集成运算放大器
集成运算放大器的应用实验报告
一、实验目的1. 了解集成运算放大器的基本特性和工作原理。
2. 掌握集成运算放大器的基本应用电路的设计与调试方法。
3. 熟悉集成运算放大器在实际电路中的应用,提高电子电路设计能力。
二、实验原理集成运算放大器(Op-Amp)是一种高增益、低输入阻抗、高输入电阻、低输出阻抗的直接耦合放大器。
它广泛应用于各种模拟信号处理和产生电路中。
本实验主要研究集成运算放大器的基本应用电路,包括反相比例放大电路、同相比例放大电路、加法运算电路、减法运算电路等。
三、实验仪器与设备1. 集成运算放大器:TL0822. 直流稳压电源:±15V3. 数字万用表4. 示波器5. 面包板6. 连接线7. 电阻、电容等元件四、实验内容1. 反相比例放大电路(1)电路连接:将集成运算放大器TL082的输入端分别连接到输入电阻R1和地,输出端连接到负载电阻R2,反馈电阻Rf与R1并联后连接到反相输入端。
(2)电路调试:将输入电压信号输入到电路中,使用示波器观察输出电压波形,调整R1和Rf的值,使输出电压与输入电压成反相关系。
(3)实验结果:当R1和Rf的值分别为1kΩ和10kΩ时,输出电压与输入电压成反相关系,放大倍数为-10。
2. 同相比例放大电路(1)电路连接:将集成运算放大器TL082的同相输入端连接到输入电阻R1,反相输入端连接到地,输出端连接到负载电阻R2,反馈电阻Rf与R1并联后连接到同相输入端。
(2)电路调试:将输入电压信号输入到电路中,使用示波器观察输出电压波形,调整R1和Rf的值,使输出电压与输入电压成正比关系。
(3)实验结果:当R1和Rf的值分别为1kΩ和10kΩ时,输出电压与输入电压成正比关系,放大倍数为10。
3. 加法运算电路(1)电路连接:将集成运算放大器TL082的反相输入端连接到地,同相输入端连接到两个输入电阻R1和R2,输出端连接到负载电阻R3,反馈电阻Rf与R1、R2并联后连接到同相输入端。
第11章 集成运算放大器及其应用
上式表明,差动放大电路的差模电压放大倍数和 单管放大电路的电压放大倍数相同。多用一个放大管 后,虽然电压放大倍数没有增加,但是换来了对零漂 的抑制。这正是差动放大电路的优点。
差动放大电路对共模输入信号的放大倍数叫做共 模电压放大倍数,用Auc表示,可以推出,当输入共 模信号时,Auc为
Au c u o u C1 u C 2 0 0 ui c ui1 ui1
由于集成运放的电压放大倍数Ao d和输入电阻Ri d 都非常大(理想情况下,两者约等于∞),于是可以 推得 u u
i i 0
注意:“虚短”和“虚断”是理想运放工作在线 性区时的两个重要特点。这两个特点常常作为今后分 析运放应用电路的出发点,因此必须牢固掌握。
(2)集成运放工作在非线性区的特性 如果运放的工作信号超出了线性放大范围,则输 出电压与输入电压不再满足式(11-1),即uo不再随 差模输入电压(u+ - u -)线性增长,uo将达到饱和。 此时集成运放的输出电压uo只有两种取值:或等于运 放的正向最大输出电压+UOM,或等于其负向最大输 出电压-UOM,具体为 当u + >u - 时,uo = +UOM 当u + <u - 时,uo = -UOM 另外,因为集成运放的输入电阻Ri d很大,故在 非线性区仍满足输入电流等于零,即式(11-3)对非 线性工作区仍然成立。
有时,为了简化起见,常常不把恒流源式差动放 大电路中恒流管T3的具体电路画出,而采用一个简化 的恒流源符号来表示,如图11-7所示。
二、输出级——功率放大电路 集成运放的输出级是向负载提供一定的功率,属 于功率放大,一般采用互补对称的功率放大电路。 1. 功率放大电路的特点 (1)因为信号的幅度放大在前置电路中已经完成, 所以功率放大电路对电压放大倍数并无要求。由于射 极输出器的输出电流较大,能使负载获得较大输出功 率,并且它的输出电阻小,带负载能力强,因此通常 采用射极输出器作为基本的功率放大电路。不过单个 的射极输出器对信号正负半周的跟随能力不同,在实 用的功率放大电路中大多采用双管的互补对称电路形 式。
第二章_集成运算放大器
集成运算放大器
由图2-7可得:
i1
ui
u R1
ui R1
if
u uo RF
uo RF
由此得出:uo
RF R1
ui
该电路的闭环电压放大倍
数为:
Auf
uo ui
RF R1
图2-7 反相比例运算电路
集成运算放大器
电阻。如采用恒流源代替Rc,一般的中间放大级的电压增益
可达到60dB以上。
