代数与几何综合题(时间90分钟).
专题九几何综合体、代数和几何综合题(含答案)
2012年中考第二轮专题复习九:几何综合体、代数和几何综合题1(2011河北省)如图,四边形ABCD是正方形,点E,K分别在BC,AB上,点G在BA 的延长线上,且CE=BK=AG.(1)求证:①DE=DG;②DE⊥DG(2)尺规作图:以线段DE,DG为边作出正方形DEFG(要求:只保留作图痕迹,不写作法和证明);(3)连接(2)中的KF,猜想并写出四边形CEFK是怎样的特殊四边形,并证明你的猜想:(4)当时,请直接写出的值.考点:正方形的性质;全等三角形的判定与性质;平行四边形的判定;作图—复杂作图。
分析:(1)由已知证明DE、DG所在的三角形全等,再通过等量代换证明DE⊥DG;(2)根据正方形的性质分别以点G、E为圆心以DG为半径画弧交点F,得到正方形DEFG;(3)由已知首先证四边形CKGD是平行四边形,然后证明四边形CEFK为平行四边形;(4)由已知表示出的值.解答:(1)证明:∵四边形ABCD是正方形,∴DC=DA,∠DCE=∠DAG=90°.又∵CE=AG,∴△DCE≌△GDA,∴DE=DG,∠EDC=∠GDA,又∵∠ADE+∠EDC=90°,∴∠ADE+∠GDA=90°,∴DE⊥DG.(2)如图.(3)四边形CEFK为平行四边形.证明:设CK、DE相交于M点,∵四边形ABCD和四边形DEFG都是正方形,∴AB∥CD,AB=CD,EF=DG,EF∥DG,∵BK=AG,∴KG=AB=CD,∴四边形CKGD是平行四边形,∴CK=DG=EF,CK∥DG,∴∠KME=∠GDE=∠DEF=90°,∴∠KME+∠DEF=180°,∴CK∥EF,∴四边形CEFK为平行四边形.(4)=.点评:此题考查的知识点是正方形的性质、全等三角形的判定和性质、平行四边形的判定及作图,解题的关键是先由正方形的性质通过证三角形全等得出结论,此题较复杂2(2011新疆建设兵团)如图,在等腰梯形ABCD中,AD=4,BC=9,∠B=45°.动点P从点B出发沿BC向点C运动,动点Q同时以相同速度从点C出发沿CD向点D运动,其中一个动点到达端点时,另一个动点也随之停止运动.(1)求AB的长;(2)设BP=x,问当x为何值时△PCQ的面积最大,并求出最大值;(3)探究:在AB边上是否存在点M,使得四边形PCQM为菱形?请说明理由.考点:等腰梯形的性质;二次函数的最值;菱形的性质;解直角三角形。
代数几何综合(含答案)
23.(本小题7分)如图,在平面直角坐标系中,A(-3,0),点C 在y 轴的正半轴上,BC ∥x 轴,且BC=5,AB 交y 轴于点D ,OD=23. (1)求出点C 的坐标; (2)过A 、C 、B 三点的抛物线与x 轴交于点E ,连接BE .若动点M 从点A 出发沿x 轴向x 轴正方向运动,同时动点N 从点E 出发,在直线EB 上作匀速运动,两个动点的运动速度均为每秒1个单位长度,请问当运动时间t 为多少秒时,△MON 为直角三角形? 23.解:(1)∵ BC ∥x 轴, ∴ △BCD ∽△AOD .∴ CD BC OD AO=. ∴ 535322CD =⨯=.∴ 53422CO =+=. ∴ C 点的坐标为 (0,4) . ……………………… 1分 (2)如图1,作BF ⊥x 轴于点F ,则BF= 4. 由抛物线的对称性知EF=3.∴BE=5,OE=8,AE=11. ………………………… 2分 根据点N 运动方向,分以下两种情况讨论: ① 点N 在射线EB 上.若∠NMO=90°,如图1,则cos ∠BEF=ME FENE BE=, ∴1135t t -=,解得558t =.……………… 3分 若∠NOM=90°,如图2,则点N 与点G 重合.∵ cos ∠BEF=OE FEGE BE=, ∴ 835t =,解得403t =. …………………… 4分∠ONM=90°的情况不存在. ………………………………………………………… 5分 ② 点N 在射线EB 的反向延长线上.若∠NMO=90°,如图3,则cos ∠NEM= cos ∠BEF ,∴ME FENE BE =. ∴ 1135t t -=,解得552t =. …………………… 6分 而∠NOM=90°和∠ONM=90°的情况不存在.…… 7分 综上,当558t =、403t =或552t =时,△MON 为直角三角形.(第23题图2)D(N)(第23题图3)D(第23题)25.(7分)已知,抛物线22y ax bx =+-与x 轴的两个交点分别为A (1,0),B (4,0),与y 轴的交点为C . (1)求出抛物线的解析式及点C 的坐标;(2)点P 是在直线x=4右侧的抛物线上的一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与△OCB 相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由. 25.(7分)解:(1)据题意,有0164202a b a b =+-⎧⎨=+-⎩, . 解得 1252a b ⎧=-⎪⎪⎨⎪=⎪⎩, . ∴抛物线的解析式为:215222y x x =-+-.点C 的坐标为:(0,-2). ………………………(2)答:存在点P (x ,215222x x -+-),使以A ,P ,M ∵∠COB =∠AMP =90°,∴①当OC OBMP MA =时,△OCB ∽△MAP . ②当OC OB MA MP=时,△OCB ∽△MP A . ①OC MP OB MA =,∴215222241x x x -+=-. 解得:x 1=8,x 2=1(舍). ②OC MA OB MP =,∴221154222x x x -=-+. 解得:x 3=5,x 4=1(舍).综合①,②知,满足条件的点P 为:P 1(8,-14),P 2(5,-2). ……………………… 7分24. 在△ABC 中,∠A =∠B =30°,AB=.把△ABC 放在平面直角坐标系中,使AB 的中点位于坐标原点O (如图),△ABC 可以绕点O 作任意角度的旋转.(1) 当点BB 的横坐标;(2) 如果抛物线2y ax bx c =++(a ≠0)的对称轴经过点C ,请你探究:当a =,12b =-,c =A ,B 两点是否都在这条抛物线上?并说明理由。
初中数学代数几何综合问题
代数几何综合问题一、选择题1.如图,是一对变量满足的函数关系的图象,有下列3个不同的问题情境:①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米;②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x分,桶内的水量为y升;③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=S△ABP;当点P与点A重合时,y=0.其中,符合图中所示函数关系的问题情境的个数为【】A.0 B.1 C.2 D.32.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于12MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为【】A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=13.若a,b为实数,且a1b10++-=,则(ab)2013的值是【】A、0B、1C、﹣1D、±14.一个三角形的两边长分别为3和6,第三边的边长是方程(x﹣2)(x﹣4)=0的根,则这个三角形的周长是【】A.11 B.11或13 C.13 D.以上选项都不正确5.若平行四边形的一边长为2,面积为46】A .3与4之间B .4与5之间C .5与6之间D .6与7之间6.已知()2x y 32x y 0-+++=,则x +y 的值为【 】A .0B .﹣1C .1D .57.一条直线y =kx +b ,其中k +b =﹣5、kb =6,那么该直线经过【 】A .第二、四象限B .第一、二、三象限C .第一、三象限D .第二、三、四象限 8.已知实数x ,y ,m 满足x 2|3x y m |0++++=,且y 为负数,则m 的取值范围是【 】A .m >6B .m <6C .m >﹣6D .m <﹣6二、填空题9.若a 2b 30-+-=,则a b = ▲ .10.如图,正方形ODBC 中,OC =1,OA =OB ,则数轴上点A 表示的数是 ▲ .11.若实数a 、b 满足a 2b 40++-=,则2a b= ▲ . 12.无论x 2x 6x m -+都有意义,则m 的取值范围为 ▲ .13a 1a b 10-+++=,则a b = ▲ .14.已知点P (3,﹣1)关于y 轴的对称点Q 的坐标是(a +b ,1﹣b ),则a b 的值为 ▲ .15.函数3x y -=x 的取值范围是 ▲ . 16.函数y x 3=-x 的取值范围是 ▲ ;若分式2x 3x 1-+的值为0,则x = ▲ . 17.若直角三角形的两直角边长为a 、b 2a 6a 9b 40-+-=,则该直角三角形的斜边长为 ▲ .1822a 3a 1b 2b 10-+++=,则221a b a +-= ▲ 。
几何与代数知识的融合应用的综合题
几何与代数基础知识
第一章
几何与代数的概念
几何:研究空间结构及性质的一门 学科,包括点、线、面、体等基本 元素和形状、大小、位置关系等基 本概念。
几何与代数的融合:在数学中,几 何与代数是相互联系、相互渗透的, 代数的方法可以用来研究几何问题, 而几何的直观性也可以帮助理解代 数问题。
添加标题
添加标题
题目:已知双曲线 x^2/a^2 - y^2/b^2 = 1 (a > 0, b > 0) 的离心率为 √3,且过点 (√3,1/2)。
题目:已知圆 C:(x - a)^2 + (y - b)^2 = r^2,直线 l:mx - y + n = 0,若直线 l 与圆 C 相切,则 m、n、a、b、r 间满足的关系式为 _______.
添加 标题
验证物理理论:几何与代数在验证物理理论 方面也发挥了重要作用,如通过实验数据绘 制图表、计算相关物理量等。
几何与代数在计算机科学中的应用
添加项标题
计算机图形学:几何与代数在计算机图形学中广泛应用,用于 描述三维物体的形状、位置和运动。
添加项标题
计算机视觉:通过几何与代数的方法,可以对图像和视频进行 预处理、特征提取和识别。
实例:在研究经济增长时,可以通过解析几何与代数的方法来建立经济增长模型,从 而更好地预测未来的经济走势。
实例:在研究国际贸易时,可以通过解析几何与代数的方法来建立贸易模型,从而更 好地分析国际贸易的利弊。
实例:在研究投资组合时,可以通过解析几何与代数的方法来建立投资组合模型,从 而更好地优化投资组合。
检查结果:最后检查结果是否符合题目的要求。
几何与代数知识的融合应用 实例
代数几何综合题含答案
争分夺秒 分秒必争 我的人生 我做主 只要认真做事 一切皆有可能 东升求实学校2015届初三数学培优资料专题三 代数几何综合题1、(2014•广东)如图,在△ABC 中,AB=AC ,AD ⊥AB 于点D ,BC=10cm ,AD=8cm .点P 从点B 出发,在线段BC 上以每秒3cm 的速度向点C 匀速运动,与此同时,垂直于AD 的直线m 从底边BC 出发,以每秒2cm 的速度沿DA 方向匀速平移,分别交AB 、AC 、AD 于E 、F 、H ,当点P 到达点C 时,点P 与直线m 同时停止运动,设运动时间为t 秒(t >0).(1)当t=2时,连接DE 、DF ,求证:四边形AEDF 为菱形;(2)在整个运动过程中,所形成的△PEF 的面积存在最大值,当△PEF 的面积最大时,求线段BP 的长;(3)是否存在某一时刻t ,使△PEF 为直角三角形?若存在,请求出此时刻t 的值;若不存在,请说明理由.考点:相似形综合题.分析: (1)如答图1所示,利用菱形的定义证明;(2)如答图2所示,首先求出△PEF 的面积的表达式,然后利用二次函数的性质求解;(3)如答图3所示,分三种情形,需要分类讨论,分别求解. 解(1)证明:当t=2时,DH=AH=2,则H 为AD 的中点,如答图1所示.答: 又∵EF ⊥AD ,∴EF 为AD 的垂直平分线,∴AE=DE ,AF=DF .∵AB=AC ,AD ⊥AB 于点D ,∴AD ⊥BC ,∠B=∠C . ∴EF ∥BC ,∴∠AEF=∠B ,∠AFE=∠C , ∴∠AEF=∠AFE ,∴AE=AF ,∴AE=AF=DE=DF ,即四边形AEDF 为菱形.(2)解:如答图2所示,由(1)知EF ∥BC ,∴△AEF ∽△ABC , ∴,即,解得:EF=10﹣t .S △PEF =EF •DH=(10﹣t )•2t=﹣t 2+10t=﹣(t ﹣2)2+10 ∴当t=2秒时,S △PEF 存在最大值,最大值为10,此时BP=3t=6.(3)解:存在.理由如下:①若点E 为直角顶点,如答图3①所示, 此时PE ∥AD ,PE=DH=2t ,BP=3t . ∵PE ∥AD ,∴,即,此比例式不成立,故此种情形不存在;②若点F 为直角顶点,如答图3②所示,争分夺秒分秒必争我的人生我做主只要认真做事一切皆有可能东升求实学校2015届初三数学培优资料此时PE∥AD,PF=DH=2t,BP=3t,CP=10﹣3t.∵PF∥AD,∴,即,解得t=;③若点P为直角顶点,如答图3③所示.过点E作EM⊥BC于点M,过点F 作FN⊥BC于点N,则EM=FN=DH=2t,EM∥FN∥AD.∵EM∥AD,∴,即,解得BM=t,∴PM=BP﹣BM=3t﹣t=t .在Rt △EMP中,由勾股定理得:PE2=EM2+PM2=(2t )2+(t)2=t2.∵FN∥AD,∴,即,解得CN=t ,∴PN=BC﹣BP﹣CN=10﹣3t﹣t=10﹣t.在Rt△FNP中,由勾股定理得:PF2=FN2+PN 2=(2t)2+(10﹣t)2=t2﹣85t+100.在Rt△PEF中,由勾股定理得:EF 2=PE2+PF2,即:(10﹣t)2=(t2)+(t2﹣85t+100)化简得:t2﹣35t=0,解得:t=或t=0(舍去)∴t=.综上所述,当t=秒或t=秒时,△PEF为直角三角形.点评:本题是运动型综合题,涉及动点与动线两种运动类型.第(1)问考查了菱形的定义;第(2)问考查了相似三角形、图形面积及二次函数的极值;第(3)问考查了相似三角形、勾股定理、解方程等知识点,重点考查了分类讨论的数学思想.25.(9分)(2013•汕头)有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=.将这副直角三角板按如图1所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如图2,当三角板DEF运动到点D到点A重合时,设EF与BC交于点M,则∠EMC=_________度;(2)如图3,当三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x取值范围.争分夺秒分秒必争我的人生我做主只要认真做事一切皆有可能东升求实学校2015届初三数学培优资料考点:相似形综合题.专题:压轴题.分析:(1)如题图2所示,由三角形的外角性质可得;(2)如题图3所示,在Rt△ACF中,解直角三角形即可;(3)认真分析三角板的运动过程,明确不同时段重叠图形的变化情况:(I )当0≤x≤2时,如答图1所示;(II)当2<x≤6﹣时,如答图2所示;(III)当6﹣<x≤6时,如答图3所示.解答:解:(1)如题图2所示,∵在三角板DEF中,∠FDE=90°,DF=4,DE=,∴tan∠DFE==,∴∠DFE=60°,∴∠EMC=∠FMB=∠DFE﹣∠ABC=60°﹣45°=15°;(2)如题图3所示,当EF经过点C时,FC====;(3)在三角板DEF运动过程中,(I)当0≤x≤2时,如答图1所示:设DE交BC于点G.过点M作MN⊥AB于点N,则△MNB 为等腰直角三角形,MN=BN.又∵NF==MN,BN=NF+BF,∴NF+BF=MN,即MN+x=MN,解得:MN=x.y=S△BDG﹣S△BFM=BD•DG﹣BF•MN=(x+4)2﹣x •x=x2+4x+8;(II)当2<x≤6﹣时,如答图2所示:争分夺秒分秒必争我的人生我做主只要认真做事一切皆有可能东升求实学校2015届初三数学培优资料过点M作MN⊥AB于点N,则△MNB为等腰直角三角形,MN=BN.又∵NF==MN,BN=NF+BF,∴NF+BF=MN,即MN+x=MN,解得:MN=x.y=S △ABC﹣S △BFM=AB•AC﹣BF•MN=×62﹣x•x=x 2+18;(III)当6﹣<x≤6时,如答图3所示:由BF=x,则AF=AB ﹣BF=6﹣x,设AC与EF 交于点M,则AM=AF•tan60°=(6﹣x).y=S△AFM =AF•AM=(6﹣x)•(6﹣x)=x2﹣x+.综上所述,y与x的函数解析式为:y=.点评:本题是运动型综合题,解题关键是认真分析三角板的运动过程,明确不同时段重叠图形形状的变化情况.在解题计算过程中,除利用三角函数进行计算外,也可以利用三角形相似,殊途同归.25.(2014年广东汕尾)如图,已知抛物线y=x2﹣x﹣3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.(1)直接写出A、D、C三点的坐标;(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M 的坐标;(3)设点C关于抛物线对称轴的对称点为B ,在抛物线上是否存在点P ,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.争分夺秒分秒必争我的人生我做主只要认真做事一切皆有可能东升求实学校2015届初三数学培优资料分析:(1)令y=0,解方程x2﹣x﹣3=0可得到A点和D点坐标;令x=0,求出y=﹣3,可确定C点坐标;(2)根据抛物线的对称性,可知在在x轴下方对称轴右侧也存在这样的一个点;再根据三角形的等面积法,在x轴上方,存在两个点,这两个点分别到x轴的距离等于点C到x轴的距离;(3)根据梯形定义确定点P,如图所示:①若BC∥AP1,确定梯形ABCP1.此时P 1与D点重合,即可求得点P1的坐标;②若AB∥CP 2,确定梯形ABCP2.先求出直线CP2的解析式,再联立抛物线与直线解析式求出点P2的坐标.解:(1)∵y=x2﹣x﹣3,∴当y=0时,x2﹣x﹣3=0,解得x1=﹣2,x2=4.当x=0,y=﹣3.∴A点坐标为(4,0),D点坐标为(﹣2,0),C点坐标为(0,﹣3);(2)∵y=x2﹣x﹣3,∴对称轴为直线x==1.