:三颗星知识点:绝对值
3.已知a2+12ab+9b2的算术平方根.
答案:=∵a<0,b<0 ∴原式=-2a-3b
解题思路:4a2+12ab+9b2是一个完全平方式,利用一个数先平方再开方等于它的绝对值进行解题
易错点:一个数先平方再开方等于它的绝对值,而非它本身.
试题难度:三颗星知识点:绝对值
4.已知,求的值.
答案:∵,∴a>0 ∴-2=1 ∴=3
∴
解题思路:先判断出a>0,再利用完全平方和与完全平方差的转换进行解题
易错点:没有判断出a与0的大小关系
试题难度:四颗星知识点:完全平方公式
5.一个数的平方根是a2+b2和4a-6b+13,求这个数.
答案:由已知,可得a2+b2+4a-6b+13=0,即(a+2)2+(b-3)2=0 ∴a=-2、b=3 ∴a2+b2=13 ∴这个数为169.
解题思路:一个数的两个平方根互为相反数
易错点:答案错误:所求的是这个数而不是它的平方根
试题难度:四颗星知识点:二次根式的应用
6.设a是一个无理数,且a、b满足ab+a-b=1,求b.
答案:∵ab+a-b=1 ∴b(a-1)=1-a 又∵a为无理数∴a-1也是无理数,即a-1≠0 ∴b=1 解题思路:将a看作已知数、b看作未知数,然后移项求解
易错点:找不到突破口
试题难度:三颗星知识点:解一元一次方程
7.数轴上,表示1、的对应点分别为A、B,点B关于点A的对称点为点C,求点C所表示的数.
答案:如图,∵AC=AB=,
∴OC=OA-AC=1-()=.
解题思路:点B、点C关于点A对称,那么AC=AB.
易错点:找不到点C所代表的数
试题难度:四颗星知识点:数轴。