异方差与自相关问题

合集下载

异方差习题及自相关1

异方差习题及自相关1

DW检验:过去曾一度流行。但只能检验一阶自相 关且要求扰动项服从严格外生性假设。不实用。
使用OLS+异方差自相关稳健的标准差:仍然使用 OLS来估计回归系数,但使用“异方差自相关稳健的 标准差”(Heteroskedasticity and Autocorrelation Consistent Standard Error,简记HAC).这种方法被称为 Newey-West估计法,它只改变标准差的估计值,并 不改变回归系数的估计值。
内插值或季节调整时,则从理论上可判断存在自相关。
统计局提供的某些数据可能已经事先经过了这些人为 处理。
设定误差:如果模型设定中遗漏了某个自相关的解 释变量,并被纳入到了扰动项中,则会引起扰动项 的自相关。
画图:可以将残差et与之后残差et-1画成散点图, 也可以画自相关与偏相关图,显示各阶样本自相关 系数。
1下列关于扰动项协方差矩阵的假设,不存在异方 差的是( )
A B C D
1, 2,3
VAR(i
)
4,
5,
6
7,8,9
1, 0, 0
VAR(i
)
0,
5,
0
0, 0,9
1, 0,1
VAR(i
)
0,1,
0
0, 0,1
0.3, 0, 0
VAR(i
)
0,
0.3,
0
0, 0, 0.3
项用0来代替,以保持样本容量仍为n,使用统计量
这是stata默认的方法
Box-Pierce Q检验:定义残差的各阶样本自相关系 数为
用这个自相关系数平方和的n倍作为统计变量。 经过改进的Ljuang-Box Q统计量为

自相关和异方差处理顺序

自相关和异方差处理顺序

自相关和异方差处理顺序引言自相关和异方差是时间序列分析中常见的两种问题,它们影响了模型的准确性和可靠性。

在进行时间序列建模时,需要处理这些问题,以确保模型的有效性。

本文将深入探讨自相关和异方差处理的顺序,并讨论不同处理顺序的影响。

什么是自相关和异方差自相关自相关是指时间序列中当前观测值与之前观测值之间的相关性。

它衡量的是时间序列中各个观测值之间的依赖关系。

自相关可以用自相关函数(ACF)图来表示,通过观察ACF图,可以判断时间序列是否存在自相关。

异方差异方差是指时间序列中方差不稳定的特征。

在时间序列中,方差可能随着时间的推移发生变化,这会导致模型的拟合不准确。

异方差可以用方差函数(VCF)图来表示,通过观察VCF图,可以判断时间序列是否存在异方差。

自相关和异方差处理的重要性自相关和异方差对时间序列建模的准确性和可靠性有重要影响,它们需要被处理以获得可靠的模型结果。

•自相关的存在会导致参数估计不准确,预测结果失真。

如果存在自相关,模型会无法捕捉到序列的真实动态,导致预测结果不准确。

•异方差使得模型的残差不符合正态分布,违背了建模的基本假设。

这会使得模型的显著性检验和置信区间估计不可靠,影响模型的有效性。

因此,为了获得可靠的模型结果,需要对自相关和异方差进行处理。

自相关和异方差处理顺序的影响自相关和异方差的处理顺序会对最终的模型结果产生影响。

不同的处理顺序可能导致不同的模型结构和参数估计。

先处理自相关后处理异方差如果先处理自相关再处理异方差,可能会导致如下影响:1.自相关处理可能会改变时间序列的动态特征。

当我们去除自相关时,可能会削弱序列中的一些重要信息,导致模型无法准确捕捉到序列的动态变化。

2.异方差处理可能会影响自相关的结构。

当我们对残差进行异方差处理时,可能会改变残差序列的结构,从而使得自相关的估计失真。

先处理异方差后处理自相关如果先处理异方差再处理自相关,可能会产生如下影响:1.异方差处理可能改变原始序列的动态特征。

异方差与自相关

异方差与自相关

七、 异方差与自相关一、背景我们讨论如果古典假定中的同方差和无自相关假定不能得到满足,会引起什么样的估计问题呢?另一方面,如何发现问题,也就是发现和检验异方差以及自相关的存在性也是一个重要的方面,这个部分就是就这个问题进行讨论。

二、知识要点1、引起异方差的原因及其对参数估计的影响2、异方差的检验(发现异方差)3、异方差问题的解决办法4、引起自相关的原因及其对参数估计的影响5、自相关的检验(发现自相关)6、自相关问题的解决办法 (时间序列部分讲解) 三、要点细纲1、引起异方差的原因及其对参数估计的影响原因:引起异方差的众多原因中,我们讨论两个主要的原因,一是模型的设定偏误,主要指的是遗漏变量的影响。

