大工20秋《数据挖掘》大作业题目及要求

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

网络教育学院

《数据挖掘》课程大作业

题目: Knn算法原理以及python实现

第一大题:讲述自己在完成大作业过程中遇到的困难,解决问题的思路,以及相关感想,或者对这个项目的认识,或者对Python与数据挖掘的认识等等,300-500字。

《数据挖掘是计算机专业一门重要的专业课。本课程是大数据背景下现代统计数据分析不可缺少的重要工具。通过本课程的学习,培养学生的数据分析技能,熟悉和掌握大数据信息提取与结果分析,培养适应社会数据分析岗位需求的专业人才。课程的重点教学内容为:网络爬虫与数据抽取、数据分析与挖掘算法-关联规则、数据分析与挖掘算法-分类与预测、数据分析与挖掘算法-聚类等。课程任务主要是让学生在学习期间掌握数据挖掘理论以及如何用数据挖掘来解决实际问题,了解某个数据挖掘解决方案对特定问题是否切实可行,学生能够借助软件工具进行具体数据的挖掘分析。本课程为计算机相关专业的基础课程,其内容涵盖了数据挖掘的相关知识。课程在阐述Python理论知识基础上,增加了数据分析和处理等知识内容,从而使学生加深对数据挖掘的理解。课程安排内容难易适中,学生可以通过实际项目加深对数据挖掘系统结构的整体流程了解。

第二大题:完成下面一项大作业题目。

2020秋《数据挖掘》课程大作业

注意:从以下5个题目中任选其一作答。

题目一:Knn算法原理以及python实现

要求:文档用使用word撰写即可。

主要内容必须包括:

(1)算法介绍。

(2)算法流程。

(3)python实现算法以及预测。

(4)整个word文件名为 [姓名奥鹏卡号学习中心](如

戴卫东101410013979浙江台州奥鹏学习中心[1]VIP )答:

一、knn算法介绍

1. 介绍

邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 kNN方法在类别决策时,只与极少量的相邻样本有关。由于kNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,kNN方法较其他方法更为适合。

2. 核心概括

主要的思想是计算待分类样本与训练样本之间的差异性,并将差异按照由小到大排序,选出前面K个差异最小的类别,并统计在K个中类别出现次数最多的类别为最相似的类,最终将待分类样本分到最相似的训练样本的类中。与投票(Vote)的机制类似。

二、knn算法流程

1. 准备数据,对数据进行预处理

2. 选用合适的数据结构存储训练数据和测试元组

相关文档
最新文档