∵AD在x轴上,点M在抛物线上,∴当△MAD的面积与△CAD的面积相等时,分两种情况:①点M在x轴下方时,根据抛物线的对称性,可知点M与点C关于直线x=1对称,∵C 点坐标为(0,﹣3),∴M点坐标为(2,﹣3);②点M在x轴上方时,根据三角形的等面积法,可知M点到x 轴的距离等于点C到x轴的距离3.当y=4时,x2﹣x﹣3=3,解得x1=1+,x2=1﹣,∴M点坐标为(1+,3)或(1﹣,3).综上所述,所求M点坐标为(2,﹣3)或(1+,3)或(1﹣,3);(3)结论:存在.如图所示,在抛物线上有两个点P满足题意:①若BC∥AP1,此时梯形为ABCP1.由点C关于抛物线对称轴的对称点为B,可知BC∥x轴,则P1与D点重合,∴P1(﹣2,0).∵P1A=6,BC=2,∴P1A≠BC ,∴四边形ABCP1为梯形;②若AB∥CP 2,此时梯形为ABCP2.∵A点坐标为(4,0),B点坐标为(2,﹣3),∴直线AB的解析式为y=x ﹣6,∴可设直线CP2的解析式为y=x+n,将C点坐标(0,﹣3)代入,得b=﹣3,∴直线CP2的解析式为y=x﹣3.∵点P2在抛物线y=x2﹣x﹣3上,∴x2﹣x﹣3=x﹣3,化简得:x2﹣6x=0,解得x1=0(舍去),x2=6,∴点P2横坐标为6,代入直线CP2解析式求得纵坐标为6,∴P2(6,6).∵AB∥CP2,AB≠CP2,∴四边形ABCP2为梯形.综上所述,在抛物线上存在一点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形;点P的坐标为(﹣2,0)或(6,6).争分夺秒分秒必争我的人生我做主只要认真做事一切皆有可能东升求实学校2015届初三数学培优资料点评:本题是二次函数的综合题型,其中涉及到的知识点有抛物线与坐标轴的交点坐标求法,三角形的面积,梯形的判定.综合性较强,有一定难度.运用数形结合、分类讨论及方程思想是解题的关键.22.(2014年广东深圳)如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC 并延长到D,使DC=4CA,连接BD.(1)求⊙M的半径;(2)证明:BD为⊙M的切线;(3)在直线MC上找一点P,使|DP ﹣AP|最大.考点:圆的综合题.分析:(1)利用A,B点坐标得出AO,BO的长,进而得出AB的长,即可得出圆的半径;(2)根据A,B 两点求出直线AB表达式为:y=﹣x+3,根据B,D 两点求出BD 表达式为y=x+3,进而得出BD⊥AB,求出BD为⊙M的切线;(3)根据D,O两点求出直线DO表达式为y=x 又在直线DO 上的点P的横坐标为2,所以p(2,),此时|DP﹣AP|=DO=.解答:(1)解:∵由题意可得出:OA2+OB2=AB2,AO=4,BO=3,∴AB=5,∴圆的半径为;(2)证明:由题意可得出:M(2,)又∵C为劣弧AO的中点,由垂径定理且MC=,故C(2,﹣1)过D 作DH⊥x 轴于H,设MC 与x 轴交于K,则△ACK∽△ADH,又∵DC=4AC,故DH=5KC=5,HA=5KA=10,∴D(﹣6,﹣5)设直线AB表达式为:y=ax+b,,解得:故直线AB表达式为:y=﹣x+3,同理可得:根据B,D两点求出BD的表达式为y=x+3,∵K AB×K BD=﹣1,争分夺秒分秒必争我的人生我做主只要认真做事一切皆有可能东升求实学校2015届初三数学培优资料∴BD⊥AB ,BD为⊙M的切线;(3)解:取点A 关于直线MC 的对称点O,连接DO并延长交直线MC于P,此P点为所求,且线段DO的长为|DP﹣AP|的最大值;设直线DO表达式为y=kx,∴﹣5=﹣6k,解得:k=,∴直线DO表达式为y=x又∵在直线DO上的点P的横坐标为2,y=,∴P(2,),此时|DP﹣AP|=DO==.点评:此题主要考查了勾股定理以及待定系数法求一次函数解析式以及两直线垂直系数的关系等知识,得出直线DO,AB,BD的解析式是解题关键.23.(2014年广东深圳)如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,①求当△BEF与△BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则S△EFG与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.考点:二次函数综合题.分析:(1)求出点A的坐标,利用顶点式求出抛物线的解析式;(2)①首先确定点E为Rt△BEF的直角顶点,相似关系为:△BAO∽△BFE;如答图2﹣1,作辅助线,利用相似关系得到关系式:BH=4FH,利用此关系式求出点E的坐标;②首先求出△ACD的面积:S△ACD=8;若S△EFG与S△ACD存在8倍的关系,则S△EFG=64或S△EFG=1;如答图2﹣2所示,求出S△EFG的表达式,进而求出点F的坐标.解答:解:(1)直线AB的解析式为y=2x+4,令x=0,得y=4;令y=0,得x=﹣2.争分夺秒分秒必争我的人生我做主只要认真做事一切皆有可能东升求实学校2015届初三数学培优资料∴A(﹣2,0)、B(0,4).∵抛物线的顶点为点A(﹣2,0),∴设抛物线的解析式为:y=a(x+2)2,点C(0,﹣4)在抛物线上,代入上式得:﹣4=4a,解得a=﹣1,∴抛物线的解析式为y=﹣(x+2)2.(2)平移过程中,设点E的坐标为(m,2m+4),则平移后抛物线的解析式为:y=﹣(x﹣m)2+2m+4,∴F(0,﹣m2+2m+4).①∵点E为顶点,∴∠BEF≥90°,∴若△BEF与△BAO相似,只能是点E作为直角顶点,∴△BAO∽△BFE ,∴,即,可得:BE=2EF.如答图2﹣1,过点E作EH⊥y轴于点H,则点H坐标为:H(0,2m+4).∵B(0,4),H(0,2m+4),F(0,﹣m2+2m+4),∴BH=|2m|,FH=|﹣m2|.在Rt△BEF中,由射影定理得:BE2=BH•BF,EF2=FH•BF,又∵BE=2EF,∴BH=4FH,即:4|﹣m2|=|2m|.若﹣4m2=2m,解得m=﹣或m=0(与点B重合,舍去);若﹣4m2=﹣2m,解得m=或m=0(与点B重合,舍去),此时点E位于第一象限,∠BEF为钝角,故此情形不成立.∴m=﹣,∴E(﹣,3).②假设存在.联立抛物线:y=﹣(x+2)2与直线AB:y=2x+4,可求得:D(﹣4,﹣4),∴S△ACD=×4×4=8.∵S△EFG与S△ACD存在8倍的关系,∴S△EFG=64或S△EFG=1.联立平移抛物线:y=﹣(x﹣m)2+2m+4与直线AB:y=2x+4,可求得:G(m ﹣2,2m).∴点E与点M横坐标相差2,即:|x G|﹣|x E|=2.争分夺秒分秒必争我的人生我做主只要认真做事一切皆有可能东升求实学校2015届初三数学培优资料如答图2﹣2,S△EFG=S△BFG﹣S△BEF=BF•|xG|﹣BF|xE|=BF•(|x G|﹣|x E|)=BF.∵B(0,4),F(0,﹣m2+2m+4),∴BF=|﹣m2+2m|.∴|﹣m2+2m|=64或|﹣m2+2m|=1,∴﹣m2+2m可取值为:64、﹣64、1、﹣1.当取值为64时,一元二次方程﹣m2+2m=64无解,故﹣m2+2m≠64.∴﹣m2+2m可取值为:﹣64、1、﹣1.∵F(0,﹣m2+2m+4),∴F坐标为:(0,﹣60)、(0,3)、(0,5).综上所述,S△EFG与S△ACD存在8倍的关系,点F坐标为(0,﹣60)、(0,3)、(0,5).点评:本题是二次函数压轴题,涉及运动型与存在型问题,难度较大.第(2)①问中,解题关键是确定点E为直角顶点,且BE=2EF;第(2)②问中,注意将代数式表示图形面积的方法、注意求坐标过程中方程思想与整体思想的应用.22.(9分)(2014•珠海)如图,矩形OABC的顶点A(2,0)、C(0,2).将矩形OABC绕点O逆时针旋转30°.得矩形OEFG,线段GE、FO相交于点H,平行于y轴的直线MN分别交线段GF、GH、GO和x轴于点M、P、N、D,连结MH.(1)若抛物线l:y=ax2+bx+c经过G、O、E三点,则它的解析式为:y=x2﹣x;(2)如果四边形OHMN为平行四边形,求点D的坐标;(3)在(1)(2)的条件下,直线MN与抛物线l交于点R,动点Q在抛物线l上且在R、E两点之间(不含点R、E)运动,设△PQH的面积为s,当时,确定点Q的横坐标的取值范围.考点:二次函数综合题分析:(1)求解析式一般采用待定系数法,通过函数上的点满足方程求出.(2)平行四边形对边平行且相等,恰得MN为OF,即为中位线,进而横坐标易得,D为x轴上的点,所以纵坐标为0.(3)已知S范围求横坐标的范围,那么表示S是关键.由PH不为平行于x轴或y轴的线段,所以考虑利用过动点的平行于y轴的直线切三角形为2个三角形的常规方法来解题,此法底为两点纵坐标得差,高为横坐标的差,进而可表示出S,但要注意,当Q在O点右边时,所求争分夺秒分秒必争我的人生我做主只要认真做事一切皆有可能东升求实学校2015届初三数学培优资料三角形为两三角形的差.得关系式再代入,求解不等式即可.另要注意求解出结果后要考虑Q本身在R、E之间的限制.解答:解:(1)如图1,过G作GI⊥CO于I,过E作EJ ⊥CO于J,∵A(2,0)、C(0,2),∴OE=OA=2,OG=OC=2,∵∠GOI=30°,∠JOE=90°﹣∠GOI=90°﹣30°=60°,∴GI=sin30°•GO==,IO=cos30°•GO==3,JO=cos30°•OE==,JE=sin30°•OE==1,∴G(﹣,3),E(,1),设抛物线解析式为y=ax2+bx+c,∵经过G、O、E三点,∴,解得,∴y=x2﹣x.(2)∵四边形OHMN为平行四边形,∴MN∥OH,MN=OH,∵OH=OF,∴MN为△OGF 的中位线,∴x D=x N=•x G=﹣,∴D(﹣,0).(3)设直线GE的解析式为y=kx+b,∵G(﹣,3),E(,1),争分夺秒分秒必争我的人生我做主只要认真做事一切皆有可能东升求实学校2015届初三数学培优资料∴,解得,∴y=﹣x+2.∵Q 在抛物线y=x2﹣x上,∴设Q的坐标为(x,x 2﹣x),∵Q在R、E两点之间运动,∴﹣<x<.①当﹣<x<0时,如图2,连接PQ,HQ ,过点Q作QK∥y轴,交GE于K,则K(x,﹣x+2),∵S△PKQ=•(y K﹣y Q)•(x Q﹣x P),S△HKQ=•(y K﹣y Q)•(x H﹣x Q),∴S△PQH=S△PKQ+S△HKQ=•(y K﹣y Q)•(x Q﹣x P)+•(y K﹣y Q)•(x H﹣x Q)=•(y K﹣y Q)•(x H﹣x P)=•[﹣x+2﹣(x2﹣x)]•[0﹣(﹣)]=﹣x2+.②当0≤x<时,如图2,连接PQ,HQ,过点Q作QK∥y轴,交GE于K,则K(x,﹣x+2),争分夺秒分秒必争我的人生我做主只要认真做事一切皆有可能东升求实学校2015届初三数学培优资料同理S△PQH=S△PKQ﹣S△HKQ=•(y K﹣y Q)•(x Q﹣x P )﹣•(y K﹣y Q)•(x Q﹣x H)=•(y K ﹣y Q)•(x H ﹣x P)=﹣x 2+.综上所述,S△PQH=﹣x2+.∵,∴<﹣x2+≤,解得﹣<x <,∵﹣<x<,∴﹣<x<.点评:本题考查了一次函数、二次函数性质与图象,直角三角形及坐标系中三角形面积的表示等知识点.注意其中“利用过动点的平行于y轴的直线切三角形为2个三角形的常规方法来表示面积”是近几年中考的考查热点,需要加强理解运用.24.(本小题满分14分)已知平面直角坐标系中两定点A(-1,0),B(4,0),抛物线()过点A、B,顶点为C.点P(m,n)(n<0)为抛物线上一点.(1)求抛物线的解析式与顶点C 的坐标.(2)当∠APB为钝角时,求m的取值范围.(3)若,当∠APB为直角时,将该抛物线向左或向右平移t ()个单位,点P、C移动后对应的点分别记为、,是否存在t,使得首尾依次连接A、B、、所构成的多边形的周长最短?若存在,求t值并说明抛物线平移的方向;若不存在,请说明理由.【考点】动点问题.(1)二次函数待定系数法;(2)存在性问题,相似三角形;(3)最终问题,轴对称,两点之间线段最短【答案】(1)解:依题意把的坐标代入得: ;解得:争分夺秒分秒必争我的人生我做主只要认真做事一切皆有可能东升求实学校2015届初三数学培优资料抛物线解析式为顶点横坐标,将代入抛物线得(2)如图,当时,设,则过作直线轴,(注意用整体代入法)解得,当在之间时,或时,为钝角.(3)依题意,且设移动(向右,向左)连接则又的长度不变四边形周长最小,只需最小即可将沿轴向右平移5各单位到处沿轴对称为∴当且仅当、B、三点共线时,最小,且最小为,此时,设过的直线为,代入争分夺秒分秒必争我的人生我做主只要认真做事一切皆有可能东升求实学校2015届初三数学培优资料∴即将代入,得:,解得:∴当,P、C向左移动单位时,此时四边形ABP’C’周长最小。
九年级数学练习题之代数几何综合题
九年级数学练习题之代数几何综合题Ⅰ、综合问题精讲:代数几何综合题是初中数学中覆盖面最广、综合性最强的题型,近几年中考试题中的综合题大多以代数几何综合题的形式出现,其解题要点点是借助几何直观解题,运用方程、函数的思想解题,灵便运用数形结合,由形导数,以数促形,综合运用代数几何知识解题 . Ⅱ、典型例题剖析【例 1】 ( 温州, 12 分 ) 如图,已知四边形ABCD内接于⊙ O,A 是的中点, AEAC于 A,与⊙O及 CB的延长线分别交于点F、E,且, EM切⊙O于 M。
⑴ △ADC∽△ EBA;⑵ AC2=BC⑶若是 AB=2,EM=3,求 cotCAD 的值。
解: ⑴∵四边形 ABCD内接于⊙ O, CDA=ABE,∵, DCA=BAE,△CAD∽△ AEB⑵过 A 作 AHBC于 H(如图 )∵A是中点, HC=HB=BC,∵CAE=900, AC2=CHCE=BCCE⑶∵A是中点, AB=2,AC=AB=2,∵EM是⊙O的切线, EBEC=EM2①∵AC2=BCCE,BCCE=8②①+②得: EC(EB+BC)=17,EC2=17∵EC2=AC2+AE2, AE=∵△ CAD∽△ ABE, CAD=AEC,cotCAD=cotAEC=点拨:此题的要点是成立转变思想,将未知的转变为已知的 . 此题表现的特别突出 . 如,将 CAD转变为 AEC就特别要点 . 【例 2】( 自贡 ) 如图 2-5-2 所示,已知直线 y=2x+2 分别与 x 轴、 y 轴交于点 A、 B,以线段 AB为直角边在第一象限内作等腰直角△ABC,BAC=90○。
过 C 作 CDx轴, D 为垂足 .(1)求点 A 、 B 的坐标和 AD的长 ;(2)求过B、A、C 三点的抛物线的剖析式。
解: (1) 在 y=2x+2 中分别令 x=0,y=0.得 A(l ,0) , B(0, 2).易得△ ACD≌△ BAO,所以AD=OB=2.(2) 因为 A(1 ,0) , B(0, 2) ,且由 (1) ,得 C(3,l).设过过 B、 A、C 三点的抛物线为所以所以点拨:此题的要点是证明△ACD≌△ BAO.【例 3】( 重庆, 10 分 ) 如图,在平面直角坐标系内,已知点A(0 , 6) 、点 B(8 , 0) ,动点 P 从点 A 开始在线段 AO上以每秒 1 个单位长度的速度向点O搬动,同时动点Q从点 B 开始在线段 BA上以每秒 2 个单位长度的速度向点 A 搬动 , 设点 P、Q搬动的时间为t 秒 .(1)求直线 AB的剖析式 ;(2) 当 t 为何值时,△APQ与△ AOB 相似 ?(3)当 t 为何值时,△ APQ 的面积为个平方单位 ?解: (1) 设直线 AB的剖析式为y=kx+b由题意,得解得所以,直线AB的剖析式为y=-x+6.(2) 由 AO=6, BO=8 得 AB=10所以 AP=t ,AQ=10-2t1 当 APQ=AOB时,△ APQ∽△ AOB.所以 =解得t=(秒)2 当 AQP=AOB时,△ AQP∽△ AOB.所以 =解得t=(秒)(3)过点 Q作 QE垂直 AO于点 E.在 Rt△AOB中, SinBAO==在 Rt△AEQ中, QE=AQSinBAO=(10-2t)=8 -t 所以,S△APQ=APQE=t(8-t)=-+4t=解得t=2(秒)或t=3(秒).( 注:过点P 作 PE垂直 AB于点 E 也可,并相应给分)点拨:此题的要点是随着动点P 的运动,△ APQ 的形状也在发生着变化,所以应分情况:①APQ=AOB=90○② APQ=ABO这.样,就获取了两个时间限制. 同时第 (3) 问也可以过P 作PEAB.【例 4】( 南充,10 分 ) 如图 2-5-7 ,矩形 ABCD中,AB=8,BC=6,对角线 AC上有一个动点 P( 不包括点 A 和点 C). 设 AP=x,四边形 PBCD的面积为 y.(1)写出 y 与 x 的函数关系,并确定自变量x 的范围 .(2)有人提出一个判断:关于动点P,⊿ PBC面积与⊿ PAD 面积之和为常数 . 请你说明此判断可否正确,并说明原由.解: (1) 过动点 P 作 PEBC于点 E.在 Rt⊿ABC中, AC=10, PC=AC-AP=10-x.∵PEBC, ABBC,⊿ PEC∽⊿ ABC.故,即⊿PBC面积 =又⊿ PCD面积 =⊿PBC 面积 =即 y , x 的取值范围是 0(2) 这个判断是正确的 .原由:由 (1) 可得,⊿ PAD 面积 =⊿PBC面积与⊿ PAD 面积之和 =24.点拨:由矩形的两边长6,8. 可得它的对角线是10,这样PC=10-x,而面积y 是一个不规则的四边形,所以可以把它看作规则的两个三角形:△PBC、△ PCD.这样问题就特别容易解决了 .Ⅲ、综合牢固练习(100 分 90 分钟 )1、如图 2-5-8 所示,在直角坐标系中,△ABC 各极点坐标分别为 A (0 ,) , B(-1 ,0) 、 C(0, 1) 中,若△ DEF 各极点坐标分别为 D(,0) 、E(0 ,1) 、F(0 ,-1) ,则以下判断正确的选项是( ) A.△DEF 由△ ABC绕 O点顺时针旋转 90○获取 ;B.△DEF 由△ ABC绕 O点逆时针旋转 90○获取 ;C.△DEF 由△ ABC绕 O点顺时针旋转 60○获取 ;D.△DEF 由△ ABC绕 O点顺时针旋转120○获取2.如图 2-5-9, 已知直线 y=2x+1 与 x 轴交于 A 点,与 y 轴交于 B 点,直线 y=2x1 与 x 轴交于 C 点,与 y 轴交于 D 点,试判断四边形 ABCD的形状 .3.如图 2-5-10 所示,在矩形 ABCD中,BD=20,ADAB,设ABD=,已知 sin 是方程 25z2-35z+ 12=0 的一个实根 . 点 E、 F 分别是 BC、 DC上的点, EC+CF=8,设 BE=x,△ AEF面积等于 y.⑴求出 y 与 x 之间的函数关系式;⑵当 E、 F 两点在什么地址时y 有最小值 ?