这样,遗漏的变量就进入了模型的残差项中。

当省略的变量与回归方程中的变量有相关关系的时候,不仅会引起内生性问题,还会引起异方差。

二是截面数据中总体各单位的差异。

后果:异方差对参数估计的影响主要是对参数估计有效性的影响。

在存在异方差的情况下,OLS 方法得到的参数估计仍然是无偏的,但是已经不具备最小方差性质。

一般而言,异方差会引起真实方差的低估,从而夸大参数估计的显著性,即是参数估计的t 统计量偏大,使得本应该被接受的原假设被错误的拒绝。

2、异方差的检验 (1)图示检验法由于异方差通常被认为是由于残差的大小随自变量的大小而变化,因此,可以通过散点图的方式来简单的判断是否存在异方差。

具体的做法是,以回归的残差的平方2i e 为纵坐标,回归式中的某个解释变量i x 为横坐标,画散点图。

如果散点图表现出一定的趋势,则可以判断存在异方差。

(2)Goldfeld-Quandt 检验Goldfeld-Quandt 检验又称为样本分段法、集团法,由Goldfeld 和Quandt 1965年提出。

这种检验的思想是以引起异方差的解释变量的大小为顺序,去掉中间若干个值,从而把整个样本分为两个子样本。

用两个子样本分别进行回归,并计算残差平方和。

异方差、自相关、多重共线性比较(计量经济学)

异方差、自相关、多重共线性比较(计量经济学)
Glejser检验
基本思想:
由OLS法得到残差e,取e的绝对值,然后将此绝对值对某个解释变量X回归,根部回归模型的显著性和拟合优度来判断是否存在异方差。
操作步骤:
1.根据样本数据建立回归模型,并求残差序列e.
2.用残差绝对值对X进行回归,由于|e|与X的真实函数形式并不知道,可用各种函数形式去试验,从中选择最佳形式。
2.quick/equation estimation输入“e2 c e2(-1) e2(-2) e2(-3) e2(-4) e2(-5) e2(-6)”
3.view/residual diagnostics/heteroskedasticity tests,选择arch。
2.Quick/graph,在series list对话框中输入“e(-1) e”,选择scatter’,得到e(-1)与e的散点图。
方法二:1.用OLS估计Resid→e。
2.Quick/graph,在series list对话框中输入“e”,得到e随时间t的变化图示。
操作思想
操作步骤
适用性
软件操作
实际检验中可逐次向更高阶检验,并结合辅助回归中滞后项参数的显著性去帮助判断自相关的阶数。
ห้องสมุดไป่ตู้DW检验
操作思想:
DW与ρ的关系:DW≈2(1-ρ)
ρ的取值范围0≤DW≤4.
根据样
本容量n和解释变量的数目k'(不包括常数项),查DW分布表,可得临界值dl和du,
DW取值范围
自相关状态
[0,dl]
正自相关
(dl,du]
5.判断。给定显著性水平α,查F分布表,得临界值。 > ,拒绝 ,反之不拒绝 。
适用性:
该方法得到的F分布是近似的,而且只是对异方差是否存在进行判断,在多个解释变量的情况下,对判断是哪一个变量引起异方差还存在局限。此检验方法也可将样本分为多个组,从中任选两个组进行检验。

统计分析与方法-第七章 回归分析2-异方差与自相关

统计分析与方法-第七章 回归分析2-异方差与自相关

1.000 . 15 .443 .098 15 .721** .002 15
**. Correlation is significant at the 0.01 level (2-tailed).
因此选取注册资本构造权函数
最优权数的幂指数确定
Source variable.. 注册资本 Dependent variable.. 销销收收 Log-likelihood Function = -125.581891 POWER value = -2.000 Log-likelihood Function = -122.148284 POWER value = -1.500 Log-likelihood Function = -118.756247 POWER value = -1.000 Log-likelihood Function = -115.440464 POWER value = -.500 Log-likelihood Function = -112.257523 POWER value = .000 Log-likelihood Function = -109.297553 POWER value = .500 Log-likelihood Function = -106.695645 POWER value = 1.000 Log-likelihood Function = -104.627066 POWER value = 1.500 Log-likelihood Function = -103.261903 POWER value = 2.000 Log-likelihood Function = -102.682848 POWER value = 2.500 Log-likelihood Function = -102.833168 POWER value = 3.000 The Value of POWER Maximizing Log-likelihood Function = 2.500

eviews异方差、自相关检验与解决办法

eviews异方差、自相关检验与解决办法

eviews异方差、自相关检验与解决办法一、异方差检验:1.相关图检验法LS Y C X 对模型进行参数估计GENR E=RESID 求出残差序列GENR E2=E^2 求出残差的平方序列SORT X 对解释变量X排序SCAT X E2 画出残差平方与解释变量X的相关图2.戈德菲尔德——匡特检验已知样本容量n=26,去掉中间6个样本点(即约n/4),形成两个样本容量均为10的子样本。