第三部分为输出级。其主要任务是输出足够大的电流, 能提高带负载能力。所以该级应具有很低的输出电阻和很高 的输入电阻,一般采用射极输出器的方式。
集成运算放大器
2.2 外形与符号 集成运放的外形有圆形、扁平形和双列直插式三种,如
开环是指运放未加反馈回路时的状态,开环状态下的差
模电压增益叫开环差模电压增益Aud。Aud=uod/uid。用分贝表 示 则 是 2 0 lg|Aud|(dB)。 高 增 益 的 运 算 放 大 器 的 Aud 可 达 140dB以上,即一千万倍以上。理想运放的Aud为无穷大。
集成运算放大器
4. 差模输入电阻rid
数为1,这时就成了电压跟随器,如图2-9所示。其输入电阻 为无穷大,对信号源几乎无任何影响。输出电阻为零,为一 理想恒压源,所以带负载能力特别强。它比射极输出器的跟 随效果好得多,可以作为各种电路的输入级、中间级和缓冲 级等。
该电路的反馈类型为串联电压负反馈。
集成运算放大器
同相输入比例运算放大电路主要工作特点:
uo Au 0
0
集成运算放大器
即
u u
由于集成开环放大倍数为无穷大,与其放大时的输出电
第六章 集成运算放大器
偏置电路是为集成运算放大器的输入级、中间级和输出级电路 提供静态偏置电流,设置合适的静态工作点。 运算放大器的图形符号如图6-2所示,其中反相输入端用“-”号 表示,同相输入端用“+”号表示 。器件外端输入、输出相应 地用N、P和O表示。
图6-2 运算放大器的图形符号
二、集成运算放大器的主要参数 1. 开环差模电压放大倍数 uo 开环差模电压放大倍数A
图6-4 反馈信号在输出端的取样方式 (a)电压反馈 (b)电流反馈
(4)串联反馈和并联反馈—─反馈的方式 如果反馈信号与输 入信号以串联的形式作用于净输入端,这种反馈称为串联反 馈,如图6-5(a)所示。如果反馈信号与输入信号以并联的 形式作用于净输入端,这种反馈称为并联反馈,如图6-5(b) 所示。可用输入端短路法判别,即将放大电路输入端短路, 如短路后反馈信号仍可加到输入端,则为串联反馈,如短路 后反馈信号仍无法到输入端,则为并联反馈。
图6-7 放大电路的传输特性1—闭环特性 2—开环特性
(3)展宽了通频带 放大器引入负反馈后,虽然放大倍数降低了,但放大器的稳定 性得以提高,由于频率不同而引起的放大倍数的变化也随 之减小。在不同的频段放大倍数的下降幅度不同,中频段 下降的幅度较大,而在低频段和高频段下降的幅度较小, 结果使放大器的幅频特性趋于平缓,即展宽了通频带。
(4)改变了输入输出电阻 负反馈对输入电阻的影响取决于反馈信号在输入端的连接方式。 并联负反馈是输入电阻减小,串联负反馈是输入电阻增大。 负反馈对输出电阻的影响取决于反馈信号在输出端的取样方 式。电压负反馈是输入电阻减小,电流负反馈是输入电阻增 大。电压负反馈有稳定输出电压的作用,电流负反馈有稳定 输出电流的作用。 电压串联负反馈使电压放大倍数下降,稳定了输出电压,改善 了输出波形,增大了输入电阻,减小了输出电阻,扩展了通 频带。电压并联负反馈使电压放大倍数下降,稳定了输出电 压,改善了输出波形,减小了输入电阻,减小了输出电阻, 扩展了通频带。电流串联负反馈使电压放大倍数下降,稳定 了输出电流,改善了输出波形,增大了输入电阻,增大了输 出电阻,扩展了通频带。电流并联负反馈使电压放大倍数下 降,稳定了输出电流,改善了输出波形,减小了输入电阻, 增大了输出电阻,扩展了通频带。
集成 放大器
第一节 心脏除颤仪
再次观察除颤效果,是否恢复窦性心律, 以及神志、生命体征、皮肤情况,若恢复 窦性心律, 给予持续心电监护。
8. 协助病人取适宜体位,清洁皮肤,安慰 病人,整理床单位。
9. 关闭电源,开关置OFF位置,清洁电极 板和仪器,充电备用。洗手、记录。
上一页 返回
9.2 放大电路中的负反馈
9. 2. 1反馈的基本概念
1.反馈的概念 前面各章讨论放大电路的输人信号与输出信号间的关系时.只
涉及输人信号对输出信号的控制作用.这称做放大电路的正向 传输作用。然而.放大电路的输出信号也可能对输人信号产生 反作用。简单地说.这种反作用就叫做反馈。 引入反馈的放大电路称为反馈放大电路.它由基本放大电路、 反馈网络、输出取样、输人求和四部分组成一个闭合环路.称 为反馈环路只有一个反馈环路组成的放大电路.称为单环反馈 放大电路.如图9-4所示。其中.x1是输人信号;x0是输出信 号;xF是反馈信号;xID是净输人信号。这些电量可以是电压. 也可以是电流。
R波无关,放电由人工控制,可发生在心
动周期的任何时期,按下放电开关即可放
电。心脏除颤仪开机后自动默认为非同步
状态,室颤、室扑急救时切记采用非同步