并求出这个最小值 .4.(10分)如图2-5-11所示,直线y=-x+ 4与x轴、y轴分别交于点M、N.(1)求 M、 N 两点的坐标 ;(2)若是点 P 在坐标轴上,以点 P 为圆心,为半径的圆与直线y=-x+ 4 相切,求点 P 的坐标 .5.(10 分 ) 如图 2-5-12 所示,已知等边三角形 ABC中,AB=2,点 P 是 AB边上的任意一点 ( 点 P 可以与点 A 重合,但不与点B 重合 ) ,过点 P 作 PEBC.垂足为 E; 过点 E 作 EFAC,垂足为F; 过点 F 作 FQAB,垂足为 Q.设 BP=x, AQ=y.⑴写出 y 与 x 之间的函数关系式;⑵当 BP的长等于多少时,点P 与点 Q重合 ;⑶当线段 PE、 FQ订交时,写出线段PE、 EF、 FQ所围成三角形的周长的取值范围( 不用写出解题过程)6.(12分)如图2-5-13所示,已知A 由两点坐标分另为(28 ,0)和 (0 ,28) ,动点 P 从 A 点开始在线段 AO上以每秒 3 个长度单位的速度向原点O运动,动直线EF 从 x 轴开始以每秒1 个长度单位的速度向上平行搬动( 即 EF∥x轴 ) 并且分别交y 轴,线段 AB交于 E、 F 点 . 连接 FP,设动点P 与动直线EF 同时出发,运动时间为t 秒.⑴当 t=1 秒时,求梯形 OPFE的面积, t 为何值时,梯形 OPFE 的面积最大,最大面积是多少?⑵当梯形OPFE的面积等于△ APF 的面积时,求线段PF 的长 .⑶设 t 的值分别取t1 ,t2 时 (t1t2),所对应的三角形分别为△ AF1P1 和△ AF2P2 ,试判断这两个三角形可否相似,请证明你的判断 .7.(12 分 ) 如图 2-5-14 所示,在直角坐标系中,矩形 ABCD的极点, A 的坐标为 (1 ,0) ,对角线的交点 P 的坐标为 ( , 1)⑴写出 B、 C、 D 三点的坐标 ;⑵若在 AB上有一点 E 作,入过 E 点的直线将矩形ABCD的面积分为相等的两部分,求直线l 的剖析式 ;⑶若过 C 点的直线将矩形 ABCD的面积分为 4: 3 两部分,并与y 轴交于点 M,求过点 C、D、M三点的抛物线的剖析式 . 8.(10分 ) 已知矩形 ABCD在平面直角坐标系中,极点 A、 B、D 的坐标分别为A(0, 0) ,B(m, 0) ,D(0, 4) 其中 m0.⑴写出极点 C 的坐标和矩形ABCD的中心 P 点的坐标 ( 用含 m 的代数式表示 )⑵若一次函数y=kx-1 的图象把矩形ABCD分成面积相等的两部分,求此一次函数的剖析式( 用含 m的代数式表示 )⑶在⑵的前提下,又与半径为 1 的⊙M相切,且点 M(0 ,1) ,求此矩形 ABCD的中心 P 点的坐标 .9.(10分)如图2-5-15所示,等边三角形ABC的边长为 6,点 D、 E 分别在边 AB,AC上,且 AD=AE=2,若点 F 从点 B 开始以每秒二个单位长度的速度沿射线BC方向运动,设点F 运动的时间为 t 秒,当 t0 时,直线 FD 与过点 A 且平行于 BC 的直线订交于点G,GE的延长线与BC的延长线订交于点H,AB与GH订交于点 O.⑴设△ EGA 的面积为 S,写出 S 与 t的函数剖析式;⑵当 t 为何值时, AB⑶请你证明△ GFH 的面积为定值 .10. (10 分 ) 如图 2-5-16 ,在矩形 ABCD中,AB=10。
几何代数综合大题
几何代数综合大题一、介绍本文将从几何和代数两个方面综合讨论一道关于几何代数的大题。
我们将深入探讨几何代数这一主题,并提供详细和全面的解答。
二、几何2.1 定义几何是研究空间、形状和位置关系的数学学科。
在几何中,我们使用点、线、面和体来描述和研究物体的几何特征。
2.2 几何大题的解答方法在解答几何大题时,一般会使用几何定理和公式,通过推理和证明得出最终的结论。
几何问题常常需要画图进行可视化,并利用图形的性质进行分析。
同时,常常需要使用一些特定的几何分析方法,如相似三角形、平行线和垂直线等。
2.3 解答例题2.3.1 题目描述已知一个三角形的三个顶点分别为A(2, 3), B(4, 1), C(1, -2),求这个三角形的周长和面积。
2.3.2 解答步骤1.根据三点坐标求线段长度:–AB的长度= √[(4-2)² + (1-3)²] = √[4 + 4] = 2√2–BC的长度= √[(1-4)² + (-2-1)²] = √[9 + 9] = 3√2–AC的长度= √[(2-1)² + (3+2)²] = √[1 + 25] = √262.根据三边长度计算周长:周长 = AB + B C + AC = 2√2 + 3√2 + √263.根据海伦公式计算面积:–p = (AB + BC + AC) / 2 = (2√2 + 3√2 + √26) / 2–面积= √[p(p-AB)(p-BC)(p-AC)] = √[(√2 + 3√2 + √26)(√2 + √26)(√2)(3√2 - √26)]2.4 其他几何问题除了计算周长和面积,几何问题还包括求解角度、判断相似性、证明定理等。
三、代数3.1 定义代数是研究抽象代数结构及其上的运算符和过程的数学学科。
在代数中,我们使用符号和字母表示未知数,通过运算和方程式来探索数学规律。
3.2 代数大题的解答方法在解答代数大题时,一般会使用代数运算的基本法则,如加减乘除、指数和根号运算等。
数学代数与几何综合题
数学代数与几何综合题一、简答题1. 请解释什么是代数与几何的综合题?代数与几何综合题是一类需要同时运用代数和几何概念与方法来解答的数学题目。
通常这类题目会结合代数方程、函数关系以及几何图形等知识点,要求考生既能够理解代数概念的本质,又能够将其与几何图形进行有效地联结,从而得出正确的解答。
2. 举例说明一个代数与几何综合题。
考虑一个代数与几何综合题的例子:已知一个矩形的长为x,宽为y,其面积为100,求出矩形的周长。
解答思路如下:首先,根据面积定义,我们可以列出代数方程xy = 100。
接着,我们考虑矩形的周长等于两倍的长加上两倍的宽,即2(x+y)。
由于我们已知面积为100,所以可以将该条件带入代数方程中,得到2(x+y) = 2(10) = 20。
因此,矩形的周长为20。
二、综合题已知平面上有一条弧线AB,其中A(2,1)和B(5,4)。
求以下问题:1. 弧线AB的长度。
解答思路如下:首先,我们可以计算出弧线AB的斜率。
斜率的计算公式为k = (y2-y1)/(x2-x1)。
代入A(2,1)和B(5,4)的坐标,得到k = (4-1)/(5-2) = 1。
由于斜率为1,说明弧线AB与x轴的夹角为45度。
然后,根据两点间的距离公式d = √((x2-x1)^2 + (y2-y1)^2),我们可以计算出弧线AB的长度为√((5-2)^2 + (4-1)^2) = √18。
2. 弧线AB所在的直线方程。
解答思路如下:由于已知A(2,1)和B(5,4)在弧线上,我们可以利用这两个点的坐标来确定所求直线方程。
首先,我们可以计算出直线的斜率,使用斜率公式k = (y2-y1)/(x2-x1),代入A(2,1)和B(5,4)的坐标,得到k = (4-1)/(5-2) = 1。
接着,我们可以利用其中一点的坐标(x1,y1)和斜率k来得到直线的方程。
选择点A(2,1)和斜率k = 1,代入直线方程的一般公式y-y1 = k(x-x1),得到y-1 = 1(x-2)。
九年级数学基础与综合(人教版下)--第二十四讲代数与几何综合题
第二十四讲代数与几何综合题一、选择题1.如图24- 1,抛物线y = x 2 + bx + c 与x 轴交于点 A 、点B ,与y 轴交于点 6若厶AOC 为等腰三角形,则下列各式成立的是( ).图 24 - 1A . c + b + 1 = 0B . c + b - 1 = 0C . c -b - 1 = 0D . c - b + 1 = 0 2 .如图24- 2,在平面直角坐标系中,二次函数y = ax 2 + c (a ^ 0)的图象经过正方形 ABOC 的三个顶点 A 、B 、C ,则ac 的值是(). A . 1 B . - 1 C . 2 D . - 2 (2009兰州)如图24- 3,点A 、B 、C 、D 为圆O 的四等分点,动点 P 从圆心O 出发,沿 0宀C T D T O 的路线做匀速运动.设运动时间为 图象中,表示y 与t 之间函数关系最恰当的是二、填空题16(x > 0)图象上五个整 x数点(横、纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图所示的五个橄榄形 (阴影部分),则 这个五个橄榄形的面积总和是 _______ (用含兀的代数式表示).3. t (秒),/ APB 的度数为y (度),则下列). 4. (2009福州)如图24- 4,已知A 、B 、C 、D 、E 是反比例函数(图 24 - 39045图24 - 45 .如图24- 5①,矩形ABCD 中,AB= 12cm , BC = 24cm;直线PQ 从AB 出发,以1cm/s 的速度向DC作匀速运动,PQ与AD、BC分别交于P、Q;点M从点C出发,沿C宀D T A T B T C方向逆时针运动,点M与PQ同时出发,当点M运动到D后改变速度;当点M与Q相遇后,点M与直线PQ均停止运动.图24- 5②是点M运动的路线长y(cm) 与运动时间t(s)的函数关系图象.图24 - 5(1) 点M在CD上运动的速度为_______ c m/s, M点改变速度后的速度为 _______ cm/s;(2) y关于运动时间t的函数关系式为________ , P、M的相遇时间是________ (s), M、Q相遇的时间是______ (s);(3) 当O W t v8时,△ PQM的面积S关于运动时间t的函数关系式为______________ ,当S=60cm1 2时,t的值为_______ ;(4) 当PM = QM时,此时的时间为 ______ s.二、解答题6 .如图24- 6,在平面直角坐标系中,Rt△ AOB也Rt△ CDA,且A( —1, 0)、B(0, 2),抛物线y= ax2+ ax—2经过点C.1 27.已知:二次函数y x2bx c的图象经过点A(—3, 6),并与x轴交于点B( —1, 0)2和点C,顶点为P.1 求抛物线的解析式;2 在抛物线(对称轴右侧)上是否存在两点P, Q,使四边形ABPQ是正方形?若存在,求点P, Q的坐标,若不存在,请说明理由.(1)求这个二次函数的解析式;⑵设D为线段0C上的点,满足/ DPC = Z BAC,求点D的坐标.&已知:抛物线y = x2+ (2n—1)x+ n2—1(n为常数).(1)当该抛物线经过坐标原点,并且顶点在第四象限时,求它所对应的函数关系式;⑵设A是(1)所确定的抛物线上,位于x轴下方且在对称轴左侧的一个动点,过A作x轴的平行线,交抛物线于另一点D,再作AB丄x轴于B, DC丄x轴于C.①当BC = 1时,求矩形ABCD的周长;②矩形ABCD的周长是否存在最大值?如果存在,请求出这个最大值,并指出此时A点的坐标;如果不存在,请说明理由.9. 如图24 —7,对称轴为直线X=7的抛物线经过点A(6, 0)和B(0, 4).2⑵设点E(x, y)是抛物线上一动点,且位于第四象限,四边形OEAF是以0A为对角线的平行四边形•求口OEAF的面积S与x之间的函数关系式,并求变量x的取值范围;①当口OEAF的面积为24时,请判断D OEAF是否为菱形?并说明理由;②是否存在点E,使口OEAF为正方形?若存在,求出点E的坐标;若不存在请说明理由.10. 如图24 —8,直线AB交x轴于点A(2 , 0),交抛物线y= ax2于点B(1,-、3),点C到△ OAB各顶点的距离相等,直线AC交y轴于点D .(1)求直线0C 及抛物线的解析式;⑵当x >0时,在直线0C 和抛物线 尸ax 2上是否分别存在点 P 和点Q,使四边形DOPQ 为特殊的梯形?若存在,求点P 、Q 的坐标;若不存在,说明理由.②图 24 - 9⑴当AD = 2,且点Q 与点B 重合时(如图24 — 9②所示),求线段PC 的长;3⑵在图24 — 9①中,连结AP ,当AD = 2,且点Q 在线段AB 上时,设点B ,的距离为x ,字^ =y ,其中S SPQ 、S MBC 分别表示厶APQ 和厶PBC 的面积,求y关于x 的函数解析式,并写出自变量x 的取值范围; ⑶当AD V AB ,且点Q 在线段AB 的延长线上时(如图24 - 9③所示),求/ QPC 的大小. 12. (2009哈尔滨)如图24 — 10①,在平面直角坐标系中,点 O 是坐标原点,四边形11. (2009 上海)已知:如图,24- 9①/ ABC = 90°, AB = 2, BC = 3, AD // BC , PAD为线段BD 上的动点,点 Q 在射线AB 上,且满足 PQPC ABA 1 ! D! D A 1 rxKA £C c QQ 之间 ①DABCO是菱形,点A的坐标为(一3, 4),点C在x轴的正半轴上,直线AC交y轴于点M , AB 边交y轴于点H .(1)求直线AC的解析式;⑵连结BM,如图24- 10②,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△ PMB的面积为S(S M 0),点P的运动时间为t秒,求S与t之间的函数关系式及自变量t的取值范围;(3) 在(2)的条件下,当t为何值时,/ MPB与/ BCO互为余角?并求此时直线OP与直线AC所夹锐角的正切值.13. (2009温州)如图24- 11,在平面直角坐标系中,点AC,3,0), B(^3, 2),C(0, 2).动点D以每秒1个单位长度的速度从点O出发,沿OC向终点C运动,同时动点E以每秒2个单位长度的速度从点A出发,沿AB向终点B运动.过点E作EF丄AB,交BC 于点F,连结DA、DF •设运动时间为t秒.(1) 求/ ABC的度数;⑵当t为何值时,AB// DF?(3)设四边形AEFD的面积为S,求S关于t的函数关系式及自变量x的取值范围.14. 把一张宽AD = 2的矩形纸片ABCD,如图24- 12①那样折叠,折叠后的点A落在CD 边上.现将矩形纸片放在如图24- 12②所示的平面直角坐标系中,设折叠后A的落点A',与AD、AB的交点分别为E、F , EF交x轴于点G ,过点A作x轴的垂线,交x轴于点H,交EF于点T.设DA = x,点T的纵坐标为y,求y与x之间的函数关系式.图24 - 1215. (2007福州)如图24- 13①,以矩形ABCD的顶点A为原点,AD所在的直线为x轴,AB 所在的直线为y轴,建立平面直角坐标系. 点D的坐标为(8, 0),点B的标为(0, 6).点F在对角线AC 上运动(点F不与点A、C重合),过点F分别作x轴、y轴的垂线,垂足为G、E.设四边形BCFE 的面积为◎,四边形CDGF的面积为S2,^ AFG的面积为S3.图24 - 13⑴试判断Si、S2的关系,并加以证明;⑵当S3 : S2= 1 : 3时,求点F的坐标;⑶如图24- 13②,在⑵的条件下,把△ AEF沿对角线AC所在的直线平移,得到△ A' E' F '且A '、F '两点始终在直线AC上.是否存在这样的点 E ',使点E ' 到x轴的距离与到y轴的距离比是5 :4?若存在,请求出点E'的坐标;若不存在,请说明理由.216. (2008 武汉)如图24- 14①,抛物线y= ax - 3ax+ b 经过A( —1, 0), C(3, 2)两点,与y 轴交于点D,与x轴交于另一点B.图24 - 14(1)求此抛物线的解析式;⑵若直线y= kx- 1(k z 0)将四边形ABCD面积二等分,求k的值;⑶如图24- 14②,过点E(1 , - 1)作EF丄x轴于点F-将厶AEF绕平面内某点旋转180°后得①②△ MNQ(点M、N、Q分别与点A、E、F对应),使点M、N在抛物线上,求点M、N的坐标.17. (2009重庆)已知:如图24 —15,在平面直角坐标系xOy中,矩形OABC的边OA在y 轴的正半轴上,OC在x轴的正半轴上,OA= 2, OC = 3.过原点O作/ AOC的平分线交AB于点D,连结DC ,过点D作DE丄DC ,交OA于点E .⑴求过点E、D、C的抛物线的解析式;⑵将/ EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段0C交于点G.如果DF与⑴中的抛物线交于另一点M,点M的横坐标为-,5那么EF = 2G0是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△ PCG是等腰三角形?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案第二十四讲代数与几何综合题D . 2. D . 3. C .S 圆 T HC 2 1 S 4 S OHC 4 OH HC = 4 n — 8,所以S 大橄榄形=2S = 8n -16同理,D 处橄榄形所在正方形边长为2, 所以 S D 橄榄形=2( — :: 22 一丄::2 :: 2) = 2 n —4.4 2n .S E 橄榄形=——1.2而同图可知S B 橄榄形= S D 橄榄形, S A 橄榄形=S E 橄榄形,n所以 S 总面积=8“一 16+ 2(2 二一4) + 2(— 1) = 13J — 26.2① 当 P 、M 相遇时,AP = t , DM = y —12= 4t — 16, 由 AP + DM = 24 可得 t + (4t — 16) = 24.解得 t = &② 当M 、Q 相遇时,BQ = t , BM = y — 2AB — AD = 4t — 52.52 由 BM = BQ 得 4t — 52= t .解得 t 工52 - 3<-6t +144(0 兰t 兰4), 厂30t +240(4<t V8).当 S = 60 时,若—6t + 144= 60,解得 t = 14,因为 此时0w t w 4,所以t = 14(舍去).若—30t + 240= 60,解得t = 6(符合题意).所以当S = 60时,t 的值为6.(4) 2或11.5.提示:当 M 点运动到CD 或AB 中点时,有PM = QM .分别计算时间就可4. 13二-26 .提示:观察图象结合16), B(2, 8), C(4, 4), D(8, 个橄榄形 16 A 、B 、C 、D 、E 为y 的五个整数点可推断: A(1 ,x 5. (1)3, 4.(2)y =』 航―)8,52.卑―4(4ctW6) . 3 ⑶SR G答图24 - 1以了.6 .解: ⑴由 Rt △ AOB 也 Rt A CDA ,得 0D = 2+ 1 = 3, CD = 1 ,••• C 点坐标为(一3, 1).