SORT X 将样本数据关于X排序SMPL 1 10 确定子样本1LS Y C X 求出子样本1的回归平方和RSS1SMPL 17 26 确定子样本2LS Y C X 求出子样本2的回归平方和RSS2计算F统计量并做出判断。

解决办法3.加权最小二乘法LS Y C X 最小二乘法估计,得到残差序列GRNR E1=ABS(RESID) 生成残差绝对值序列LS(W=1/E1) Y C X 以E1为权数进行加权最小二成估计二、自相关1.图示法检验LS Y C X 最小二乘法估计,得到残差序列GENR E=RESID 生成残差序列SCAT E(-1) E et—et-1的散点图PLOT E 还可绘制et的趋势图2.广义差分法LS Y C X AR(1) AR(2)首先,你要对广义差分法熟悉,不是了解,如果你是外行,我奉劝你还是用eviews来做就行了,其实我想老师要你用spss无非是想看你是否掌握广义差分,好了,废话不多说了。

接着,使用spss16来解决自相关。

第一步,输入变量,做线性回归,注意在Liner Regression 中的Statistics中勾上DW,在save中勾Standardized,查看结果,显然肯定是有自相关的(看dw值)。

第二步,做滞后一期的残差,直接COPY数据(别告诉我不会啊),然后将残差和滞后一期的残差做回归,记下它们之间的B指(就是斜率)。

第三步,再做滞后一期的X1和Y1,即自变量和因变量的滞后一期的值,也是直接COPY。

如何应付异方差、自相关、多重共线性

如何应付异方差、自相关、多重共线性

异方差:(Heteroscedasticity)一如何检测?①假设我们做一个回归,求出β1、β2、β3,然后返回求出序列{Ut},现在要检测{Ut}是不是异方差的。

②设立辅助方程:既然假设是异方差,那么我们就假设{Ut}与X存在某种关系,这种关系比较复杂,只要我们证明α1、α2、α3……不为0,即可③构建新的统计量:T·R2,先人曾经证明过其服从 卡方(m)分布。

④最后将算出来的T·R2值与卡方分布的临界值比较,……。

二、如何应对?①如果异方差的形式已知,我们可以通过GLS(广义二乘法)来处理:举例说明:②如果异方差的形式未知自相关:(Autocorrelation)一如何检测?我们直接可以看DW值,注意这个ρ值is the残差项之间的estimated correlation coefficient.也可以用另外一种方法:二如何应对?①如果自相关的形式已知•If the form of the autocorrelation is known, we could use a GLS procedureBut such procedures that “correct” for autocorrelation require assumptions about the form of the autocorrelation.②未知:构建动态模型,如:三多重共线性:(Multicollinearity)①如何检测:look at the matrix of correlations between the individual variables.另外:R2 will be high but the individual coefficients will have high standard errors也可能存在多重共线性。

②如何解决:。

【总结】计量经济学异方差性、多重共线性、自相关的联系与区别知识总结

【总结】计量经济学异方差性、多重共线性、自相关的联系与区别知识总结

《计量经济学》中多重共线性、异方差性、自相关三者之间的联系与区别首先我们先来回顾一下经典线性回归模型的基本假设:1、为什么会出现异方差性我们可以从一下两方面来分析:第一,因为随即误差项包括了测量误差和模型中被省略的一些因素对因变量的影响;第二,来自不同抽样单元的因变量观察值之间可能差别很大。

因此,异方差性多出现在截面样本之中。

至于时间序列,则由于因变量观察值来自不同时期的同一样本单元,通常因变量的不同观察值之间的差别不是很大,所以异方差性一般不明显。

含义及影响:y=X β+ε,var(εi )var(εj ), ij ,E(ε)=0,或者记为212200['|]0000n E X σεεσσ⎛⎫⎪=Ω= ⎪ ⎪⎝⎭即违背假设3。

用OLS 估计,所得b 是无偏的,但不是有效的。

111(')'(')'()(')'b X X X y X X X X X X X βεβε---==+=+由于E(ε)=0,所以有E(b )=β。

即满足无偏性。

但是,b 的方差为1111121var(|)[()()'][(')''(')|] (')'['|](') (')'()(')b X E b b E X X X X X X X X X X E X X X X X X X X X X ββεεεεσ------=--===Ω其中212200['|]0000n E X σεεσσ⎛⎫⎪=Ω= ⎪ ⎪⎝⎭2、自相关产生的原因:(1)、经济数据的固有的惯性带来的相关 (2)、模型设定误差带来的相关 (3)、数据的加工带来的相关 含义及影响:cov(,)0,i j i j εε≠≠影响:和异方差一样,系数的ls 估计是无偏的,但不是有效的。