模式。
上一页 下一页 返回
第一节 心脏除颤仪
心搏骤停(sudden cardiac arrest, SCA)是临床急救医学中最紧急、最严重 的心脏急症,就心搏骤停时的ECG表现形 式而言,72%~80%以上为心室颤动。电 除颤是抢救因室颤而致心搏骤停病人最有 效的方法。而电除颤的时机是治疗心室颤 动的关键,每延迟除颤时间1min,复苏 的成功率将下降7%~10%。在心搏骤停 发生1min、5min、7min、9min、 12min分钟内行电除颤,病人存活率分别 为90%、50%、30%、10%和上一2页%下~一5页%。返回
电工电子学_集成运算放大器
24
9.3 集成运放在信号运算方面的应用
由于开环电压放大倍数Auo很高,集成运放开环工作时线性区很 窄。因此,为了保证运放处于线性工作区,通常都要引入深度负反馈。 集成运放引入适当的负反馈,可以使输出和输入之间满足某种特定的 函数关系,实现特定的模拟运算。当反馈电路为线性电路时,可以实 现比例、加法、减法、积分、微分等运算。
图9.2.1 反馈放大电路框图
电路中的反馈是指将电路的输出信号(电压或电流)的一部分或全部 通过一定的电路(反馈电路)送回到输入回路,与输入信号一同控制 电路的输出。可用图9.2.1所示的方框图来表示。
16
2. 反馈的分类
(1)正反馈和负反馈 根据反馈极性的不同,可以分为正反馈和负反馈。 (2)直流反馈和交流反馈 根据反馈信号的交直流性质,可以将反馈分为直流反馈和交流反馈。 (3)电压反馈和电流反馈 根据输出端反馈采样信息的不同,可以将反馈分为电压反馈和电流反 馈。 (4)串联反馈和并联反馈 根据反馈信号与输入信号在放大电路输入端联结方式的不同,可以将 反馈分为串联反馈和并联反馈。
9
3. 输入和输出方式
差放电路有双端输入和单端输入两种输入方式。同样也有双端 输出和单端输出两种输出方式。因此,差动放大电路共有四种输入输 出方式。 (1)双端输入双端输出 (2)双端输入单端输出 (3)单端输入双端输出 (4)单端输入单端输出
10
4. 共模抑制比
差动放大电路对差模信号和共模信号都有放大作用,但对差动 放大电路来说,差模信号是有用信号,共模信号则是需要抑制的。因 此要求差放电路的差模放大倍数尽可能大,而共模放大倍数尽可能小。 为了衡量差放电路放大差模信号和抑制共模干扰的能力,引入共模抑 制比作为技术指标,用KCMR表示。其定义为差模电压放大倍数与共 模电压放大倍数之比,即 A (9.1.11) K ud
集成运算放大器
A/D转换方法
– 计数法 速度慢 – 双积分式A/D转换器 精度高、干扰小 速度慢 – 逐次逼近式A/D转换器 原理同计数式相似,只是从最高位开始,通过试探值来计数。
例1:ADC0804 (8位,100us,转换精度 ±1LSB,内带可控三态门)。
例2:ADC570 (输入电压:0~10V 或 -5V~+5V)
例3. 8位以上A/D转换器和系统连接。 ADC1210:12位,100us,启动端SC,结束转换CC。
例4. ADC0809: 逐次逼近式8通道8位ADC。
同时有模拟电路和数字电路的系统中地 线的连接
模拟电路 ADC DAC 数字电路
模拟电路 AGND
数字电路 DGND
模拟地
公共接地点
if RF
R1 R2
R3 RP
- +
u0
ui 1 ui 2 ui 3 uo R1 R2 R3 Rf 可得: uo R f ( ui 1 ui 2 ui 3 ) R1 R2 R3 若R1=R2=R3=R,则 u R f ( u u u ) o i1 i2 i3 R
集成运算放大器
1.集成运算放大器概述
集成运算放大器是一种高电压增益、高输入电阻和低输出 电阻的多级直接耦合放大电路,一般由四部分组成:
输入级:一般是差动放大 器,利用其对称特性可以 提高整个电路的共模抑制 比和电路性能,输入级有 反相输入端“-”、同相 输入端“+”两个输入端; 中间级:的主要作用是
3、差动比例运算电路
R1=R2,R’=RF Uo=-RF/R1(Ui1-Ui2)
差动比例运算电路 又称减法运算电路
第9章 集成运算放大器
输入级一般采用具有恒流源的双输入端的差分放大 电路,其目的就是减小放大电路的零点漂移、提高输入 阻抗。 中间级的主要作用是电压放大,使整个集成运算放 大器有足够的电压放大倍数。 输出级一般采用射极输出器,其目的是实现与负载 的匹配,使电路有较大的功率输出和较强的带负载能力。
偏置电路的作用是为上述各级电路提供稳定合适的偏 置电流,稳定各级的静态工作点,一般由各种恒流源电路 构成。 图9-2所示为 LM 741集成运算放大器的外形和管脚图。 它有8个管脚,各管脚的用途如下: (1)输入端和输出端