可得抛物线的解析式为 y =J x 2」X_2.2 2(2)在抛物线(对称轴的右侧)上存在点P 、Q ,使四边形 ABPQ 是正方形.以 AB 为 边在 AB 的右侧作正方形 ABPQ .过P 作PE 丄0B 于E , QG 丄x 轴于G (见答图24 -2), i A\ 0 /"討p< 1 答图24 - 2 可证△ PBE ◎△ AQG ◎△ BAO .• PE = AG = B0= 2, BE = QG = A0= 1 .• P 点坐标为(2, 1), Q 点坐标为(1 , - 1).由(1)抛物线y =」x 2 •丄X -2 ,2 2当x = 2时,y = 1,当x = 1时,y =— 1 .• P 、Q 在抛物线上.故在抛物线(对称轴的右侧)上存在点P(2, 1)、Q(1,— 1),使四边形 ABPQ 是正 方形. 1 2 37. (1) y x - x -22 (2)C(3, 0).可证/ ACB =Z PCD = 45°.(见答图 24 — 3)易求得 AC = 6 .2 , PC = 2 .2 , BC = 4,4 45 5• DC = -, OD = 3— = - .• D(Y , 0).3 3 3 32 c8. (1)y = x — 3x .•••/ DPC = Z BAC ,• △ DPC BAC .(2)抛物线与x轴的另一个交点为(3, 0), 顶点为(3, —9),对称轴为直线x = 3,2 4 2其大致位置如答图24—4所示.竹答图24 — 4①••• BC = 1,由抛物线和矩形的对称性可知OB = - X (3 —1) = 1 ,••• B(1 , 0), A(1 , —2) , AB = 2.2矩形ABCD的周长为6.②可设A点的坐标为(x , x2—3x),3• B 点的坐标为(x , 0)(0v x v -) , BC = 3—2x.2••• A在x轴下方,•- x?—3x v 0 , AB = |x?—3x|= 3x — / ,•矩形ABCD 的周长P= 2[(3x—x2)+ (3 —2x)] = —2(x—- )2+ 13.2 2•/ 0 v -v 3, •当x=-时,矩形ABCD的周长P有最大值为13.2 2 2 2此时点A的坐标为A(-,—-).2 49. 解:(1)由抛物线的对称轴是x=7,及抛物线经过点A(6 , 0)可知抛物线还经过(1 , 0)2占八、、♦设抛物线的解析式为y= a(x—1)(x—6).2 2 o 14由抛物线经过点B(0 , 4)可得a二?.故抛物线解析式为y上x2 - 14x • 4 ,顶点3 3 3为昇25、为(二)•2 62 7 25(2)•••点E(x , y)在抛物线上,位于第四象限,• y v0且坐标适合y=—(x-7)2-—-3 2 6•/ OA是口OEAF的对角线,1 7 2--S= 2S A OAE= 2 X X OA • |y|=—6y =—4(x—) + 25.2 2•••抛物线与x轴的两个交点是(1, 0)和(6 , 0),•自变量x的取值范围是1 v x v 6.①根据题意,当S= 24时,即—4(x —7)2+ 25= 24.2化简,得(x - 7) 2 = 1 .解之,得 X 1 = 3 , x 2= 4 •2 4 此时点E 坐标分别为E I (3, - 4), E 2(4,— 4).点 E I (3, — 4)满足 0E = AE ,点 E 2(4,— 4)不满足 0E = AE ,•••当口 OEAF 的面积为24,且点E 坐标为(3, — 4)时,口 OEAF 是菱形. ②当0A 丄EF ,且0A = EF 时,D OEAF 是正方形, 此时点E 的坐标只能是(3,— 3).而坐标为(3, — 3)的点不在抛物线上,故不存在这样的点 E ,使口OEAF 为正方形.10. 简解:(1)见答图24 — 5 — 1,可得直线 AB 的解析式为y - -.、3x • 2、、3..抛物线的解析式为 y = .. 3x 2.又•••点C 到厶OAB 各顶点距离相等,可得△ OAB 为等边三角形, 即点C 是厶OAB 三边的垂直平分线的交点.连结 BC ,并延长交OA 于E ,则 BE 丄 OA , OE = AE . •••点E 的坐标为(1 , 0). 可得点C 的坐标为C(1,-).3•直线OC 的解析式为y =x ,直线AC 的解析式为y =— x +-. 333⑵可得点D 的坐标为D(0,今卫),OD =仝卫.33① OD // PQ .(i )当DQ 1 = OP 1时,四边形DOPg 为等腰梯形.(如答图24 — 5①)由题意得,△ OCD 为等边三角形,/ CDO = / COD ,• Q 1是直线AC 与抛物线的交点,(ii )当/ ODQ 2= 90°时,四边形 DOP 2Q 2为直角梯形(如答图24 — 5②).£,2®3答图24 - 5②设过点D (0,竽)且平行于x 轴的直线交抛物线 y 二,3x 2于点Q 2,则Q 2的纵3 坐标为2、3,可得点Q 2的坐标为(学,23),点P 2的坐标为(学,:;2).3 3^3 3 ' 3 ② DQ // OP .过点D (O ,^^)且平行于oc 的直线为y •為3 ,交抛物线 y = ..3X 2 于点 Q .「. ^x 233 r3x 2,2解得禺=1或x 2(舍).3把 x = 1 代入 y = 3x 2 中,得 y = 3,•••点Q 的坐标为(1, 3)(与点B 重合).(i )当 OD = P 3Q 3时,四边形DOP 3Q 3是等腰梯形,如答图 24- 5 — 1.•••△ OCD 为等边三角形,/ DOC = / Q 3P 3O = 60°,「. Q 3P 3/ AC . 可得Q 3P 3的解析式为,433 •33点P 3为直线Q 3P 3与直线OC 的交点,.••点P 3的坐标为 Q 4(1,、3)(与点B 重合)时,四边形DOPQ 为直角梯形.思路分析: ⑴考虑到 AB = AD = 2,贝U PQ : PC = 1,即PQ = PC ; (2)先分别表示出S^ APQ 和PBC ,然后再去表示两三角形面积之比,列出函数关系式;⑶(2等(ii )Z OP 4Q 4= 90°时,四OC 与直线AB 的交点.,2 4、32.3Q 1 (-^9 )和卩3(2,卞),合)时,四边形DOPQ 为等腰梯形;当P2^36^32) ^Q 2^36,2233)和卩4(? 迈)、3 3 3 3 2 2Q 3(1,,3)(与点 B 重y利用三角形相似与等量代换.简解:⑴当AD = 2时可得/ PBC = 45°.PQ AD,AD = AB ,点 Q 与点 B 重合,• PB = PQ = PC . PC AB•••/ PCB =Z PBC = 45°.「./ BPC = 90°. 在 Rt △ BPC 中,PC = BC • cosC = 3 X cos45°=⑵如答图24- 6①,过点P 作PE 丄BC , PF 丄AB ,垂足分别为 可得四边形FBEP 是矩形.••• PF // BC , PE = BF .3•- CG = — ,PG = AB =2, PC2AD 可得 PQ =15 ABE、•/ AD // BC ,「. PF // AD .BF•/ AQ = AB - QB = 2 — x , BC = 3,PF.AD 又 AD 旦AB =2,. 2AB PF PEPF BF1S.APQ 2 SPBC 1BCPF PE••• y 与x 的函数关系是为 yrB G C当点Q 与点B 重合时,x = 0; 答图24 - 6 当点P运动到与点D 重合时,x 取得最大值.作 PG 丄BC 于G .AD =3 , BC =23可得PB = PC , G 为BC 中点.在 Rt △ FAQ 中, PA 2 + AQ 2= PQ 2, (扩(2—t )2 =(舟)2.整理,得t 2_4t晋"解得t1计,t225 8QA DQPN •/ AD // BC,「. PN // AD . -BN ADABPNPMADAB由0v t v 2 得t =78•自变量x的取值范围是0^t _7 -8(3) 如答图24- 6③,过点P作PM丄BC,PN丄AB,垂足分别为M、N,可得四边形PNBM 为矩形,PN // BC, PM = BN,/MFN = 90°._ PQ AD . PN PQ"AB " P M "PC又•••/ PMC = Z PNQ = 90 °,「. Rt △ PCM s Rt △ PQN .•••/ CPM = Z QPN .•••/ MPN = 90°,「./ QPC = Z CPM + Z QPM = Z MPN = 90°.12 .思路分析:由 A( — 3, 4)可知AO = 5,贝U OC = 5,所以点C 坐标(5, 0),可求出直线 AC1的解析式;当点 P 在AB 上时,S 二丄BPMH ,当点P 在BC 上时,由菱形性质可知2 △ MOCMBC ,从而/ MBC = 90°,所以 S =丄 BR MB. 2解:⑴过点A 作AE 丄x 轴,垂足为E (如答图24 — 7①).答图24 — 7①由A (— 3,4)及四边形ABCO 为菱形,可得 OC = CB = BA = OA = 5,C 点的坐标为 C (5,0). 可得直线AC 的解析式为y = _丄x • 5 •2 2 1 S = BP •2 2 2 2②当P 点在BC 边上运动时,记为 P i .•••/ OCM = Z BCM ,CO = CB ,CM = CM ,5• △ OMC ◎△ BMC . • BM = OM = -,Z MBC = Z MOC = 90°5 5⑵由⑴得M 点坐标为(0,- ),• OM =2 2①如答图24 — 7②,当P 点在AB 边上运动时,2ci 1 5 5 25 5•- S= P1B • BM = (2t —5) •= t—( v t w 5).2 2 2 2 4 2⑶设OP与AC相交于点Q,连结OB交AC与K.3可得 tan / BCO = tan / AOE =里,由/ MPB 与/ BCO 互余可得 tan / MPB =•44①当P 点在AB 边上运动时,如答图 24- 7②.MH MH =OH -OM , PH 2.2 tan ZMPB1 由 PH = AH — AP 得 3- 2t = 2. t 2AQ AP 1由 AB//OC 可得△ AQPCQO .…CQ CO 5 在 Rt △ AEC 中,AC =:::AE 2 EC 2〉』42 82 =4.5,25 10 ..5 ^,QC3-在 Rt △ OHB 中,OB h 』HB 2 HO 2 =:;22 42 =2、、5. 由菱形性质可得OK 」O B = . 5,AK 二匹=2 .5,. QK =AK — AQ 二爲^, 2 2 3 ••• tan. OQC =巴=3QK 4②当P 点在BC 边上运动时,如答图 24 - 7③..QK =KC —CQ 二 5.—OKOK", tan OQK =OKMtan._ MPB 3 10由PB =2t -5 解得325由 PC // OA 可得△ PQC s^ OQA . CQ AQCP CQ」,CQ 」AC-5.4AO AQ 3综上所述,当t =1或t =竺时,/ MPB与/ BOC互为余角,直线OP与直线AC所 2 63夹锐角的正切值为3或1.413•思路分析:第(1)(2)题,通过解直角三角形解决,第⑶题求四边形AEFD的面积时,要把它转化为规则图形的面积的和或•/ C(0, 2), B(3.3 , 2),••• BC // OA.差来解答.解:•••/ ABC = Z BAM .•/ BM = 2, AM = 2 3 , • tan/BAM =圧3•••/ ABC = Z BAM = 30°.(2)若AB / DF,则/ CFD = Z ABC = 30°.在Rt△ DCF 中,CD = 2-t,/ CFD = 30 °,/3•- S= S 梯形OABC —S A OAD —S A CDF —S A FEB=4 . 3 一J『- ](2 7)(4t 1) - 6(4 -2t)2二-3t -3.(0 :: t =2)14•简解:连结AA',由折叠的对称性知,EF垂直平分AA '于点G.在Rt A A' GT中,2 GH 丄A' T, AA'丄EF,所以△ A' GH GTH,所以HG : HT = A' H : GH,即HG•/ AB = 4 ,• BE = 4- 2t ,/ FBE = 30°.. BF"厂2—.E( 3・3t,t) ,• DE // x 轴.11S = S ^DEF + S A DEA = DE CD DE22CF = , 3 (2 -1). = 2(4_2t) _ 3⑶方法一:过点 E 作EG 丄x 轴于点G ,则 EG = t , OG 3 •.3t.OD =丄 DE OC 二2方法二:BF’D, CF 43-2(4切/ 1=H「A' H•而A' H= 1,HG持,所以HT Jx2.又因为点T在第四象限,所以T 的纵坐标为_】x4 5,故所求的函数关系式为415. 解:(1)S i= S2-证明:如答图24- 9①,4 15口,叫).答图24 - 9①•/ FE 丄y 轴,FG 丄 x 轴,/ ABD = 90°, •••四边形AEFG 是矩形. ••• AE = GF , EF = AG .• S ^AEF = S A A FG .冋理 S A ABC = S A A CD .• S ^ABC — S ^AEF = S X ACD — S A AFG ,即 S 1 = S 2 .=3— 5a ,同理可得②如答图24 — 9③,若点 E'在第二象限,•设 E '—4a , 5a), a > 0, 得 AN = 4a , A N(2) •/ FG // CD ,•••△ AFG ACD .S SFG 2 AG 21 1K=(CD )=(AD )二门=4CD = BA = 6, AD = BC = 8,「. FG = 3, ⑶假设存在符合条件的点 E '.V A A ' E 'E ' A '= EA = 3, E 'F ' = EF = 4. ①如答图24 — 9②,若点1 __2 'AG = 4, • F(4, 3).F '是由△ AEF 沿直线AC 平移得到的, 设 E ' (4, 5a), a > 0.延长 E'A'交 x 轴于 M ,得 AM = 5a — 3, AM = 4a . 由 tan. A AM =列AM5a - 34a答图24 — 9③3③ 如答图24- 9④,若点E '在第三象限,答图24 - 9④ 设 E ' (— 4a , — 5a ), a >0,延长 E ' F'交 y 轴于点 P ,得 AP = 5a , PF '= 4a -4.同 理可得0 = 5a ■3 4a —43 a (a v 0,舍去). 2 在第三象限不存在点 E '. ④点E '不可能在第四象限. •••存在满足条件的 E '坐标分别是(6兰)或(_3'2 2' 81 2 316. 解:⑴抛物线解析式为 y-- — x —x 2.2 2(2)方法一:(见答图24 - 10①), 1 2 3由 yx 2 x 2,得 B(4, 0), D(0, 2). 2 2• CD // AB . 1…S 梯形 ABCD =(5 + 3) X 2 = 8.2设直线y = kx - 1分别交AB 、CD 于点H 、T , 小 1 3 则 H( , 0), T( , 2).kk•••直线y = kx - 1平分四边形 ABCD 的面积,131( 1) 2=4.2 k k方法二:过点 C 作CH 丄AB 于点H .(见答图24- 10②)13「5a4a3 15 E (S ,R.• • S 梯形=—S 梯形 ABCD =4. 23答图24 - 10①. 12 3由y x2x 2 得B(4 , 0), C(0, 2).2 2••• CD // AB.由抛物线的对称性得四边形ABCD是等腰梯形.• S^AOD = S A BHC .3设矩形ODCH的对称中心为P,贝y P(—,1).2由矩形的中心对称性知:过P点任一直线将它的面积平分.•••过P点且与CD相交的任一直线将梯形ABCD的面积平分. 当直线y= kx- 1经过点P时,得1 = 3k -1..2 34 4•••当k =—时,直线y =—x -1将四边形ABCD面积二等分.3 3⑶见答图24- 10③.假设△ AEF绕点G旋转180°后得到△ MNQ,由中心对称性可知△ AEF MNQ .MQ = AF = 2, NQ = EF = 1,/ MQN = Z AFE = 90°. 设M(m, n),则N(m-2, n+ 1).T M、N在抛物线上,.n = -丄m2—m 2,2 21 23且n 1 (m —2) (m —2) 2.2 2",口 m = 3, 解得』• M(3, 2), N(1 , 3).“ =1.17 .分析(1)设抛物线的解析式为y= ax2+ bx+ c(a^ 0),由已知先求出C、D、E的坐标后再代入求出a、b、c的值即可;(2)先假设EF = 2GO成立,再根据题设条件给予证明;(3)方法同⑵.简解:(1)由已知,得C(3, 0), D(2, 2).•••/ ADE = 90°—/ CDB = Z BCD ,1 AE = AD • tan / ADE = 2x tan /BCD =2 x = 1. 2 .E(0, 1).可得过点E 、D 、C 的抛物线的解析式为 y =_£x 21.6 6(2)EF = 2GO 成立.6 12 •••点M 在该抛物线上,且它的横坐标为 一,.点M 的纵坐标为 一 •55可得直线DM 的解析式为y• 3.2答图24 — 11①•••/ ADK =/ FDG = 90 °,•/ FDA = / GDK . 又•••/ FAD = / GKD = 90° ,•△ DAF ◎△ DKG .KG = AF = 1.. GO = 1 .• EF = 2GO .⑶如答图24 — 11②.点P 在AB 上,G(1 , 0), C(3,A 4-r6 H C\?答图24 — 11②则设 P(t , 2). • PG 2= (t — 1)2+ 22, PC 2= (3 — t)2 + 22, GC = 2. ① 若 PG = PC ,贝U (t — 1)2 + 22 = (3 — t)2+ 22. 解得t = 2 ,• P 1(2, 2),此时点Q 1与点P 1重合. • Q 1 (2, 2).② 若 PG = GC ,贝U (t — 1)2 + 22= 22,得t = 1, • P 2(1 , 2).此时GP 2丄x 轴,GP 2与该抛物线在第一象限内的交点 Q 2的横坐标为1,•••点Q 2的纵坐标为-■ Q 2(1,-)••• F(0, 3), EF = 2.K ,则 DA = DK .0),3 3③若PC = GC,贝y (3 —1)2+ 22= 22,解得t = 3,「. P3(3, 2),此时P3C= GC = 2,△ P3CG为等腰直角三角形.过点Q3作Q3H 丄x 轴于点H,贝y Q3H = GH,设Q3H = h,••• Q3(h+ 1, h). ••• Q3 在抛物线上,_§(h 1)2 12(h 1)+ 1 = h.6 67 12 7解得h1= , h2=—2(舍去)..Q3(12,7)5 5 57 12 7综上所述,存在三个满足条件的点Q.即Q1(2, 2)或Q2(1,-)或Q3(—,—厂3 5 54 4•••当y时,直线yxT将四边形ABCD面积二等分.。