D -W 检验(Durbin -Watson )221212222121212222112112122211221122121()()()2()()222222(1)n i i i n i i n n n i i i i i i i n i i n n n i i i i i i i n n i i n i i i nn n i i i i nn i ie e d e e e e e e e e e e e e e e e e e e e e e e ρρ=-===-=-====-==-===∑-=∑∑+∑-∑=∑∑+∑-∑--=∑∑+=--∑∑+=--∑≈-其中2121n i i i n i ie e e ρ=-=∑=∑是样本一阶自相关函数。

异方差性、自相关以及广义最小二乘(GLS)

异方差性、自相关以及广义最小二乘(GLS)
如果f(b)是一组关于最小二乘估计量J个连续的线性或非线性的函数并令
G是J×K矩阵,其中第j行是第j个函数关于b的导数。利用(4-21)的斯拉茨基(Slutsky)定理,
并且

于是
(0)
实际上,渐近协方差矩阵的估计量是
如果某个函数是非线性的,则b的无偏的性质不会传给f(b)。不过从(0)中可得f(b)是f(β)的一致估计量,而且渐近协方差矩阵很容易获得。对f(β)的检验也很容易。
可行的最小二乘ቤተ መጻሕፍቲ ባይዱ计(FGLS)
具有代表性的问题涉及到一小组参数 ,满足 。例如, 只有一个未知数 ,其常见的表达形式是

其中,也只有一个附加的未知参数。一个也只包含一个新参数的异方差模型是
接下来,假定 是 的一致估计量(如果我们知道如何求得这样的估计量)为了使GLS估计可行,我们将使用
替代真正的 。我们所考虑的问题是利用 是否要求我们改变上节的某些结果。
三)可行的最小二乘估计(FGLS)
上一节的结果是基于Ω必须是已知的条件基础上的。如果Ω含有必须估计的未知参数,则GLS是不可行的。但在无约束的情况下, 中有n(n+1)/2个附加参数。这对于用n个观测值来估计这么多的参数是不现实的。只有当模型中需要估计的参数较少时,即模型中Ω某种结构要简化,才可以找到求解的方法。
这些是必须逐个情况进行核实的条件。但在大多数情况中,它们的确成立。如果我们假设它们成立,基于 的FGLS估计量与GLS估计量具有同样的渐近性质。这是一个相当有用的结果。特别地,注意以下结论:
1、一个渐近有效的FLGS估计量不要求我们有 的有效估计量,只需要一个一致估计量。
2、除了最简单的情况,FGLS估计量的有限样本性质和精确分布是未知的。FGLS估计量的渐近有效性在小样本的情况下可能不再成立,这是因为由估计的 引入的易变性。对于异方差情况的一些分析由泰勒(1977年)给出。自相关的模型由格涅里切斯和拉奥(1969年)做了分析。在这两项研究中,他们发现对于许多类型的参数,FGLS比最小二乘更为有效。但是,如果偏离古典假设不太严重,在小样本情况下最小二乘可能比FGLS更有效。