第二级为反相电路,则有 R21= RF =100 kΩ 平衡电阻为 Rb2= RF∥R21 =100∥100=50 kΩ
三、减法运算电路
如果两个输入端都有信号输入,则为差分输入。差 分运算在测量和控制系统中应用很多,其放大电路如图 9-12所示。 根据叠加原理可知,uo为ui1和ui2分别单独在反相 比例运算电路和同相比例运算电路上产生的响应之和, 即
四、微分运算电路和积分运算电路
1.微分运算电路 微分运算电路如图9-13( a)所示。依据 u u ≈0,可得 iR=iC 所以
d(ui u ) u uo C dt,因此称为微分运算电路。 在自动控制电路中,微分运算电路不仅可实现数学 微分运算,还可用于延时、定时以及波形变换。如图913( b)所示,当ui为矩形脉冲时,则uo为尖脉冲。
(2)集成运算放大器同相输入端和反相输入端的输 入电流等于零(虚断)因为理想集成运算放大器的 rid→∞,所以由同相输入端和反相输入端流入集成运算 放 大器的信号电流为零,即 i i ≈0
u u
图9-3 理想集成运算放大器 的符号
图9-4 集成运算放大器的电 压传输特性
集成运算放大器
量精度的影响
在集成电路的输入与输出接入不同的反馈网络,可实现不同用途的电路,例如利用集成运算放大器可
4 非常方便的完成信号放大、信号运算(加、减、乘、除、对数、反对数、平方、开方等)、信号的处理
(滤波、调制)以及波形的产生和变换
集成运算放大器
01.
集成运算放大器的种类非常多,可适用于不同的场合.运算放大器在电路中发挥重要的 作用,其应用已经延伸到汽车电子、通信、消费等各个领域,并将在支持未来技术方面 扮演重要角色
02.
在运算放大器的实际应用中,设计工程师经常遇到诸如选型、供电 电路设计、偏置电路设计、PCB设计等方面的问题
-TLeabharlann ANKS载的电源为可变电压电源,R1负载的电流也是保持固定不变,达到恒流的效果
2 1.9 热电阻测量电路
电路是典型的热电阻 / 电偶的测量电路,其测量思路为:将 1-10mA 的恒流源加于负载,将会在负载
3
上产生一定的电压,将该电压进行有源滤波处理,处理后在进行信号的调整(信号放大或衰减),最后 将信号送入 ADC 接口。该电路应用时,要注意在输入端施加保护,可以并 TVS,但要注意节电容对测
1.6 滤波器
集成运算放大器
由集成运放可以组成一阶滤波器和二阶滤波器,其中一阶滤波器有20dB每倍频的幅频特 性,而二阶滤波器有40dB每倍频的幅频 特性。为了阻挡由于虚地引起的直流电平,在运放的输入端 串入了输入电容Cin,为了不影响电路的幅频特性,要求这个电容是 C1的100倍以上,如果滤波器还 具有放大作用,则这个电容应是C1的1000倍以上,同时,滤波器的输出都包含了Vcc/2的直流偏 置,如果电路是最后一级,那么就必须串入输出电容
1.3 数字信号处理
集成运算放大器的发展与应用
集成运算放大器的发展与应用1.引言集成运算放大器(Integrated Operational Amplifier,简称集成运放)是现代电子电路中的重要组成部分。
它的发展与应用经历了多个阶段,从早期的晶体管放大器到现代的高性能集成运放,其应用领域也在不断扩展。
本文将详细介绍集成运放的发展历程、应用领域、优势以及未来趋势。
2.集成运算放大器的发展2.1早期阶段在集成运放发展的早期阶段,人们主要使用晶体管搭建放大电路。
然而,这种方法的电路复杂,调试困难,且性能不稳定。
2.2晶体管放大器阶段随着晶体管技术的进步,人们开始将多个晶体管集成到一起,形成了晶体管放大器。
这种放大器具有更稳定的性能和更小的体积,但在使用上仍然存在一些不便。
2.3集成电路放大器阶段随着集成电路技术的发展,人们开始将多个晶体管和其他元件集成到一块芯片上,形成了集成电路放大器。
这种放大器具有更高的性能和更小的体积,同时降低了成本。
2.4现代集成放大器阶段随着电子技术的不断进步,现代集成放大器在性能、体积、成本等方面都得到了极大的提升。
同时,为了满足不同应用的需求,各种特殊类型的集成运放也应运而生。
3.集成运算放大器的应用领域3.1信号放大集成运放广泛应用于信号放大领域,用于提高信号的幅度和功率。
3.2模拟运算集成运放可以实现模拟运算,如加法、减法、乘法、除法等,广泛应用于模拟电路中。
3.3数字运算通过数字电路与集成运放的结合,可以实现数字信号的处理与运算。
3.4自动控制集成运放在自动控制系统中起到关键作用,用于实现各种控制算法。