数学代数与几何复习题集及答案
数学代数与几何复习题集及答案<数学代数与几何复习题集及答案>一、代数复习题1. 解方程:求解以下方程组(1) 2x + y = 5x - y = 1(2) 3x + 2y = 84x - y = 2(3) x^2 + 4y^2 = 92x + 3y = 6(答案略)2. 因式分解:将下列多项式进行因式分解(1) x^2 + 5x + 6(2) 2x^2 + 3x - 2(3) x^3 - 8(答案略)3. 等比数列:求解等比数列问题(1) 若一个等比数列的首项为2,公比为3,则第6项为多少?(2) 一个等比数列的首项为3,前5项的和为242。
求该等比数列的公比。
(3) 若一个等比数列的前n项和为S_n,其中首项为a,公比为r。
证明:S_n = a * (1 - r^n)/(1 - r)(答案略)二、几何复习题1. 三角函数:计算下列问题(1) 计算 sin(45°) - cos(30°)(2) 已知直角三角形的斜边长为10,其中一个锐角的正弦值为3/5,求该锐角的余弦值。
(3) 已知直角三角形的一条直角边长为6,斜边长为10。
求另一条直角边的长。
(答案略)2. 平面向量:解决平面向量问题(1) 已知平面向量a = (1, 2),b = (3, 4),计算 a + b 和 a - b。
(2) 若平面向量a = (x, y)满足 a · (3, 1) = 4,求a的坐标。
(3) 已知平面向量a = (2, 1),b = (3, 4)。
计算 a · b 和 |a × b|。
(答案略)3. 三角形:解决三角形问题(1) 在三角形ABC中,∠A = 70°,∠B = 40°,则∠C = ?(2) 若在三角形ABC中,a = 5,b = 7,∠C = 30°,则c = ? (使用余弦定理)(3) 若在三角形ABC中,a = 3,b = 4,c = 5,是否为直角三角形?(答案略)综上所述,本篇文章为数学代数与几何的复习题集及答案,旨在提供读者复习相关知识点,加深对代数与几何的理解。
【初三数学】代数几何综合题(含答案)(共15页)
代数几何综合题代数几何综合题是初中数学中覆盖面最广、综合笥最强的题型,近几年的中考试题很多以代数几何综合题的形式出现,其命题的主要结合点是方程与几何、函数与几何等,解代数几何综合题最常用的数学方法是数形结合,由形导数,以数促形。
例1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0)()x <0,连结BP ,过P 点作PC PB ⊥交过点A 的直线a 于点C (2,y ) (1)求y 与x 之间的函数关系式;(2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。
解:(1) PC PB BO PO ⊥⊥,∴∠+∠=︒∠+∠=︒∴∠=∠CPA OPB PBO OPB CPA PBO 9090, A (2,0),C (2,y )在直线a 上 ∴∠=∠=︒BOP PAC 90∴∆∆BOP PAC ~∴=PO AC BOPA,∴=+||||||x y x 22, x y x y x<<∴=-0022,,∴=-+y x x 122(2) x <0,∴x 的最大整数值为-1 ,当x =-1时,y =-32,∴=CA 32BO a BOQ CAQ OQ AQ BOCA//~,,∴∴=∆∆ 设Q 点坐标为()m ,0,则AQ m =-2∴-=∴=m m m 223287,Q 点坐标为()870,说明:利用数形结合起来的思想,考查了相似三角形的判定及应用。
关键是搞清楚用坐标表示的数与线段的长度的关系。
练习1.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO.(1)求证:CD ∥AO ;(3分)(2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3分) (3)若AO +CD =11,求AB 的长。
(4分)B2.如图,A、B两点的坐标分别是(x1,0)、(x2,O),其中x1、x2是关于x的方程x2+2x+m-3=O 的两根,且x1<0<x2.(1)求m的取值范围;(2)设点C在y轴的正半轴上,∠ACB=90°,∠CAB=30°,求m的值;(3)在上述条件下,若点D在第二象限,△DAB≌△CBA,求出直线AD的函数解析式.3.一张矩形纸片OABC 平放在平面直角坐标系内,O 为原点,点A 在x 的正半轴上,点C 在y 轴的正半轴上,OA =5,OC =4。
初中代数式与几何结合题
初中代数式与几何结合题全文共四篇示例,供读者参考第一篇示例:初中代数与几何是数学中两个非常重要的内容,代数式是一种抽象的数学符号,而几何是研究空间形状、大小和位置关系的数学学科。
将代数与几何结合起来可以帮助学生更好地理解数学知识,提高数学思维能力。
代数式与几何结合题是数学学习中的一种常见题型,通过这种题型可以考查学生对代数和几何知识的综合运用能力。
现在我们来看几个关于初中代数式与几何结合题的例子。
第一个例子:已知直角三角形的两条边长分别为a和b,求斜边长。
解:根据勾股定理可知,斜边长c满足c^2 = a^2 + b^2。
这个例子就是将几何中直角三角形的斜边长与代数中平方的概念结合起来,考查学生对几何定理和代数运算的理解能力。
第二个例子:已知一个三角形的内角和为180度,其中一个角是x 度,另外两个角分别是2x度和3x度,求这个三角形的三个角度。
解:根据三角形内角和的性质可知,x + 2x + 3x = 180。
解方程得到6x = 180,即x = 30。
所以这个三角形的三个角度分别为30度、60度和90度。
通过上面两个例子可以看出,初中代数式与几何结合题能够帮助学生更全面地理解数学知识,培养他们的逻辑思维能力和解决问题的能力。
这种类型的题目也激发了学生对数学的兴趣,提高了他们对数学学习的积极性。
在解题过程中,学生需要综合利用代数与几何的知识点,灵活运用各种数学方法,培养他们的综合运用能力和创新思维。
通过训练和解答这类题目,学生还可以提高他们的数学分析和推理能力,同时也为将来更深入地学习数学打下坚实的基础。
在数学教育中,加强初中代数式与几何的结合题的教学和训练是非常重要的。
学生们应该注重理解数学知识的内在逻辑,勇于探索和尝试,提高自己的数学素养,从而在数学学习中取得更好的成绩。
希望广大学生能够喜欢数学,享受数学,不断提升自己的数学水平,成为数学领域的佼佼者。
【这篇文章共计798字】.第二篇示例:初中代数式与几何结合题是数学学科中一个非常重要的部分,代数与几何各有其独特性,但结合起来可以帮助学生更好地理解数学知识。
初中数学代数与几何综合题
初中数学代数与几何综合题代数与几何综合题从内容上来说,是把代数中的数与式、方程与不等式、 函数,几何中的三角形、四边形、圆等图形的性质,以及解直角三角形的方法、 图形的变换、相似等内容有机地结合在一起,同时也融入了开放性、探究性等 问题,如探究条件、探究结论、探究存在性等。
经常考察的题目类型主要有坐 标系中的几何问题(简称坐标几何问题),以及图形运动过程中求函数解析式问 题等。
解决代数与几何综合题,第一,需要认真审题,分析、挖掘题目的隐含条 件,翻译并转化为显性条件;第二,要善于将复杂问题分解为基本问题,逐个 击破;第三,要善于联想和转化,将以上得到的显性条件进行恰当地组合,进 一步得到新的结论,尤其要注意的是,恰当地使用分析综合法及方程与函数的 思想、转化思想、数行结合思想、分类与整合思想等数学思想方法,能更有效 地解决问题。
第一类:与反比例函数相关1. (09北京)如图,点 C 为O O 直径AB 上一点,过点 C 的直线交O O 于点D 、E 两点,且/ ACD=45°,DF _AB 于点 F ,EG _ AB 于点G .当点C 在AB 上运动时,设 AF =x , DE = y ,下列-a -2、、ab b > 0, a b > 2、、ab ,只有当 a = b 时,等号成立.图象中,能表示 y 与x 的函数关系的图象大致是(经过正方形 ABOC 的三个顶点 A 、B 、C3. (09延庆)阅读理解:对于任意正实数 a ,2.如图,在平面直角坐标系中y结论:在a b > 2 ab ( a , b 均为正实数)中,若 ab 为定值p ,则a b > 2 p ,12(2)探索应用:已知A(-3,0) , B(0,_4),点P 为双曲线y (x ■ 0)上的任意一点,过点P 作PC _ x 轴于点C , PD _ y 轴于D . 求四边形ABCD 面积的最小值,并说明此时 四边形ABCD 的形状.1 、y x 相交4(m , n )(在A 点左侧)是双曲线y =上的动点.过点B 作xBD // y 轴交x 轴于点D.过N(0, - n)作NC // x 轴交双曲线y 二色于点E ,交BD 于点C .x(1) 若点D 坐标是(―坐标及k 的值. (2) 若B 是CD 的中点,为4,求直线CM(3) 设直线 AM 、BM 分别与y 轴相交于 P 、Q 两点,且 MA=pMP , MB=qMQ ,求p - q 的值.285. (09.5西城)已知:反比例函数y 和y在平面直角坐标系 xOy 第一象限中的图 xx82只有当a =b 时,a - b 有最小值2 p .根据上述内容,回答下列问题:(1)若m ,只有当m 工时,m •丄有最小值mk4. (08南通)已知双曲线 y 与直线x于A 、B 两点.第一象限上的点 Mk 8,0),求A 、B 两点 四边形OBCE 的面积 的解析式•象如图所示,点A在y 的图象上,AB // y轴,与y 的图象交于点B, AC、BDx x与x轴平行,分别与y=2、y=8的图象交于点C、D.x x(1) 若点A的横坐标为2,求梯形ACBD的对角线的交点F的坐标;(2) 若点A的横坐标为m,比较△ OBC与厶ABC的面积的大小;(3) 若厶ABC与以A、B、D为顶点的三角形相似,请直接写出点A的坐标.点F 的坐标为(2,17).5-S ABC . (3)点A 的坐标为(2,4)函数y = m ( x - 0 , m 是常数)的图象经过 A(1,4),xB(a ,b),其中a 1 .过点A 作x 轴垂线,垂足为C , 连结 AD ,DC ,CB .(1) 若△ ABD 的面积为4,求点B 的坐标; (2) 求证:DC // AB ;(3) 当AD =BC 时,求直线 AB 的函数解析式. 答案: (3)所求直线 AB 的函数解析式是 y = -2x • 6或y = -x 5二、与三角形相关7. (07北京)在平面直角坐标系 xOy 中,抛物线y = mx 2 + 2 .3 mx + n 经过P 「3, 5),A(0, 2)两点.(1)求此抛物线的解析式;(2) 设抛物线的顶点为 B,将直线AB 沿y 轴向下平移两个单位得到直线 I,直线I 与抛物 线的对称轴交于C 点,求直线l 的解析式;⑶ 在⑵的条件下,求到直线OB, OC, BC 距离相等的点的坐标.答案:(1)抛物线的解析式为:y = ^x 2- 3x+ 2 3 3(2) 直线I 的解析式为y =守x(3) 至煩线OB 、OC 、BC 距离相等的点的坐标分别为 :M 1(-"^, 0)、 M 2 (0, 2)、 M 3(0, -2)、M 4 (-2.3, 0).36.( 07上海)如图,在直角坐标平面内,(1)点B 的坐标为3,; .3⑺.DC // AB .过点2&(08北京)平面直角坐标系 xOy 中,抛物线y = x + bx + c 与x 轴交于A, B 两点(点A 在点B 的左侧),与y 轴交于点C,点B 的坐标为(3, 0),将直线y = kx 沿y 轴向上平移3个 单位长度后恰好经过 B, C 两点.(1) 求直线BC 及抛物线的解析式;(2) 设抛物线的顶点为 D,点P 在抛物线的对称轴上,且乙APD =WACB,求点P 的坐标; ⑶ 连结CD,求£OCA 与MOCD 两角和的度数.答案:(1)直线BC 的解析式为y = -x + 3.抛物线的解析式为y = x 2 - 4x + 3.(2) 点P 的坐标为(2, 2)或(2, -2). (3) . OCA 与.OCD 两角和的度数为 45 ... 2 29. (10.6密云) 已知:如图,抛物线 y = -X mx 2m (m 0)与x 轴交于A 、B 两点,点A 在点B 的左边,C 是抛物线 上一动点(点C 与点A 、B 不重合),D 是OC 中点,连结BD 并延长,交AC 于点E .(1) 求A 、B 两点的坐标(用含 m 的代数式表示);CE(2 )求的值;AE物线和直线BE 的解析式.且OB = OC 二3OA . (I )求抛物线的解析式;(II) 探究坐标轴上是否存在点 P ,使得以点P,代C 为 顶点的三角形为直角三角形?若存在, 求出P 点坐标,若 不存在,请说明理由;1(III) 直线y x 1交y 轴于D 点,E 为抛物线顶(3)当C 、A 两点到y 轴的距离相等,且SCED答案: (1) A (-m , 0), B ( 2m , 0).(2) CEAE(3) 抛物线的解析式为 y = -X 2• 2x • 8 .直线BE 的解析式为4丄16 y x3310.(崇文 09)如图,抛物线y =ax 2• bx - 3与x 轴交于A, B 两点,与y 轴交于点C ,求抛3点•若.DBC 二:…CBE = ■-,求爲「?的值. 答案: (I )y = x 2-2x-3(II )R(0,1)P 2(9,0) , P 3(0,0)3(IIIDBO EOBC =45 .11. (11.6东城)如图,已知在平面直角坐标系xOy 中,直角梯形 OABC 的边0A 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA = AB = 2, OC = 3,过点B 作BD 丄BC ,交OA于点D .将/ DBC 绕点B 按顺时针方向旋转,角的两边分别交 正半轴于点E 和F .(1) 求经过A 、B 、C 三点的抛物线的解析式; (2) 当BE 经过(1)中抛物线的顶点时,求 CF 的长;(3) 在抛物线的对称轴上取两点 P 、Q (点Q 在点P 的上方), 且PQ = 1,要使四边形 BCPQ 的周长最小,求出 P 、Q 两点的坐标.答案:(1) y - -2x 24x 2 .333一 2(3)点P 的坐标为(1,3、与面积有相关12. ( 11.6通县)已知如图, AABC 中,AC =BC , BC 与x 轴平行,点 A 在x 轴上,点 C 在y 轴上,抛物线y =ax 2 -5ax - 4经过:ABC 的三个顶点,(1) 求出该抛物线的解析式;(2) 若直线y 二kx 7将四边形 ACBD 面积平分,求此直线的解析式 .(3) 若直线y =kx b 将四边形ACBD 的周长和面积同时分成相等的两部分,请你确定y = kx • b 中k 的取值范围.2 2 4⑵由 y 「2x 3x 2 =- 2(x-1)2 8 3 3CF = FM + CM y 轴的正半轴、x 轴的。
中考代数几何-综合题
中考代数几何综合题代几综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以代几综合题的形式出现.解代几综合题一般可分为“认真审题、理解题意;探求解题思路;正确解答”三个步骤,解代几综合题必须要有科学的分析问题的方法.数学思想是解代几综合题的灵魂,要善于挖掘代几综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程(不等式)的思想等,把实际问题转化为数学问题,建立数学模型,这是学习解代几综合题的关键.题型一般分为:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题.题型特点:一是以几何图形为载体,通过线段、角等图形寻找各元素之间的数量关系,建立代数方程或函数模型求解;二是把数量关系与几何图形建立联系,使之直观化、形象化,从函数关系中点与线的位置、方程根的情况得出图形中的几何关系.以形导数,由数思形,从而寻找出解题捷径. 解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中寻找这两部分知识的结合点,从而发现解题的突破口.方法点拨方程与几何综合问题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明.函数型综合题主要有:几何与函数结合型、坐标与几何、方程与函数结合型问题,是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象,结合函数的性质、方程等解题.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x 轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等.函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,有较好的区分度,因此是各地中考的热点题型.几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力.1.几何型综合题,常以相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现.2.几何计算是以几何推理为基础的几何量的计算,主要有线段和弧长的计算,角的计算,三角函数值的计算,以及各种图形面积的计算等.3.几何论证题主要考查学生综合应用所学几何知识的能力.4.解几何综合题应注意以下几点:(1)注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系;(2)注意推理和计算相结合,力求解题过程的规范化;(3)注意掌握常规的证题思路,常规的辅助线作法;(4)注意灵活地运用数学的思想和方法.类型一、方程与几何综合的问题1.如图,在梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3.