自相关和异方差处理顺序

自相关和异方差处理顺序

自相关和异方差处理顺序在统计学和计量经济学中,自相关和异方差是两个常见的问题,需要进行相应的处理才能保证模型的准确性和可靠性。

本文将以人类的视角,采用准确的中文进行描述,详细介绍自相关和异方差的处理顺序及其重要性。

一、自相关处理自相关是指时间序列数据中观测值之间存在的相关性。

当序列中的观测值之间存在一定的相关性时,会导致统计模型的参数估计不准确,假设检验无效,预测结果不可靠。

因此,需要进行自相关的处理。

自相关处理的一种常见方法是使用自相关函数(ACF)和偏自相关函数(PACF)进行分析。

ACF表示观测值与不同滞后期的观测值之间的相关性,PACF表示观测值与滞后期观测值之间的相关性,探究观测值之间的相关性结构。

在进行自相关处理时,可以采取以下步骤:1. 绘制时间序列图,观察序列的趋势和波动性。

2. 进行序列的平稳性检验,确保序列满足平稳性的要求。

3. 绘制ACF和PACF图,分析观测值之间的相关性结构。

4. 根据ACF和PACF的图形特征,选择合适的自回归移动平均模型(ARMA模型)。

5. 估计模型参数,进行模型拟合。

6. 检验模型的残差序列是否存在自相关,如果存在,则返回第3步,重新选择模型。

通过以上步骤,可以有效地处理自相关问题,提高模型的准确性和可靠性。

二、异方差处理异方差是指随着自变量的变化,因变量的方差也发生变化。

当存在异方差时,会导致模型的参数估计不准确,假设检验无效,预测结果不可靠。

因此,需要进行异方差的处理。

异方差处理的一种常见方法是使用加权最小二乘法(Weighted Least Squares, WLS)。

WLS是一种在回归分析中常用的方法,通过对误差项进行加权,降低异方差对回归结果的影响。

在进行异方差处理时,可以采取以下步骤:1. 绘制残差图,观察残差的分布特征。

2. 进行异方差检验,判断是否存在异方差。

3. 如果存在异方差,可以使用加权最小二乘法进行回归估计。

4. 根据异方差的特点,选择合适的加权函数,对误差项进行加权。

第10章 误差项自相关与异方差

第10章 误差项自相关与异方差

自相关的程度用自相关系数表示。为了不与自回归系
数 混淆,本节用符号 r 表示自相关系数。
随机误差项u t 与滞后一期的u t 1 的自相关系数为
covut(,ut1) varu(t)varu(t1)
(10.2)
2021/7/12
山东财经大学统计学院计量经济教研室
第5页
机动 目录 上页 下页 返回 结束
列 与的横前截随后面机数数误据据差具的项有异自相 方相关 差关性 分问。 析题但 类的真似实实,质的由在于于u 残t 随是差机无误e法t 可差观看项测作u的t ,u序t
的估计值,我们可以利用从OLS法中得到的样本残差序列
e t 来判断误差项是否自相关问题。
下面介绍几种常用的自相关检验方法。
一、图示检验法
2021/7/12
山东财经大学统计学院计量经济教研室
第13页
机动 目录 上页 下页 返回 结束
三、误差项自相关对回归的影响
如果模型中的随机项存在自相关,仍然采用普通最小二 乘法OLS,会有以下后果:
1. 斜率系数 ˆ j 依然是线性的和无偏的,即 E(ˆj) j 。
因为参数OLSE的线性和无偏性不需要ut无自相关假定(假 定TS.5和TS.6 ' )的支持。但OLSE有效性、渐进有效性需要
第14页
机动 目录 上页 下页 返回 结束
2. 最小二乘估计量的方差估计是有偏的。
用来估计随机项的方差会严重低估真实的方差,进 而低估回归参数的方差公式和标准差,从而过高估计t统 计量的值,夸大所估计参数的显著性,对本来不重要的 解释变量可能误认为重要而被保留。这时通常的回归系 统显著性的t 检验将失去意义。类似地,由于误差项自
如果被解释变量不同时期的取值是相关联的,也就是现 期的取值受上期或上几期取值的影响,即存在自相关。由 于被解释变量与随机项有相同的分布,被解释变量的自相 关必然意味着随机项的自相关。

自相关和异方差处理顺序

自相关和异方差处理顺序

自相关和异方差处理顺序自相关和异方差是统计学中常见的两个问题,它们在数据分析和建模中起着重要的作用。

在本文中,我们将讨论自相关和异方差的处理顺序,并介绍一些常用的方法和技巧。

一、自相关的处理自相关是指同一时间序列数据中不同时间点之间的相关性。

在时间序列分析中,我们经常会遇到自相关的问题,这会影响到模型的准确性和可靠性。

为了解决自相关问题,我们可以采取以下几种方法:1. 平稳化处理:对于非平稳的时间序列数据,我们可以通过差分、对数变换或者其他方法来使其变得平稳。

平稳化后的数据能够更好地满足模型的假设条件,从而减小自相关的影响。

2. 引入滞后项:在建立模型时,我们可以引入滞后项来考虑时间序列数据中不同时间点之间的相关性。

常用的方法有自回归(AR)模型和移动平均(MA)模型等。

3. 模型诊断:在建立模型后,我们需要对模型进行诊断,检验是否存在自相关。

常用的方法有自相关图和部分自相关图等。

如果发现存在自相关,我们可以进一步调整模型的参数或者引入其他变量来解决自相关问题。

二、异方差的处理异方差是指同一时间序列数据中不同时间点之间方差不相等的现象。

异方差会导致模型的预测结果不准确,因此需要进行处理。

以下是一些处理异方差的方法:1. 变换方法:对于存在异方差的数据,我们可以通过对数变换、平方根变换或者倒数变换等方法来使其变得更加稳定。

变换后的数据能够更好地满足模型的假设条件,从而减小异方差的影响。

2. 加权最小二乘法:在建立模型时,我们可以采用加权最小二乘法来解决异方差问题。

加权最小二乘法能够根据不同时间点的方差大小来调整模型的参数,从而减小异方差的影响。

3. 残差诊断:在建立模型后,我们需要对模型的残差进行诊断,检验是否存在异方差。

常用的方法有残差图和方差稳定性检验等。

如果发现存在异方差,我们可以进一步调整模型的参数或者引入其他变量来解决异方差问题。

自相关和异方差是统计学中常见的问题,它们在数据分析和建模中起着重要的作用。

第五讲 异方差和自相关.