3.5音频处理在音频处理领域,集成运放被广泛应用于音频放大和音效处理。
3.6其他领域除了上述应用领域外,集成运放还广泛应用于通信、测量、电力电子、医疗器械等多个领域。
4.集成运算放大器的优势4.1高增益集成运放具有较高的增益,能够实现对微弱信号的放大。
4.2低失真相比于分立元件搭建的放大电路,集成运放的失真更低。
第8章 集成运算放大器
第8章 集成运算放大器
8.1 集成运算放大器简介
两个输入端电位相等,好像短接在一起一样,但并非真的短路,所以称为虚短路, 简称“虚短”。 由理想运放电路可知
两个输入端之间输入电阻无穷大,好像断路一样,但并非真的断路,所以称为虚断 路,简称“虚断”。 当集成运放工作在非线性区时,由集成运放的电压传输特性可知
第8章 集成运算放大器
8.1 集成运算放大器简介
3. 集成运放的电路符号与外形
集成运放的图形符号如图8-2所示,是国际标准符号。三角形表示放大器,三角形 所指方向为信号传输方向,Ao为“∞”时表示开环增益极高。它有两个输入端和一 个输出端。同相输入端标“+”(或P),表示输出端信号与该端输入信号同相;反 相输入端“-”(或N),表示输出端信号与该端输入信号反相。输出端的“+”表示 输出电压为正。
2. 集成运放的电压传输特性 如图8-4所示为表示输出与输入电压关系的特性曲线,称为电压传输特性。
第8章 集成运算放大器
8.1 集成运算放大器简介
当集放输大成入倍运电数放压A工o很u作i在大在A,线、所性B之以区间线时时性,,区输集很入成窄电运。压放要与工使输作集出在成电线运压性放有区在关,较系在大AA的o=、u输uBoi 。入之由电外于压时集下处成于也运非能放工线电作性压区在。 线性区,必须在电路中引入深度负反馈。 集成运放工作在非线性区时,输出只有两种饱和状态±UoM。电压饱和值±UoM略 低于正负电源电压。
3. 理想运算放大器的条件
在分析集成运放的应用电路时,为了简化电路分析,常将集成运放理想化。理想化 的条件是:
第8章 集成运算放大器
8.1 集成运算放大器简介
集成运算放大器教案
集成运算放大器教案第一章:集成运算放大器的概述1.1 教学目标1. 了解集成运算放大器的基本概念;2. 掌握集成运算放大器的主要参数;3. 理解集成运算放大器的作用和应用。
1.2 教学内容1. 集成运算放大器的定义;2. 集成运算放大器的主要参数;3. 集成运算放大器的作用和应用。
1.3 教学方法1. 讲授法:讲解集成运算放大器的概念、参数和作用;2. 案例分析法:分析集成运算放大器在实际电路中的应用。
1.4 教学步骤1. 引入:讲解集成运算放大器的定义;2. 讲解:介绍集成运算放大器的主要参数;3. 应用:分析集成运算放大器的作用和应用;4. 总结:强调集成运算放大器在电路设计中的重要性。
第二章:集成运算放大器的电路符号与性质2.1 教学目标1. 掌握集成运算放大器的电路符号;2. 理解集成运算放大器的主要性质;3. 学会分析集成运算放大器的基本电路。
2.2 教学内容1. 集成运算放大器的电路符号;2. 集成运算放大器的主要性质;3. 集成运算放大器的基本电路分析。
2.3 教学方法1. 讲授法:讲解集成运算放大器的电路符号和性质;2. 示例分析法:分析集成运算放大器的基本电路。
2.4 教学步骤1. 引入:讲解集成运算放大器的电路符号;2. 讲解:介绍集成运算放大器的主要性质;3. 分析:分析集成运算放大器的基本电路;4. 总结:强调集成运算放大器性质在电路分析中的应用。
第三章:集成运算放大器的应用之一——放大器电路3.1 教学目标1. 掌握放大器电路的基本原理;2. 学会设计放大器电路;3. 了解放大器电路的应用。
3.2 教学内容1. 放大器电路的基本原理;2. 放大器电路的设计方法;3. 放大器电路的应用。
1. 讲授法:讲解放大器电路的基本原理;2. 设计实践法:指导学生设计放大器电路;3. 案例分析法:分析放大器电路的应用。
3.4 教学步骤1. 引入:讲解放大器电路的基本原理;2. 设计:指导学生设计放大器电路;3. 应用:分析放大器电路在实际电路中的应用;4. 总结:强调放大器电路在电路设计中的重要性。
第四章 集成运算放大器各种运用
的R1对应于当具用有R1内+R阻s代Rs替的,信为号了源不,使上电面压公增式益中 受Rs的太大影响,R1应该取大一些。但为了 保运证 放输 的入 内电 阻流,远对大于于通偏用置型电运流放,,RR11应 不宜远小超于过 数十千欧,反馈电阻RF越大则电压增益越大, 但要求反馈电流也应远大于偏置电流,所以 RF也不能取得过大,通常不宜超过兆欧。因 此,当Rs达到数千欧时,这个电路难以获得 高增益。另外,反相放大器是并联负反馈电