问:线段AB上是否存在点P,使得以P、A、D为顶点的三角形与以P、B、C为顶点的三角形相似?若存在,这样的总共有几个?并求出AP的长;若不存在,请说明理由.【思路点拨】由于以P、A、D为顶点的三角形与以P、B、C为顶点的三角形相似时的对应点不能确定,故应分两种情况讨论.【答案与解析】解:存在.∵AD∥BC,∠A=90°,∴∠B=90°,当△PAD∽△PBC时,∵AD=2,BC=3,设AP=x,PB=7-x,则∴.①当△ADP∽△BPC时,AD=2,BC=3,设设AP=x,PB=7-x,则∴AP=1或AP=6.②由①②可知,P点距离A点有三个位置:,AP=1,AP=6.【总结升华】本题考查的是相似三角形的判定,解答此题时要注意分类讨论,不要漏解.【变式】有一张矩形纸片ABCD,已知AB=2,AD=5.把这张纸片折叠,使点A落在边BC上的点E处,折痕为MN,MN交AB于M,交AD于N.(1)若BE=,试画出折痕MN的位置,并求这时AM的长;(2)点E在BC上运动时,设BE=x,AN=y,试求y关于x的函数解析式,并写出x 的取值范围;(3)连接DE,是否存在这样的点E,使得△AME与△DNE相似?若存在,请求出这时BE的长;若不存在,请说明理由.【答案】(1)画出正确的图形.(折痕MN必须与AB、AD相交).设AM=t,则ME=t,MB=2-t,由BM2+BE2=ME2,得t=,即AM=.(2)如图(a),∵BE=x,设BM=a,则a2+x2=(2-a)2,a2+x2=4-4a+a2,∴a=,AM=2-BM=2-=.由△AMN∽△BEA,得,∴y=,∵0<x≤2,0<y≤5,x的取值范围为:,故x=1.(3)如图(b),若△AME与△DNE相似,不难得∠DNE=∠AME.又∵AM=ME,∴DN=NE=NA=,∴=解得:x=1或x=4.又∵,故x=1.或者由∠DEN=∠AEM,得∠AED=90°,推出△ABE∽△ECD,从而得BE=1类型二、函数与几何综合问题2.如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长的速度运动t(t>0)秒,抛物线y=x2+bx+c经过点O和点P.已知矩形ABCD的三个顶点为A (1,0)、B(1,-5)、D(4,0).⑴求c、b(可以用含t的代数式表示);⑵当t>1时,抛物线与线段AB交于点M.在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;⑶在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.答案与解析【思路点拨】(1)由抛物线y=x2+bx+c经过点O和点P,将点O与P的坐标代入方程即可求得c,b;(2)当x=1时,y=1-t,求得M的坐标,则可求得∠AMP的度数;(3)根据图形,可直接求得答案.【答案与解析】解:(1)把x=0,y=0代入y=x2+bx+c,得c=0,再把x=t,y=0代入y=x2+bx,得t2+bt=0,∵t>0,∴b=-t;(2)不变.∵抛物线的解析式为:y=x2-tx,且M的横坐标为1,∴当x=1时,y=1-t,∴M(1,1-t),∴AM=|1-t|=t-1,∵OP=t,∴AP=t-1,∴AM=AP,∵∠PAM=90°,∴∠AMP=45°;(3)<t<.①左边4个好点在抛物线上方,右边4个好点在抛物线下方:无解;②左边3个好点在抛物线上方,右边3个好点在抛物线下方:则有 -4<y2<-3,-2<y3<-1,即-4<4-2t<-3,-2<9-3t<-1,∴<t<4且<t<,解得<t<;③左边2个好点在抛物线上方,右边2个好点在抛物线下方:无解;④左边1个好点在抛物线上方,右边1个好点在抛物线下方:无解;⑤左边0个好点在抛物线上方,右边0个好点在抛物线下方:无解;综上所述, t的取值范围是:<t<.【总结升华】此题考查了二次函数与点的关系.此题综合性很强,难度适中,解题的关键是注意数形结合与方程思想的应用类型三、动态几何中的函数问题3. 如图,在平面直角坐标系中,已知二次函数的图像与轴交于,与轴交于A、B两点,点B的坐标为(1)求二次函数的解析式及顶点D的坐标;(2)点M是第二象限内抛物线上的一动点,若直线OM把四边形ACDB分成面积为1:2的两部分,求出此时点的坐标;(3)点P是第二象限内抛物线上的一动点,问:点P在何处时△的面积最大?最大面积是多少?并求出此时点P的坐标.答案与解析举一反三【思路点拨】(1)抛物线的解析式中只有两个待定系数,因此只需将点B、C的坐标代入其中求解即可.(2)先画出相关图示,连接OD后发现:S△OBD:S四边形ACDB=2:3,因此直线OM必须经过线段BD才有可能符合题干的要求;设直线OM与线段BD的交点为E,根据题干可知:△OBE、多边形OEDCA的面积比应该是1:2或2:1,即△OBE的面积是四边形ACDB面积的,所以先求出四边形ABDC的面积,进而得到△OBE的面积后,可确定点E的坐标,首先求出直线OE(即直线OM)的解析式,联立抛物线的解析式后即可确定点M的坐标(注意点M的位置).(3)此题必须先得到关于△CPB面积的函数表达式,然后根据函数的性质来求出△CPB 的面积最大值以及对应的点P坐标;通过图示可发现,△CPB的面积可由四边形OCPB的面积减去△OCB的面积求得,首先设出点P的坐标,四边形OCPB的面积可由△OCP、△OPB的面积和得出.【答案与解析】解:(1)由题意,得:解得:所以,二次函数的解析式为:,顶点D的坐标为(-1,4).(2)画图由A、B、C、D四点的坐标,易求四边形ACDB的面积为9.直线BD的解析式为y=2x+6.设直线OM与直线BD 交于点E,则△OBE的面积可以为3或6.①当时,如图,易得E点坐标(-2,-2),直线OE的解析式为y=-x.设M 点坐标(x,-x),∴②当时,同理可得M点坐标.∴ M 点坐标为(-1,4).(3)如图,连接,设P点的坐标为,∵点P在抛物线上,∴,∴∵,∴当时,. △的面积有最大值∴当点P的坐标为时,△的面积有最大值,且最大值为【总结升华】此题主要考查了二次函数解析式的确定、图形面积的解法以及二次函数的应用等知识;(2)问中,一定先要探究一下点M的位置,以免出现漏解的情况.【变式】如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线=-+交折线OAB 于点E.(1)记△ODE的面积为S,求S与的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形OA1B1C1,试探究OA1B1C1与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.【答案】(1)由题意得B(3,1).若直线经过点A(3,0)时,则b=若直线经过点B(3,1)时,则b=若直线经过点C(0,1)时,则b=1.①若直线与折线OAB的交点在OA上时,即1<b≤,如图1,此时点E(2b,0).∴S=OE·CO=×2b×1=b.②若直线与折线OAB的交点在BA上时,即<b<,如图2,此时点E(3,),D(2b-2,1).∴S=S矩-(S△OCD+S△OAE +S△DBE )=3-[(2b-1)×1+×(5-2b)•()+×3()](2)如图3,设O1A1与CB相交于点M,C1B1与OA相交于点N,则矩形O1A1B1C1与矩形OABC的重叠部分的面积即为四边形DNEM的面积.由题意知,DM∥NE,DN∥ME,∴四边形DNEM为平行四边形,根据轴对称知,∠MED=∠NED,又∠MDE=∠NED,∴∠MED=∠MDE,MD=ME,∴平行四边形DNEM为菱形.过点D作DH⊥OA,垂足为H,设菱形DNEM的边长为a,由题可知,D(2b-2,1),E(2b,0),∴DH=1,HE=2b-(2b-2)=2,∴HN=HE-NE=2-a,则在Rt△DHM中,由勾股定理知:,∴a=.∴S四边形DNEM=NE·DH=.∴矩形OA1B1C1与矩形OABC的重叠部分的面积不发生变化,面积始终为.类型四、直角坐标系中的几何问题4. 如图所示,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.(1)直接写出点E、F的坐标;(2)设顶点为F的抛物线交y轴正半轴于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.答案与解析【思路点拨】(1)由轴对称的性质,可知∠FBD=∠ABD,FB=AB,可得四边形ABFD是正方形,则可求点E、F的坐标;(2)已知抛物线的顶点,则可用顶点式设抛物线的解析式. 因为以点E、F、P为顶点的等腰三角形没有给明顶角的顶点,而顶角和底边都是唯一的,所以要抓住谁是顶角的顶点进行分类,可分别以E、F、P为顶角顶点;(3)求周长的最小值需转化为利用轴对称的性质求解.【答案与解析】解:(1)E(3,1);F(1,2);(2)连结EF,在Rt△EBF中,∠B=90°,∴EF=.设点P的坐标为(0,n),n>0,∵顶点F(1,2), ∴设抛物线的解析式为y=a(x-1)2+2,(a≠0).①如图1,当EF=PF时,EF2=PF2,∴12+(n-2)2=5,解得n1=0(舍去),n2=4.∴P(0,4),∴4=a(0-1)2+2,解得a=2,∴抛物线的解析式为y=2(x-1)2+2.②如图2,当EP=FP时,EP2=FP2,∴(2-n)2+1=(1-n)2+9,解得n=-(舍去)③当EF=EP时,EP=<3,这种情况不存在.综上所述,符合条件的抛物线为y=2(x-1)2+2.(3)存在点M、N,使得四边形MNFE的周长最小.如图3,作点E关于x轴的对称点E′,作点F关于y轴的对称点F′,连结E′F′,分别与x轴、y轴交于点M、N,则点M、N就是所求. 连结NF、ME.∴E′(3,-1)、F′(-1,2),NF=NF′,ME=ME′. ∴BF′=4,BE′=3.∴FN+NM+ME=F′N+NM+ME′=F′E′==5.又∵EF=,∴FN+MN+ME+EF=5+,此时四边形MNFE的周长最小值为5+.【总结升华】本题考查了平面直角坐标系、等腰直角三角形、抛物线解析式的求法、利用轴对称求最短距离以及数形结合、分类讨论等数学思想. 分类讨论的思想要依据一定的标准,对问题分类、求解,要特别注意分类原则是不重不漏,最简分类常见的依据是:一是依据概念分类,如判断直角三角形时明确哪个角可以是直角,两个三角形相似时分清哪两条边是对应边;二是依运动变化的图形中的分界点进行分类,如一个图形在运动过程中,与另一个图形重合部分可以是三角形,也可以是四边形、五边形等. 几何与函数的综合题是中考常见的压轴题型,解决这类问题主要分为两步:一是利用线段的长确定出几何图形中各点的坐标;二是用待定系数法求函数关系式.类型五、几何图形中的探究、归纳、猜想与证明问题5. 如图所示,以等腰三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA,再以等腰直角三角形ABA的斜边为直角边向外作第3个等腰直角三角形A BB,……,如此作下去,若OA=OB=1,则第n个等腰直角三角形的面积S= ________(n为正整数).答案与解析举一反三【思路点拨】本题要先根据已知的条件求出S1、S2的值,然后通过这两个面积的求解过程得出一般性的规律,进而可得出S n的表达式.【答案与解析】根据直角三角形的面积公式,得S1=;根据勾股定理,得:AB=,则S2=1=20;A1B=2,则S3=21,依此类推,发现:=.【总结升华】本题要先从简单的例子入手得出一般化的结论,然后根据得出的规律去求特定的值.【变式】阅读下面的文字,回答后面的问题.求 3+32+33+…+3100的值.解:令 S=3+32+33+…+3100(1),将等式两边提示乘以3得到:3S=32+33+34+…+3101(2),(2)-(1)得到:2S=3101-3∴S=∴3+32+33+ (3100)问题:(1)2+22+…+22011的值为__________________;(直接写出结果)(2)求4+12+36+…+4×350的值;(3)如图,在等腰Rt△OAB中,OA=AB=1,以斜边OB为腰作第二个等腰Rt△OBC,再以斜边OC为腰作第三个等腰Rt△OCD,如此下去…一直作图到第8个图形为止.求所有的等腰直角三角形的所有斜边之和.(直接写出结果).答案与解析【答案】解:(1)22012-2.(2)令S=4+12+36+…+4×350①,将等式两边提示乘以3得到:3S=12+36+108+…+4×351②,②-①得到:2S=4×341-4∴S=2×351-2∴4+12+36+…+4×350=2×351-2.(3).一、选择题1. 如图,正方形ABCD的边长为2, 将长为2的线段QF的两端放在正方形相邻的两边上同时滑动.如果点Q从点A出发,沿图中所示方向按滑动到点A为止,同时点F从点B出发,沿图中所示方向按滑动到点B为止那么在这个过程中线段QF的中点M所经过的路线围成的图形的面积为()A. 2B. 4-C.D.2. 如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间函数关系的图象大致为()二、填空题3. 在平面直角坐标系中,点A的坐标为(4,0),点B的坐标为(4,10),点C在y轴上,且△ABC是直角三角形,则满足条件的C点的坐标为______________.4. 如图,(n+1)个边长为2的等边三角形有一条边在同一直线上,设△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,△B n+1D n C n的面积为S n,则S2=______________;S n=__________________(用含的式子表示).三、解答题5. 如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm,现有两个动点P,Q分别从点A和点B同时出发,其中点P以1厘米/秒的速度沿AC向终点C运动;点Q以1.25厘米/秒的速度沿BC向终点C运动.过点P作PE∥BC交AD于点E,连接EQ.设动点运动时间为t秒(t>0).(1)连接DP,经过1秒后,四边形EQDP能够成为平行四边形吗?请说明理由;(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行.为什么?(3)当t为何值时,△EDQ为直角三角形.6.如图,在平面直角坐标系中,四边形OABC是梯形,OA∥BC,点A的坐标为(6,0),点B的坐标为(3,4),点C在y轴的正半轴上.动点M在OA上运动,从O点出发到A点;动点N在AB上运动,从A点出发到B点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒)(1)求线段AB的长;当t为何值时,MN∥OC?(2)设△CMN的面积为S,求S与t之间的函数解析式,并指出自变量t的取值范围;S是否有最小值?若有最小值,最小值是多少?7. 条件:如下图,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明).模型应用:(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是______;(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.8. 如图,四边形OABC是一张放在平面直角坐标系的矩形纸片,O为原点,点A在x 轴上,点C在y轴上,OA=15,OC=9,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作N点.(1)求N点、M点的坐标;(2)将抛物线y=x2﹣36向右平移a(0<a<10)个单位后,得到抛物线l,l经过点N,求抛物线l的解析式;(3)①抛物线l的对称轴上存在点P,使得P点到M、N两点的距离之差最大,求P 点的坐标;②若点D是线段OC上的一个动点(不与O、C重合),过点D作DE∥OA交CN于E,设CD的长为m,△PDE的面积为S,求S与m之间的函数关系式,并说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.9. 如图,直线y=kx﹣1与x轴、y轴分别交于B、C两点,tan∠OCB=.(1)求B点的坐标和k的值;(2)若点A(x,y)是第一象限内的直线y=kx﹣1上的一个动点.当点A运动过程中,试写出△AOB的面积S与x的函数关系式;(3)探索:在(2)的条件下:①当点A运动到什么位置时,△AOB的面积是;②在①成立的情况下,x轴上是否存在一点P,使△POA是等腰三角形?若存在,请写出满足条件的所有P点的坐标;若不存在,请说明理由.10. 如图,已知抛物线y=ax2+bx+3经过点B(-1,0)、C(3,0),交y轴于点A,将线段OB绕点O顺时针旋转90°,点B的对应点为点M,过点A的直线与x轴交于点D(4,0).直角梯形EFGH的上底EF与线段CD重合∠FEH=90°,EF∥HG,EF=EH=1.直角梯形EFGH从点D开始,沿射线DA方向匀速运动,运动的速度为1个长度单位/秒,在运动过程中腰FG与直线AD始终重合,设运动时间为t秒.(1)求此抛物线的解析式;(2)当t为何值时,以M、O、H、E为顶点的四边形是特殊的平行四边形;(3)作点A关于抛物线对称轴的对称点A′,直线HG与对称轴交于点K,当t为何值时,以A、A′、G、K为顶点的四边形为平行四边形?请直接写出符合条件的t值.11. 如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M 为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如图①,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?请直接写出结论,不必证明或说明理由;(2)如图②,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;(3)若点M在点C右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN 与MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.【答案与解析】一、选择题1.【答案】B.2.【答案】A.三、填空题3.【答案】(0,0),(0,10),(0,2),(0,8)4.