第五讲 异方差和自相关.

2。利用广义最小二乘法(GLS)
广义最小二乘法是对原模型加权,使之变成一个新 的不存在异方差性的模型,然后采用普通最小二乘 法估计其参数。 其含义为 Var(b) =σ2 (X'X)-1(X'Σ X) (X'X)-1 通过加权使得Σ =I 因此,GLS和WLS要求Σ 已知。
加权最小二乘法(WLS):
4-DL
4
经验上DW值1.8---2.2之间接受原假设, 不存在一阶自相关。 DW值接近于0或者接近于4,拒绝原假 设,存在一阶自相关。
4。Q检验和Bartlett检验 reg D.rs LD.r20 predict e2,res wntestq e2 wntestq e2,lag(2) wntestb e2
r 20t 1 r 20t 1 r 20t 2
rst rst rst 1
回归方程为: use ukrates,clear tsset month reg D.rs LD.r20
自相关的检验
1。图形法:自相关系数和偏自相关系数 predict e1,res ac e1 pac e1 corrgram e1,lag(10)
3。DW检验:只能检验一阶自相关的序列相 关形式,并且要求解释变量严格外生。
根据样本个数和自由度查表得到DL和DU,并 且构造不同的区域。
reg D.rs LD.r20 dwstat
Reject H0
Uncertainty
Accept H0
Uncertainty
Reject H0
0
DL
DU
4-DU
0 . 0
2 1
0
2 2
. 0
0 0 ... . 2 ... n .. ...

异方差、自相关检验及修正

异方差、自相关检验及修正

异方差、自相关的检验与修正实验目的:通过对模型的检验掌握异方差性问题和自相关问题的检验方法及修正的原理,以及相关的Eviews 操作方法。

模型设定:εβββ+++=23121i i i X X YYi----人均消费支出X1--从事农业经营的纯收入X2--其他来源的纯收入 中国内地2006年各地区农村居民家庭人均纯收入与消费支出 单位:元 城市 y x1 x2 城市 y x1 x2 北京 5724.5 958.3 7317.2 湖北 2732.5 1934.6 1484.8 天津 3341.1 1738.9 4489 湖南 3013.3 1342.6 2047 河北 2495.3 1607.1 2194.7 广东 3886 1313.9 3765.9 山西 2253.3 1188.2 1992.7 广西 2413.9 1596.9 1173.6 内蒙古 2772 2560.8 781.1 海南 2232.2 2213.2 1042.3 辽宁 3066.9 2026.1 2064.3 重庆 2205.2 1234.1 1639.7 吉林 2700.7 2623.2 1017.9 四川 2395 1405 1597.4 黑龙江 2618.2 2622.9 929.5 贵州 1627.1 961.4 1023.2 上海 8006 532 8606.7 云南 2195.6 1570.3 680.2 江苏 4135.2 1497.9 4315.3 西藏 2002.2 1399.1 1035.9 浙江 6057.2 1403.1 5931.7 陕西 2181 1070.4 1189.8 安徽 2420.9 1472.8 1496.3 甘肃 1855.5 1167.9 966.2 福建 3591.4 1691.4 3143.4 青海 2179 1274.3 1084.1 江西 2676.6 1609.2 1850.3 宁夏 2247 1535.7 1224.4 山东 3143.8 1948.2 2420.1 新疆 2032.4 2267.4 469.9 河南 2229.3 1844.6 1416.4 数据来源:《中国农村住户调查年鉴(2007)》、《中国统计年鉴(2007)》参数估计:估计结果如下:2709030.01402097.01402.728X X Y ++=Λ(2.218) (2.438) (16.999) 922173.02=R D.W.=1.4289 F=165.8853 SE=395.2538实验步骤:一、检查模型是否存在异方差1.图形分析检验(1)散点相关图分析分别做出X1和Y 、X2和Y 的散点相关图,观察相关图可以看出,随着X1、X2的增加,Y 也增加,但离散程度逐步扩大,尤其表现在X1和Y .这说明变量之间可能存在递增的异方差性。