集成运放的基本组成
右图是运算放大器
的电路符号。它有两个 输入端和一个输出端。 反相输入端标“-”号, 同相输入端标“+”号。 输出电压与反相输入电 压相位相反,与同相输 入电压相位相同。此外 还有两个端分别接正、 负电源,有些集成运放 还有调零端和相位补偿 端。在电路中不画出。
二. 集成运算放大器的使用
由于集成运放具有性能稳定、可靠性高、寿命 长、体积小、重量轻、耗电量少等优点得到了广泛 应用。可完成放大、振荡、调制、解调及模拟信号 的各种运算和脉冲信号的产生等。
本章将介绍集成运放的基本知识、基本电路及 其主要应用。
主要内容
第一节 运算放大器的基本知识 第二节 运算放大器的基本电路 第三节 运算放大器的应用
因Ii=0,故i1≈if,因此 又因u+≈u-,因此
uo与ui之间的比例 关系也与运放本身
的参数无关,电路
精度和稳定度都很 高。KF为正表示uo 与ui同相,并且KF 总是大于或等于1, 这一点与反相放大 器不同。
当RF=0时KF=1,电路就变成电压 跟随器。
同相放大器实际上是一个电压串 联负反馈放大器,因此其输入阻抗高、 输出阻抗低,而且增益不受信号源内 阻的影响。该电路的不足是其共模抑 制比CMRR不太大。
第6章集成运算放大器
-VEE(-10V)
静态分析: 设vi1=vi2=0时,vo=0 IREF=(VCC+VEE-0.7)/R8=1mA= IC8 = IC7 IC1= IC2= IC7/2=0.5mA VC2=VCC- IC2R2=3.3v VE4=VC2-2×0.7=1.9v IE4= VE4/R4=1mA≈IC4 IC3= IC4/β=0.01mA VC3= VC4=VCC-IE4R3=4.9v VE5= VC3-0.7=4.2v VB6=0.7v IE5= (VE5- VB6)/R5=1mA= IC9 IE6=VEE/R6=5mA
∴ ⊿VBE= VBE1-VBE2
IC1
=VT[ln(IR/IES1)-ln(IC2/IES2)]
=VT[ln(IR/IC2)]
∴IC2=(VT/Re2)ln (IR/IC2)
3 比例恒流源电路
IR R 2IB VCC RC IC2
VBE1+IE1RE1=VBE2+IE2RE2
VBE1- VBE2 =IE2RE2 -IE1RE1 VBE1= VTln(IE1/IES) VBE2= VTln(IE2/IES) VBE1-VBE2= VTln(IE1/IE2)
vi1 vi2
线性放 大电路
vo
差模信号:vid=vi1-vi2 共模信号:vic=(vi1+vi2)/2 例 vi1=5mv vi2 =3mv 则:vid= vi1-vi2 =2mv vic=(vi1+vi2)/2=4mv
实际差分放大器,输出不仅与差模信号有关,而 且也与共模信号有关。
差模电压增益:AVD=vod/vid 共模电压增益:AVC=voc/vic 理想差分放大器:AVD很大, AVC=0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成绩评定表课程设计任务书摘要本设计是根据要求进行的集成运算放大器的设计,用Protel软件设计实验电路,并绘制出PCB电路板,根据电路图对设计进行制作,最后进行调试测试。
通过对Protel软件的学习与应用,加深对相关原理的理解,并对protel软件有初步的认识和一定的操作能力,为后续相关课程和相关软件的学习与应用打下坚实的基础。
并根据通信电子线路所学的知识,掌握电路设计,熟悉电路的制作,运用所学理论和方法进行一次综合性设计训练,从而培养独立分析问题和解决问题的能力。
根据相关课题的具体要求,按照指导老师的指导,进行具体项目的设计,提高自己的动手能力和综合水平。
本设计采用LM324芯片,它是一个四运算放大器的基本电路,在四运算放大器电路中起到了至关重要的作用。
通过LM324芯片与其他相关电子元件的组合,画出调制与解调电路图,并完成PCB电路的绘制,完成课题的设计,可以算是对自我综合能力的一次有益尝试。