【答案】;;【解析】由于各三角形为等边三角形,且各边长为2,过各三角形的顶点B1、B2、B3…向对边作垂线,垂足为M1、M2、M3∵△AB1C1是等边三角形,∴AD1=AC1.sin60°=2×=,∵△B1C1B2也是等边三角形,∴C1B1是∠AC1B2的角平分线,∴AD1=B2D1=,故S1=S△B2C1A﹣S△AC1D1=×2×﹣×2×=;S2=S△B3C2A﹣S△AC2D2=×4×﹣×4×=;作AB∥B1C1,使AB=AB1,连接BB1,则B2,B3,…B n在一条直线上.∵B n C n∥AB,∴==,∴B n D n=.AD=,则D n C n=2﹣B n D n=2﹣=.△B n C n B n+1是边长是2的等边三角形,因而面积是:.△B n+1D n C n面积为S n=.=.=.即第n个图形的面积S n=.三、解答题5.【答案与解析】解:(1)能,如图1,∵点P以1厘米/秒的速度沿AC向终点C运动,点Q以1.25厘米/秒的速度沿BC向终点C运动,t=1秒∴AP=1,BQ=1.25,∵AC=4,BC=5,点D在BC上,CD=3,∴PC=AC-AP=4-1=3,QD=BC-BQ-CD=5-1.25-3=0.75,∵PE∥BC,解得PE=0.75,∵PE∥BC,PE=QD,∴四边形EQDP是平行四边形;(2)如图2,∵点P以1厘米/秒的速度沿AC向终点C运动,点Q以1.25厘米/秒的速度沿BC向终点C运动,∴PC=AC-AP=4-t,QC=BC-BQ=5-1.25t,∴∴PQ∥AB;(3)分两种情况讨论:①如图3,当∠EQD=90°时,显然有EQ=PC=4-t,又∵EQ∥AC,∴△EDQ∽△ADC∴,∵BC=5,CD=3,∴BD=2,∴DQ=1.25t-2,∴解得t=2.5(秒);②如图4,当∠QED=90°时,作EM⊥BC于M,CN⊥AD于N,则EM=PC=4-t,在Rt△ACD中,∵AC=4,CD=3,∴AD=,∵∠CDA=∠EDQ,∠QED=∠C=90°,∴△EDQ∽△CDA,∴t=3.1(秒).综上所述,当t=2.5秒或t=3.1秒时,△EDQ为直角三角形.6.【答案与解析】解:(1)过点B作BD⊥OA于点D,则四边形CODB是矩形,BD=CO=4,OD=CB=3,DA=3在Rt△ABD中,.当时,,,.∵,,∴,即(秒).(2)过点作轴于点,交的延长线于点,∵,∴,.即,.,.,∴.即().由,得.∴当时,S有最小值,且7.【答案与解析】解:(1)∵四边形ABCD是正方形,∴AC垂直平分BD,∴PB=PD,由题意易得:PB+PE=PD+PE=DE,在△ADE中,根据勾股定理得,DE=;(2)作A关于OB的对称点A′,连接A′C,交OB于P,PA+PC的最小值即为A′C的长,∵∠AOC=60°∴∠A′OC=120°作OD⊥A′C于D,则∠A′OD=60°∵OA′=OA=2∴A′D=∴;(3)分别作点P关于OA、OB的对称点M、N,连接OM、ON、MN,MN交OA、OB于点Q、R,连接PR、PQ,此时△PQR周长的最小值等于MN.由轴对称性质可得,OM=ON=OP=10,∠MOA=∠POA,∠NOB=∠POB,∴∠MON=2∠AOB=2×45°=90°,在Rt△MON中,MN===10.即△PQR周长的最小值等于10.8.【答案与解析】解:(1)∵CN=CB=15,OC=9,∴ON==12,∴N(12,0);又∵AN=OA﹣ON=15﹣12=3,设AM=x∴32+x2=(9﹣x)2,∴x=4,M(15,4);(2)解法一:设抛物线l为y=(x﹣a)2﹣36则(12﹣a)2=36∴a1=6或a2=18(舍去)∴抛物线l:y=(x﹣6)2﹣36解法二:∵x2﹣36=0,∴x1=﹣6,x2=6;∴y=x2﹣36与x轴的交点为(﹣6,0)或(6,0)由题意知,交点(6,0)向右平移6个单位到N点,所以y=x2﹣36向右平移6个单位得到抛物线l:y=(x﹣6)2﹣36;(3)①由“三角形任意两边的差小于第三边”知:P点是直线MN与对称轴x=6的交点,设直线MN的解析式为y=kx+b,则,解得,∴y=x﹣16,∴P(6,﹣8);②∵DE∥OA,∴△CDE∽△CON,∴;∴S=∵a=﹣<0,开口向下,又m=﹣∴S有最大值,且S最大=﹣.9.【答案与解析】解:(1)∵y=kx﹣1与y轴相交于点C,∴OC=1;∵tan∠OCB=,∴OB=;∴B点坐标为:;把B点坐标为:代入y=kx﹣1得:k=2;(2)∵S=,y=kx﹣1,∴S=×|2x﹣1|;∴S=|x﹣|;(3)①当S=时,x﹣=,∴x=1,y=2x﹣1=1;∴A点坐标为(1,1)时,△AOB的面积为;②存在.满足条件的所有P点坐标为:P1(1,0),P2(2,0),P3(,0),P4(,0).10.【答案与解析】解:(1)∵抛物线y=ax2+bx+3经过点B(﹣1,0)、C(3,0),∴,解得a=﹣1,b=2,∴抛物线的解析式为:y=﹣x2+2x+3.(2)在直角梯形EFGH运动的过程中:①四边形MOHE构成矩形的情形,如图1所示:此时边GH落在x轴上时,点G与点D重合.由题意可知,EH,MO均与x轴垂直,且EH=MO=1,则此时四边形MOHE构成矩形.此时直角梯形EFGH平移的距离即为线段DF的长度.过点F作FN⊥x轴于点N,则有FN=EH=1,FN∥y轴,∴,即,解得DN=.在Rt△DFN中,由勾股定理得:DF===,∴t=;②四边形MOHE构成正方形的情形.由图1可知,OH=OD﹣DN﹣HN=4﹣﹣1=,即OH≠MO,所以此种情形不存在;③四边形MOHE构成菱形的情形,如图2所示:过点F作FN⊥x轴于点N,交GH于点T,过点H作HR⊥x轴于点R.易知FN ∥y轴,RN=EF=FT=1,HR=TN.设HR=x,则FN=FT+TN=FT+HR=1+x;∵FN∥y轴,∴,即,解得DN=(1+x).∴OR=OD﹣RN﹣DN=4﹣1﹣(1+x)=﹣x.若四边形MOHE构成菱形,则OH=EH=1,在Rt△ORH中,由勾股定理得:OR2+HR2=OH2,即:(﹣x)2+x2=12,解得x=,∴FN=1+x=,DN=(1+x)=.在Rt△DFN中,由勾股定理得:DF===3.由此可见,四边形MOHE构成菱形的情形存在,此时直角梯形EFGH平移的距离即为线段DF的长度,∴t=3.综上所述,当t=s时,四边形MOHE构成矩形;当t=3s时,四边形MOHE构成菱形.(3)当t=s或t=s时,以A、A′、G、K为顶点的四边形为平行四边形.简答如下:(注:本题并无要求写出解题过程,以下仅作参考)由题意可知,AA′=2.以A、A′、G、K为顶点的四边形为平行四边形,则GK ∥AA′,且GK=AA′=2.①当直角梯形位于△OAD内部时,如图3所示:过点H作HS⊥y轴于点S,由对称轴为x=1可得KS=1,∴SG=KS+GK=3.由SG∥x轴,得,求得AS=,∴OS=OA﹣AS=,∴FN=FT+TN=FT+OS=,易知DN=FN=,在Rt△FND中,由勾股定理求得DF=;②当直角梯形位于△OAD外部时,如图4所示:设GK与y轴交于点S,则GS=SK=1,AS=,OS=OA+AS=.过点F作FN⊥x轴,交GH于点T,则FN=FT+NT=FT+OS=.在Rt△FGT中,FT=1,则TG=,FG=.由TG∥x轴,∴,解得DF=.由于在以上两种情形中,直角梯形EFGH平移的距离均为线段DF的长度,则综上所述,当t=s或t=s时以A、A′、G、K为顶点的四边形为平行四边形.11.【答案与解析】解:(1)判断:EN与MF相等(或EN=MF),点F在直线NE上.(2)成立.证明:连结DE,DF.∵△ABC是等边三角形,∴AB=AC=BC.又∵D,E,F是三边的中点,∴DE,DF,EF为三角形的中位线.∴DE=DF=EF,∠FDE=60°.又∠MDF+∠FDN=60°,∠NDE+∠FDN=60°,∴∠MDF=∠NDE.在△DMF和△DNE中,DF=DE,DM=DN,∠MDF=∠NDE,∴△DMF≌△DNE.∴MF=NE.(3)画出图形(连出线段NE),MF与EN相等的结论仍然成立(或MF=NE成立).。
初中数学专题训练《代数与几何》综合练习题及解析
专题71 代数与几何综合(1)【典例分析】例1、如图,四边形OABC为长方形,其中O为原点,A、C两点分别在x轴和y轴上,B 点的坐标是(4,6),将长方形沿直线DE折叠,使点C落在AB边上点F处,折痕分别交OC,BC于点E、D,且D点坐标是(52,6).(1)求F点的坐标;(2)如图2,P点在第二象限,且△PDE≌△CED,求P点的坐标;(3)若M点为x轴上一动点,N点为直线DE上一动点,△FMN为以FN为底边的等腰直角三角形,求N点的坐标.【答案】解:(1)∵点D坐标是(52,6),B点的坐标是(4,6),四边形OABC为矩形,∴BC=AO=4,OC=AB=6,CD=52,BD=BC−CD=32,∵将矩形沿直线DE折叠,∴DF=CD=52,∴BF=√DF2−DB2=√254−94=2,∴AF=6−2=4,∴点F(4,4);(2)如图2中,连接PF交DE于J.当四边形EFDP是矩形时,△PDE≌△FED≌△CED,∵C(0,6),F(4,4),∴直线CF的解析式为y=−12x+6,∵DE垂直平分线段CF,∴直线DE的解析式为y=2x+1,∴E(0,1),D(52,6),∵DJ=JE,∴J(54,72 ),∵PJ=JF,∴P(−32,3);(3)如图3中,连接FN,以FN为对角线构造正方形NMFM′,连接MM′交FN于K.设N(m,2m+1),则K(m+42,2m+52),M(7−m2,3m+12),M′(3m+12,m+92),当点M落在x轴上时,3m+12=0,解得m=−13,当点M′落在X轴上时,m+92=0,解得m=−9,∴满足条件的点N的坐标为(−13,13)或(−9,−17).【解析】【试题解析】(1)由折叠的性质可得DF=CD=5,由勾股定理可求BF的长,即可求解;2(2)如图2中,连接PF交DE于J.当四边形EFDP是矩形时,△PDE≌△FED≌△CED,构建一次函数求出点E,点D坐标,求出点J的坐标即可解决问题.(3)如图3中,连接FN,以FN为对角线构造正方形NMFM′,连接MM′交FN于K.用m的代数式表示出点M,M′的坐标,根据点M,M′在x轴上时,纵坐标为0构建方程求解即可.本题属于四边形综合题,考查了矩形的性质,翻折变换,一次函数的应用等知识,解题的关键是学会构建一次函数解决问题,学会利用参数解决问题,属于中考压轴题.【好题演练】一、选择题1.在平面直角坐标系xOy中,点A(0,2),B(a,0),C(m,n),其中m>a,a<1,n>0,若△ABC是等腰直角三角形,且AB=BC,则m的取值范围是A. 0<m<2B. 2<m<3C. m<3D. m>3【答案】B【解析】【分析】本题考查了坐标于图形的性质,等腰直角三角形的性质和全等三角形的判定和性质,不等式(组)的解集等有关知识,关键是知识的综合,利用数形结合思想解决问题.先由已知条件判定ΔAOB≌ΔBDC,故得OB=CD,OA=BD,再结合已知和点的坐标,得到不等式m−2<1和m−2>0,最后解不等式(组)即可求解.【解答】解:过点C作CD⊥x轴于点D,∴∠BDC=90°,∵∠ABC=90°,∴∠1+∠2=90°,∵∠AOB=90°,∴∠3+∠2=90°,∴∠1=∠3,∵∠AOB=∠BDC=90°,AB=BC,∴ΔAOB≌ΔBDC(AAS),∴OB=CD,OA=BD,即a=n,m−a=2,∴a=n=m−2,∵a<1,∴m−2<1,即m<3;∵n>0,∴m−2>0,即m>2;∴m的取值范围是2<m<3.故答案为B.二、填空题2.如图A,E为反比例函数y=2x (x>0)上的两点,B、D为反比例函数y=kx(x>0)上的两点,AB//DE//y轴,连结DA并延长交y轴于点C且CD轴,若SΔABC−SΔADE=19,则k=__________.【答案】94【解析】【分析】本题主要考查的是反比例函数与几何综合,解题的关键是根据题意写出各点坐标.设点A(a,2a),根据反比例函数及其图象的特点依次表示出B、C、D的坐标,再根据SΔABC−SΔADE=19即可得出结果.【解答】解:∵点A在反比例函数y=2x(x>0)上,设点A(a,2a),∵AB//DE//y轴,∴B点的横坐标为a,C、D点纵坐标为2a,∴B(a,ka ),C(0,2a),D(ak2,2a),∴E点的横坐标为ak2,∵点E在反比例函数y=2x(x>0)上,∴E(ak2,4ak),∵SΔABC−SΔADE=19,∴12⋅AC⋅AB−12AD⋅DE=19,∴12×a×(ka−2a)−12×(ak2−a)×(2kak−4ak)=19,∴k=94.故答案为:94.3.如图,矩形硬纸片ABCD的顶点A在y轴的正半轴上滑动,顶点B在x轴的正半轴上滑动,点E为AB的中点,AB=24,BC=5.当OD最大时,直线OD的表达式为________.【答案】y=5x【解析】【分析】本题主要考查代数与几何的综合.待定系数法,相似三角形的判定与性质等知识.求直线OD解析式.需要先求出D点坐标,用到相似三角形的判定与性质求D点的横坐标,纵坐标,代入计算即可.【解答】解:如图,当O 、E 、D 三点共线时,OD 最大,过点D 作DF ⊥y 轴于点F ,∵AD =BC =5,AE =12AB =12, ∴DE =√AD 2+AE 2=√52+122=13, ∴OD =DE +OE =13+12=25, 设DF =x ,∴OF =√OD 2−DF 2=√252−x 2, ∵四边形ABCD 是矩形, ∴∠DAB =90∘, ∵∠DFA =∠AOB =90°,∴∠DAF +∠ADF =∠DAF +∠OAB , ∴ADF =∠OAB ,又Rt △OAB 中,E 为AB 中点, ∴EO =EA =EB ,∴∠OAE =∠AOE , ∴∠ADF =FOD , 又∠AFD =∠OFD , ∴△FOD∽△FDA , ∴OD AD =OFDF , 即255=√252−x 2x,解得x =25√2626,或x =−25√2626(舍去), ∴OF =125√2626,∴D(25√2626,125√2626).令直线OD的表达式:y=kx,把点D坐标代入得k=5,∴y=5x.故答案为:y=5x.三、解答题4.如图,直线l:y=x−2分别交x,y轴于A、B两点,C、D是直线l上的两个动点,点C在第一象限,点D在第三象限.且始终有∠COD=135∘.(1)求证:ΔOAC∽△DBO;(2)若点C、D都在反比例函数y=kx的图象上,求k的值;(3)记▵OBD的面积为S1,▵AOC的面积为S2,且S1S2=12,二次函数y=ax2+bx+c满足以下两个条件:①图象过C、D两点;②当S1≤x≤S2时,y有最大值2,求a的值.【答案】解:(1)证明:∵∠DOC=135°,∴∠BOD+∠AOC=45°,∵A,B分别是直线y=x−2与x轴,y轴的交点,∴OA=OB=2,∴∠OAB=∠OBA=45°,∴∠AOC +∠ACO =45°, ∴∠BOD =∠ACO , ∵∠OBD =∠OAC , ∴▵OAC ∽▵DBO ;(2)由(1)得▵OAC ∽▵DBO , ∴ACBO =AOBD , ∴AC ·BD =4, 设C(x C ,y C ),D(x D ,y D ),过点C 作CE ⊥OA 于点E ,过点D 作DF ⊥OB 于点F ,则BD =√2DF =−√2x D ,AC =√2CE =√2y C . ∴−√2x D ·√2y C =4, ∴x D ·y C =−2, 即k·x D x C=−2,联立{y =x −2y =k x,消去y 得x 2−2x −k =0,∴x D ·x C =−k ,∴x D 2=2,∴x D =−√2, ∴y D =2−√2, ∴k =2√2+2;(3)由(1)知▵OAC ∽▵DBO ,∴S 1S 2=(OB AC )2=(BD OA )2=12,∴AC =2√2,BD =√2, ∴C(4,2),D(−1,−3), ∴S 1=1,S 2=2,把C ,D 代入二次函数解析式得: {16a +4b +c =2a −b +c =−3, 解得{b =1−3ac =−2−4a, ∴y =ax 2+(1−3a)x +(−2−4a), 对称轴为x =−1−3a 2a=32−12a,①当a >0时, ∵x =32−12a <32,∴2到对称轴的距离大于1到对称轴的距离,∴当x =2时,二次函数取最大值为4a +2−6a −2−4a =2. ∴a =−13(舍去),这种情况,不存在a 的值使二次函数的最大值为2; ②当−1≤a <0时,x =32−12a ≥2,∴二次函数y =ax 2+(1−3a)x +(−2−4a)在1≤x ≤2上是随着x 的增大而增大的, ∴当x =2时,二次函数取最大值为4a +2−6a −2−4a =2, 解得:a =−13; ③当a <−1时,32<x =32−12a <2,∴当x =32−12a 时,二次函数取最大值为−(3a−1)24a−2−4a =2,解得a =−15(舍去), 综上可得a 的值为−13.【解析】本题主要考查的是相似三角形的判定和性质,一次函数的图象上点的坐标特征,等腰三角形的判定,二次函数的应用的有关知识.(1)根据∠DOC=135°,得到∠BOD+∠AOC=45°,根据A,B分别是直线y=x−2与x轴,y轴的交点,得到OA=OB=2,进而得到∠OAB=∠OBA=45°,从而有∠BOD=∠ACO,根据∠OBD=∠OAC,得到▵OAC∽▵DBO;(2)由相似三角形的性质得到AC·BD=4,设C(x C,y C),D(x D,y D),过点C作CE⊥OA于点E,过点D作DF⊥OB于点F,则BD=√2DF=−√2x D,AC=√2CE=√2y C.进而求出k·x Dx C=−2,联立{y=x−2y=kx,消去y得x2−2x−k=0,求出x D=−√2,y D=2−√2,进而求出k;(3)利用相似三角形的性质得到S1S2=(OBAC)2=(BDOA)2=12,求出点C,D的坐标,再代入二次函数的解析式求出y=ax2+(1−3a)x+(−2−4a),求出对称轴为x=−1−3a2a =32−12a,再分①当a>0时,②当−1≤a<0时,③当a<−1时,讨论求解即可.5.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=kx(x>0)的图像上,点D的坐标为(4,3).(1)求k的值.(2)设点M在反比例函数图像上,连接AM,DM,若△AMD的面积与菱形ABCD的面积相等,求点M的坐标.【答案】解:(1)延长AD交x轴于E,∵点D的坐标为(4,3),∴OE=4,DE=3,由勾股定理得,OD=5,则AE=8,∴点A的坐标为(4,8),∴k=4×8=32,答:k的值为32;(2)菱形ABCD的面积为5×4=20,∵△AMD的面积与菱形ABCD的面积相等,∴点M到AD的距离为20×25=8,∴点M的横坐标为4+8=12,y=3212=83,点M的坐标为(12,83).【解析】本题考查的是反比例函数系数k的几何意义、求反比例函数的解析式,勾股定理,三角形的面积,反比例函数的图象上点的坐标特征的有关知识,菱形的性质,掌握菱形的性质、反比例函数系数k=xy是解题的关键.