计量经济学实验报告3 自相关 异方差 多重共线性 心得体会

计量经济学实验报告3 自相关 异方差 多重共线性 心得体会
成绩
辽宁工程技术大学上机实验报告
实验名称
计量经济学多重共线性 异方差 自相关
院系
工商管理
专业
金融
班级
09-2
姓名
于佳琦
学号
08
日期
实验
目的
简述本次实验目的:掌握多元线性回归模型基础上掌握多重共线性模型,异方差模型,自相关模型的估计和检验方法以及处理方法。
实验
准备
你为本次实验做了哪些准备:收集数据选择方程进行多元线性回归,熟悉各种检验方法,了解检验方法对应的原理以及面对各种情况所对应的检验方法
建立的模型可能出现各种问题,需要检验,但检验时也需要具体问题具体分析,所以,要建立一个完美的模型,需要在建模初始的时候考虑周全,也需要在建模后期,谨慎进行检验。
教师
评语
实验
进度
本次共有12个练习,完成12个。
实验பைடு நூலகம்
总结

本次实验的收获、体会、经验、问题和教训:在出现多重共线性,异方差性以及自相关问题时,我们应该正确找到方法与之对应,我们在此之前,应该着重强调和理解最小二乘法建立模型时的三个基本假设,与之其一违背,模型讲存在问题。对于多重共线性,书中首先提到的VIF法较为直观,可是当在EVIEWS当中,不能直接计算VIF的值,只能逐一回归,所以上机不适合这种方法,可以从变量的相关系数矩阵来判断是否存在多重共线性。异方差性中,利用White检验,可以利用残差和解释变量来建立辅助模型进行回归,异方差已知时,可以利用WLS加权最小二乘法来解决,缺点在于,确定权数以及后期计算加权的过程比较麻烦。在自相关当中,图示法较为简单,观察到如果存在锯齿形状,则有自相关,在DW检验中,不仅能检验出是否存在自相关,而且可以检验存在正自相关和负自相关,缺点在于,只可以检验一阶自相关。

最简单的实证分析模型

最简单的实证分析模型

最简单的实证分析模型常规OLS回归:(一个被解释变量,多个解释变量,且变量均正常)OLS回归(普通最小二乘法回归)是公认最常用到的最简单的回归模型,没有之一。

在实际操作中多用OLS进行多元线性进行回归,然后根据回归结果进行分析,对模型进行调整与优化,以确定最佳的模型。

在建模分析过程中,OLS回归很简单,输入命令即可,但更重要的是对模型的修正,最终确定最佳的模型。

考虑到在实际过程中,因为经济数据的波动性以及数据记录的误差,会导致回归结果并不是那么完美,会出现以下几种问题。

1异方差问题OLS回归前提之一是总体回归函数中的随机误差项满足同方差性,即它们都有相同的方差。

如果这一假定不满足,即:随机误差项具有不同的方差,则称线性回归模型存在异方差性。

在Eviews中可以利用怀特检验(white)来验证是否有异方差,怀特检验原假设是不存在异方差,如果检验结果P值小于特定值(一般选0.05),则认为其存在异方差。

对于异方差的修正可以增加权重系数,再次进行回归(重新选择OLS回归命令,在option选项中设置权重系数,然后进行回归)。

2自相关问题自相关性是指随机误差项的各期望值之间存在着相关关系,称随机误差项之间存在自相关性(autocorrelation)或序列相关。

在Eviews中可以检查残差的自相关图与偏自相关图,或LM检验或Q检验,来确定是否存在自相关。

存在自相关可以进行广义最小二乘法(GLS),先根据DW值来计算自相关系数ρ,其中ρ=1-DW/2。

根据自相关系数生成广义差分序列gY=Y-ρY,其他变量以此类推,运用广义差分序列再次进行回归。

3内生解释变量问题随机误差项μ的条件零均值假设意味着μ不依赖于X的变化而变化,该假设表明μ与X不存在任何形式的相关性,当该假设成立时也意味着X为外生解释变量,否则,称X为内生解释变量。

产生内生解释变量一般是因为被解释变量与解释变量存在相互包含的关系,如国民生产总值(GDP)与投资(INV)这两个变量就属于内生解释变量问题,可以选取相应的工具变量(如变量的滞后一期)进行两阶段最小二乘法分析(TSLS)分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a
与 b 。 a 与 b 的线性相关系数,称为
q
z
的等级相关系数 。
(ai a )(bi b ) rs (ai a ) 2 (bi b ) 2
6 (ai bi ) 2 rs 1 n(n 2 1)
§5.2
等级相关检验
异方差问题
(a) 完成模型的OLS估计,获取残差数据
X 11 f ( X j1 ) X 12 f ( X j2 ) X 1n f ( X jn )