关键字:Protel、PCB、LM324、四运算放大器目录1 Protel的简要介绍 (5)1.1 Protel的发展历史 (5)1.2 Protel99SE简介 (5)2 设计任务及要求 (6)2.1设计任务 (6)2.2设计要求 (6)3 电路原理介绍 (7)3.1 反向运算放大器 (7)3.2 反向加法器 (7)3.3 差动运算放大器 (7)3.4积分器电路 (8)4 原理图设计 (10)4.1电路元件明细表 (10)4.2 绘制原理图 (10)4.3 元件生成清单 (12)5 印刷版图的绘制 (12)5.1 准备电路原理图和网络表 (12)5.2 创建PCB文件以及网络表的装入 (15)5.3 元件的布局以及印刷板的布线 (15)6收获和体会 (16)7 主要参考文献 (17)1 Protel的简要介绍1.1 Protel的发展历程初期Protel Windows版本:八十年代末期推出了Windows版本下的Protel For Windows 1.0、Protel For Windows1.5等版本。
中期 Protel Windows版本:开发了与Windows95对应的3.X版本。
近期版本:98年推出的Proel98,开始基本满足了大多数使用者的需求,特别是出色的自动布线功能得到了用户的支持。
99年推出的Proel99及后来的Proel99SE让Protel用户耳目一新,因为在其中新增了很多全新的功能。
2002年下半年推出了最新版本Protel DXP,该版本耗时2年多,无论在功能、规模上都比Protel99SE,有极大的飞跃,主要在仿真与布线方面有了较大的提高。
2004年最新产品Protel 2004.1.2 Protel99SE简介Protel99se软件中提供了SIM99se数模混合仿真器集成软件可以对许多电子线路进行模拟设计,模拟运行,反复修改。
提供了接近6000各仿真元件和大量的数学模型期间,可以对电工电路,低频电子线路、高频电子线路和脉冲数字电路在一定范围内进行仿真分析。
仿真结果以多种图形方式输出,直观明了,可以单图精细分析,也可以多图综合比较分析、并可通过不同的角度进行分析,以获得对电路设计的准确判断。
Protel99se仿真方面其具有的特点有:1 强大的分析功能用户可以根据Protel99SE电路仿真器所提供的功能,分析设计电路的各方面性能,如电路的交直流特性、温度漂移、噪声、失真、容差、最坏情况等特性。
2 丰富的信号源其中包括基本信号源:直流源、正弦源、脉冲源、指数源、单频调频源、分段线性源,同时还提供了齐全的线性和非线性受控源。
3 友好的操作界面(1)无需手工编写电路网表文件。
系统将根据所画电路原理图自动生成网表文件并进行仿真。
(2)通过对话框完成电路分析各参数设置。
(3)方便地观察波形信号。
可同时显示多个波形,也可单独显示某个波形;可对波形进行多次局部放大,也可将两个波形放置于同一单元格内进行显示并分析比较两者的差别。
(4)强大的波形信号后处理,可利用各种数学函数对波形进行各种分析运算并创建一个新的波形。
(5)方便地测量输出波形。
Protel99SE提供了两个测量光标,打开它们可测量波形数据。
2 设计任务及要求2.1 设计任务1 绘制具有一定规模、一定复杂程度的电路原理图。
2 绘制相应电路原理图的双面印刷版图。
3 对电路原理图进行仿真,给出仿真结果,并说明是否达到设计意图。
2.2 设计要求1电路图的规模要比较大、电路比较复杂。
2制图要美观、可读性要好。
3 电路选择不可过分简单,元件种类(包括电源和信号源)不能少于5种而且元件个数不能少于20个。
3 电路原理介绍集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。
当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。
3.1反相比例运算放大器反相比例运算放大器电路是集成运放的一种最基本的接法,如图2.6.1所示。
电路的输出电压o u 与输入电压i u 的关系式为:f oi 1R u u R =-。
oU i图1 反相比例运放电路3.2反相加法器如果在运算放大器的反相端同时加入几个信号,接成图2.6.2的形式,就构成了能对同时加入的几个信号电压进行代数相加的运算反相加法器电路。
电路的输出电压o u 与输入电压i u 的关系式为:f f oi1i212R R u (u u )R R =-+。
oU U图2 反相加法器电路3.3差动运算放大电路差动输入运算放大器电路如图2.6.3所示。
根据电路分析,该电路的输出电压o u 与输入电压i u 的关系式为:f oi2i11R u (u -u )R =。
该关系式说明了两个输入端的信号具有相减的关系,所以这种电路又称为减法器。
同时,电路中同相输入电路参数与反相输入电路参数应保持对称,即同相输入端的分压电路也应该由电阻f R 和1R 来构成,其中3f R R =,21R R =。