(1)延长AD交的轴于E,根据勾股定理求出菱形的边长,确定A的坐标,代入反比例函数解析式求出k的值;(2)根据题意求出菱形的面积,根据题意求出点M到AD的距离,求出点M的横坐标,代入求值即可.6.如图,在平面直角坐标系xOy中,直线y=mx+1与双曲y=kx(k>0)相交于点A、B,点C在x轴正半轴上,点D(1,−2),连结OA、OD、DC、AC,四边形AODC为菱形.(1)求k和m的值;(2)根据图象写出反比例函数的值小于2时x的取值范围;(3)设点P是y轴上一动点,且S△OAP=S菱形OACD,求点P的坐标.【答案】解:(1)∵四边形AODC是菱形,O、C在x轴上,∴A、D关于x轴对称,∵D(1,−2),∴A(1,2),将A(1,2)代入直线y=mx+1可得m+1=2,解得m=1,将A(1,2)代入反比例函数y=kx,可求得k=2.(2)∵当x=1时,反比例函数的值为2,∴当反比例函数图象在A点下方时,对应的函数值小于2,此时x的取值范围为:x<0或x>1;(3)连接AD交x轴于E,∵OC=2OE=2,AD=2DE=4,∴S菱形OACD =12OC⋅AD=4,S△OAP=S菱形OACD,∴S△OAP=4,设P点坐标为(0,y),则OP=|y|,∴12×|y|×1=4,即|y|=8,解得y=8或y=−8,∴P点坐标为(0,8)或(0,−8)【解析】本题考查的是反比例函数的解析式,菱形的性质,三角形的面积有关知识.(1)由菱形的性质可知A、D关于x轴对称,可求得A点坐标,把A点坐标分别代入两函数函数解析式可求得k和m值;(2)由(1)可知A点坐标为(1,2),结合图象可知在A点的下方时,反比例函数的值小于2,可求得x的取值范围;(3)根据菱形的性质可求得C点坐标,可求得菱形面积,设P点坐标为(0,y),根据条件可得到关于y的方程,可求得P点坐标.7.抛物线y=ax2+bx+c的图象经过点A(−1,0),B(3,0),交y轴负半轴于点C且OC=OA.(1)求抛物线的解析式;(2)如图1,在第四象限内的抛物线上是否存在一点P,连接AP,直线AP将四边形ACPB的面积分为1:2的两部分?若存在,求出点P的坐标;若不存在,请说明理由;(3)如图2,以AB为直径向x轴上方画半圆,交y轴正半轴于点D,点Q是弧BD上的动点,M是弧DQ的中点,连接AQ、DQ,AM,设∠CDQ的角平分线交AM于点N,当点Q沿半圆从点D运动至点B时,求N点的运动路径长.【答案】解:(1)∵抛物线图象经过点A(−1,0)、点B(3,0)且OC=OA∴点C(0,−1),设抛物线解析式为y=a(x+1)(x−3),把点C(0,−1)代入,得a =13,∴设抛物线解析式为y =13(x +1)(x −3), 即y =13x 2−23x −1;(2)连接BC 交AP 于点E ,过点C 作CG ⊥AP 垂足为点G 、过点B 作BH ⊥AP 交AP 的延长线于点H ,过点E 作EF ⊥AB ,垂足为点F , 如图 ①若S △APC :S △APB =1:2,则CG:BH =1:2,∵△CGE∽△BHE , ∴CE:BE =CG:BH =1:2, 易证△BEF∽△BOC , ∴BF BO=BE BC=EF OC =23, ∴E(1,−23),∴AE 的解析式为y =−13(x +1),令,解得{x 1=−1y 1=0(舍);{x 2=2y 2=−1,∴点P(2,−1) ;②如图若S △APC :S △APB =2:1,则CG:BH =2:1,∵△CGE∽△BHE ∴CE:BE =CG:BH =2:1, 易证△BEF∽△BCO , ∴,∴E(2,−13),∴AE 的解析式为y =−19(x +1), 令{y =−19(x +1),y =13(x +1)(x −3).解得∴点P(83,−1127),综上所述点P(2,−1)或(83,−1127).(3)如图连接AD ,易知AB =4,OD =√3,∠AQD =∠ABD =30°,∴∠DAO =60°,∠ADO =30°,不妨设∠QAO=x,∴∠DAQ=60°−x,∵点M是弧DQ的中点,∴∠DAM=∠MAQ=12(60°−x),∵∠QAO+∠DOA=∠ODQ+∠AQD,∴∠ODQ=x+90°−30°=60°+x,∵DN平分∠ODQ,∴∠ODN=12∠ODQ=12(60°+x),∴∠ADN=∠ADO+∠ODN=30°+12(60°+x)=60°+12x,∴∠AND=180°−(∠DAN+∠ADN)=90°,如图∴点N在以AD为直径的圆上运动,起点为点D,终点为N′,取AD的中点S,连接SN′,当点Q运动到点B时,即∠QAO=x=0°,∴∠DAN=30°,则∠DSN=60°,∵AD=2∴SD=1,∴点N运动的路径长为60⋅π⋅12180=π3.【解析】本题考查二次函数与相似三角形和圆的有关知识的综合,并要具备分类讨论的思想、数形结合思想,需要很强的逻辑推理能力;要有很强的计算能力,熟记计算公式是关键;本道题是一道比较困难的综合题。
代数几何综合题
代数几何综合题1、如图,平面直角坐标系中三点A〔 2, 0〕,B〔 0, 2〕, P〔 x,0〕( x0) ,连结 BP,过 P 点作PC PB交过点 A 的直线 a 于点 C〔2, y〕(1〕求 y 与 x 之间的函数关系式;〔 2〕当 x 取最大整数时,求BC与 PA 的交点 Q的坐标。
yBaO Q AP xC2.如图,从⊙ O 外一点 A 作⊙ O 的切线 AB、 AC,切点分别为B、C,⊙ O的直径 BD为 6,连接 CD、AO.(1)求证: CD∥ AO;(2) 设 CD=x, AO=y,求 y 与 x 之间的函数关系式,并写出自变量x 的取值范围;(3) 假设 AO+CD= 11,求 AB的长 .ACD BO3.如图,A、B 两点的坐标分别是(x 1,0) 、(x 2,O),其中 x1、x2是关于 x 的方程 x2+2x+m-3=O 的两根,且 x1<0<x2.(1)求 m的取值范围;(2)设点 C 在 y 轴的正半轴上,∠ ACB=90°,∠ CAB=30°,求 m的值;(3)在上述条件下,假设点 D在第二象限,△ DAB≌△ CBA,求出直线 AD的函数剖析式 .4. 一张矩形纸片OABC平放在平面直角坐标系内,O为原点,点 A 在 x 的正半轴上,点 C 在y轴的正半轴上,OA=5,OC=4。
①求直线 AC的剖析式;8 x2kx上,求k的值;②假设 M为 AC与 BO的交点,点M在抛物线y5③将纸片沿CE 对折,点 B 落在x 轴上的点 D 处,试判断点 D 可否在②的抛物线上,并说明原由。
1、抛物线y x22x m(m 0) 与y轴的交于C点,C点关于抛物线对称轴的对称点为 C′。
(1〕求抛物线的对称轴及 C、C′的坐标〔可用含 m的代数式表示〕;(2〕若是点 Q在抛物线的对称轴上,点 P 在抛物线上,以点 C、C′、 P、 Q为极点的四边形是平行四边形,求 Q点和 P 的坐标〔可用含 m的代数式表示〕;(3〕在〔 2〕的条件下,求出平行四边形的周长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
、选择题:代数与几何综合题(时间:90分钟)1.如图2- 5-8所示,在直角坐标系中,△ ABC 各顶点坐标分别为 A (0 , ,3 ) , B (- 1 , 0 )、C (1, 0)中,若厶DEF 各顶点坐标分别为 D( 3 , 0)、E ( 0 , 1)、F (0, — 1),则下列判断正确的是( A . B . C . D .△。
丘卩由厶ABC 绕O 点顺时针旋转 △。
丘卩由厶ABC 绕O 点逆时针旋转 △。
丘卩由厶ABC 绕O 点顺时针旋转 △。
丘卩由厶ABC 绕O 点顺时针旋转 90°得到; 90°得到; 60°得到; 120°得到 2. 如图( 4(X X4)^ OAR △ ABQ 均是等腰直角三角形,点 P 、 0)的图象上,直角顶点 A B 均在X 轴上,则点 B 的坐 VjB Q y 齡圈 2-1^Q 在函1,0) B 、(. 5 1 ,0) C 、 (3, 0) D 、 1, 0) xA B图(4)P Q3. 已知点 A .3,1 , B 0,0 ,,AE 平分/ BAC ,交 BC 占八、、E ,则直线AE 对应的函数表达式是 B . yC. y ,3x 1D.4 .在平面直角坐标系中,□ ABCD 的坐标分别是(0,0),(5,0) 坐标是( ) A. ( 3 , 7) B. C. (7, 3) D. 5..等腰三角形的底和腰是方程 A.8 B.10 的顶点 A 、B 、D ,(2,3) (5 , 3) (8, 2) C.8 或 10 D.不能确定 2 6 3 A . yx3B . y —xC . y xD . yx 26 .如图,O 为矩形ABCD 的中心,将直角三角板的直角顶点与 O 点重合,转动三角板使两直角边始终与 BC 、AB 相交,交点分别为 M 、N .如果 AB =4, AD =6, O M=X ,ON= y 贝U y 与X 的关系是 DCAOxCB)FA1010D 57575PQO '10出5A B)则运动过程中所构 99日x(s)x(s)OO3 3 3 3 CABD)AEDDEBAOBD 相交于EA 、tan AEDE l致E 、 COtcm 2cm 210、如图所示,AB 是O O 的直径,弦 ACx(s)-O(cm 2)与运动时间x (s )之间的函AC 4cm , BC 6cm ,动点 P 从点 C 沿 CA , C . D .Q 从点C 沿CB ,以2cm/s 的速度向点B 运动,其中一个动点到达x(s)O则CB 等于9)(7题图)8如图4 (单位:m ),直角梯形ABCD 以2 m/s 的速度沿直线l 向正方形CEFG 方向移动,直到AB 与FE 重合,直角梯形 ABCD 与正方形CEFG 重叠部分的面积 S 关于移动时间t 的函数图象可能是9.如图,在 Rt A ABC 中,/ C 90°, A . B . 以1cm/s 的速度向点 A 运动,同时动点 B10 C 图-f7541 7.如图,反比例函数 y—的图象与直线y —X 的交点为A , B ,过点A 作y 轴的平行线与过点 Bx3作x 轴的平行线相交于点 C ,贝U △ABC 的面积为( )A. 8B. 6C. 4D. 2 A y、填空题BC , △ ABC 1 .如图所示,在等腰梯形ABCD中,DC // AB , AC丄BC , AC > 的面积为2.3,且AC + BC = 2 , 3 1 ,那么此梯形中位线长为2•如图,△ ABC中,AB AC,/ A 45o, AC的垂直平分线分别交AB, AC于D, E两点,连接CD •如果AD 1, 那么tan/ BCD= __________ .3 •当k取不同整数时,经过第一、二、四象限的所有直线y 2k 1 x k 2与坐标轴在第一象限围成一个多边形,这个多边形的面积等于____________4. 如图,已知A(1 , 0)、A2(1 , 1)、A s(-1 , 1)、A4(-1 , -1)、A 5(2 , -1)、…。
则点A2007,的坐标为三、解答下列各题1. 如图,已知平面直角坐标系中三点 A (2, 0), B ( 0, 2), P (x,0) (X 0),连结BP,过P点作PC PB交过点A的直线a于点C( 2, y)(1)求y与x之间的函数关系式;(2)当x取最大整数时,求BC与PA的交点Q的坐标。
2•矩形OABC在直角坐标系中位置如图所示,A C 两点2•矩形OABC在直角坐标系中位置如图所示,A C 两点3的坐标分别为 A (6, 0), C (0, 3),直线y=—x与BC边相交于点D.4(1)求点D的坐标;(2)若抛物线y=ax2+bx经过D A两点,试确定此抛物线的表达式;(3)P为x轴上方,(2)中抛物线上一点,求△ POA面积的最大值;(4)设(2)中抛物线的对称轴与直线0D交于点M点Q为对称轴上一动点,以Q O M为顶点的三角形与△OCD相似,求符合条件的Q点的坐标.3、一张矩形纸片OABC平放在平面直角坐标系内,0为原点,点A在x的正半轴上,点C在y轴的正半轴上,0A= 5, 0C= 4。
①求直线AC的解析式;8 2②若M为AC与B0的交点,点M在抛物线y - x kx上,求k的值;5③将纸片沿CE对折,点B落在x轴上的点D处,试判断点D是否在②的抛物线上,并说明理由。
4、如图,在正方形ABCD中, AB=2, E是AD边上一点(点E与点A, D不重合).BE的垂直平分线交AB于M交DC于N⑴设AE=x,四边形ADNM勺面积为S,写出S关于x的函数关系式;(2) 当AE为何值时,四边形ADNM勺面积最大?最大值是多少?5.如图2 — 5-16,在矩形 ABCD 中,AB=10。
cm , BC=8cm .点P 从A 出发,沿SD 路线运动,至U D 停止;点Q 从D 出发,沿D^C ^B ^A路线运动,到 A 停止,若点P 、点Q 同时出发,点P 的速度为1cm/s ,点Q 的速度为2cm/s , a s 时点P 、点Q 同时改变速度,点 P 的速度变为bcm/s ,点Q 的 速度变为d cm/s ,图2 — 5— 17是点P 出发x 秒后△ APD 的面积0( cm 2)与x ( s )的函数关系图象; 图2— 5 — 18是点Q 出发xs 后面AQD 的面积S 2 (cm 2)与x (s )的函数关系图象. ⑴ 参照图2— 5— 17,求a 、b 及图中c 的值;求d 的值;设点P 离开点A 的路程为y#cm),点Q 到点A 还需走的路程为y 2(cm),请分别写出动点 度后,y 1、y 2与出发后的运动时间 x (s )的函数解析式,并求出 当点Q 出发 s 时,点P 、点Q 在运动路线上相距的路程为6. 在直角坐标系中,O O 1经过坐标原点 0,分别与x 轴正半轴、y 轴正半轴交于点 A 、B 。
123(1)如图,过点 A 作O O 1的切线与y 轴交于点C ,点O 到直线AB 的距离为 ,sin ABC -, 5 5求直线AC 的解析式;(2) 若O O 1经过点M (2, 2),设 BOA 的内切圆的直径为 d ,试判断d+AB 的值是否会发生变化, 如果不变,求出其值,如果变化,求其变化的范围。
P 、Q 改变速P 、Q 相遇时x 的值. 25cm .选做题1设边长为2a的正方形的中心A在直线I上,它的一组对边垂直于直线I,半径为r的O O的圆心0在直线I上运动,点A、0间距离为d.(1)如图①,当r v a时,根据d与a、r之间关系,将O O与正方形的公共点个数填入下表:d、a、r之间关系公共点的个数d> a+ rd= a+ ra—r v d v a + rd= a—rd v a—r所以,当r v a时,O O与正方形的公共点的个数可能有 _______________________ 个;a、r之间关系,将O O与正方形的公共点个数填入下表:d、a、r之间关系公共点的个数d> a+ rd= a+ ra w d v a + rd v a所以,当r = a时O与正方形的公共点个数可能有个;(3)如图③,当O O与正方形有5个公共点时,试说明(4)___ 就r>a的情形,请你仿照“当……时,O O与正方形的公共点个数可能有个”的形式,至少给出一个关于“O _____ O与正方形的公共点个数”的正确结论.(注:第(4)小题若多给出一个正确结论,则可多得2分,但本大题得分总和不得超过12分)2. 如图,直角坐标系中,已知点A(2 , 4) , B(5 , 0),动点P从B点出发沿B0向终点0运动,动点0从A 点出发沿AB向终点B运动•两点同时出发,速度均为每秒1个单位,设从出发起运动了xs.(1) Q点的坐标为(_____ , _____ )(用含x的代数式表示)(2) 当x为何值时,△ APQ是一个以AP为腰的等腰三角形?(3) 记PQ的中点为G请你探求点G随点P, Q运动所形成的图形,并说明理由•代数与几何综合题答案 一、 ABDCB DAACD 二、 1、 32、,2-1 3 、辛 4 、(-502 , 502)三、 1、( 1) y=- 2 x 2+x(2) x 取最大整数为-1 ,••• y=- 2 x (-1) 2-仁-3 ■■- AC=|由厶 BOQ^ CAQ 可得 % =需• ^ = 20Q Q解得 OQ=8•-Q ( 8 , 0)2、( 1)由题意知:y=3x 与BC 交于D (x , 3)把 y=3 代入 y= 4 x 得 x=4 • D(4,3)(2)把 D(4, 3) A (6, 0)代入 y=ax 2+bx 中得 16a+4b=3 解得 一 a=- 8 36a+6b=0 b= 1 l 讣2 ■32 Q• y=ax +bx=- + 9 x(3) 因厶POA 的底边OA=6 •••当POA 有最大值时,点 P 必须位于抛物线的最高点••• a=- 3 < 0•抛物线的顶点恰为最高点24ac b 2 = 27 4a 8最大=1x 6x27=81(4) 抛物线的对称轴与 X 轴的交点Q 1符合条件•/ CB// OA •••/ Q1OM=/ CDO ••• Rt△Q1OM h Rt△CDO • x=-鸟=3 • Q1 (3,0)过O作OQ丄OD交对称轴于Q2•••对称轴// y 轴Q2 MO=/ DOC•Rt △ Q2 Q1O 和Rt △ DOC中Q 1 O=CO=3 / Q2 =Z ODC•Rt △ Q2 Q1O 也Rt △ DOC• CD= Q1 Q2=4 •••点Q位于第四象限•- Q2( 3,-4 )故符合条件的点有两个分别为•Q (3,0) Q 2(3,-4 )3、①y=- 5 x+4 ②k=-24 ③D在②的抛物线上4、( 1)连接ME设MN交BE于P,根据题意得MB=ME MN丄BE 过N作NF丄AB于F,在Rt △ MBP和Rt△ MNF中,/ MBP丄90°,Z MNF# BMN=9°)所以/ MBP2 MNF 又AB=FN 所以Rt△ EBdRt△ MNF 所以FM=AE=^ Rt △ AME中,由勾股定理得:ME=AE+AM,所以M B=X2+A M.即(2-AM) 2= x2+AM,解得AM=1-4 x2.所以四边形ADNM勺面积S= AM2DN X AD=AM2AF X 2=AM+AM+MF=2AM+AE=1-寸X2) +X=-吉X2+X+2即所求关系式为S二弓X2+X+2(2) S=-1X2+X+2=-4(X2+X+1)+| ,所以当AE=X=1时,四边形ADNM勺面积S的值最大,此时最大值是5 .5、 ( 1) a=6s , b=2cm/s, c=17(2)当x=6s改变速度时,Q点恰好在线段BC上,且CQ=2则6+罟+畔=22得d=1.(3)y1=2x-6(6 < X< 17) y 2=22-X(6 < X< 22)相遇时x=^ (s)(4)当Q运动1s或19s时,P, Q在运动线上相距路程为25cm.6、 ( 1) y=- |X+|(2)不变,d+AB=4。