X k1 f ( X j1 ) X k2 f ( X j2 ) X kn f ( X jn )
~ Y
Y f (X j )
~ Xi
Xi f (X j )
1 1 1
X 11 X 12 X 1n

Y1 X k 1 f ( X j1 ) Y2 X k2 f ( X j2 ) Y n X kn f ( X jn )
1 f ( X j1 ) 1 f ( X j2 ) 1 f ( X jn )
第五章
异方差与自相关问题
除了本章讨论所涉及的同方差性与不自相关性以外,
关于线性回归模型的其它假定在本章中都成立。 ——广义最小平方估计; ——异方差模型及其估计; ——自相关模型及其估计; ——异方差模型、自相关模型的预测。
§5.1
广义最小平方法
同方差且不自相关
cov(U ) 2 I cov(U ) 2
ei ;
(b) 选择可能与异方差有关的解释变量 rs ( j ),计算变量 X j与变

e 的等级相关系数
(c) 计算统计量
X
j


1 rs2 ( j ) (d)T j 近似服从自由度为n 2 的 t 分布。根据显著性水平
2

2
Tj
rs ( j ) n 2

及自由度 n 2,查取 t 分布临界值 t 。如果 T j t ,则判定
(一)异方差概念
异方差问题
var(U i ) EU i2 i
2
i2
(i 1,2,, n)不全相同
var(Yi ) var(U i )
异方差概念理解 (二)异方差的检测
U i Yi ( 0 1 X 1i k X ki )
ˆ ˆ X ˆ X ) ei Yi ( 0 1 1i k ki
2 n )的观测值。再对模型中的其余变量,以 c 4
的观测值,并使剩余的
ei2
A
A
ei2
B
2 F e i (c)构造统计量
ei2或 F ei2 ei2 ; B
B A
(d)根据显著性水平 ,以及双自由度 n c (k 1) ,查取 F 分布临 界值 F 。若经比较 F F ,则接受模型存在单调形式的异方差,否 则拒绝异方差。
对于与具有较小方差相应的残差,给以较大的权数,使其在确定回 归函数时,起较为重要的作用。或者说使回归函数主要参照那些对应 较小方差的样本点而被决定。
§5.3
(二)参数
异方差模型的估计
1 d1 P 1 dn
d i 的估计

散点图( X , e ji i
) e f (X j) V
e 0 1 X j
1 e 0 1 X j
几种常见的可供参考的函数形式:
e 0 1 X j
取 d 为函数 f ( X j ) 中的可变部分 : X j
1 X j
Xj
§5.3
异方差模型的估计
(三)异方差模型的广义最小平方估计
Y1 Y2 Y n
三个所谓协方差矩阵
(a)OLS估计 ˆ 的协方差矩阵
ˆ ) 2 ( X X ) 1 X X ( X X ) 1 cov(
(b)广义最小平方估计
的协方差矩阵
~
cov( ) 2 ( X 1 X )1
(c)伪协方差矩阵
~
2 ( X X ) 1
§5.2
1. 图示法
( X ji , Yi )
( X ji , ei )
§5.2
2. 等级相关检验 :
设变量
异方差问题
等级相关系数
q
}
i 1, , n
按照某种性能,同方向分别指定各观测值的等级:
{ai , bi }
并由此产生等级变量 与
i 1, , n
ˆ 0.5160 0.0668 X Y
模型存在单调形式的异方差,否则拒绝异方差。
§5.2
3. F 检验
异方差问题
(a)选择可能与异方差有关的解释变量 X j 。将 X j的样本观测值由小到
大进行排列,然后从这一排列的中心删去约 n c
两个子列具有相同数目(
的观测值序号为准,进行相应的删与留,形成A、B两个子样本; (b)两个子样本分别进行OLS估计,获取两个残差平方和:
2
§5.3
异方差模型的估计
(一)广义最小平方估计对于异方差模型的意义
1 2 d 1 1 2 dn
1

~ 1 ~ 1 2 ~ ~~ ~ ~~ (Y X ) (Y X ) (Y X ) (Y X ) 2 ei di
PP I
异方差或自相关
正定
(~)
Y X U

~ ~ ~ Y X U
——(~)模型满足关于线性回归模型的全部基本假定,(~)模型
的普通最小平方估计将给出系数 的线性无偏最小方差估计。
( X 1 X ) 1 X 1Y
~
§5.1
广义最小平方法
~ X0
1 f (X j )
i 1, , k
~ ~ ~ ~ ~ Y 0 X 0 1 X 1 k X k U
§5.3
异方差模型的估计
(四)异方差模型示例5.1 设 Y 表示商场利润总额,X表示商场销售收入。北京市20家最大 的百货商店的销售资料 ,商场按照销售收入规模从大到小排序。
相关文档
最新文档