oU U图3 差动运算放大电路3.4积分器电路由运算放大器构成的基本积分电路如图2.6.4所示,它的基本运算关系是:o i 11u u dt R C =-⎰ 当i u 为恒定直流电压时,即i i u U =,o i 11u U tR C=-,这时输出电压是随时间作直线变化的电压,其上升(或下降)斜率是i 1U R C,改变i U 、1R 或C 三个量中的任一个量都可以改变输出电压上升(或下降)的斜率。
积分器的反馈元件是电容器。
无信号输入时,电路处于开环状态。
所以运算放大器微小的失调参数就会使得运算放大器的输出逐渐偏向正(或负)饱和状态,使得电路无法正常工作。
为了减小这种积分漂移现象,实际使用时应尽量选择失调参数小的运算放大器,并在积分电容两端并联一只高阻值电阻f R 以稳定直流工作点,构成电压反馈,限制整个积分器电路放大倍数。
但f R 不能太小,否则将影响电路积分线性关系。
u oR 1R f R u i220k Ω10k Ω100k Ω0.1uF C图4 积分器电路主要器件介绍:四运算放大器LM324内部包括有两个独立的、高增益、内部频率补偿的运算放大器,适合于电源电压范围很宽的单电源使用, 也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。
它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。
LM324的封装形式为塑封14引线双列直插式。
特点★内部频率补偿★ 直流电压增益高(约100dB) ★ 单位增益频带宽(约1MHz) ★ 电源电压范围宽:单电源(3—32V); 双电源(±1.5—±16V) ★ 低功耗电流,适合于电池供电 ★ 低输入偏流★ 低输入失调电压和失调电流 ★ 共模输入电压范围宽,包括接地★ 差模输入电压范围宽,等于电源电压范围 ★ 输出电压摆幅大(0至VCC-1.5V)管脚排列图图54原理图设计4.1电路元件明细表画如图6所示的电路,图中电路元件说明如表1所示。
Designator Footprint Lib RefR1~R11 AXIAL0.3 RES2R12 VR5 POT2C1、C2 RAD0.1 CAPJ1、J2 SIP-2 CON2J3 SIP-3 CON3U1 DIP-14 LF324A表1 电路元件明细4.2 绘制原理图使用Protel 99se绘制原理图如图6,图7 集成运放电路图6图7进行ERC检查,如图8。
图84.3 元件生成清单图9 生成元器件清单列表5 印刷版图的绘制5.1 准备电路原理图和网络表原理图准备好后,使用菜单命令【Design】/【Create Netlist...】,建网络表。
网络表是原理图和印刷电路板之间的一座桥梁,网络表提供了电路的元件清单以及元件之间的互联关系。
执行上述命令后,跳出Netlist Creation的对话框,点击OK即可生成与原理图同名的网络表文件,即集成运算放大器.Net如下:图5.1 生成网络表5.2 创建PCB文件以及网络表的装入进入设计文件夹,双击图标Documents,利用主菜单【File】/【New】后出现一个对话框,选择Wizards目录下的Printed Circuit Board Wizard,我们就可以建立一个标准的PCB版图了。
在PCB界面中,利用【Design】/【Netlist...】命令,将网络表载入,得到如下结果(如图5.1所示):图5.2 载入网络表网络表通过之后,我们就开始对元件进行布局了。
5.3 元件的布局以及印刷板的布线手工调整布局完成后,我们执行【Auto Route】/【All】,就可以进行自动布线了。
自动布线完成之后,自己要对部分导线进行修改,直到满意为止。
我们还可以进行补泪滴的工作。
泪滴的主要作用就是提高PCB的抗拉伸强度,没有这个过渡的PCB在受到外力都压缩或者拉伸后,铜箔和焊盘之间很容易断裂,那么电路板就不结实。
补泪滴之后的印刷板如图5.3所示。
图5.3 集成运算放大器刷板6 收获和体会我通过为期两天的实训练习,粗略地了解和掌握了绘制、编辑电路原理图和PCB的方法和技巧,并能尝试处理一些基本问题。
首先,原理图的绘制是非常重要的,它的每一步都会关系到后面的PCB制版的正确,还涉及到元件的整体布局,过程中还要考虑自己制作的元件的应用问题。
其次,到了最为重要的PCB 制版这一步骤,其中最为重要的就是网络表的生成,不仅要认真检查元件标识,还有元件的位置等问题,最后布线是最后一项工作,但是在布线的过程中,需要的不只是自动或手动布线,还要有最后的检验,及时修改错误。